TY - CPAPER U1 - Konferenzveröffentlichung A1 - Kölbach, Moritz A1 - Höhn, Oliver A1 - Barry, James A1 - Finkbeiner, Manuel A1 - Rehfeld, Kira A1 - May, Matthias M. T1 - Climatic response of thermally coupled solar water splitting in Antarctica T2 - EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022 N2 - Hydrogen is a versatile energy carrier. When produced with renewable energy by water splitting, it is a carbon neutral alternative to fossil fuels. The industrialization process of this technology is currently dominated by electrolyzers powered by solar or wind energy. For small scale applications, however, more integrated device designs for water splitting using solar energy might optimize hydrogen production due to lower balance of system costs and a smarter thermal management. Such devices offer the opportunity to thermally couple the solar cell and the electrochemical compartment. In this way, heat losses in the absorber can be turned into an efficiency boost for the device via simultaneously enhancing the catalytic performance of the water splitting reactions, cooling the absorber, and decreasing the ohmic losses.[1,2] However,integrated devices (sometimes also referred to as “artificial leaves”), currently suffer from a lower technology readiness level (TRL) than the completely decoupled approach. Y1 - 2022 UN - https://nbn-resolving.org/urn:nbn:de:hbz:1044-opus-61992 U6 - https://doi.org/10.5194/egusphere-egu22-11608 DO - https://doi.org/10.5194/egusphere-egu22-11608 SP - 11608 PB - Copernicus GmbH ER -