@article{AlthausUrnessClaussetal.2012, author = {M. Althaus and K. D. Urness and W. G. Clauss and D. L. Baines and M. Fronius}, title = {The gasotransmitter hydrogen sulphide decreases Na⁺ transport across pulmonary epithelial cells}, series = {British Journal of Pharmacology}, volume = {166}, number = {6}, publisher = {The British Pharmacological Society}, issn = {1476-5381}, doi = {10.1111/j.1476-5381.2012.01909.x}, pages = {1946 -- 1963}, year = {2012}, abstract = {BACKGROUND AND PURPOSE The transepithelial absorption of Na(+) in the lungs is crucial for the maintenance of the volume and composition of epithelial lining fluid. The regulation of Na(+) transport is essential, because hypo- or hyperabsorption of Na(+) is associated with lung diseases such as pulmonary oedema or cystic fibrosis. This study investigated the effects of the gaseous signalling molecule hydrogen sulphide (H(2) S) on Na(+) absorption across pulmonary epithelial cells. EXPERIMENTAL APPROACH Ion transport processes were electrophysiologically assessed in Ussing chambers on H441 cells grown on permeable supports at air/liquid interface and on native tracheal preparations of pigs and mice. The effects of H(2)S were further investigated on Na(+) channels expressed in Xenopus oocytes and Na(+) /K(+)-ATPase activity in vitro. Membrane abundance of Na(+) /K(+)-ATPase was determined by surface biotinylation and Western blot. Cellular ATP concentrations were measured colorimetrically, and cytosolic Ca(2+) concentrations were measured with Fura-2. KEY RESULTS H(2)S rapidly and reversibly inhibited Na(+) transport in all the models employed. H(2)S had no effect on Na(+) channels, whereas it decreased Na(+) /K(+)-ATPase currents. H(2)S did not affect the membrane abundance of Na(+) /K(+)-ATPase, its metabolic or calcium-dependent regulation, or its direct activity. However, H(2)S inhibited basolateral calcium-dependent K(+) channels, which consequently decreased Na(+) absorption by H441 monolayers. CONCLUSIONS AND IMPLICATIONS H(2) S impairs pulmonary transepithelial Na(+) absorption, mainly by inhibiting basolateral Ca(2+)-dependent K(+) channels. These data suggest that the H(2)S signalling system might represent a novel pharmacological target for modifying pulmonary transepithelial Na(+) transport.}, language = {en} }