@phdthesis{Tolsdorf2022, author = {Tolsdorf, Jan}, title = {Investigation of Information Privacy in Employment: Fundamental Knowledge and Practical Solutions for the Human-Centered Design of Measures to Preserve the Right to Informational Self-Determination in Employment}, organization = {Georg-August-Universit{\"a}t G{\"o}ttingen}, doi = {10.53846/goediss-9481}, institution = {Fachbereich Informatik}, pages = {xvii, 261}, year = {2022}, abstract = {The processing of employee personal data is dramatically increasing. To protect employees' fundamental right to privacy, the law provides for the implementation of privacy controls, including transparency and intervention. At present, however, the stakeholders responsible for putting these obligations into action, such as employers and software engineers, simply lack the fundamental knowledge needed to design and implement the necessary controls. Indeed, privacy research has so far focused mainly on consumer relations in the private context. In contrast, privacy in the employment context is less well studied. However, since privacy is highly context-dependent, existing knowledge and privacy controls from other contexts cannot simply be adopted to the employment context. In particular, privacy in employment is subject to different legal and social norms, which require a different conceptualization of the right to privacy than is usual in other contexts. To adequately address these aspects, there is broad consensus that privacy must be regarded as a socio-technical concept in which human factors must be considered alongside technical-legal factors. Today, however, there is a particular lack of knowledge about human factors in employee privacy. Disregarding the needs and concerns of individuals or lack of usability, though, are common reasons for the failure of privacy and security measures in practice. This dissertation addresses key knowledge gaps on human factors in employee privacy by presenting the results of a total of three in-depth studies with employees in Germany. The results provide insights into employees' perceptions of the right to privacy, as well as their perceptions and expectations regarding the processing of employee personal data. The insights gained provide a foundation for the human-centered design and implementation of employee-centric privacy controls, i.e., privacy controls that incorporate the views, expectations, and capabilities of employees. Specifically, this dissertation presents the first mental models of employees on the right to informational self-determination, the German equivalent of the right to privacy. The results provide insights into employees' (1) perceptions of categories of data, (2) familiarity and expectations of the right to privacy, and (3) perceptions of data processing, data flow, safeguards, and threat models. In addition, three major types of mental models are presented, each with a different conceptualization of the right to privacy and a different desire for control. Moreover, this dissertation provides multiple insights into employees' perceptions of data sensitivity and willingness to disclose personal data in employment. Specifically, it highlights the uniqueness of the employment context compared to other contexts and breaks down the multi-dimensionality of employees' perceptions of personal data. As a result, the dimensions in which employees perceive data are presented, and differences among employees are highlighted. This is complemented by identifying personal characteristics and attitudes toward employers, as well as toward the right to privacy, that influence these perceptions. Furthermore, this dissertation provides insights into practical aspects for the implementation of personal data management solutions to safeguard employee privacy. Specifically, it presents the results of a user-centered design study with employees who process personal data of other employees as part of their job. Based on the results obtained, a privacy pattern is presented that harmonizes privacy obligations with personal data processing activities. The pattern is useful for designing privacy controls that help these employees handle employee personal data in a privacy-compliant manner, taking into account their skills and knowledge, thus helping to protect employee privacy. The outcome of this dissertation benefits a wide range of stakeholders who are involved in the protection of employee privacy. For example, it highlights the challenges to be considered by employers and software engineers when conceptualizing and designing employee-centric privacy controls. Policymakers and researchers gain a better understanding of employees' perceptions of privacy and obtain fundamental knowledge for future research into theoretical and abstract concepts or practical issues of employee privacy. Employers, IT engineers, and researchers gain insights into ways to empower data processing employees to handle employee personal data in a privacy-compliant manner, enabling employers to improve and promote compliance. Since the basic principles underlying informational self-determination have been incorporated into European privacy legislation, we are confident that our results are also of relevance to stakeholders outside Germany.}, language = {en} }