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Abstract 

 

The work presented in this paper focuses on the comparison of well-known and new 

fault-diagnosis algorithms in the robot domain. The main challenge for fault diagnosis is 

to allow the robot to effectively cope not only with internal hardware and software faults 

but with external disturbances and errors from dynamic and complex environments as 

well. Based on a study of literature covering fault-diagnosis algorithms, I selected four 

of these methods
1
 based on both linear and non-linear models, analysed and 

implemented them in a mathematical robot-model, representing a four-wheels-OMNI 

robot. In experiments I tested the ability of the algorithms to detect and identify 

abnormal behaviour and to optimize the model parameters for the given training data. 

The final goal was to point out the strengths of each algorithm and to figure out which 

method would best suit the demands of fault diagnosis for a particular robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
1
 The algorithms chosen were: Parity Space (PS), Hidden Markov Model (HMM), Particle Filter (PF) and 

 



 2 

 

 

Acknowledgments 

 

I would like to thank my supervisor Paul G. Plöger who took a lot of time to discuss the 

topic with me. He gave me new ideas and helped me understand the theory behind the 

algorithms.  

Kai Pervölz supported me with his teachings about mobile manipulators. The 

discussions with him about fault diagnosis have been interesting and helpful. 

Thanks to my family for being patient with a robot-crazy mom and wife.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

 

Contents 

 
Abstract ............................................................................................................................. 1 

1.  Introduction .............................................................................................................. 5 

1. 1  Problem Statement ......................................................................................... 6 

1. 2  Motivation and Challenges ........................................................................... 6 

1. 3  Thesis Statement ............................................................................................ 7 

1. 4  Related Works ................................................................................................ 8 

1. 5  Reader’s Guide ............................................................................................. 10 

2.  Theoretical Background of Fault Diagnosis (in general) ....................................... 11 

2. 1  Basic Definitions ........................................................................................... 11 

2. 2  Classification of Fault Diagnosis Methods ................................................. 13 

2. 3  Model-Based Scheme ................................................................................... 14 

2. 4  Fault Modelling ............................................................................................ 15 

2. 5  Process Modelling ........................................................................................ 16 

2. 6  Applications in the Industrial World ......................................................... 18 

3.   Fault Diagnosis in the Robot Domain ................................................................ 19 

3. 1  Fault Classification ...................................................................................... 20 

3. 2  Robot Model (Design Example) .................................................................. 22 

3. 3  Mobile Manipulators ................................................................................... 25 

3. 3. 1   Mobile Manipulator Examples .......................................................... 27 

4.  Fault Diagnosis Methods ....................................................................................... 30 

4. 1  Parity Space and Principle Component Analysis ..................................... 30 

4. 1. 1       Background Theory ............................................................................. 30     

4. 1. 2   The Algorithm ...................................................................................... 34 

4. 1. 3  Principle Component Analysis (PCA) ................................................ 36 

4. 1. 4  Applications .......................................................................................... 37 

4. 1. 5  Summary ............................................................................................... 39 

4. 2  Hidden Markov Model ................................................................................ 40 

4. 2. 1  Background Theory ............................................................................. 40 

4. 2. 2  HMM Representation .......................................................................... 41 

4. 2. 3  HMM Problems and Solutions ........................................................... 42 

4. 2. 4  Application of HMM in Fault Diagnosis ............................................ 46 

4. 2. 5  Numerical Example ............................................................................. 46 

4. 2. 6  Summary ............................................................................................... 56 

4. 3  Particle Filter (PF) ....................................................................................... 58 

4. 3. 1  Background Theory ............................................................................. 58 

4. 3. 2  Particle Filter Enhancements .............................................................. 61 

4. 3. 3  Numerical Example ............................................................................. 62 

4. 3. 4  Summary ............................................................................................... 69 

4. 4  Observable Operator Model (OOM) ......................................................... 70 

4. 4. 1  Background Theory ............................................................................. 70 

4. 4. 2  Learning with OOMs: Challenges and Their Solutions ................... 78 

4. 4. 3  OOM Flavours ..................................................................................... 79 

4. 4. 4  Numerical examples ............................................................................. 80 

4. 4. 5  Summary ............................................................................................... 89 

5.  Comparison of Solutions ....................................................................................... 91 

6.  Conclusions ............................................................................................................ 94 

 

 



 4 

Appendices ...................................................................................................................... 96 

A.   State Estimation with Hidden Markov Model .......................................... 96 

B.   State Estimation with Particle Filter ........................................................ 102 

C.   State Estimation with Observable Operator Model ............................... 108 

Reference: ..................................................................................................................... 110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

 

1.  Introduction 

 

 

Fault diagnosis plays an important part in the development of complex systems.  

The ability to monitor and diagnose complex physical systems is critical for 

constructing efficient autonomous systems that can perform their tasks robustly in 

dynamic environments over a long period of time.  

Fault Diagnosis allows complex systems to efficiently cope not only with internal faults 

but with external faults as well. Since a robot must closely interact with its environment, 

there is high probability for external faults for the environment may by unknown or 

changing. Consider a robot system consisting of a number of components, each of 

which is responsible for detection internal faults. If a robot performs the task of 

grabbing a pencil from a table, the respective manipulator component can detect if it 

grabs the object or if it fails to do so. Would it grab another object from the same table, 

the manipulator would not recognise an error. This action however could be detected by 

an external device like a camera. The new data would then be translated to the central 

controller for analysis and eventual recovery. Fault monitoring provides a fault report 

which will enable the system to adapt to the situation and avoid errors in the future.  

In many cases the physical model of the system is known. This means that we are able 

to calculate the correct outputs, compare them to the ones we received from the sensors, 

and draw conclusions about faults. The main problem is the handling of the physical 

model of the robot, as it is hard to exactly determine. Since the world is dynamic, the 

robot’s environment can always change, therefore the robot model has to be customized 

accordingly. If the physical model is unknown, it has to be estimated from a set of 

training data.  

To a given or an estimated model we can apply model-based fault detection and 

isolation (FDI) algorithms. The general principle is to compare the expected behaviour 

of the system given by the model with actual behaviour, known through on-line 

observations.  
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1. 1  Problem Statement 
 

The objective of the work is to recognize errors and abnormal behaviour in complex 

systems with large number of heterogeneous modules and devices which interact with 

dynamic environments.  

The interest in fault diagnosis has been increasing in the last three decades. Building a 

flexible system is of importance especially in automobile, aircraft and chemical 

industries. The increasing complexity of robot systems attracted the attention of 

universities and scientists for Fault diagnosis. Research in fault-tolerant control has 

created a large variety of algorithms and ways of implementing them. Unfortunately 

there is no universal technique that could be easily applied to any model. To develop a 

fault tolerant system we first need to survey existing fault diagnosis methods in dynamic 

systems. We then chose the appropriate algorithms, test them and narrow them down to 

the best possible solution for implementing in a mobile manipulator. The 

implementation itself is not a part of this work.  

  

 

1. 2  Motivation and Challenges 
 

The increasing complexity of robot systems influences the probability of component and 

system faults. Fault tolerant behaviour in robots is desirable for a variety of rather 

obvious reasons. Timely fault diagnosis increases the ability to complete tasks 

satisfactory and improves performance and safety – the robot becomes more efficient 

economically. 

The ability of a system to recognise errors and draw conclusions about future actions 

according to the situation enables it to avoid failures such as mission abortion, material 

damage and human accidents. After estimating the severity of a fault and determining its 

location, the system can be easily repaired. Fault tolerant robots are more flexible to 

new circumstance and environment.  

Fault tolerant behaviour not only identifies unsatisfactory performance and defines the 

location of an error, but it also enables the system to keep on performing its task. The 

majority of the approaches in the fault detection and isolation literature deal with 

internal faults such as defects in hardware or software. State-of-the-art researches for 

fault diagnosis focus on dealing with external influences. This might be a manipulator 
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grapping the wrong object, but one with a similar shape or suddenly switching off the 

light in a bright room, etc.  

Most existing literature on Fault monitoring is concerned with detecting abnormal 

behaviour in mobile robots or fix-based manipulators separately. Only few written 

works investigate fault diagnosis in the field of mobile manipulation. I assume this lack 

of scientific debate is due to the infancy of the topic and the complexity of the matter – 

system redundancy, cooperative coordination between vehicle and arm platform and the 

control structure design.  

To select a fault diagnosis algorithm adequate for a mobile manipulator it has to be 

taken into account that the environment of the mobile manipulator is dynamic, that 

sensor measurements can be disturbed by noise, that actuators are imprecise and that the 

system state can depend on various operating conditions. Furthermore we have to accept 

that there is only limited computational power, that some information of interest is 

unobservable and that some faults demand a sequence of observations in order to be 

detected. Real-time detection of faults is essential for the robot. 

 

 

1. 3  Thesis Statement  
 

In this work I intend to discuss and compare four fault diagnosis approaches, for a better 

understanding of their theoretical basics and their practical application. The final goal is 

to point out the strengths of each algorithm and to figure out which method best suits the 

demands of fault diagnosis for a robot. 

After comparing the algorithms Parity Space to Particle Filter and Hidden Markov 

Model (HMM) to Observable Operator Model (OOM), I came to the following 

conclusions: 

 

- For a linear state-space model with additive faults analytical results can be 

derived by the Parity space approach [1]. If a model is unknown but known to 

be linear, the principle component analysis can be used [2].  

- In systems with temporal dependencies the Hidden Markov Model (HMM) can 

be applied to describe a model and to solve the fault diagnosis problem. The 

HMM uses the Expectation-Maximization (EM) algorithm for training, but it 

leads to local maxima only, and in the most points of interest, the optimization 

surface is very complex and has many local maxima. [3]   
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- Some problems can be solved using state estimation, where the fault is an 

unknown state among other states in the process. In this case, fault detection and 

isolation may be tracked with Particle Filters. Using this algorithm the 

developer can influence the accuracy of results and computational resources by 

adjusting the number of particles. [4] 

- The Observable Operator Model (OOM) is an alternative new approach to 

HMM. Its theory is expressed in terms of linear algebra. OOM is applicable to a 

broader range of processes. This new algorithm does not have a local maxima 

problem as is the case with the EM approach. Most datasets obtained via the 

OOM learning algorithm are more accurate than HMM models. OOM is stable 

in the detection phase, but suffers from the negativity probability problem [5]. 

 

 

1. 4  Related Works 
 

There are various classified approaches of the existing fault diagnosis methods. The 

usual classification is shown in the papers [6], [7], [8]. In these papers the authors 

broadly divide fault diagnosis methods into three general categories: quantitative model-

based methods, qualitative model-based methods, and history-based methods. The 

authors define the methods for the industrial domain; unfortunately an application for 

robots is not of concern here. 

In his thesis work [9], P. Sundvall chiefly considers the model-based diagnosis. He 

focuses on the fault handling methods in general and relates how they have been 

implemented in different robots. In the model-based approach the dependency between 

inputs and outputs is mathematically defined, which means that there has to be a process 

model.  

In contrast to the model-based methods, in history-based methods [12] only a large 

amount of input and output data is available. The primary benefits of model-based 

diagnosis over other techniques are that it does not need pre-computation (it is entirely 

online) and that it uses less computational power. It can provide very accurate results 

(the exactness of the underlying model improves the accuracy of the algorithm).  

R Isermann in his book [10] has shown the theoretical and experimental research of new 

ways to detect and diagnose faults. This book, which aptly introduces the matter of fault 

diagnosis, is based on the results of the author’s own research projects during the last 25 

years and on publications by many other research groups.  
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M. Staroswiecki in his tutorial paper [11] about model-based fault diagnosis techniques 

introduces the mathematics of constructing sufficient models for various kinds of faults.  

I selected four methods based on both linear and non-linear models. F. Gustafsson [1] 

[2] and J. Gertler [13] analyse the parity space approach for fault detection and 

identification. They present the parity space algorithm based on the well known Chow-

Willsky scheme [14]. It can take advantages of the linear state space system.  

The other approach has been described by L. Rabiner [3]. His work focuses on the 

theoretical description of HMM and its implementation in speech recognition 

applications.  

The works on model-based fault diagnosis include GDE/Sherlock [15], [16], Livingstone 

1, 2 [17], [18] and Titan mode estimation which maintain reliability using a variant of 

the Viterbi algorithm [3]. Unfortunately the authors only take into account discrete 

states and known models (the model estimation was not provided).  

For many robot applications a diagnosis with a discrete model is inadequate. To 

overcome this problem the model needs to be a hybrid system. Such a system consists of 

a set of discrete states which correspond to functional modes, fault conditions and 

continuous states which represent the observable state of the robot (e.g. wheel speed, 

motor current etc.).  

Particle Filters are the solution for such kind of problems. They belong to a family of 

sequential Monte Carlo methods for approximate inference in parity observable Markov 

Chains [4]. They represent the probability of the system states by a set of particles.[20]  

The classical Particle Filter approach has several disadvantages in the fault diagnosis 

domain, such as a high improbability value of faults and an increasing amount of 

samples that require a lot of computing power. There are various approaches to 

addressing this problem in the literature. The goal of the Risk Sensitive Particle Filter 

algorithm [21], [22] by S. Thrun is to increase the amount of particles in “risky” or 

important states (e.g. the manipulator breaking its joint).  

V. Verma presents a further algorithm with the Variable resolution Particle Filter [21], 

[23]. It is based on the observation that some faults have similar symptoms so that they 

can be grouped together. E. Benanzera [24] combines Livingstone and Particle Filter. 

Plagermann [25] applies the Gaussian process classification for learning effective 

proposal distributions of Particle Filter. As a result, the efficiency and robustness of the 

state estimation is improved. The Rao-Blackwellized Particle Filter [26] is motivated by 

problems of low prior fault probabilities and restricted computational resources.  
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H. Jaeger [5] introduces a new alternative approach in the robot field – the Observable 

Operator Model (OOM). This theory seems to be similar to the Hidden Markov Model 

(HMM) as both can be expressed in matrix formalisms. The matrixes and state vectors 

of OOMs may contain negative elements, whereas the HMM matrixes include only non-

negative probability values. Jaeger gives a theoretical comparison of the OOM to the 

HMM – but no published material on the comparison of the two theories with results 

based on an experimental fundament exists yet. In my work I will attempt to close this 

gap.  

 

 

1. 5  Reader’s Guide 
 

In this paper I describe the activities carried out while working on the Thesis. The 

second chapter presents the theoretical fundamentals of fault diagnosis in general. The 

diagnosis methods of the industrial domain are grouped and exemplified. Mobile 

manipulator theory and fault handling in the robot domain are described in the third 

chapter. In chapter four I acquaint the reader with the four selected fault diagnosis 

algorithms. Besides introducing the theoretical background, I evaluate the efficiency of 

these methods also by means of practical examples. The results of implementing the 

methods in the four-wheel OMNI robot are illustrated at the end of each section. Based 

on these solutions the advantages and disadvantage are discussed. Eventually, I provide 

outcomes and conclusions of the research work in chapter five. 
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2.  Theoretical Background of Fault Diagnosis (in general) 

 

 

Consider a mobile manipulator in a room. To perform a task, it needs to move to a table 

and take an object. The mobile manipulator commands a fault diagnosis system for 

controlling its behaviour. It sets a defined speed to its wheel and measures its location 

every two seconds. From this information, the diagnosis system of the robot calculates 

the distance for each time unit and defines the expected location. The fault diagnosis 

system can now generate a diagnosis statement that will point out a fault if the expected 

location does not correspond to the measured location. When a fault is detected, the 

diagnosis system tries to identify its nature. For example, if a wheel gets stuck, the 

system records all the information about the occurrence and passes it on to the “central 

controller”, which should come up with a solution for the problem.    

From a general perspective [27] fault diagnosis can be explained as follows: The task is 

to generate a diagnosis that states whether a fault arises or not. If a fault is determined, 

its location has to be identified.   

Hence there are three main challenges of fault diagnosis: The generation of the 

diagnosis statement, the choice of the relevant parameters and the representation of 

expected or normal behaviour. The observations or measurements are chiefly output 

data obtained from the sensors, but can also be observations made by humans.  

 

 

2. 1  Basic Definitions 
 

The terminology used in this paper field is based on definitions of the IFAC Technical 

Committee SAFEPROCESS. 

“ 

- Fault 

Unpermitted deviation of at least one characteristic property or variable of the 

system from acceptable/usual/standard behaviour. 

- Fault Detection 

Determination of faults present in a system and time of detection. 

- Fault Isolation 
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Determination of kind, location, and time of detection of a fault. Follows fault 

detection. 

- Fault Identification 

Determination of the size and time-variant behaviour of a fault. Follows fault 

isolation. 

- Fault Diagnosis 

Determination of kind, size, location, and time of detection of a fault. Follows 

fault detection. Includes fault detection, isolation and identification.” 

 

For this work we will use an abstract version of these definitions, as fault identification 

is not of concern for our thesis: 

 

- Fault detection defines whether a fault has occurred.  

- Fault isolation sets where and when a fault has occurred.  

- Fault diagnosis contains both fault detection and fault isolation. 

 

Most fault diagnosis methods are based on the concept of redundancy (extra resources) 

in the system, so that a parameter can be calculated in more than one way. If, for 

example, several sensors are available to measure the same quantity, such type of 

redundancy is called hardware redundancy [10]. Hardware redundancy is a classical 

approach of fault diagnosis methods. Obvious disadvantages of using the hardware 

redundancy concept are higher costs, increased weight and complexity. The trend of 

current fault diagnosis techniques is based on the analytical redundancy concept!"

"

“There exist analytical redundancy if there exists two or more (but not 

necessarily identical) ways to determinate a variable, where one way uses a 

mathematical process model in analytical form.” [42] 

 

If two different sensors measure the same parameter according to the following 

relation: xyxy =∧=
21

, then the accuracy of parameter x can be validated [42].  

The third kind of redundancy concept used is the concept of hybrid redundancy. It 

includes hardware and analytical redundancies.  
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2. 2  Classification of Fault Diagnosis Methods 
 

There are various approaches to classify the existing fault diagnosis methods.  

One popular classification of industrial fault detection and isolation (FDI) methods is 

shown in Figure 1. 

Figure 1 Classification of diagnostic algorithms [6] 

 

In “A review of process fault detection and diagnosis part1: Quantitative model-based 

methods” [6] the authors broadly divide the most frequently used approaches to fault 

diagnosis in engineering into three general categories: quantitative model-based 

methods, qualitative model-based methods, and process history-based methods. In the 

model-based approach the relation between inputs and outputs is mathematically 

defined, which means the process model is assumed. In contrast to model-based 

methods, in history-based methods only a large amount of input and output data is 

available. As depicted above, the model-based approaches can be classified as 

quantitative [7] or qualitative [8]. In quantitative methods the underlying model is 

expressed in terms of a mathematical relationship between inputs and outputs of the 

system, e. g. differential equations, transfer functions, state-space models, etc. In 

contrast, qualitative methods are based on artificial-intelligent techniques, such as fuzzy 

logic and neural networks, using qualitative reasoning and modelling such as causalities 
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and IF-THEN rules. They predict the behaviour of the system in normal and faulty 

conditions and then compare predicted and actual behaviour to diagnose the faults [43].  

 

 

2. 3  Model-Based Scheme 
 

There is an increasing interest in theory and applications of model-based fault diagnosis 

algorithms. The simple diagram in Figure 2 displays an example on how these models 

are usually integrated into a control system as its diagnosis constituent [45], [46]. 

 

Figure 2 Scheme for the model-based diagnosis [45], [46]. 

 

Usually the model-based fault diagnosis scheme consists of two steps: detection and 

isolation. During the first step the actual behaviour is generated and compared to the one 

of the process model. Together with the process model the detection algorithm 

calculates corresponding features. The Parity Space method for example will generate 

residuals (the deviation of the actual behaviour from the nominal one), Particle Filter 

will generate state variables (for the details see chapter 3 and 4), etc. During the second 

step, the isolation process, the faults are evaluated.  
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2. 4  Fault Modelling 
 

The knowledge about the modelling of faults is important for the right choice of suitable 

fault diagnoses methods. “Fault” was defined as a deviation of any property of a 

variable [10]. Faults can be classified as follows:       

 

- Additive Faults. These faults are additive to input or output of the process. The 

process model is fixed even when faults occur. 

- Multiplicative Faults. These faults appear as changes in the process model. 

 

 

 

 

Figure 3  Additive faults [10] 

 

 

 

 

Figure 4  Multiplicative faults [10] 

 

R. Isermann groups possible failure situations by their nature [10], [46], [58]: 

 

- Abrupt Faults (sudden faults) are unexpected faults, which appear as a quick 

change from normal to abnormal behaviour, for example the sudden breakage of 

a wheel motor.    

 

- Incipient Faults (slowly developing) are represented by drift-type changes. A 

typical example is the degradation of a tool. The faults are typically small and 

not easy to detect.      

 

- Intermittent Faults (periodic faults) repeatedly occur and disappear with different 

deviations between normal and abnormal behaviour value.  

u 

f=a’ 

u 

process 

fu fy 

y Y=yu +f 

process 

y Y=(a+a’)u(t) =au(t)+fu(t) 
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Figure 5 Time-dependency of faults: (a) abrupt; (b) incipient; (c) intermittent [10] 

 

 

2. 5  Process Modelling 
 

Within the bounds of this work we intend to describe and compare the four model-based 

techniques
2
. Since comprehensive and accurate mathematical models of dynamic 

processes are necessary for a model-based diagnosis, in this chapter we will introduce 

some examples of mathematical models. They are obtained by either theoretical 

modelling or experimentally [10].  

In theoretical modelling the model is set up on the basis of mathematically formulated 

physical laws.  

During experimental modelling we obtain the mathematical model of a process from 

measurements. Input and output signals are measured and evaluated by identification 

methods in such a way that the relationship between input and output signal are 

expressed in a mathematical model [46].  

We can distinguish the following types of mathematical models: algebraic equations, 

difference equations, finite state automata and differential equations. At any time 

moment the state of the system (state x) is described by a set of variables. For example, 

coordinates and Euler angles describe a state of a mechanical system. The input 

commands which control the state of the system are control inputs u, the sensor output 

is an observation y.  

 

Model Examples: 

A large class of engineering systems can be modelled by differential equations of state-

space representations.  

                                                
2
 Parity Space, Hidden Markov Model, Particle Filter, Observable Operator Model 
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Consider the system is working around nominal operating conditions and its behaviour 

can be represented by a linear state-space model.  

)()()()()(

)()()()()(
.

tutDtxtCty

tutBtxtAtx

+=

+=  

x(t) – state vector, y(t) – output vector and u(t) – control vector  

A(t), B(t), C(t) and D(t) are matrixes of appropriate dimensions. The matrixes are time-

variant (the elements of them depend on time), in the time-invariant case the elements of 

matrixes are not changed over time.  

The model for a discrete-time system is governed by the difference equations. 

Otherwise for continuous-time system the model is defined by deferential questions,   

Depending on the system type, the state-space model representations have the following 

forms (see for details [71]):  

 

System type   State-space model 

Continuous time-invariant     
)()()(

)()()(
.

tDutCxty

tButAxtx

+=

+=  

Continuous time-variant        
)()()()()(

)()()()()(
.

tutDtxtCty

tutBtxtAtx

+=

+=       

Discrete time-invariant          
)()()(

)()()1(

tDutCxty

tButAxtx

+=

+=+
 

Discrete time variant             
)()()()()(

)()()()()1(

tutDtxtCty

tutBtxtAtx

+=

+=+
 

 

Faulty operations in the state-space model are: 

 

 Multiplicative faults (changes in the system parameters) 

The system parameters for the state-space representation are model matrixes A, B, C and 

D their changes can be presented as  

(A+    A(t)), (B+   B(t)), (C+   C(t) ) 

 

Additive faults (Faults are input signals to the model) 

Additive faults in the sensors and actuators can be modelled by two additive signals: 
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)()()(

)()()()(
.

tFtCxty

tFtButAxtx

y

x

ϕ

ϕ

+=

++=
 

 

When fRt ∈)(ϕ  is some unknown fault vector, 
yx FF ,  are matrixes of suitable 

dimensions, whose entries are real numbers, which trace the fault influence, respectively 

on state and measurement equations. 

If we want the model to better depict its real world counterpart we need to add the 

uncertainty about unknown inputs or process disturbances and measurement noise. 

The general form of linear state-space representations is  

)()()()(

)()()()()(
.

ttFtCxty

tFtEvtButAxtx

y

x

εϕ

ϕ

++=

+++=
  

v(t) is the vector of unknown inputs or disturbances acting on the process, and )(tε is the 

measurement noise which corrupts the sensors.  

 

 

2. 6  Applications in the Industrial World 
 

Rama K. Yedavalli [41] presents the tutorial overview of the literature in the area of 

fault diagnosis of dynamical systems  

The model-based FDI methods have been used for various applications, such as 

helicopter rotors [28], aircrafts [29], automotive vehicles [31], space shuttle main 

engines [39], actuators/sensors [30], industrial furnaces [32], electro-hydraulic cylinders 

[33], diesel engines [34], induction motors [35], [36], satellite systems [37], UAVs 

(Uninhabited Aerial Vehicles) [38] and rocket engines [40]. 
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3.   Fault Diagnosis in the Robot Domain 

 

 

It is obvious that a robot includes a large amount of components controlled by various 

software programs and hardware devices. As an example we take a look at the mobile 

manipulator of the German Service Robotics Initiative project (DESIRE) [44]. The robot 

consists of components such as head control, perception, drive unit, manipulation and 

others. Each of the components is responsible for a concrete functionality. The 

perception component includes three various cameras: two RGB cameras which record 

from a position at the left and the right side of the robot’s heads and one 3D-camera at 

the front of the torso. These devices are controlled by software of the perception 

component which gives commands to cameras and processed delivered data. The 

components interact with each other, e.g. the perception component provides data to the 

drive unit from which it can construct, for example, a map about the environment. The 

other way for component communication is via Eigenmodel. Eigenmodel is a 

component of the robot for managing the collaboration of components. It collects 

information from various components, analyses them and predicts the future actions of 

the robot. If one component needs to provide the data for another, it will first inform 

Eigenmodel about its action. Besides the coordination work the Eigenmodel is 

responsible for recognising abnormal data. Fault diagnosis for such robot systems is a 

complex task, because the number of possible faults is huge. It includes not only faults 

which could arise in hardware and software applications but also faults during 

component interaction and even worse faults caused by the environment..  
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3. 1  Fault Classification 
 

Based on this example we can classify the fault field in the robot domain (Figure 6). 

 

 Figure 6  Fault classification 

 

The triangle depicted in Figure 6 consists of five levels of fault’s classes. On the top of 

the triangle the “easiest” fault class is located. The complexity of faults increases from 

top to bottom, the lowest level corresponding to the most complex fault class. “Fault 

complexity” stands for the difficulty to detect and identify a certain group of faults. 

 

Hardware faults: are mechanical breakdowns of inner devices e.g. the camera switches 

off when it should be recording, motors suddenly breaking down, etc.   

 

HardHard
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ComponentComponent   
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External Faults (Interaction of Robot External Faults (Interaction of Robot 

and Environment)and Environment)   
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Software faults: result from program/data corruption. This could be a fault inside a 

function like the division by zero, etc. By sending error messages, the procedure may 

inform the diagnosis system about existing faults.   

  

Component faults: include faults which take place during the collaboration of a software 

program and a hardware device. This could be an error following from a transmission of 

a wrong format to a device. The diagnosis system may monitor component faults via 

following a sequence of steps: preconditions - > transitions –> post-conditions (See 

Figure 7) 

 

 

Figure 7 Diagnosis scheme for component’s faults 

 

During precondition, the diagnosis system checks serviceable conditions of the device. 

The device must be prepared for the input commands. The device must be able to 

understand the format. The output of devices will be controlled during the post-

condition step. The diagnosis system prepares a protocol about the fault for recovery. 

  

Composition of components faults: are faults resulting from the interaction of several 

components to achieve a task. In this case the result of interaction is faulty, although the 

single components may work fault-free separately. If, for example, a mobile 

manipulator should grasp a desired object, it first has to move until the object will lie in 

the reachable work space. It then pulls its mobile part up and performs the grapping 

action. Would the manipulator now start the grapping action while still on the move to 

the reachable work space, we would call this kind of fault a “composition of 

components fault” (see Figure 8). 
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Figure 8 Example of “composition of components fault” in Mobile Manipulator 

 

External faults: take place during the interaction of a robot and its environment. External 

faults could result from changing environments, interaction with human beings or other 

autonomous systems. All these criteria involve deep analysis of the fault situation, 

which might be beyond the scope of the fault diagnosis inside the system.  

Imagine a robot running in a room filled with various objects. The robot needs to move 

carefully to avoid collision with these objects. If the light in the room is suddenly 

switched off (external fault), then the robot must understand the situation: It’s not his 

sensors that cease to function but a change in the environmental conditions.  

The monitoring of external faults is especially important for mobile manipulators, 

because they closely interact with a dynamic environment. 

 

 

3. 2  Robot Model (Design Example) 
 

To fully understand the fault diagnosis techniques, they have to be implemented in 

practical applications. Among a wide range of diagnosis techniques we selected four 

distinct algorithms
3
. We are going to illustrate their functional efficiency on a particular 

practical example – a four-wheel OMNI robot [72]. OMNI directional robots have 

become popular mobile robots for the use in indoor environments, because they may 

drive in any directions without having to rotate first. An OMNI drive mobile robot 

frequently serves as a moving platform for mobile manipulators. The geometry of the 

                                                
3
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OMNI driver robot is depicted in Figure 13. It has two intersecting axes, the horizontal 

axis corresponding to the x-direction and the vertical axis corresponding to the y-

direction. ϕ  is the angle between the wheel and the x-axis, R is the radius of the robot 

platform and 
1
F , 

2
F , 

3
F  

4
F  are forces from the motors. Assumed the robot does not 

slip on the flow, it will translate along the x-axis when 
1
F =-

2
F , 

1
F =

4
F and 

2
F =

3
F and 

along the y-axis when 
1
F =

2
F , 

3
F =

4
F and 

1
F =-

3
F . The wheels work against each other 

when 
1
F =-

2
F , 

1
F =-

4
F and 

2
F =-

3
F .    

 

Figure 9 Arrangement of the wheels and distribution of forces [72]"

 

The forward kinematics for obtaining the robot velocities from the given wheel 

velocities are given by the following expression: 
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Wheel velocities are presented through the
4321 ,,,( vvvv ) vector and the robot velocities 

are described by the Euclidean velocity (
yx
vv , ) of the robot on the ground and its 

angular velocity (ω ). φ  and R are fixed parameter which are defined for the robot: 

φ =0.588 radian and R=0.25 m. 

The localisation problem is chosen for a test application of the selected fault diagnosis 

techniques. The localisation problem is formulated as an estimation of the robot position 
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from the given sensor data."Although the localisation seems a simple problem compared 

to others, it seems to be a good starting point. After testing various fault diagnosis 

techniques, conclusions not only about the algorithms’ performance but also about the 

possibility to apply them in more complex systems, e.g. mobile manipulators, can be 

drawn.  

Since the mobile platform is a mandatory part of a mobile manipulator, the task of 

localisation for a mobile robot can be extended to the localisation problem of a mobile 

manipulator. 

In general, the localisation, calculating the changing position over time, is a dynamic 

process. At least two models are required to conduct the process. One model is needed 

to describe the evolution of the state with time (system model), and the other to relate 

observable measurements of the state (measurement model).  

There are two known forms available to build these models: state-space form and 

probabilistic form.   

The state-space model for fault diagnosis is presented in section 2. 5, hence we will 

focus our attention on probabilistic models.  

Many real-world applications are able to analyze their own data by estimating unknown 

quantities from some given observations. The prior knowledge of the modelled 

phenomenon is available. This knowledge allows us to formulate Bayesian 

(probabilistic) models. A Bayesian model includes prior distributions of unknown 

quantities and probability functions, which expresses the relationship between the 

unknown quantities and observable events [4]. The main drawback of probabilistic 

modelling is the long-time model estimation.   

To build an appropriate probability and state-space model for a four-wheel OMNI robot, 

we define a group of states [73]:  

 

- normal behaviour (no fault) 

- broken motor (the output of the motor is fixed to the value “zero”, regardless of 

input)  

- stuck motor (the output of the motor is a fixed constant, regardless of input) 

- gradual degradation of performance (the output of the motor grows with a 

negative exponential function) 
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3. 3  Mobile Manipulators 
 

A mobile manipulator is a robot arm build on top of a moving base. It is becoming more 

and more popular in our days since it extends the performance ability of mobile robots 

and manipulators. Mobile manipulators appear in a broad spectre of robot applications, 

ranging from underwater and space robots to service robots. They obtain wide 

application in fields where robots typically interact with the environment.  

The key problem of model-design of mobile manipulators is the coordinated work 

between vehicle platform and arm. The investigations on mobile robots were successful 

in the fields of localisation, navigation and learning environment. Most work on 

manipulators focuses on the properties of specific objects to be manipulated, rather than 

on moving in or understanding the global environment.  

There are three important reasons for the existence of mobile manipulators, one of them 

being its superior dexterous manipulation.   

Secondly a mobile manipulator is able to execute more complicated tasks, for example 

operating a door inwards, towards itself. By performing this action the mobile base has 

to move to avoid getting hit by the door while the arm has to grasp the door-handle and 

move simultaneously with the base.  

Thirdly it extends the reachable workspace of the manipulator. The robot can for 

example grasp an object lying on a table and put it to a shelf which is situated far from 

the table.  

One of the characteristics of mobile manipulators is the high degree of kinematics 

redundancy (more than six degrees of freedom) created by the addition of the mobile 

platform to the manipulator. The redundancy gives the mobile manipulator several 

advantages. Joint torques can be optimized, singular configurations of the manipulator 

can be avoided and decoupled force/position control along the same task direction can 

be achieved [75]. The higher degree of redundancy allows various fault recovery 

possibilities that improve the performance of the robot. If, for example, one of the 

manipulator joints is broken, the robot may be able to continue the task by recalculating 

the inverse kinematics of the manipulator for using all joints except the broken one. 

Note that not every mobile manipulator is redundant, for example in the paper [76], the 

authors introduce mobile robots equipped with low degree-of-freedom “palm 

manipulators” (see Figure 13).  

As the authors of A. Petrovskaya and A. Ng [77] note, the main advantage of mobile 

manipulators is the combination of both navigation and manipulation. Most of the works 
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on mobile manipulation nonetheless treat the problem as two tasks to be solved 

separately: The mobile platform navigates to an appropriate point and then the 

manipulator separately performs actions with an object. A. Petrovskaya and A. Ng [77] 

created an algorithm based on the probabilistic approach that models the position of the 

robot within the environment and simultaneously manipulates the object!""

Using probabilistic models for fault diagnosis techniques brings the advantage of a 

broad spectrum of already existing inference algorithms. We will discuss some of them 

in chapter four (Hidden Markov model, Particle Filter and OOM). 
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3. 3. 1   Mobile Manipulator Examples 

 

German Service Robotics Initiative project (DESIRE) 

 

The project DESIRE [44], which was established by the German ministry of research 

involves partners in the German robotics community. The goal of the DESIRE project is 

to research and implement methods and algorithms for the development of service 

robots for domestic applications.   

 

 

Figure 10  DESIRE robot [44] 
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Care-O-Bot 

 

The Care-O-Bot [78] is a mobile manipulator service robot built by the Fraunhofer 

Institute. It operates in indoor environments with tasks such as fetch-and-carry and 

being a walking aid.  

 

"

Figure 11 The Care-O-Bot II from the Fraunhofer Institute.  

Picture: http://www.care-o-bot.de/ 

 

"

"

"
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"

"
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"
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"

http://www.care-o-bot.de/
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Stanford Artificial Intelligence Robot (STAIR) 

 

Palmbots 

 

The Palmbot [76] is equipped with a simple two degree-of-freedom nongrasping “palm 

manipulator” as shown in Figure 13. The palm can slide under, push, support, roll, or 

topple objects. Since the manipulator does not grasp the objects, the object can have a 

wide variety of shapes and sizes. A single robot can manipulate small objects, and two 

robots can cooperatively manipulate large objects. 

 

"

Figure 13 Palmbots [76] 

"

"
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4.  Fault Diagnosis Methods 

 

 

Fault diagnosis is a relatively new field of research in the robot domain. I met no 

techniques developed especially for the robot’s needs. Developers mostly borrow the 

methods used for industrial applications and modify them for a particular robot. In this 

chapter we introduce and discuss four different fault diagnosis techniques, parity space 

(PS), hidden Markov model (HMM), particle filter (PF) and observable operator model 

(OOM) and examples of how they might be applied to the model of a four-wheel OMNI 

robot (see section 3. 2.).  

 

 

4. 1  Parity Space and Principle Component Analysis  
 

The idea of the parity space approach [9], [47], [14], [13], [48] for fault diagnosis is to 

deliver a technique for computing residual vectors which become non-zero if the actual 

system differs from the ideal system due to faults. From the analysis of the residuals, the 

fault diagnosis can conclude fault locations. Parity space is simple in computation and a 

straightforward method [14] which is applied to the linear state-space model with 

additive faults. 

If no model is given a priori, but the relationship between input and output signals is 

known to be linear, then the principle component analysis (PCA) can be used as the tool 

to estimate a state-space model from the data.   

 

4. 1. 1           Background Theory   

 

The background theory presented by F. Gustafsson [1], [2] and J. Gertler [13], [48] will 

be summarized in this section.  

A linear state-space representation (see section 2. 5) of the system data is observable 

and a data vector from the sliding window over time is constructed in the form (4. 1. 1) 
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The aim is to compute a residual vector (4. 1. 2) 

 

t

T

t
ZPr =      (4. 1. 2) 

 

This residual vector is insensitive to the states and disturbances, but reacts on faults.   

The detection is performed based on the size of a residual and the isolation is achieved 

via direction of a residual.  

Figure 14 presents the schematic representation of parity space as a fault diagnosis 

technique. The residual generates a deviation between the output y(t) and the model’s 

“original output” computation. The conclusion about the fault location is postulated 

during the residual evaluation step.  

 

 

Figure 14 Structure of parity space algorithm for fault diagnosis system  

 

To outline the basic idea of parity space methodology we consider a mixed stochastic-

deterministic model represented by linear state-space equations  
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t
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t
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t
v  – stochastic unknown state disturbance with zero mean and covariance matrix Q 

t
e  – measurement noise with zero mean and covariance matrix R           

 

There are many approaches to derive the parity space. One of them is based on the 

discrete-time state-space model (4.1.3.), which uses data from a sliding window of size 

L. The measurements can be expressed explicitly in matrix form as 

 

ttftvtdtuxt EFHVHDHUHOxY
Lt

+++++=
+− 1

                                 (4. 1. 4)    

 

H (Hankel matrix) is a function of the state-space matrixes defined as  
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The stuck measurement vector 

 

TT

t

T

Ltt yyY ),...,( 1+−=                                                (4. 1. 5), 

 

is sampled from several time instants (normally over the sliding window of size L).   

The inputs 
t
u , deterministic and stochastic disturbances 

t
d and vt are stacked into U, D 

and V accordingly. 

The fault stacked vector for unity fault with constant magnitude m is defined as  

i

t
mFF =     (for details, see [50]). 
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Residual Generator 

 

If Y and U are stacked outputs and inputs from the sliding window, we can define a 

residual as 

 

                                )(
tut

T

t
UHYwr −=  

    )(
1 ttvtftdx

T EVHFHDHOw
Lt

++++=
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                            (4.1.6) 

                                    )( ttvtf

T EVHFHw ++=      

 

The residual 
t
r has to satisfy the following properties: 

1. It should belong to parity space (w) defined by  

0=Ow
T  and 0=

d

T
Hw    

      That implies insensitivity of the residual r to any initial state and disturbance.  

2. The parity space also should satisfy 

     0≠f
THw  

          it means 

         0)( ≠=−= tf

T

tut

T

t FHwUHYwr  

               whenever 0≠
t
F  

  

Residual Analysis 

 

The aim of a diagnosis system is to determine which fault(s) occurred. The residual 

vector 
t
r should have a different form for each fault.  

If there are m different faults f1, f2,…, fm, the task is to define which fi has occurred. If 

m residuals can be designed in that way that the i-th residual is only affected by the i-th 

fault, then the fault isolation can be achieved easily [50]. 

This implies that the residual vectors should form a certain pattern, called residual 

structure R. Table 1 shows a residual structure R consisting of three faults. Here a 0 on 

position (i, j) means the residual in the row i is insensitive to a fault in column j, while a 

1 means the residual i reacts on the fault j.  
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fault F1 F2 F3 

R1 1 0 0 

R2 0 1 0 

R3 0 0 1 

Table 1 Residual structure R 

 

There are two possible approaches to solve the isolation problem for the parity space 

algorithm: 

a) Transformation matrix:  

The transformation matrix T can be defined based on the residual structure R so that    

 

i

f

T

t RHTTr == ω                                               (4.1.7) 

 

The isolation design is done by first choosing a residual structure R and then 

calculating the transformation matrix T from equation (4. 1. 7). This design assumes 

that the fault magnitude is constant within the sliding window.  

 

b) Fault decoupling 

In this algorithm each residual is designed separately by the condition  

0][ =
−i

fd

T

i FHOHW  

Here i
F

−  is a fault vector that includes all faults except for fault i. The advantage of 

this isolation technique is the insensitivity in residuals to measurement noise. The 

disadvantage is that more measurements are needed and that one projection 
i

W is 

needed for each fault. 

 

4. 1. 2   The Algorithm 

  

The parity space algorithm includes following steps : 

 

Given: State-space model (4.1.3), input data U, measured data Y 

Design parameters: sliding window size L, h- detection threshold and residual structure 

R.  

Computation:    
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1. Compute the Model Matrixes 
fud HHHO ,,,  

2. Compute data-vectors
t
Y and 

t
U  over sliding window  

3. Compute a Parity Space W 

4. Compute a residual 
t
r  

5. Perform detection   

6. Perform isolation 

 

In the fragment of the MATLAB-code we illustrate the computational steps 3, 4, 5 and 

6. 

We have defined design parameters and calculated model matrixes: 

Design parameters: R-residual structure matrix, h – threshold 

Computed matrixes:  
fud HHHO ,,,  

 

 

 

%     COMPUTE PARITY SPACE 

%     Define the Null space N of (O, Hd) 

[U,D,V]=svd([Q Hd]); 

n=rank(D); 

N=U(:,n+1:end); 

 

%     calculate transformation matrix T 
i

i

tf

TTi

tf

T RFHTNFHw
:,

==   

%     there to define the vectors f1, f2, f3 which are columns of R matrix 

%     kron is Kronecker product  

T = R / (N*Hf*kron(ones(L,1),[f1 f2 f3])); 

 

%    Caclculate parity space 

w = (T*N)’; 

 

%     RESIDUAL ANALYSIS 

%     Compute residual )(
tut

T

t
UHYwr −=  

r=w’*(Y-Hu*U) ; 

 

%     Detection:  

if r’r>h 

% Isolation. Fault i in direction fi where:
i

T

i
Rri maxarg= , Ri is column i of R 

    [val,i]=max(r’*R); 

end 
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When there is no model available, we need an alternative approach to compute a 

correspondence to a parity space residual. If the relationship between input and output 

data is known to be linear the principle component analysis can be used.  

 

4. 1. 3  Principle Component Analysis (PCA) 

 

“Principal components analysis (PCA) is a technique used to reduce multidimensional 

data sets to lower dimensions for analysis.” [52] 

The detailed algorithm can be found in A. Hagenblad andF. Gustafsson paper [51]. 

Below we give a brief description of the PCA method. 

As with parity space we transform the input and output into U and Y vectors. This is 

going to be our training data; it has been obtained from measured or simulated data. The 

data is combined into the vector  
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r
P is a basis for the residual space (c.f. T

w in section 4.1.1.) 

 

PCA Procedure 

 

Given: input data U, measured data Y 

Design parameters: sliding window size L, h- detection threshold and residual structure 

R, number of components.  

Computation:    

1. Estimate mean value µ and covariance matrix Σ  from training data 

2. Calculate singular value decomposition (SVD) of Σ . 

T
PDP=Σ  

P is a projection matrix that contains the principal components which are the 

eigenvectors associated to the eigenvalues 
i
λ .  
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D = )...( 1 mdiag λλ  is a diagonal matrix with eigenvalues as diagonal elements in 

a decreasing magnitude order.  

3. Split the SVD into two parts as: 

      )(
rx
PPP = ,      
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The largest singular values are considered to be part of the model 
x
P  and the 

other small singular values to the residual part
r
P . Hence for a noise-free system 

the elements of
r
D will be zero. The order of the model is a design parameter, i.e. 

the number of principle components which is needed to build a model.  

4. Compute the model and residual 

t
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xx
t ZPPZ =
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Fault Diagnosis with PCA 

 

The new data is depicted as stack vectors 







=

t

t

t

U

Y
Z . They are projected into the 

projection matrix 
r
P . The result of the projection is the residual for this data set from 

which the diagnosis can be generated. 

t

T

rt
ZPr =  

Since there is no model available, the isolation of the fault is a more difficult process 

compared to the parity space algorithm. If data about a particular fault is known then the 

fault can be estimated by calculating the corresponding residual and by estimating its 

mean and covariance [51]. 

 

4. 1. 4  Applications 

 

We attempt to build a state-space model for a four-wheel OMNI robot and if possible 

(prerequisite: linear model), implement the parity space algorithm. 
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State-Space Model 

 

The parity space method is applied to a mixed stochastic-deterministic model 

represented by linear state-space equations. The creation of state-space models for fault 

diagnosis is described in section 2.5. 

To represent the localisation problem in a four-wheel OMNI robot we need a model of 

the robot to describe how a robot moves and turns and a sensor model, describing the 

sensor output as a function of the environment. 

The position of the moving robot can be described with the following formula:  
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x, y are the positions and θ  is the orientation in a rectilinear two-dimensional coordinate 

system. The sample interval between time t and t+1 is T. For the simplicity we assume 

that T is 1.  
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 is the robot speed vector which can be generated by using the formula (3.2.1.). 

 

ϕ  is the angle of deviation between robot frame and world frame. The angle is not 

constant – it depends on the robot angular velocity as the sum of the current angle and 

its calculated angular velocity: ωϕϕ += −1tt
. This property means that our state-space 

system is non-linear hence we can not apply parity space to the four-wheel OMNI robot 

example. 

 

Nonetheless particle space and PCA were applied with success in various applications. 

PCA is widely used in chemical plants and as an on-board car-engine diagnosis for fault 

monitoring [53]. It seems parity space is applied in the car industry, introduced by GM 

and Daimler (only mentioned by Gertler [54]). In the robotics domain V. Filaretov and 

M. Vukobratovic apply non-linear parity space to a manipulator robot [55]. 

Toolbox: There are MATLAB frameworks in fault diagnosis for various methods which 

also support the parity space algorithm such as A Fault Detection Toolbox for MATLAB 

[56] and MATLAB-based FDI-toolbox [57]. 
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4. 1. 5  Summary  

 

The proposed algorithm is shown to be able to detect and identify faults for a linear 

state-space model with additive faults. The method computes a residual to detect that a 

fault has occurred. The vector is zero in no-fault case, and non-zero otherwise. To be 

able to identify a fault location, residuals are created in such a way, that each fault gets 

its own residual. In case no model is available a priori, training data in combination with 

PCA can be used. We can split the data in two parts, model and residual, by applying 

the singular value decomposition (SVD) of the covariance matrix for the given training 

data.  

In spite of its simplicity in computation, the parity space approach has several 

disadvantages. The main disadvantage of this algorithm is its sensitivity to noise. 

Residuals become quite noisy even with low levels of measurement noise, or when the 

design model deviates from the original system. This problem is scarcely treated in the 

literature, and there are no design rules to be found. This is a critical point for the robot 

domain, because it is a difficult task to build a model that fully incarnates the original. 

Another drawback is that faults are not always suitably modelled as additive faults. PCA 

and parity space are restricted to the linear model but a lot of available model 

descriptions are non-linear, for instance the OMNI example presented in section 3. 2. 

With PCA no model is needed, but fault isolation will be more difficult. In case outliers 

corrupt the data, traditional PCA proves to be ineffective. Y. Tharrault, G. Mourot, J. 

Ragot, and D. Maquin [59] developed a robust, alternative version of PCA that seems to 

arrive at completely satisfactory results. 
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4. 2  Hidden Markov Model 
 

In recent years, probabilistic models were successfully applied in the industrial and the 

robot domain. The probabilistic state-space formulation and the requirement for 

updating the states with new measurements are ideally fitted for the Bayesian model, 

which provides a general framework for the dynamic state estimation problem.  

Hidden Markov model uses the probability calculus for modelling and reasoning actions 

and perceptions. The probabilistic model of a system is state-of-the-art in the robot 

domain because it is the right tool to represent the uncertainty in the robot’s 

environment, in its perceptions and of its actions. 

 

4. 2. 1  Background Theory 

 

We replicate and summarize the insights of the tutorial paper [3] to describe the HMM 

theory.  

 

In a stochastic system which can occupy one of N states 
t
x  (state at time t), the state 

evolution is random. Any joint distribution can be factored into a series of conditional 

distributions:  

∏
=

−=
T

t

ttT xxxpxpxxxp
1

10010 ),...,|()(),...,,(  

This formula is the mathematical expression for the temporal process. 

 

For a Markov process, the next state depends only on the current state: 

)|(),...,,|( 1101 tttt
xxpxxxxp ++ = . 

Often, the term Markov chains is used to describe a discrete-time Markov processes 

[60]. 

∏
=

−=
T

t

ttT xxpxpxxxp
1

1010 )|()(),...,,(  

 

 

Figure 15 Graphical interpretation of Markov process [79].  
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We have a stationary Markov chain, if a process of change defined by some law is not 

changed over time. If this process has N states, then it can be described by a NxN 

transition matrix with elements defined as condition distributions: 

)|( 1 jxixpa
ttij
=== +

. 

 

So far we have considered Markov models with directly visible states, but in a real-

world application it is too restrictive an assumption and states might be only partially 

observable. 

If the system is a Markov chain with unknown variables and observable evidence 

variables, then it can be described by a hidden Markov model (see Figure 16). 

 

 

Figure 16 Architecture of hidden Markov model [79] 

 

4. 2. 2  HMM Representation 

 

Formalization of HMM is defined as a tuple πλ ,,,, BAOS= , satisfying the following 

conditions: 

 

- },...,{ 10 −=
N
ssS  set of N system states 

- },...,{ 10 −=
M
ooO  set of M observations 

- A is a N x N transition probability matrix, its entries describing the probability 

that one state becomes another state )|( 1, itjtji sqsqPA === +
, Ni ≤≤1 , 

Nj ≤≤1  

- B is a N x M observation matrix, its elements are the probability of observing an 

event related to the given state )|(, jtktkj sqovPB === , Mk ≤≤1 , Nj ≤≤1  

0
x  

1
x  2

x  
3
x  

1
y  

2
y  3

y  

hidden  
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- π  is an initial distribution vector i.e. the start state of the system. 

)( 1 ii SqP ==π , Ni ≤≤1  

 

The system at any time step lays in one of the state. This state is hidden and not directly 

observable, but some observable variables about the state, are obtained.  

 

4. 2. 3  HMM Problems and Solutions 

 

Three Fundamental Problems 

 

HMM provides a formal mathematical solution to three fundamental problems [3]: 

 

1. Definition of  probability of observable sequence for given HMM P(O|λ )  

2. Definition of sequence of states leading to sequence of observations for HMM  

3. Definition of HMM based on sequence of observations   

 

Solutions 

 

1. Definition of the probability of an observable sequence  

 

The solution of the problem is Forward procedure (for details [3]) 

The idea is to define the forward variable for the given sequence of observations 

t
OOO ,...,

21
 which ended up in state 

i
S : 

 )...()( 21 ittt SqOOOPi =∧=α             where Tt ≤≤1  

 The )(i
t

α can be computed recursively: 

a.) Initialization: 

)|()()()( 111111 iii SqOPSqPSqOPi ====∧=α  

)( 1 iSqP = is the initial probability of being in state 
i
S and 

)|( 11 iSqOP = the element in observation matrix. 

 

 b.) Induction: 

)...()( 11211 jtttt SqOOOOPj =∧= +++α  
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            )()|()|( 111 iSqOPSqSqP tjtt

i

itjt α==== +++∑  

)|( 1 itjt SqSqP ==+
 is the element of the transition matrix and 

)|( 11 jtt SqOP =++
 the given element of observation matrix. 

 

2. Most probable path (MPP)  

 

This class of problems is solved using the Viterbi algorithm [3],[80].  

The MPP algorithm is a recursive relationship between the most likely path to each state 

1+tx  followed by the transition 
1+→

tt
xx . 

 

3. Learning algorithm 

 

The third problem of HMMs is to determine a method to adjust the model parameters 

(A, B,π ) to maximize the probability of the observation sequence. To 

choose ),,( πλ BA=  in such a way that )|( λOP  is maximized. The method is known as 

Baum-Welch method or expectation-modification (EM) method [3], [80] . 

In order to describe the procedure of an iterative update and an improvement we first 

introduce the auxiliary parameters: 

),...|()( 21 λγ Titt OOOSqPi ==  

),...|(),( 211 λε Tjtitt OOOSqSqPji =∧== +
 

)(i
t
γ is the probability of being in state 

i
S  at time t, given the observation sequence and 

the model 

),( ji
t
ε is the probability of being in state 

i
S  at time t, and state 

jS  at time t+1, given 

the model and the observation sequence 

If we sum up )(i
t
γ and sum up ),( ji

t
ε  over a certain time period, we get quantities 

which can be interpreted as:  

 

∑
−

=

=
1

1

)(
T

t

t
iγ  Expected number of transitions                                        (4. 2. 1)      

                                       out of state i during the path 
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   ∑
−

=

=
1

1

),(
T

t

t jiε  Expected number of transitions from                            (4. 2. 2)       

         state i to state j during the path                         

 

Using the (4. 2. 1) and (4. 2. 2) formulas we can give a method for re-estimation of the 

model parameters of a HMM: 

 

i

_

π = expected frequency in state 
i
S  at time (t=1)= )(1 iγ                   (4. 2. 3) 

 

                     
_

ij
a = (expected number of transitions from state 

i
S  to state 

jS )/    

                             (expected number of transitions from state 
i
S ) 

  

∑

∑
−

=

−

==
1

1

1

1
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T

t

t

T

t

t

i

ji

γ

ε

                                                                                   (4. 2. 4) 

 

                    =)(
_

kb j (expected number of time in state 
jS  and observing symbol 

k
v )/  

                                 (expected number of times from state
jS ) 
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                                                                               (4. 2. 5) 

                                                     

So if we knowλ , we can estimate the expectation of quantities such as the expected 

number of times in state i and the expected number of transitions from state i to state j. 

If we know the quantities such as the expected number of times in a state and as an 

expected number of transitions from state i to state j, we can estimate the maximal 

likelihood of 
ijij kba πλ )},({},{= .  
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Algorithm scheme 

 

1. Get the observation sequence 
T
OO ...

1
 

2.  Define the initial model as ),,( πλ BA= . 

3. Compute new estimates 
___

, πandBA  based on equations (4. 2. 3), (4. 2. 4),  

(4. 2. 5) using the model λ  so the re-estimated model ),,(
____

πλ BA=  is found.  

4. Analyze the re-estimated model 
_

λ . It can be either  

a) identical to the initial one
_

λ =λ  (termination criteria), i.e. λ defines a 

critical point of the likelihood function or  

b) more likely than model λ  in the sense that )|()|(
_

λλ OPOP > , i.e., we 

have found a new model 
_

λ  from which the observation sequence is more 

likely to have been produced. Then we need again go to step 2 of the 

algorithm. 

 

If we iteratively use 
_

λ  in place of λ  and repeat the re-estimation calculation, we then 

can improve the probability of O being observed from the model until some limited 

point is reached.  

 

EM (expectation-modification) is successfully applied for problems such as the speech 

recognition, in biology the recognition of an albumen structure.  

The essential drawback of the learning algorithm is that it gets stuck in a local 

maximum and leads to a wrong estimated model. 

The EM approach is guaranteed to converge to a local maximum of the likelihood. 

There is no guarantee that the algorithm will find the global maximum. Often the value 

of the local maximum critically depends on the initial settings of the parameters. 

According to Rabiner [3] the best parameter initialization is a thorny task:  

 

“Experience has shown that either random (subject to the stochastic and the nonzero 

value constraints) or uniform initial estimates of the π and A parameters is adequate for 

giving useful re-estimates of these parameters in almost all cases. However, for B 

parameters, experience has shown that good initial estimates are helpful in the discrete 
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case, and are essential in the continuous distribution case. Such initial estimates can be 

obtained in a number of ways, including manual segmentation of the observation 

sequence(s) into states with averaging of observations within states, maximum 

likelihood segmentation of observations with averaging, and segmental k-means 

segmentation with clustering.”   

 

4. 2. 4  Application of HMM in Fault Diagnosis 
 

For systems based on discrete states, the applications GDE/Sherlock [15], [16], 

Livingstone1, 2 [17], [18] and Titan (reactive model-based programming) [18], [19] 

provide a framework that can be used efficiently for both diagnosis and recovery. These 

algorithms obtain reliability by estimating the system state from the set of measurements 

as a “most probable path” [3]. 

 

4. 2. 5  Numerical Example 

 

The objective of this subsection is to apply the HMM forward-algorithm to the four-

wheel OMNI robot for fault diagnosis. In order to analyse and make an inference about 

the dynamic system of the robot, two models are required. We need a system model to 

describe the evolution of the states and a measurement model which describes the 

relation between states and measurements. These models can be designed in 

probabilistic form, where states correspond to normal and faulty conditions of the robot. 

The groups of possible faults are described in section 3. 2. Each group consists of one or 

several fault modes. 

 

1. Normal operation N (no fault); 

2. The group of abrupt motor faults consists of four faults namely W1, W2, W3 

and W4. They correspond to a wrong output value of the wheel motors 1, 2, 3 

and 4.  

3. The stuck motor group is comprised of the faults M1s, M2s, M3s and M4s. 

They describe the output of wheel motors 1, 2, 3 and 4 being fixed to a constant 

value regardless of the input.  

4. Gradual degradation of performance includes the faults M1d, M2d, M3d and 

M4d. They correspond to the output of wheel motors 1, 2, 3 and 4 being 

multiplied with a negative exponential function. 
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Altogether we have 13 system states. Following the HMM theory, we construct a 

modification of states as a probability table (the notations for the table were taken from 

[81].  

 

i 
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a  
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a  … 
12,13

a  
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Table 2 Transition matrix 

 

Notation 
ji

a
,

= )|( 1 itjt
sqsqp ==+

 is the probability distribution for the next state given 

current.  

According to the table we can construct the following system model for four-wheel 

OMNI robot: 

 

 [0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;   

 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0; 

 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0; 

 0.5 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0.2143 0.1 0.1 0 0;  

 0.5 0.2143 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0 0 0.1 0.1; 

 0.025 0.2 0.025 0.025 0.0083 0.5 0.2 0.0083 0.0083 0 0 0 0; 

 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0; 

 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0; 

 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0; 

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0; 

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0; 

 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2; 

 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5];                                      (4. 2. 6) 

 



 48 

The robot has some sensors and it can gather state information. We assume that in our 

four- wheel OMNI robot example a measurement relates to each state. Table 3 shows a 

compact representation of probabilities of measurements depending on a system-state.   

 

i 

)

|1(

it

t

sq

Op

=

=
 

)

|2(

it

t

sq

Op

=

=
 

… 

)

|12(

it

t

sq

Op

=

=
 

)

|13(

it

t

sq

Op

=

=
 

1 )1(1b  )2(1b  … )12(1b  )13(1b  

2 )1(2b  )2(2b  … )12(2b  )13(2b  

: : : : : : 

12 )1(12b  )2(12b  … )12(12b  )13(12b  

13 )1(13b  )2(13b  … )12(13b  )13(13b  

Table 3 Probability of measurements 

 

Notation )(kb
i

= )|( itt sqkOp ==  

 

The measurement probability matrix is:  

 

[0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;   

 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0; 

 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0; 

 0.075 0.025 0.025 0.6 0.025 0.025 0.025 0 0 0.1 0.1 0 0;  

 0.075 0.025 0.025 0.025 0.6 0.025 0.025 0 0 0 0 0.1 0.1;  

 0.025 0.2 0.025 0.025 0.025 0.5 0.2 0 0 0 0 0 0; 

 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0; 

 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0; 

 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0; 

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0; 

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0; 

 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2; 

0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5];                                       (4. 2. 7) 

 

Notice that since neither the real robot nor its simulator was available the probabilistic 

models were constructed approximately by hand.  
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The diagnosis of the behaviour modes for the robot, based on probabilistic models, can 

be conducted by the HMM forward algorithm. K. Murphy developed the MATHLAB 

toolbox which supports the inferences and a learning algorithm for HMMs. We applied 

the methods of this toolbox to perform fault diagnosis in the four-wheel OMNI robot. 

The script hmm4wheelOMNI.m gives the example (see Appendix A.) The diagnosis 

was executed in the following steps: 

 

1. Set given parameters: model matrixes, forward kinematics of the robot 

2. Define design parameters: time T, start state prior0 

3. Load/generate input and measurement data 

4. Preprocess measurement data 

5. Apply forward-backward algorithm 

6. Plot results 

 

Given Parameters 

 

The example is applied to the probabilistic model described in the matrixes above (4. 2. 

6) and (4. 2. 7). Besides system and measurement matrixes the forward kinematics 

matrix of the four-wheel OMNI robot is given.  

 

 

 

We will need it for preprocessing the sensor data.  

 

 

 

Design Parameters 

 

A user can modify these design parameters to check experimental results under various  

conditions like time steps, accuracy and start state of the robot.  

 

controlMat(:,:)=[sin(angle) -sin(angle) -sin(angle) sin(angle);... 

                           -cos(angle) -cos(angle) cos(angle) cos(angle);... 

                           1/(4*R) 1/(4*R) 1/(4*R) 1/(4*R)]; 
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Load/generate input and measurement data 

The sensor measurements and input wheel velocities for each time step are saved in the 

RobotPoseData.mat file. The user can load all the variables from this file or create new 

ones or generate data inside of the script. The information is given in the following 

variables: 

 

- u(:,:) – 4xT matrix of input data. To each time step a vector of robot motor 

velocities corresponds ( )Tvvvv
4321

,,, . By collecting the vectors we receive the 

input matrix u. 

- velObs(:,:) – 3xT matrix of measurements. As measurements data we use linear 

and angular velocities of the robot.  

 

Preprocess Measurement Data 

 

The data from the matrix velObs(:,:) are analysed to construct measurements which can 

be observed in the system states. As we postulated in the observation matrix, one 

measurement corresponds to each robot state (see the observation matrix (4. 2. 7)). Now 

we consider the part of the script which encodes this analysis.  

 

Normal state at time t  

A robot operating in a normal condition means that its measurement vector velObs(:,t) is 

identical to the original one robotVelN(:,t) which is generated from the following 

equation:  

      

 

 

  

Note: Since all fault cases belonging to one group can be deduced in a similar manner 

the only case with motor 1 for each group will be considered.  

 

Sudden motor fault at time step t  

A fault has occurred when  

 

 

robotVelN(:,t)=controlMat(:,:,1)*u(:,t); 

 

velObs (:, t) ~= robotVelN (:, t) 
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We define that it is wheel motor 1 which produces the wrong output.  

The forward kinematics for obtaining the robot velocities from the given wheel 

velocities are given in section 3. 2 by the expression (3. 2. 1) . 

Applying this expression for our notation we receive following equations: 

 

),3(
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4
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4
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4

),1(

),2()cos(),4()cos(),3()cos(),2()cos(),1(
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R
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R
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trobotVelNangletuangletuangletuangletu

=+−+

=++−−

=+−−

     (4. 2. 8) 

 

If only wheel 1 produces the wrong output and the other wheels’ outputs are correct, 

then the following statement holds true:  

 

robotVelN(1,t) - velObs(1,t)  = u(1,t)sin )(angle - ErrValue*sin )(angle  

robotVelN(2,t) - velObs(2,t)  =- u(1,t)cos )(angle + ErrValue*cos )(angle  

robotVelN(3,t) - velObs(3,t)  =- u(1,t)/4R+ ErrValue/4R 

 

ErrValue is the wrong value of wheel motor 1 output.  

We express the ErrValue from the three equations and save the results in the 

velMatrix(:,1)  

 

velMatrix(:,1)=[(velObs(1,t)-robotVelN(1,t))/sin(angle)+u(1,t)+smallErr; 

                            (-velObs(2,t)+robotVelN(2,t))/cos(angle)+u(1,t)+smallErr; 

                            4*R*(velObs(3,t)-robotVelN(3,t))+u(1,t)+smallErr]; 

 

If the differences (velMatrix(1,1)-velMatrix(2,1)), (velMatrix(2,1)-velMatrix(3,1)) and 

velMatrix(1,1)-velMatrix(3,1)) are equal to zero then a fault with wheel motor 1 

occurred.  

 

Stuck motor 

To diagnose this group of faults we need to analyse the sequence of length L of the 

latest outputs. If from L latest observations we can conclude that for example the wheel 
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motor 1 produces the same wrong output (ErrValue) then the measurement “stuck wheel 

1” (W1s) is observed. 

 

“Gradual degradation” of motor  

The fault attacking the system grows in proportion to time, for example if the wheel 

velocity differs from the expected velocity only slightly but increases with time, then a 

“gradual degradation” of the motor occurred.  

To diagnose this scenario, the sequence of L latest outputs has to be observed and a 

“decay rate” has to be generated as 1-4*R*((robotVelN(3,t)-velObs(3,t))/u(1,t)). 

If the “decay rate” belongs to segment (0, 1) and decreases with each time step, we have 

a “gradual degradation” scenario.  

 

Forward-Backward Algorithm 

 

After preprocessing the measurement data the observation matrix can be constructed. 

If, for example, the measurement sequence corresponds to the observations of states 1, 

1, 1, 8, 8, 8 (1 = normal behaviour, 8 = wheel motor 2 stuck) then the observation matrix 

for our example is the 13x6 matrix. Each column in this matrix corresponds to a column 

from obsmat with a number from the sequence (1, 1, 1, 8, 8, 8). Hence the observation 

matrix for the given sequence is [obsmat(:,1) obsmat(:,1) obsmat(:,1) obsmat(:,8) 

obsmat(:,8) obsmat(:,8)]  

 

 

 

 

 

 

 

Now the forward method (a function of HMM toolbox) to estimate the probability of the 

current state is executed. 

 

 [alpha, beta, gamma, loglik] = fwdback(prior0, transmat0, obsmat1, 'act', act); 

 

% Create observation matrix 

for i=1:T 

  obsmat1(:,i)=obsmat(:,obserVal(i));  

end 
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The arguments of the function are the system matrix (4. 2. 6) transmat0, the generated 

observation matrix obsmat1, the initial state prior0 and the control inputs (in this 

example we do not use the parameter act, therefore it is zero). Only the return value 

alpha includes the probability distribution of system states. The other parameters are 

outside the scope of the task.  

 

Plot Results 

 

The following results have been simulated by this script: 

 

1. Diagnosis of the “gradual degradation” fault of wheel motor 4 

 

Given: T=10, L=4.  

Original robot behaviour: The robot starts to run in normal conditions but from time step 

2 onwards a “gradual degradation” of wheel motor 4 occurs. 

 

 

Figure 17 Simulation results for the “gradual degradation of wheel motor 4” 

scenario 
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Notice that in this example the parameter, L=4 thus the first three time steps the system 

diagnose only Sudden motor4 faults 

 

2. Diagnosis of the “gradual degradation” fault of wheel motor 1 

 

Given: T=10, L=4  

Original robot behaviour: Robot starts to run in normal conditions but from time step 2 

“gradual degradation of motor 1” arise.    

 

 

Figure 18 Simulation results for the “gradual degradation of motor 1” scenario 
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3. Diagnosis of the stuck motor 1 

 

Given: T=90, L=4  

Original robot behaviour: Until time step 50 robot runs in normal condition, then wheel 

motor 1 gets stuck.    

 

 

Figure 19 Simulation results for the stuck motor1 scenario 
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4. Diagnosis of “sudden faults” of motor 1 

 

Given: T=10, L=4  

Original robot behaviour: Sudden faults of the motor 1 in time step 5,9,10 

 

 

Figure 20 Simulation results for the “sudden faults of motor 4” scenario 

 

 

4. 2. 6  Summary  

 

The Parity space approach described in the previous section could not satisfy all needs 

of fault diagnosis for robot systems, since it requires a well-defined system model and is 

only applicable for additive faults. The other fault diagnosis model-based technique is 

the hidden Markov model. HMM is a temporal probability model of stochastic 

processes composed of a transition model describing the evolution and a sensor model 

describing the observation process. It solves inference problems with forward-backward 

algorithms; the practical examples given in this section illustrated the accuracy of the 

method. Williams [18], [19] presented the successful implementation of HMM for fault 

diagnosis. The disadvantage of HMM as a fault diagnosis method is that it supports only 

discrete states. To increase the robustness of the system over a long period of time, one 

needs to use models that describe both the discrete stochastic behaviour and the 

continuous dynamics of it.  
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HMMs are usually trained using the expectation-maximization (EM) algorithm (the 

practical example will be given in subsection 4. 4. 4). As a learning algorithm, HMM is 

not entirely satisfactory due to slow convergence and the presence of many suboptimal 

solutions.  

In spite of some drawbacks, HMM takes a leading role in application areas such as 

speech recognition, bio sequence analysis and control engineering. 
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4. 3  Particle Filter (PF) 
 

Particle Filters [1] are powerful methods to track probability distribution over state 

variables of complex systems with mixtures of discrete and continuous variables. 

Particle Filters are the techniques for implementation of recursive Bayesian filters by 

Monte Carlo sampling. 

 

4. 3. 1  Background Theory 

 

Bayesian filtering is a general tool used for estimating the states of a dynamic system 

from sensor measurements based on a predict/update cycle. The estimation of the 

probability about the current state based on a sequence of observations and input data 

(see figure 21) can be calculated recursively using the Bayesian filter [25]. 

 

∫ −−−−−−− = 12:01:01111:0:0 ),|(),|()|(),|( ttttttttttttt dsuzspusspszpuzsp η         (4. 3. 1) 

 

 

 

Figure 21 Graphical model for the dynamic system in an abstract view [25] 

 

t
S - state at time t 

t
u - input or control command at time t 

t
z - observation at time t 

The prediction stage uses the system model to predict the state probability distribution 

from the current estimation onwards.   

∫ −−−−−−−− = 12:01:011111:1 ),|(),|(),|( tttttttttt dsuzspusspuzsp  

The update operation uses the latest measurement to modify the prediction [4]. 

),|()|(),,|( 11:11:01:0 −−−− =
tttttttttt
uzspszpuzzsp η  

1−tS  
t
S  

1−tz  
2−tu  

1−tu  
t
z  
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Particle filter is used as a sample based representation of the Bayesian filter (4. 3. 1)  

The underlying theory is based on the work of “Architectures for Efficient 

Implementation of Particle Filters” presented by M.Bolic [82]  

The principle idea behind particle filters is to represent the posterior probability by a set 

of random particles with associated weights and then compute estimates based on these 

sampling and weights. 

More specifically, at every time instant n a random measure M

m

m

n

m

n
ws 1

)()(

:0 },{ =
 is defined, 

where )(m

n
s is the m-th particle of the state at time n, )(

:0

m

n
s is the m-th trajectory of the 

state, and )(m

n
w  is the weight of the m-th particle (or trajectory) at time instant n. If these 

particles are obtained from the observations 
n

z
:0

and the trajectories are drawn from the 

conditional probability )|( :1:1 nn
zsp , then the particles approximate this probability by 

∑
=

−≈
M

m

m

nn

m

nnn sswzsp
1

)(

:0:0

)(

:0:0 )()|( δ . 

The implementation of Particle Filters involves three important operations: 

 

1. Generation of particles (sample step), 

2. Computation of the particle weights (importance step) 

3. Resampling 

 

There is a family of particle filters that is based only on the first two steps (Sequential 

Importance Sampling Filter). The filters that perform all three operations are called 

Sample Importance Resampling Filters (SIRF). 

 

1. Generation of particles 

 

The generation of particles )(m

n
s is performed by drawing them from an importance 

density function )(
n
sπ . If we choose an importance density function  

∏ −=
n

kkkn
zsszss

1

:01:011:0 ),|()|()( πππ , 

we can compute the weights of the particles recursively:  

),|(~ :0

)(

1

)(

n

m

nn

m

n
zsss −π  
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The importance density ),|( :11 nnn
zss −π plays a basic role in the design of particle filters, 

because it generates particles that have to represent a desired probability. If the drawn 

particles are in regions where the probability has small values, the estimates obtained 

from the particles and their weights would be poor and subsequent tracking of the signal 

would very likely diverge. By contrast, if the particles are from regions where the 

probability mass is significant, the Particle Filter will have improved performance.  

Various strategies have been proposed for design density functions [64], [65]. One 

might argue that the optimal importance density function should be designed as a target 

distribution  

),|( :01 nnn
zss −π = ),|( 1 kkk zssp −

. 

However, the drawbacks of this strategy are the difficulties to sample and perform 

weight calculation. Another strategy for drawing particles is to use a transition prior as 

an important density function  

),|( :01 nnn
zss −π = )|( 1−kk ssp  

 

2. Computation of the particle weights 

 

The importance step consists of two steps: computation of the weights and 

normalization. In the former step the weights are evaluated up to a proportionality 

constant and subsequently, in the latter they are normalized. If the importance function 

has the form, the weights are updated via 

),|(
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ww
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−
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After applying this formula the weights should normalized. 

 

3. Resampling 

 

While time progresses, few weights become very large and some of the particles 

decrease in weight so that they become negligible. The resampling is the procedure for 

removing the trajectories that have small weights and focus on dominating trajectories.  

There are various standard algorithms used for resampling, such as residual resampling 

(RR), branching corrections [67] and systematic resampling (SR) [66]. 
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4. 3. 2  Particle Filter Enhancements 

 

The Particle Filter approach becomes several modifications. The reason for this is that 

classical filters have some drawbacks applied to the problem of fault diagnosis.    

Authors in their work define some challenges for online diagnosis problems which are 

difficult to address only by classical Particle Filter algorithm [63]. There are 

 

1. Very low prior fault probabilities  

2. Restricted computational resources  

3. High dimensional state space (number of samples grows exponentially with the 

dimensionality of a problem) 

4. Non-linear stochastic transitions and observations. Ability to apply the algorithm 

to non-linear models 

5. Multimodal system behaviour  

 

There are various approaches to addressing theses problems in the literature.  

The goal of the Risk Sensitive Particle Filter algorithm [21] [22] by S. Thrun is to 

increase the amount of particles in “risky” or important states. The concept is to identify 

a risk function which binds the low probability states (which are most probable fault 

states) with high costs whereas the states with high probability with low cost. The states 

get few particles but the cost miscalculating their probability is high. Particle filter 

sample from the product of risk function and original distribution.  

V. Verma presents a further algorithm with the Variable resolution Particle Filter [21] 

[23]. It is based on the observation that some faults have similar symptoms so that they 

can be grouped together. If some fault from this group occurred the algorithm will 

breaks apart the group and diagnose the received states.  

E. Benanzera [24] combines two approaches Livingstone and look-ahead 

RaoBlackwellized filter in aim to reduce computational complexity associated with 

particle filter technique and extend Livingstone approach to handle stochastic hybrid 

system. 

The low a priory probability of fault states supplements challenges for detection 

algorithm. Plagermann [25] applies the Gaussian process classification and regression 

techniques"for learning effective proposal distributions of particle filter.   
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4. 3. 3  Numerical Example 

 

This section presents software that implements particle filtering for fault diagnosis in the 

four-wheel OMNI robot (the full version of this example is given in Appendix B). The 

objective is to estimate and illustrate the fault states of the robot. The groups of states 

are described in section 3. 2. Each group consists of one or several fault modes. For this 

example the number of faults has been reduced compare particle filter to the HMM 

example. 

  

1. Normal operation N (no fault); 

2. The group of abrupt motor faults consists of the four faults W1, W2, W3 and 

W4. They correspond to the output value zero of wheel motors 1, 2, 3 and 4. 

3. The stuck motor group is comprised only of the fault M1s. It describes the 

output of wheel motor 1 being fixed to a constant value regardless of the input.  

4. Gradual degradation of performance includes only the fault M1d. It corresponds 

to the output of wheel motor 1 being multiplied with a negative exponential 

function. 

 

A robot might need given measurements of robot velocities to automatically diagnose 

whether any of the faults occur. In this example the discrete state can only be one fault 

of the listed fault groups or the normal mode (no fault). Once the robot knows its 

discrete state it can generate a control action to solve its velocity problem.       

The transition matrix of discrete states is: 

par.T = [0.75 0.05 0.05 0.05 0.05 0.05 0;   

         0.025 0.7 0.025 0 0.05 0.05 0.05;  

         0.1 0.05 0.8 0.05 0 0 0;  

         0.1 0 0.05 0.8 0.025 0 0;  

         0.1 0.05 0 0.05 0.8 0 0; 

         0.05 0.05 0.025 0.025 0.025 0.8 0.025; 

         0.05 0.05 0.025 0.025 0.025 0.025 0.8]; 

 

The control action to solve the velocity problem is described as:  
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                         (4. 3. 3) 

 

The matrix K is modified depending on the discrete state. If, for example, the system is 

in state W1 then the first column of the matrix K would be zero whereas the others 

columns stay unchanged. To implement the particle filter, I used the software package 

from Nando de Freitas, which uses classical particle filters and Rao-Blackwellised 

particle filters [83]. The software also includes efficient state-of-the-art resampling 

routines.  

 

The script was executed in the following steps: 

 

1. Initialisation of parameters  

2. Generation of data  

3. PF estimation 

a) Sequential importance sampling step 

b) Resampling step   

2. Summery and plots 

 

Initialisation of Parameters 

 

Parameters such as the number of particles, time steps, transition matrix for a discrete 

state, four-wheel OMNI robot constants and the control matrix K are defined in this part 

of the numerical example. 
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Generation of Data 

 

Compared to the numerical example in subsection 4. 2. 5 (HMM), in this example only 

the notation of velObs(:,:)  is changed to y(:,:). 

The sensor measurements and input wheel velocities for each time step are saved in the 

RobotPoseData.mat file.  

 

- u(:,:) – 4xT matrix of input data. To each time step a vector of robot motor 

velocities corresponds ( )Tvvvv
4321

,,, . By collecting the vectors we receive the input 

matrix u  

- y(:,:) – 3xT matrix of measurements. As measurements data we use linear and 

angular velocities of the robot.  

 

PF Estimation 

 

In this part of the script we attempt to track the current state and diagnose the faults.  

 

In each time step t = 1,…, T.   

- the important sampling procedure is performed:  

o for each particle i = 1,…, N 

! the new discrete state is generated from the previous one:  

z(t)~p(z(t)|z(t-1)) 

! then the new continuous state is obtained from the currently 

generated discrete state and the previous continuous state: 

x(t)~p(x(t)|z(t),x(t-1)) 

o for each particle i = 1, …, N the importance weights based on the 

observations ))(|)(()( txtyptw = are evaluated 

o importance weights are normalised 

- the particles with replacement N according to the importance weights are 

resampled.  

 

Sampling of the continuous state in detail  

To calculate the continuous state we use the formula (4.3.2). Matrix K is used to 

generate the control action (robot velocities), its view depending on the current discrete 
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state. Sometimes we will modify the input vector u(:,:) in order to achieve the desired 

result for the robot velocities. 

 

Abrupt motor fault at time step t 

The diagnosis of faults from the second group W1, W2, W3 and W4 is pretty simple. 

We need to modify the columns of the matrix K accordingly to the wheel order number 

so that for the state W1 the first column is zero, for W2 the second column is zero, for 

W3 and W4 the third and fourth columns are zero.    

 

Stuck wheel motor 1 (M1s) 

To diagnosis the fault M1s we need to find out the stuck value of wheel 1. If the latest 

values of the wheel 1 velocities have the same value and it differs from the expected 

value, then M1s has occurred. 

If, for example, input wheel vector u(:,t)=[-2,-2,2,2], but wheel 1 of the robot gets stuck 

to 5m/c, then the true values of the robot’s velocities could be derived from (4. 3. 2) by 

replacing the given vector u(:,t) with new_u(:,t)=[5,-2,2,2].   

We attempt to find the new_u(:,t): 

 

  

 

 

where x_pf(3,t-1,i) is the robot angular velocity θ  in time t-1. 

Instead of the expression 

4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1)   

we can use  

-x_pf(2,t-1,i)/cosϕ -u(2,t-1)-u(3,t-1)-u(4,t-1) or  

x_pf(1,t-1,i)/sinϕ -u(2,t-1)-u(3,t-1)-u(4,t-1). 

 

“Gradual degradation” of wheel motor 1 (M1d) 

To diagnose the M1d fault we need to find the decay rate and analyse its modification 

over time. The decay rate of the last two time steps reads: 

 

 

 

new_u=[4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1);u(2,t);u(3,t);u(4,t)] 

 

pred_val(1)=u(1,t-1)/(4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1)); 

pred_val(2)=u(1,t-2)/(4*R*x_pf(3,t-2,i)-u(2,t-2)-u(3,t-2)-u(4,t-2)); 
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Then the current value of the motor wheel 1 output can be estimated:  

 

 

 

 

 

Plot Results 

 

In this paragraph various experimental results of the implementation of fault diagnosis 

using the classical particle filter are illustrated. Each plot has three axes: t – time, z
t
 – 

system states and )|( :1 tt
yxp , where units of the z

t
 axis correspond to the following 

states: 1-Normal condition, 2-W1, 3-W2, 4-W3, 5-W4, 6-M1s, 7-M1d. 

  

1. Diagnosis of the stuck motor 1 

 

Given: N (number of particles) =200 and N (number of particles) =50, T(time)=10 

Original behaviour: Two experiments run using 200 and 50 particles for the same fault 

scenario “motor 1 gets stuck”. The motor 1 gets stuck from the second time step 

onwards. The initial distribution of particles is chosen randomly. 

 

Figure 22 The estimated filtering distribution for “motor 1 gets stuck” scenario, left 

plot using 200 particles and right plot using 50 particles. 

 

 

 

 

new_u=[u(1,t)/(pred_val(1)+abs(pred_val(1)-pred_val(2)));u(2,t);u(3,t);u(4,t)]; 

% compute robot velocities            

v_pf(:,t,i) = par.K(:,:,1)* new_u; 
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2. Diagnosis of the “gradual degradation” fault of wheel motor 1 

 

Given: N =200 and T=10 

Original behaviour: The “gradual degradation” fault of wheel motor 1 from the fourth 

time step onwards. The initial distribution of particles is chosen randomly. 

 

   

Figure 23 Estimated filtering distribution for “gradual degradation” of wheel 

motor 1.   
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3. Diagnosis of the stuck wheel motor 1 to zero value 

 

Given: N =200 and T=30 

Original behaviour: Wheel motor 1 stuck with the value “zero” from the twentieth time 

step onwards. The initial distribution of particles is chosen randomly. 

 

Figure 24 Estimated filtering distribution for the “motor 3 gets stuck with output 

zero” scenario. 

 

Notice: The input vector u(:,:) in this experiment has the same values in the sequence 

from step1 to step 19. This condition influences the estimate of the “stuck motor 3” 

state.  

During the experiments it occurred that particle filter produced unexpected results: all 

states had the same probability distribution value or were described as normal states in 

the M1d scenario, when the decay rate was calculated for the last six steps instead of 

only the last two.   

In my opinion it happened because the decay value did not constantly decrease over 

time. I conclude that the particle filter needs knowledge about the noise process for the 

fault mode. 
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4. 3. 4  Summary 

 

The hidden Markov models described in the previous section operate on discrete modes 

and use monitors to translate continuous variables into discrete values. The monitors 

only once determine consistent value from the measurements, and hence this system 

cannot generally diagnose a temporal event [17]. To overcome this problem we need a 

hybrid model. Particle filter is a technique for reasoning with hybrid models. The idea of 

particle filters is to represent the posterior density by a set of random particles with 

associated weights. The advantages of particle filter algorithms are that they support 

complex, non-linear, non-Gaussian models. It is an attractive algorithm for fault 

diagnosis for more than one reason: First, it can be applied to almost any probabilistic 

robot model that can be formulated as a Markov chain. Particle filter’s computational 

time is independent of model complexity only for a certain number of particles. A 

developer can design an amount of particles to match the available computational 

resources. Finally, they are relatively easy to implement.   

However, there are various problems with using particle filters for implementing in a 

fault diagnosis technique. The number of particles in improbable states (that are often 

faulty states) are few and the obvious solution of increasing the number of particles 

leads to increasing computational requirements. There are several approaches to address 

this problem in literature which improve fault detection while keeping the 

computational complexity low. The other drawback of particle filter is that the number 

of particles grows exponentially with state-space dimensionality. The significant 

disadvantage with particle filters for fault diagnosis is the need to know models for the 

state transition and noise process apriory, 

The practical application of low-dimensional state-space with seven discrete modes and 

one continuous state shows sufficient diagnosis results for various experimental setups. 

The experiment proved that results become inaccurate for a quantity of particles below 

hundred (see Figure 22).  
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4. 4  Observable Operator Model (OOM) 
 

The Observable Operator Model (OOM) is an alternative new approach to HMM. Its 

theory, developed by H. Jaeger of the international university Bremen, is expressed in 

terms of linear algebra. OOM looks almost like HMM: both can be expressed in matrix 

formalisms, although the matrixes and state vectors of OOMs may contain negative 

components, whereas the elements of HMM matrixes include only non-negative 

probability values.  

 

4. 4. 1  Background Theory 

 

This subsection gives a tutorial introduction to OOM by summarising and recapitulating 

the material of original works [5],[84],[85]. In our thesis we are only going to present 

the OOM theory for discrete time and discrete value processes. Non-stationary, 

continuous-time and arbitrary-valued processes are sketched in “Characterizing 

distributions of stochastic processes by linear operators” by H. Jaeger [68].  

 

Abstract Form of OOM 

 

To perform any task a robot needs to make predictions about the effects of its actions. In 

other words the robot should build a number of future trajectories and follow them to 

achieve a certain goal. Imagine for instance a robot in a room which needs to move from 

a door to a window. There are various possible paths which the robot could use to get to 

the window. The expectations about future trajectories depend not only on the location 

of the goal but also on the robot’s current observations (everything with informational 

value for the expected future). While performing the task, the robot has to generate 

information about the future of the system based on its observations during each time 

step. 

Based on this knowledge we want to introduce the basics of OOM. It is a mathematical 

model of constantly updating operations, where every possible observation is presented 

by one operator called observable operator. The key insight about OOM is “(…) the 

observation that these observable operators are linear.” [5].  

We are going to present an interpretation of OOM a discrete time, finite-value and 

stationary stochastic process.  
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Let (
n
X )

Nn∈
 be such a process with values in a finite set O={ α

aa ,...,
1 } of possible 

observations. Consider a set O* that denotes the set of all finite strings over O including 

the empty string.  

For every *
_

Oa∈  (where 
_

a  is a sequence of 
r
aa ...

0
), we define a real-valued function 

 

ROf
a

→*:_                                                    (4. 4. 1) 

_

a

f is a prediction function of the process that describes the future distribution of the 

process after an initial observation 
_

a . In our robot illustration 
_

a  would correspond to 

the robot’s path that it had in short-time till the current position, and _

a

f would 

correspond to the distribution of future trajectories started at that moment. 

F is the space of future distributions of the process (
n
X ), namely vector space. 

a
t is a linear observable operator for every Oa∈  FFt

a
→:  by  

 

aaa
a

tt

faaPft __ )|()(
_

=                                       (4. 4. 2) 

 

aa

_

is concatenation of sequence 
_

awith a 

)|(
_

aaP  is the short form of )...|( 10 −saaaP or as full formulation 

),...,0|( 1 ssnsnn
aXaXaXP === +−+

  

This leads to the following definition:  

“Let (
n
X )

Nn∈
 be a stationary stochastic process with values in a finite set O. The 

structure ),)(,( εftF Oaa ∈
 is called the observable operator model of the process. The 

vectors _

a

f are called states of the process; the state εf is called the initial state. The 

vector space dimension F is called the dimension of the process.” [5] 
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Matrix OOM 

 

Section 4. 2 introduces HMM techniques for analysing discrete-time, discrete-state and 

stochastic process
Nnn

Y ∈)( . The outcomes of the random variables )(
n
Y  are given in set 

},...,{ 1 α
aaO = . A Markov chain (

n
X )

Nn∈
 produces a sequence of hidden states from 

the set },...,{ 1 m
ss .  Now we will show how HMM can be generalised to serve as a basis 

for creating OOM.  

 

Assume we have a hidden Markov model with the parameters   

- m x m stochastic matrix M  collecting state transition probabilities 

- set of m x m observation matrixes
a
O  for every Oa∈ , each 

a
O  consisting of  elements 

with the value zero except for the diagonal elements which are the observation 

probabilities )|( jsXaYP == "  

- initial distribution T

m
sXPsXPw ))(),...,(( 0100 ===  

 

The matrixes M, 
a
O "and 

0
w  are used to compute the probability of finite observation 

sequences.  

Let 1 = (1, . . . , 1) is the m-dimensional row vector of units, and let 
a

T

a
OMT = ! 

Then the probability to have the sequence 
r
aa ...

0
 is  

 

00
...1)...( 0 waar
TTaaP

r

=                                            (4. 4. 3) 

 

This is a matrix representation of the forward algorithm for determining probabilities of 

observation sequences in HMMs (see section 4. 2. 3). It shows that the distribution of 

the process )(
n
Y is specified by the operators 

a
T "and the initial vector

0
w .  

At this point we can derive the matrix definition of a finite-dimensional OOM by first 

relaxing the requirement that T
M includes only non-negative elements to the weaker 

requirements a) that the sum of elements of each column of T
M is 1, and b) that the sum 

of the 
0
w  component is 1, meaning that negative entries are allowed. The symbolτ  in 

OOMs stands in the places, where T appears in HMMs. Now we can get the matrix 

definition of OOM [5]: 
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“An m-dimensional (matrix) OOM is a triple ),)(,( 0wRA
Oaa

m

∈= τ  where m
Rw ∈

0
 and 

mm

a
RR →:τ  are linear maps represented by matrixes, satisfying three conditions: 

1. 11
0
=w , 

2. ∑ ∈
=

Oa a
τµ  has column sums equal to 1 

3. for all sequences 
r
aa ...

0
it is holds that 0...1

0
0

≥w
aa

r

ττ .” 

For more details and numerical examples about the generation of OOM from HMM, see 

[69].  

Condition 1 and 2 were mentioned in relaxation a) and b) while the condition 3 ensures 

that calculated probabilities obtain non-negativity values. Note that for the given 

operator 
Oaa ∈)(τ  no known way exists to decide whether the condition 3 holds true [5].  

If _

a

τ is concatenations of operators 
0

...
aa

r

ττ  then we can compute the probabilities of a 

finite-length sequence by  

 

0

_

0 _1)( waP
a

τ=                                                     (4. 4. 4)                                                              

 

In this section we have described OOM as the matrix structure ),)(,( 0wR
Oaa

m

∈τ . In the 

previous section we have discovered the abstract OOM structure ),)(,( εftF Oaa ∈
. 

The two structures are related via dimension of process and dimension of a OOM 

matrix. If a process has the dimension m, then a concrete matrix OOM of the matrix 

dimension m exists. A matrix m-dimensional OOM specifies a process with the 

dimension k, mk ≤ . An m-dimensional process has no matrix OOM with a dimension 

smaller than m.   

Thus, if a process has the dimension m, and we have a k-dimensional OOM A describing 

this process, then an m-dimensional OOM A’ exists which is equivalent to A. 

Furthermore, A’ is minimal-dimensional in its equivalence class. A minimal-

dimensional OOM A’ can be constructively obtained from A in several ways which are 

described in [5]. 
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Generation Procedure  

 

To solve the diagnosis problem (determine the current system state) we describe 

techniques of how to generate state vector _

a

w  of OOM ),)(,( 0wRA
Oaa

m

∈= τ  after 

history 
_

a has been observed.      

The entire generation procedure is executed as follows:  

1. Define initial state vector as
0
ww =  

2. Choose next observation 
n
a  

      
n
a  is the observation at time n after 

10
,..., −naa  have already been produced.  

      At time n=0, the probability of producing a is )( 0 aXP = . To generate the 

symbol 
0
a  with the correct distribution we need to consider the probabilities for 

each observation Oa∈  and then to choose one with the highest value. For this 

we introduce probability vector T
aXpaXPp ))()...(( 0

1

00

α
=== . This is done 

by calculating 
00 1)( waXP

a
τ==  using (4. 4. 4) for all Oa∈ . A faster way to 

do this is to calculate the row vector 
a
τ1  for all a, and collect them in the matrix 
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                                                    (4. 4. 5) 

     

and derive  

 

∑= 00
wp .                                              (4. 4. 6)  

 

At every time step n>0 the observation 
n
a can be chosen according to the 

probability vector p = T
aaPaaP ))|()...|((
__

1 α =∑ _

a

w . 
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3. Having the observation 
n
a  we can take the corresponding operator 

n
a
τ and 

update the state vector by 
na

na

n w

w
w

n

n

τ

τ

11
=+

(for details see [5]) and continue 

at step 2. 

 

HMMs and OOMs 

 

The conceptual difference between the representation of HMM and OOM lies in the 

display of their theories in the stochastic system. HMM views stochastic systems as 

trajectories in a state-space, where observations are locations in that state-space, while 

OOM understands trajectories as a sequence of (linear) operations. Each observation 

corresponds to the sequence of operations built on the previous observation.  

 

 

Figure 25 (a) The standard view of trajectories. A time step operator T yields a 

sequence ABAA of states. (b) The OOM view. Operators A and B are concatenated to 

yield a sequence of observations. [69] 

    

OOM and HMM have different understandings of their states. HMM states denote the 

set of physical states of the target system. By contrast, OOM states represent the 

expectation about the system’s future and the observable development provided by an 

observed past. 

OOMs are more general than HMMs since OOM can express every HMM, but HMM 

can not express every OOM.  
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Learning Algorithm 

 

The learning algorithm for OOM estimates linear operators from a sequence of 

observations. Before presenting the basic OOM learning algorithm, we quickly provide 

an overview the most important properties of OOM.  

 

Model equivalence 

The central theorem of the OOM theory is about the equivalences (describing the same 

stochastic process) of two minimal-dimensional OOMs:  

“Two minimal-dimensional OOMs ),)(,( 0wRA
Oaa

m

∈= τ  and )',)'(,(' 0wRA
Oaa

m

∈= τ   

are equivalent if and only if there exist an bijective linear map mm
RR →:ρ , satisfying 

the following conditions:  

1. '

00 )( ww =ρ ,  

2. 1' −
= ρρττ

aa
 for all Oa∈ , 

3. ww ρ11 =  for all m
Rw∈ .”[5] 

A matrix ρ  satisfies condition 3 only if each column of ρ  sums up to one. Having one 

minimal-dimensional OOM A, we can derive the other equivalent OOMs by applying 

any transformation matrix ρ  with the columns’ sum = 1. 

 

Indicative and characteristic events 

The key concepts of the OOM learning algorithm are based on indicative and 

characteristic events. These events are received from dividing the process trajectories 

into past and future.  

We have already defined set *
O as a collection of all strings with elements from set O. 

k
O  is the set of strings with length k

m

k
AAO ∪∪= ...

1
. If for some sequences mbb

_

1

_

,...,  

a non-singular m x m matrix with elements 
jiji bAP ,

_

])|[(  (where ]|[
_

ji bAP  

denotes∑
∈

]|[
__

_ j

Aa

baP

i

) exists, then 
i
A (i=1,…,m)  is a set of characteristic events. 
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Figure 26 Storing out a process realisation into indicative and characteristic events 

[70] 

 

Interpretability  

Based on the theory of characteristic events we can estimate the probability of OOM 

producing a certain characteristic event when it is started in statew . We assume that for 

a m-dimensional process with a set of visible possible observations O the characteristic 

events 
m
BB ,...,

1
and OOM ),)(,( 0wRA

Oaa

m

∈= τ  exist. A is interpretable with respect to 

m
BB ,...,

1
, if the states w of A have the property T

m
wBPwBPw ))|()...|(( 1=  [5]. The 

idea behind interpretable OOM is to take the next event probabilities from the current 

state vector. An important property of the interpretability summed up by H. Jaeger 

reads: 

“In an OOM that is interpretable with respect to 
m
BB ,...,

1
it holds that 

1. ,))()...(( 10

T

m
BPBPw =  

2. ,))()...((
_

1

_

0_

T

m
a

BaPBaPw =τ ” [5]  

 

This property allows us to estimate the state vectorw  from the sequence of observations 

using frequency counts. With the estimated state vectors we construct the operators 

using linear algebra. This property is the key to the computational advantage associated 

with OOMs. 

 

OOM basic learning algorithm 

It is often a problem in the robot domain that a model of a specific robot system is not 

available, only a sequence of observations }...{ 10 N
aaaS = , produced by some hidden 

process. Learning OOM is a technique for estimating or computing a model from the 
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given sequence. In this part of the paragraph the fundamental steps of the learning 

algorithm and a simple example of its implementation are presented. A detailed 

description can be found in [5].  

Step 1   Design model dimension m and length of characteristic event k 

Step 2  Choose characteristic events 
m
BB ,...,

1
and indicative sequences maa

_

1

_

,...,  

so that matrix 
mjiijS BaPV ,...,1,

_
## ))(( == is non-singular,  

where 

1||

)(
)(

_

___

_
#

+−

∈
=

i

i

iS

BaN

SwithinBbwherebaoffrequency
BaP  

 

Step 3   Compute matrix 
mjiijSa aBaPW ,...,1,

_
##

))(( ==  for every Oa∈    

Step 4   Obtain .)( 1##
~

−
= VW

aa
τ  

 

A simple example can be found in the lecture H. Jaeger (Discrete-time, discrete-valued 

observable operator models: a tutorial) [reference]  

 

4. 4. 2  Learning with OOMs: Challenges and Their Solutions 

 

The basic OOM learning algorithm does not have a local minima problem from which 

the EM algorithm (see subsection 4. 2. 3) suffers and it is computationally cheap. 

Besides these advantages it has the following drawbacks:  

 

1. The statistical efficiency (model variance) depends on the choice of indicative 

and characteristic events. For the infinite sequence, the selection of indicative 

and characteristic events may be randomly chosen to estimate a correct model 

operator.  With finite training data however, the selection of indicative and 

characteristic events is difficult. Several methods are determined to overcome 

the problem. One of them is the extension of the basic learning algorithm by the 

efficiency sharpening (ES) method, which solves the problem by only using 

these events for the estimation of an initial model
0
A . The better models 

,...,
21
AA  are iteratively obtained from

0
A  without using such events at all [5].  

 



 79 

2. As there are only heuristic solutions to the problem that the OOM learning 

algorithm needs to know the “correct” model dimension in advance, we have to 

define criteria for choosing the dimensionality. The dimension m should be 

chosen large enough, because the model needs to capture all the properties of the 

training sequence distribution, and small enough to prevent overfitting. 

 

3. Even with efficient characteristic and indicative events, the basic OOM learning 

algorithm has limited statistical efficiency. Since only the substrings of some 

determined length are considered in the learning algorithm, the other information 

contained in the training data is ignored. This problem can be solved by using a 

suffix tree [5] to represent the state sequence.   

 

4. The most critical issue with the OOM learning algorithm is the negative 

probability problem (NPP). It is unknown whether an OOM-like system is 

indeed a valid OOM or not. Thus the learning algorithms of OOMs can obtain 

invalid models which assign negative numbers to probabilities of some (rare) 

events instead of small positive numbers. The problem is still not solved. H. 

Jaeger describes an unexplainable trick to overcome it. The idea is to transform 

the reverse )(' nrA (ES-method) matrix (before using it) into a valid OOM by 

inserting all negative elements in the operator matrixes of )(' nrA , set them to zero 

and renormalize their columns [5].  Another solution of this problem is using an 

alternative version of OOM – norm-OOM (see the next subsection). 

 

4. 4. 3  OOM Flavours 

"

Input-output observable operator models (IO-OOMs) [86] are extensions of the basic 

OOM theory with added input data to control the system output.  

The IO-OOM is defined as set of observable operators represented by matrixes of real-

valued elements and an initial state vector. Note that for every fixed input the structure 

is just an ordinary OOM (Figure 27). So an IO-OOM is a set of classical OOMs, one for 

each possible input, where the given input switches between these OOMs. All incoming 

OOMs share the same state-space. The detailed description of IO-OOM theory and 

examples is presented in [86].  
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Figure 27 IO-OOM structure [OOM slides] 

 

As already mentioned, the critical issue of OOM is the negativity probability problem, 

which remains unsolved in OOM theory. To avoid NPP, M. Zhao and H. Jaeger in one 

of theirs latest works [86] introduce another similar model class, norm observable 

operator models (norm-OOM). The idea of norm-OOMs is the following: in the way an 

OOM model stochastic process can be extended for describing numerical functions, so 

can NPP be avoided by applying a nonnegative function on the state vectors of OOM. 

In particular, for norm-OOMs, we can compute the probability of an initial sequence 

*
_

Oa∈  by ,)(
2

0

_

_waP
a

τ=  where ||.|| is Euclidian norm. Although the NPP-problem is 

solved, norm-OOM still suffers from the complexity of the theory and calculation 

problems.  

 

4. 4. 4  Numerical examples 

 

In this section practical implementation of the OOM theory will be conducted. There are 

two main tasks: checking the efficiency of the OOM probability estimation algorithm 

and comparing the model learning techniques of OOM and HMM. The first example 

illustrates the ability of the OOM generation procedure to estimate the system behaviour 

for the given model. The objective of this implementation is to show how it can be 

applied in fault diagnosis.   

The second example presents the experimental study of learning algorithms for two 

different schemes of modelling dynamic systems without control: HMM and OOM. For 

OOM1 OOM2 OOM n 

Control1 Control2 Controln 
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the OOM representation, we use the Matlab package developed by H. Jaeger [4]. To 

evaluate how well an HMM can learn the data, K. Murphy's Matlab toolbox is available 

[87]. 

 

Example for State Estimation 

 

For demonstration purposes we apply the prediction algorithm to the four-wheel OMNI 

robot described in section 3. 2. The values for the transition matrix and the observation 

matrix are obtained from the original matrixes given in the HMM example, subsection 

4. 2. 5, only with a reduced number of fault states (only four faults were considered: 

wheel 1, 2, 3 and 4 broken).   

 

Transition matrix: 

markovMat = [0.8 0.05 0.05 0.05 0.05;   

                        0.1 0.75 0.05 0.05 0.05; 

                        0.1 0.05 0.75 0.05 0.05; 

                        0.1 0.05 0.05 0.75 0.05;  

                        0.1 0.05 0.05 0.05 0.75]; 

 

Observation matrix: 

obsmat = [0.8 0.05 0.05 0.05 0.05;   

                 0.1 0.75 0.05 0.05 0.05; 

                 0.1 0.05 0.75 0.05 0.05; 

                 0.1 0.05 0.05 0.75 0.05;  

                 0.1 0.05 0.05 0.05 0.75]; 

 

Jaeger’s Matlab package uses an HMM representation to create an interpretable OOM 

from it. To test the OOM diagnosis algorithm we assume a sequence of states which 

reflects normal and fault states. The sequence was generated by hand. According to the 

sequence the output data can be simulated. Commanding sensor measurements and a 

probabilistic model, we can apply the diagnosis algorithm to estimate system behaviour 

and compare it with the given real behaviour.  

We assume four various robot behaviour scenarios: the robot starts in the normal state 

and at some moment in time one of its wheels breaks. For the first scenario it is wheel 1, 
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for the second wheel 2, etc. The duration of each scenario was divided into ten moments 

and diagnosis was performed for each one. For the first three recorded moments the 

behaviour is fixed to be normal, for all following moments it is defined that the 

corresponding faults take place. The algorithm results are depicted in Figure 28. 

 

 

Figure 28 Estimated probability distribution using OOM  

 

In all cases we can see that faults were detected with a high probability value. It lies 

between 0.5 and 0.6 although in the fifth (transient moment) it is hard to draw 

conclusions about the system state since both normal and fault states have a similar 

probability value. The full version of the example is given in Appendix C.  

After this simple example we can conclude that the OOM algorithm achieves good 

estimation results for a well-defined model. So the second task will be to test how well 

the OOM learning algorithm can estimate a model of the robot from training data. 

 

 

Implementation and Comparison of HMM and OOM Learning Algorithms 

 

In this section the performance of OOM and HMM learning algorithms on the same 

dataset are checked. The aim of the example is to test the HMM and OOM learning 
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algorithms, to compare their output for 1.000 states and to check the OOM validation 

for 100.000 states. 

The code of this example is a slight update of tutorialDemo.m file from the original 

package [88].    

We will first consider the main steps of the exemplary application and then provide the 

details. Finally the experimental result will be explained.   

Steps of the example: 

 

1. Generate training dataset S 

2. Design parameters:  

a) Model dimension,  

b) Block length 

3. Application of OOM learning algorithm 

a) Learn model from dataset S with OOM algorithm 

b) Draw results for 1000 generated states of OOM 

4. Application of HMM learning algorithm 

a) Learn model from dataset S with EM algorithm 

b) Draw results for 1000 generates states of HMM 

5. Draw results for 100.000 generates states of OOM 

 

1. Generate training dataset S 

In order to apply learning algorithms we need the training dataset. Since neither a real 

robot nor simulators were available to receive a training sequence, it has to be generated 

from a defined model. In our case an OOM was created from an HMM. Design 

parameters are the number of states stateNr (OOM dimension) and the number of 

observations obsNr.  

Transition matrix:  

markovMat = [0.8 0.1 0.1;   

                        0.1 0.8 0.1; 

                        0.1 0.1 0.8]; 

Observation matrix : 

obsmat = [0.8 0.1 0.1;   

                 0.1 0.8 0.1; 

                 0.1 0.1 0.8]; 
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The values for transition matrix and observation matrix are obtained from the original 

matrixes given in the subsection 4. 2. 5 with a reduced number of fault states and  

normalized matrix rows. The OOM package supports only a three-dimensional model 

and no more than three observations.  

 

2. Design parameters 

Based on these matrixes we create an OOM for use as a training data generator. The 

package provides two adjustable parameters: the dimension M of the vector space and 

the length L of the sequences to be sampled from the data.  

 

3. Application of OOM learning algorithm 

learnOOM (trainData, modelDimension, sampleBlockLength) is an implementation of 

the learning algorithm (see Appendix D). It learns an OOM model from training data 

trainData, which must be a single sequence. The dimension of the model is set by the 

modelDimension parameter and is learnt by sampling from trainData statistics of 

subsequences of length sampleBlockLength.  

To present the results of the learning algorithm we generate a state sequence of length 

1000 for the generator OOM and plot it as a set of points with different colours. 

Actually we will use an interpretable version of the generated OOM.  

The generated OOM can be transformed into many different equivalent, interpretable 

OOMs depending on the choice of characteristic events. As mentioned by H. Jaeger [5], 

the interpretability enables us to visualize the state dynamics of an OOM. The three 

dimensions of OOM, its interpretable states being probability vectors, are non-negative 

and thus lie in the intersection of the positive orthant of 3
R  with the hyperplane 

}11|{ 3
=∈= xRxH ."This intersection is a triangular surface, its corners marking the 

three unit vectors of 
3
R  [5].  

Figure 30 depicts three plots of states obtained from generating runs of three 3-

dimensional OOMs over an observation alphabet of size 3, which was made 

interpretable with reference to the same characteristic events as the original generator. 

Note that if this plot shows points outside the triangular area, the model is not a valid 

OOM in that it would predict negative probabilities for some events in some states. In 

the appendix B function plotStates3DColored the algorithm of state evaluation is 

conducted.   
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4. Application of HMM learning algorithm 

The same probabilistic data is used to receive a HMM model trained by the EM 

algorithm. A similar graphical representation of states for HMM [5] is applied to plot 

states. 

 

5. Draw results for 100.000 generated states of OOM 

It has already been mentioned that the plot depicts triangle and lying insight of it system 

states if one or several states outside the model are invalid. Even if all 1000 states are 

situated in the triangle of OOM, we can not be sure whether the model is valid or not. 

For this proposal the number of states is enlarged to 100.000 and plotted again.  

 

Plot Results 

 

To evaluate the generated hidden Markov model and observable operator model and 

compare them with each other, their plots can be used. The plot of original model 

depicted in Figure 29. 

 

 

Figure 29 State sequence of length 1.000 of the original model 

 

The points on the plot correspond to the states of the model. There are three kinds of 

states each one with its own colour. It is not important to know which colour 

corresponds to which kind of state. The goal is to show invalid OOM or HMM which 

stuck to local minima.  

OOM includes a set of linear operators and an initial system state. To generate the other 

states we randomly choose an observation, select the corresponding operator and apply 

the operator to current state – the result is the next state. The information about 
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generated states and corresponding observations is saved. By repeating the process 

1.000 times, we obtain the set of states with corresponding observations. Based on this 

information the plot in Figure 30 can be created.     

 

Efficiently estimated models: 

 

Figure 30 HMM and OOM estimated models  

 

The first plot shows an estimated HMM with 1.000 points (states), the second plot 

presents an estimated OOM with 1.000 states and the third plot corresponds to an OOM 

with 100.000 states  

 

By applying two different learning schemes HMM and OOM to the given dataset we 

receive learning models. To plot them, the technique described above is applied. If the 

generated model is perfect its plot should be identical to the original one that is depicted 

in figure 29. Plots in Figure 30 introduce well learned models for HMM and OOM 

accordingly. 
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Bad HMM (stuck in local minima) 

 

 

Figure 31 Variants of bad HMM 

 

During the experimental performance the generated learned HMMs got stuck in bad 

local minima. The generation of bad models depends on a training dataset. In several 

cases we had a training sequence of length 1.000 on which EM always got stuck in a 

process model that had no memory at all (dim = 1, see second plot in Figure 31). 

  

Invalid OOM 

Not only the learning HMM algorithm shows unwelcome results, the learning OOM 

method generates an invalid model too. As described in subsection 4. 4. 2, the critical 

problem of the OOM learning algorithm is the negative probability problem when the 

generated states include negative values. Graphically this problem is visualised by the 

points lying outside of the triangular area.    

 

a) The invalid OOM generates states with negative probabilities on both cases for 

the sequences of length 1000 and 100000.  
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Figure 32 States distribution generated by invalid OOM.  

 

The first plot presents the 1.000 points (states) generated by the invalid OOM, the 

second plot depict 100.000 points of the same OOM.  

 

Figure 32 introduces the state distribution of invalid OOM model. In plot a) only two 

states with negative probability appear. The generated state sequence with 100.000 

entries already presents 250 invalid states for the same OOM. Note that the amount of 

wrong states does not influence the model quality. Even if one million states would be 

generated and only one comprises negative values the model would be invalid.  

 

b) The learned OOM generates states with normal entries for the sequence of 

length 1.000 but states with negative probabilities with sequence of length 

100.000. 

 

 

Figure 33 States distribution generated by invalid OOM  

 

The first plot shows 1.000 points (states) generated by the invalid OOM, the second plot 

shows 100.000 points of the same OOM.  
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Unfortunately we can not be sure about the accuracy of the learned model even if it has 

only valid states, invalid states could always occur in the future. Figure 33 depicts this 

case: The model seems to be valid in the beginning, but when the sequence is enlarged 

the model becomes invalid.  

 

Statistical results 

In the example described above the OOM learning algorithm and the EM algorithm for 

HMM are applied to the generated training data. After repeating the experiment a 

thousand times we analysed the received plots for learned HMM and OOM state 

distribution. Based on the analysis the following conclusions about learning algorithm 

efficiency could be drawn: 

 

- In 553 of 1.000 cases the EM algorithm for HMM got stuck to local minima 

(Figure 31). Moreover, in thirty of the 553 ”stuck” cases the process model had 

dimension 1 (see second plot in Figure 31). 

- The learned OOMs achieved better results, as only in 215 of 1.000 cases the 

models were invalid (Figure 32). But this number rose to 331 when 100.000 

states were checked.   

 

The results of these experiments prove that the hidden Markov models were not able to 

learn the given training dataset in a satisfactory manner. This lack in the HMM learning 

algorithm is due to the fact that the EM algorithm reaches a local minimum and is 

unable to move away from it. The OOM learning algorithm on the other hand does not 

have a local minima problem and always generates a sufficient model. But in spite of 

these facts it is not really an alternative since it suffers from invalid models which 

produce states with negative values. Although the OOM algorithm possesses invalid 

models the total experimental result shows that it performs better, at least as far as this 

data set was concerned.  

 

4. 4. 5  Summary 

 

In this section we have established the basic theory of observable operator models 

(OOM) and compared the OOM learning algorithm with the EM algorithm for the 

hidden Markov model (HMM).  
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OOM is a recently developed class of models to describe a linear decision process. It is 

presented as a mathematical model of linear operators, which updates the future 

expectations based on observations. OOM sets the observable events a of a process to 

the linear observable operator 
a
τ  acting on a real-value vector space of system states w 

(probability distributions). OOM is an alternative, more general approach to the hidden 

Markov model. Its theory is expressed in terms of linear algebra and its learning 

algorithm ES estimates models more accurate.  

The OOM learning algorithm has a crucial remaining unsolved problem - the negative 

probability problem (NPP), since no algebraic criterion is available to control whether 

an OOM-like system is a valid model or not. Using norm observable operator models 

(norm-OOMs) allows avoiding the NPP. But this approach is in its infancy stage and 

many questions are still to be answered.  

Based on the statistical data of the experimental results, we conclude that the OOM 

algorithm achieves a more accurate model than the HMM method for the given dataset, 

but the NPP problem is a great obstacle for implementing OOM in practical 

applications. 
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5.  Comparison of Solutions 

 

 

The investigations about the various fault diagnosis approaches are summarized in a 

comparison table, which shows assumptions strengths and weaknesses for each 

algorithm. 
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 Parity Space Hidden 

Markov 

Model 

Particle Filter Observable Operator 

Model 

Modelling of 

Data 

Linear Gaussian 

State-space model 

Partially observed 

finite state-space 

Markov chain 

Markovian 

nonlinear, non-

Gaussian state-

space model 

Exhaustive collection of 

probabilities of every 

possible observation 

sequence describing discrete 

time discrete value stationary 

process. 

Modelling of 

Faults 

Additive 

 

Fault modes 

(fault causes 

process to behave 

according to fault 

model) 

Fault modes Fault modes 

Advantages  Simplicity  

 

-  Established 

both in theoretical 

and practical 

application fields 

- Comfortable 

structure (hidden 

states and 

observations)  

- Well interpreted 

hidden states in 

term of 

application 

- Does not require  

fixed computation 

time, since it 

depends on the 

number of 

particles 

- Non-Gaussian 

distributions 

- Non-linear state 

and observation 

model 

- Mixtures of 

discrete and 

continuous  states   

- Model class richer than for 

HMM                   

- Theory expressed in terms 

of linear algebra  

Disadvantages - Good model 

representation 

obligatory     

- Sensitivity 

measurement errors 

and state noise 

- Linear model 

- Gaussian noise                  

-  Supports only 

discrete system 

states  

Computational 

power needed 

 

Lack of practical 

applications  

L
ea

rn
in

g
 A

lg
o
ri

th
m

s 

 Principle 

Component Analysis 

(PCA) 

Expectation 

Maximization 

(EM) Algorithm  

- Basic 

Learning 

Algorithm  

Efficiency 

Sharpening 

(ES) 

Algorithm 

Advan-

tages 

Few parameters to 

tune: window size L 

and number of 

components  

 

Wide range of 

applications  

 

- More 

effective than  

learning 

algorithm of 

HMM 

- Generates 

more 

accurate 

model than  

HMM EM-

algorithm 

- Needs less 

runtime than 

HMM 

algorithm 

Disadvan

-tages 

- Restricted to  linear 

model 

- Order of model 

needs to be decided 

Gets trapped in 

local maxima  

 - Invalid 

generated 

model (NPP) 

- Statistical 

inefficiency 

Invalid 

generated 

model 

(NPP) 

Table 4 Comparison of Algorithms 
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For a linear state-space model with additive faults, analytical results can be derived by 

the parity space approach. If a model is unknown but known to be linear, the principle 

component analysis can be used. The method has too many restrictions to be applied in 

fault diagnosis 

If the process describing system behaviour is a Bayesian model with Markov 

assumptions then the data can be modelled as hidden Markov process. The HMM filter 

solves diagnosis problems for discrete-state finite HMM. It is one of the most general 

and widely-used filters in practice. It has a well established structure to represent a 

diagnosis model of faulty and normal behaviours and is therefore simple to implement.  

The HMM training algorithm (EM) is not completely satisfactory due to slow 

convergence and the presence of many local solutions (local maxima problem).  

If data are modelled as a continuous-state Markov model and continuous-states are 

expressed via linear or nonlinear equations, with particle filter it is possible to compute 

approximately the developing sequence of posterior distributions. Approximation errors 

and the need for computational power can be managed by setting the number of 

particles. This property makes the use of particle filter especially attractive in practice. 

Unfortunately, it has a drawback for fault diagnosis since the filter needs to have a state 

transition and noise model for the faulty modes. If a non-modelled fault occurs its filter 

response is unpredictable. "

The observable operator model (OOM), an alternative to HMM, is a mathematical 

model of linear operators for describing stochastic time-series processes. Compared 

with HMM OOM has several attractive properties: its theory presented in terms of linear 

algebra is easier to work with. OOM is able to express a broader range of processes than 

HMM. The available learning techniques are more accurate and do not get stuck to local 

maxima.  Unfortunately, the basic version of the OOM learning algorithm is statistically 

inefficient and suffers from the negative probability problem (NPP). The novel 

approach to OOM estimation efficiency sharpening (ES) has a better statistical 

efficiency, but the NPP problem is still not solved. A variation of OOM, the norm-OOM 

allows avoiding the NPP. OOM for non-stationary processes could be used to diagnose 

environment faults. As the process of changing robot states depends on the environment 

and therefore is non-stationary, the design of a model for a non-stationary process can 

more exactly describe the normal and faulty behaviour of a robot with respect to 

changes in the environment.   
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6.  Conclusions 

 

 

The goal of this paper was to attempt a comprehensive evaluation of fault diagnosis 

methods in the robot domain. The objective of this work was to provide a kind of 

manual which should help a user to decide which of the four presented algorithms 

would best fit the demands of a particular autonomous system. The complex of the 

presented algorithms included one of the pioneering techniques in the fault diagnosis 

field – parity space, one of the most ubiquitous and famous – the hidden Markov model, 

a state-of-the-art algorithm – particle filter and a novel, developing approach – 

observable operator model. 

The work can only be a first step in laying a foundation for an extended evaluation of 

diagnosis methods in the future. The apparent next step is to check the efficiency of the 

presented methods by applying them to the datasets provided by real robots, increasing 

the range of possible fault situations. Its complexity makes the mobile manipulator a 

good choice as a robot platform for testing the algorithms.    

The OOM learning algorithm ES estimates more accrued models of stationary processes 

than HMM. This fact makes the OOM techniques very promising for future 

implementation as fault diagnosis methods. In my opinion norm-OOM should be the 

next diagnosis algorithm for evaluation. The negative probability problem being solved, 

an OOM for non-stochastic processes, could be a very promising tool for an efficient 

fault diagnosis of  robots in a dynamic environment. 

Hopefully in the future these achievements will help not only to select appropriate 

diagnosis algorithms for the demands of a given robot, but also to develop a complete 

fault handling system including fault recovery. 
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Appendices 

 

 

 

A.   State Estimation with Hidden Markov Model 

 

 

 
% FILE NAME  :  HMM4WheelOMNI.m 
 
% PURPOSE    :  HMM for Four Wheel Omni Driver. 
 
% TOOLBOX    : Murphy, Kevin. Hidden Markov Model Toolbox for Matlab              
% http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html 
 
 
 
T = 10;                     % Number of time steps. 
O = 13;                     % Number of observations 
Q = 13;                     % Number of states 
smallErr=0.000001;          % Value of an error 
 

% ==================================================================== 
%              INITIALISATION AND PARAMETERS 
% ==================================================================== 
 

% =====PROBABILISTIC MODEL REPRESENTATION============================= 
% Transition matrix for discrete state depending on observations 
 
transmat=zeros(Q,Q); 
transmat(:,:,1) = ... 
[0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;   
 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0; 
 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0; 
 0.5 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0.2143 0.1 0.1 0 0;  
 0.5 0.2143 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0 0 0.1 0.1; 
 0.025 0.2 0.025 0.025 0.0083 0.5 0.2 0.0083 0.0083 0 0 0 0; 
 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0; 
 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0; 
 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0; 
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0; 
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0; 
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2; 
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5]; 
 
act=ones(1,T); 
 
% measurement matrix 
obsmat = zeros(Q,Q); 
obsmat = ... 
[0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;   
 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0; 
 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0; 
 0.075 0.025 0.025 0.6 0.025 0.025 0.025 0 0 0.1 0.1 0 0;  
 0.075 0.025 0.025 0.025 0.6 0.025 0.025 0 0 0 0 0.1 0.1;  
 0.025 0.2 0.025 0.025 0.025 0.5 0.2 0 0 0 0 0 0; 
 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0; 
 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0; 

http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html
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 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0; 
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0; 
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0; 
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2; 
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5]; 
 
L=4;                   % sliding window size                       
 
% ================== Four Wheel OMNI Robot ========================== 
% Robot parameters 
angle = 0.588;         % angle between wheels 
R=0.25;                % robot radius  
 

% Forward kinematics matrix the product of this matrix and  
% wheel velocities vector is robot velocities vector   
 

controlMat(:,:)=[sin(angle) -sin(angle) -sin(angle) sin(angle);... 
                 -cos(angle) -cos(angle) cos(angle) cos(angle);... 
                 1/(4*R) 1/(4*R) 1/(4*R) 1/(4*R)]; 
 
obserVal=ones(1,T);    % sequence of observations 
threshold=0.1; 
 
% ================== Load data ======================================= 
% - u(:,T)-matrix of 4xT size consists set of wheel velocities 
% - velObs(:,T)-matrix of 3xT size includes set of robot velocities   
 

load('C:\KA\Master_Thesis\MATLAB\PF\4wheelOMNI\RobotPoseData.mat'); 
 
% ==================================================================== 
%             SEQUENCE OF OBSERVATIONS 
% ==================================================================== 
 
% ======= Generation of the sequence of observations === 
stuckDecayArr=zeros(3,T); 
robotVelN=zeros(3,T); 
velMatrix=zeros(3,4); 
for t=1:T 
   % calculate robot velocity "robotVelN" for the given control "u" 
   % "u" is vector of wheel velocities 
   robotVelN(:,t)=controlMat(:,:,1)*u(:,t); 
 
   % compare measured and calculated velocities   
   if(velObs(:,t)~=robotVelN(:,t)) 
        
       % fault is here 
       velMatrix(:,1)=[ 
          (velObs(1,t)-robotVelN(1,t))/sin(angle)+u(1,t)+smallErr; 
          (-velObs(2,t)+robotVelN(2,t))/cos(angle)+u(1,t)+smallErr; 
           4*R*(velObs(3,t)-robotVelN(3,t))+u(1,t)+smallErr]; 
       velMatrix(:,2)=[ 
          (-velObs(1,t)+robotVelN(1,t))/sin(angle)+u(2,t)+smallErr; 
          (-velObs(2,t)+robotVelN(2,t))/cos(angle)+u(2,t)+smallErr; 
           4*R*(velObs(3,t)-robotVelN(3,t))+u(2,t)+smallErr]; 
       velMatrix(:,3)=[ 
          (-velObs(1,t)+robotVelN(1,t))/sin(angle)+u(3,t)+smallErr; 
          (velObs(2,t)-robotVelN(2,t))/cos(angle)+u(3,t)+smallErr; 
           4*R*(velObs(3,t)-robotVelN(3,t))+u(3,t)+smallErr]; 
       velMatrix(:,4)=[ 
          (velObs(1,t)-robotVelN(1,t))/sin(angle)+u(4,t)+smallErr; 
          (velObs(2,t)-robotVelN(2,t))/cos(angle)+u(4,t)+smallErr; 
           4*R*(velObs(3,t)-robotVelN(3,t))+u(4,t)+smallErr]; 
       % motor 1 faults                
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       if(-0.00001<(velMatrix(1,1)-velMatrix(2,1))& 
                   (velMatrix(1,1)-velMatrix(2,1))<0.00001)&&... 
         (-0.00001<(velMatrix(2,1)-velMatrix(3,1))& 
                   (velMatrix(2,1)-velMatrix(3,1))<0.00001) 
          obserVal(t)=2; 
 
          % save each value 1-4*R*((robotVelN(3,t)- 
          %                         velObs(3,t))/u(1,t)) of 
          % the motor1 with corresponding obserVal(t)=2 and  
          % vector velMatrix(1,1) 
 
          stuckDecayArr(:,t)=[obserVal(t); 
                              velMatrix(1,1); 
                              1-4*R*((robotVelN(3,t)-  
                                      velObs(3,t))/u(1,t))]; 
           
          if(t>=L) 
 
              % copy last L data to stuckVal 
              stuckVal=(stuckDecayArr(2,t-L+1:t)); 
              dacayVal=(stuckDecayArr(3,t-L+1:t)); 
              k=find(stuckDecayArr(1,t-L+1:t)==2);  
              % check weither last L faults happend with the motor1 
               
              s=find(0<=dacayVal&dacayVal<1); 
              if(length(k)==L)  
                   
                  %Motor 1 stuck 
                  copyArr(1,1:L)=stuckVal(1); 
                  if(-0.00001<sum(copyArr-stuckVal)& … 
                              sum(copyArr-stuckVal)<0.00001) 
                       obserVal(t)=6; 
                   
                  %Motor 1 dacay 
                  elseif (length(s)==L) 
                      sortArr=sort(dacayVal,1); 
                      if(-0.00001<sum(sortArr-dacayVal)& 
                                  sum(sortArr-dacayVal)<0.00001) 
                          obserVal(t)=7; 
                      end 
                  end 
              end 
          end 
 
       % motor 2 faults     
       elseif (-0.00001<(velMatrix(1,2)-velMatrix(2,2))& 
                velMatrix(1,2)-velMatrix(2,2))<0.00001)&&... 
              (-0.00001<(velMatrix(2,2)-velMatrix(3,2))& 
                      (velMatrix(2,2)-velMatrix(3,2))<0.00001)       
          obserVal(t)=3;  
          stuckDecayArr(:,t)=[obserVal(t); 
                              velMatrix(3,2); 
                              1-4*R*((robotVelN(3,t)- 
                                      velObs(3,t))/u(2,t))]; 
          if(t>=L)       
              stuckVal=(stuckDecayArr(2,t-L+1:t)); 
              dacayVal=(stuckDecayArr(3,t-L+1:t)); 
 
              % check weither last L faults happend with the motor2 
              k=find(stuckDecayArr(1,t-L+1:t)==3);  
              s=find(0<=dacayVal&dacayVal<1); 
 
              if(length(k)==L)  
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                  %Motor 2 stuck 
                  copyArr(1,1:L)=stuckVal(1); 
                  if(-0.00001<sum(copyArr-stuckVal)& 
                              sum(copyArr-stuckVal)<0.00001) 
                       obserVal(t)=8; 
 
                  %Motor 2 dacay 
                  elseif (length(s)==L) 
                      sortArr=sort(dacayVal,1); 
                      if(-0.00001<sum(sortArr-dacayVal)& 
                          sum(sortArr-dacayVal)<0.00001) 
                          obserVal(t)=9; 
                      end 
                  end 
              end 
          end 
 
       % motor 3 faults     
       elseif (-0.00001<(velMatrix(1,3)-velMatrix(2,3))& 
              (velMatrix(1,3)-velMatrix(2,3))<0.00001)&&... 
              (-0.00001<(velMatrix(2,3)-velMatrix(3,3))& 
              (velMatrix(2,3)-velMatrix(3,3))<0.00001)       
          obserVal(t)=4; 
          stuckDecayArr(:,t)=[obserVal(t); 
                              velMatrix(3,3); 
                              1-4*R*((robotVelN(3,t)- 
                              velObs(3,t))/u(3,t))]; 
           
           if(t>=L)       
              stuckVal=(stuckDecayArr(2,t-L+1:t)); 
              dacayVal=(stuckDecayArr(3,t-L+1:t)); 
              % check weither last L faults happend with the motor3 
 
              k=find(stuckDecayArr(1,t-L+1:t)==4);  
               
              s=find(0<=dacayVal&dacayVal<1); 
              if(length(k)==L) 
  
                  %Motor 3 stuck 
                  copyArr(1,1:L)=stuckVal(1); 
                  if(-0.00001<sum(copyArr-stuckVal)& 
                      sum(copyArr-stuckVal)<0.00001) 
                       obserVal(t)=10; 
                   
                  %Motor 3 dacay 
                  elseif (length(s)==L) 
                      sortArr=sort(dacayVal,1); 
                      if(-0.00001<sum(sortArr-dacayVal)& 
                          sum(sortArr-dacayVal)<0.00001) 
                          obserVal(t)=11; 
                      end 
                  end 
              end 
          end 
 
       % motor 4 faults     
       elseif (-0.00001<(velMatrix(1,4)-velMatrix(2,4))& 
              (velMatrix(1,4)-velMatrix(2,4))<0.00001)&&... 
              (-0.00001<(velMatrix(2,4)-velMatrix(3,4))& 
              (velMatrix(2,4)-velMatrix(3,4))<0.00001)       
          obserVal(t)=5; 
          stuckDecayArr(:,t)=[obserVal(t); 
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                              velMatrix(3,4); 
                              1-4*R*((robotVelN(3,t)- 
                              velObs(3,t))/u(4,t))]; 
          if(t>=L)       
              stuckVal=(stuckDecayArr(2,t-L+1:t)); 
              dacayVal=(stuckDecayArr(3,t-L+1:t)); 
              k=find(stuckDecayArr(1,t-L+1:t)==5);  
              % check weither last L faults happend with the motor4 
               
              s=find(0<=dacayVal&dacayVal<1); 
              if(length(k)==L)  
 
                  %Motor 4 stuck 
                  copyArr(1,1:L)=stuckVal(1); 
                  if(-0.00001<sum(copyArr-stuckVal)& 
                      sum(copyArr-stuckVal)<0.00001) 
                       obserVal(t)=12; 
 
                  %Motor 4 dacay 
                  elseif (length(s)==L) 
                      sortArr=sort(dacayVal,1); 
                      if(-0.00001<sum(sortArr-dacayVal)& 
                         sum(sortArr-dacayVal)<0.00001) 
                          obserVal(t)=13; 
                      end 
                  end 
              end 
          end 
      end 
  else  
      % normal mode 
      obserVal(t)=1; 
      stuckDecayArr(:,t)=[1;u(1,t);1]; 
  end 
end 
 
%===================== Plot mode states ============================= 
figure(1) 
clf 
plot(1:T,z,'r','linewidth',2); 
ylabel('Observation modes','fontsize',15); 
xlabel('Time','fontsize',15); 
axis([0 T+1 0 Q+1]); 
grid on; 
% ==================================================================== 
%                          HMM ESTIMATION 
% ==================================================================== 
 
% This part of code involve the functions from K. Murphy's HMM toolbox  
 
tic;                  % Initialize timer for benchmarking 
flops(0); 
prior0 = normalise(transmat(1,:,1)); 
transmat0 = mk_stochastic(transmat); 
obsmat0 = mk_stochastic(obsmat); 
obsmat1=zeros(Q,T); 
 
% Create observation matrix 
for i=1:T 
  obsmat1(:,i)=obsmat(:,obserVal(i));  
end 
 
% estimation of fault states forward-backward algorithms 
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% HMM toolbox 
[alpha, beta, gamma, loglik] = fwdback(prior0, transmat0, obsmat1, 
'act', act); 
time_pf = toc;  
     
% ==================================================================== 
%                          SUMMARIES AND PLOTS 
% ==================================================================== 
disp(' '); 
disp('Overlooked errors'); 
disp('-----------------------------'); 
disp(' '); 
disp('Execution time  (seconds)'); 
disp('-------------------------'); 
disp(' '); 
disp(['HMM filter     = ' num2str(time_pf)]); 
disp(' '); 
filtDistPlot=[zeros(10,T)         
       alpha(1,:)  
              zeros(10,T)  
       alpha(2,:) 
           zeros(10,T)  
       alpha(3,:) 
              zeros(10,T)  
       alpha(4,:) 
              zeros(10,T)  
       alpha(5,:) 
              zeros(10,T) 
            alpha(6,:) 
              zeros(10,T) 
            alpha(7,:) 
              zeros(10,T) 
            alpha(8,:) 
              zeros(10,T) 
            alpha(9,:) 
              zeros(10,T) 
            alpha(10,:) 
              zeros(10,T) 
            alpha(11,:) 
              zeros(10,T) 
            alpha(12,:) 
              zeros(10,T) 
            alpha(13,:) 
              zeros(10,T) 
            ];     % Zero pad to make plots look nice. 
 
figure(2) 
clf; 
hold on 
ylabel('t - time','fontsize',15) 
zlabel('Pr(z_t|y_{1:t})','fontsize',15) 
xlabel('z_t - state modes','fontsize',15) 
title('HMM filter','fontsize',15) 
for t=1:1:T, 
 waterfall([1:153],t,filtDistPlot(:,t)');  
end; 
view(-20,60); 
rotate3d on; 
set(gca,'ygrid','off'); 
set(gca,'xtick',10:11:145); 
set(gca,'xticklabel',{'N','W1','W2','W3','W4','M1s','M1d','M2s','M2d', 
                      'M3s','M3d','M4s','M4d'}) 
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B.   State Estimation with Particle Filter 

 

 
% FILE NAME  :  PF4omniDriver.m 
 
% PURPOSE    :  PF for Four Wheel Omni Driver. 
 
% TOOLBOX    : N. de Freitas, software for classical particle filters 
%              and Rao- %Blackwellised particle filters  
%              http://www.cs.ubc.ca/~nando/sofware.html 
 
 
clear; 
echo off; 
 
% ==================================================================== 
%              INITIALISATION AND PARAMETERS 
% ==================================================================== 
 
N = 200;                    % Number of particles. 
T = 30;                     % Number of time steps. 
 
% Here, we give you the choice to try three different types of 
% resampling algorithms: multinomial (select 3), residual (1) and  
% deterministic (2). Note that the code for these O(N) algorithms is 
generic. 
 
resamplingScheme = 2;     
 
n_x = 3;                    % Continuous state dimension. 
n_z = 7;                    % Number of discrete states. 
n_y = 3; 
n_u = 4;                    % Number control values 
 
par.A = zeros(n_x,n_x,n_z); % Control matrix for state equation 
par.B = zeros(n_x,n_x,n_z); % State noise 
par.C = zeros(n_y,n_x,n_z); % observationmatrix 
par.D = zeros(n_y,n_y,n_z); % observation noise 
par.E = zeros(n_x,n_x,n_z); 
par.K = zeros(3,n_u,n_z);   % State control matrix 
par.G = zeros(n_y,3,n_z); 
for i=1:n_z, 
  par.A(:,:,i) = eye(n_x,n_x); 
  par.C(:,:,i) = eye(n_y,n_x); 
  par.B(:,:,i) = 0.01*eye(n_x,n_x);     
  par.D(:,:,i) = 0.01*eye(n_y,n_y);     
  par.G(:,:,i) =  eye(n_y,n_x); 
end; 
  
% Transition matrix for discrete state.     
par.T = [0.75 0.05 0.05 0.05 0.05 0.05 0;   
         0.025 0.7 0.025 0 0.05 0.05 0.05;  
         0.1 0.05 0.8 0.05 0 0 0;  
         0.1 0 0.05 0.8 0.025 0 0;  
         0.1 0.05 0 0.05 0.8 0 0; 
         0.05 0.05 0.025 0.025 0.025 0.8 0.025; 
         0.05 0.05 0.025 0.025 0.025 0.025 0.8]; 
 
for i=1:n_z, 
  par.T(i,:) = par.T(i,:)./sum(par.T(i,:));  
end; 
 

http://www.cs.ubc.ca/~nando/sofware.html
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par.pz0 = [0.75; 0.05; 0.05; 0.05; 0.05; 0.05]'; 
par.pz0 = par.pz0./sum(par.pz0);  
 
par.mu0 = zeros(n_x,1);                 % Initial Gaussian mean. 
par.S0  = 0.1*eye(n_x,n_x);             % Initial Gaussian covariance.   
par.fd = [0.01; 0.001]; 
 
%================== Four Wheel OMNI Robot ========================== 
 
% Robot parameters 
angle = 0.588;       % angle between wheels 
R=0.25;              % robot radius  
stuck_val = 0; 
% Control matrix for the state equation 
par.K(:,:,1)=[sin(angle) -sin(angle) -sin(angle) sin(angle); 
              -cos(angle) -cos(angle) cos(angle) cos(angle); 
              1/(4*R) 1/(4*R) 1/(4*R) 1/(4*R)]; 
for i=2:5 
    par.K(:,:,i)=par.K(:,:,1); 
    par.K(:,i-1,i)= par.K(:,i-1,i)*stuck_val; 
end 
 
% ==================================================================== 
%                          GENERATE THE DATA 
% ==================================================================== 
 
% Load data from the file. 
load('C:\KA\Master_Thesis\MATLAB\PF\4wheelOMNI\RobotPoseData.mat'); 
 
% The data includes input vector and true fault modes which happand  
% with robot 
 
% Initialization 
x = zeros(n_x,T); 
y = zeros(n_y,T); 
z = ones(1,T); 
 
% A sequence of observable states 
for i=20:T 
    z(i)=4; 
end     
u=zeros(4,T); 
 
% Set input wheel velocities for each time step 
for i=2:T 
    u(:,i)=[2;-2;-2;2]; 
end 
 
x(:,1) = [0;0;0]; 
angle=zeros(T,1); 
robot_vel=zeros(3,1); 
 
% create observasions for the given state sequence 
for t=2:T, 
   stuckVal=1; 
   if(z(t)==6) 
       robot_vel = par.K(:,:,1)*[3;u(2,t);u(3,t);u(4,t)]; 
   elseif (z(t)==7) 
       par.K(:,:,7)=par.K(:,:,1); 
       par.K(:,1,7)=par.K(:,1,7)*1/(1.01^(t-1)); 
       % define velocities 
       robot_vel = par.K(:,:,7)*u(:,t);   
   else 
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       % define velocities 
       robot_vel = par.K(:,:,z(t))*u(:,t);   
   end 
 
   x(:,t) = robot_vel; 
   y(:,t) = par.C(:,:,z(t))*x(:,t); 
   if(t>2) 
   pred_val=[1 1]; 
   pred_val(1)=1/((4*R*x(3,t)-u(2,t)-u(3,t)-u(4,t))/u(1,t)); 
   pred_val(2)=1/((4*R*x(3,t-1)-u(2,t-1)-u(3,t-1)-u(4,t-1))/u(1,t-1)); 
   new_u=[u(1,t)/(pred_val(1)+abs(pred_val(1)-pred_val(2))); 
                                                     u(2,t); 
                                                     u(3,t); 
                                                     u(4,t)];           
   n_u1=par.K(:,:,1)*new_u; 
  end 
end; 
 
% ============== Plot the discrete modes =========================== 
figure(2) 
clf 
plot(1:T,z,'r','linewidth',2); 
ylabel('z_t','fontsize',15); 
axis([0 T+1 0 n_z+1]) 
grid on; 
 
% ==================================================================== 
%                              PF ESTIMATION 
% ==================================================================== 
 
% INITIALISATION: 
% ==================================================================== 
z_pf = ones(1,T,N);            % These are the particles for the  
                               % estimate of z. Note that there's no  
                               % need to store them for all t. We're  
                               % only doing this to show you all the  
                               % nice plots at the end. 
z_pf_pred = ones(1,T,N);       % One-step-ahead predicted values of z. 
x_pf = 10*randn(n_x,T,N);      % These are the particles for the 
estimate x. 
x_pf_pred = x_pf;  
y_pred = 10*randn(n_y,T,N);    % One-step-ahead predicted values of y. 
w = ones(T,N);                 % Importance weights. 
 
initz = 1/n_z*ones(1,n_z);      
for i=1:N, 
  z_pf(:,1,i) = length(find(cumsum(initz')<rand))+1;  
end; 
v_pf = zeros(3,T,N); 
k=zeros(3,T); 
disp(' '); 
tic;   
rot_angle=zeros(T,N); 
L=4; %sliding window size 
% Initialize timer for benchmarking 
angl = 0.588;   
for t=2:T,     
  fprintf('PF :  t = %i / %i  \r',t,T); fprintf('\n');   
 
   
% SEQUENTIAL IMPORTANCE SAMPLING STEP: 
% ====================================================================  
  for i=1:N, 
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    % sample z(t)~p(z(t)|z(t-1)) 
    z_pf_pred(1,t,i) = length(find(cumsum(par.T(z_pf(1,t-
1,i),:)')<rand))+1; 
    z_val=z_pf_pred(1,t,i); 
 
    % sample x(t)~p(x(t)|z(t|t-1),x(t-1)) 
    if(z_pf_pred(1,t,i)==6) 
    % Wheel 1 stuck.  
    % Calculation of correct velocities for the preveous state 
       correct_vel=par.K(:,:,1)*u(:,t-1); 
       if(correct_vel~=x_pf(:,t-1,i)) 
           if((u(2,t)==u(2,t-1))&& 
              (u(3,t)==u(3,t-1))&& 
              (u(4,t)==u(4,t-1))) 
               v_pf(:,t,i) = x_pf(:,t-1,i); 
           else 
              new_u=[ 
               4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1); 
               u(2,t); 
               u(3,t); 
               u(4,t)]; 
               v_pf(:,t,i) = par.K(:,:,1)*new_u; 
           end 
       else 
          v_pf(:,t,i) = par.K(:,:,2)*u(:,t);  % define velocities  
       end 
    % Wheel 1 decay scenario  
    elseif(z_pf_pred(1,t,i)==7) 
       if(t>2) 
           pred_val=[1 1]; 
           %calculate the decay value for previous  
           pred_val(1)=u(1,t-1)/(4*R*x_pf(3,t-1,i)- 
                                 u(2,t-1)-u(3,t-1)-u(4,t-1)); 
           pred_val(2)=u(1,t-2)/(4*R*x_pf(3,t-2,i)- 
                                 u(2,t-2)-u(3,t-2)-u(4,t-2)); 
            
           new_u=[u(1,t)/(pred_val(1)+abs(pred_val(1)-pred_val(2))); 

u(2,t); 
u(3,t); 
u(4,t)];           

           n_u=par.K(:,:,1)*new_u; 
        else 
           v_pf(:,t,i) = par.K(:,:,2)*u(:,t); 
       end 
 
    elseif(z_pf_pred(1,t,i)==8) 
          new_u=[u(1,t); 
                 4*R*x_pf(3,t-1,i)-u(1,t-1)-u(3,t-1)-u(4,t-1); 
                 u(3,t); 
                 u(4,t)]; 
          v_pf(:,t,i) = par.K(:,:,1)*new_u;   
    else 
        v_pf(:,t,i) = par.K(:,:,z_pf_pred(1,t,i))*u(:,t);      
    end 
 
        x_pf_pred(:,t,i) = v_pf(:,t,i) + ...  
                           par.B(:,:,z_pf_pred(1,t,i))*randn(n_x,1);          
     
  end; 
 
  % Evaluate importance weights. 
  % ==================================================================  
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  for i=1:N 
    y_pred(:,t,i) = par.C(:,:,z_pf_pred(1,t,i))*x_pf_pred(:,t,i) + ... 
                    par.D(:,:,z_pf_pred(1,t,i))*randn(n_y,1);  
    Cov = par.D(:,:,z_pf_pred(1,t,i))*par.D(:,:,z_pf_pred(1,t,i))';  
 
    w(t,i) =  (det(Cov)^(-0.5))*exp(-0.5*(y(:,t)-y_pred(:,t,i))'* ... 
        pinv(Cov)*(y(:,t)-y_pred(:,t,i))) + 1e-99; 
  end;   
  w(t,:) = w(t,:)./sum(w(t,:));              % Normalise the weights. 
 
% SELECTION STEP: 
% ==================================================================== 
  if resamplingScheme == 1 
    outIndex = residualR(1:N,w(t,:)');        % Higuchi and Liu. 
  elseif resamplingScheme == 2 
    outIndex = deterministicR(1:N,w(t,:)');   % Kitagawa. 
  else   
    outIndex = multinomialR(1:N,w(t,:)');     % Ripley, Gordon, etc.   
  end; 
  z_pf(1,t,:) = z_pf_pred(1,t,outIndex); 
  x_pf(:,t,:) = x_pf_pred(:,t,outIndex); 
 
end;   % End of t loop. 
time_pf = toc;     % How long did this take? 
 
% ==================================================================== 
%                          SUMMARIES AND PLOTS 
% ==================================================================== 
 
z_plot_pf = zeros(T,N); 
for t=1:T, 
  z_plot_pf(t,:) = z_pf(1,t,:); 
end; 
 
z_num_pf = zeros(T,n_z); 
z_max_pf = zeros(T,1); 
for t=1:T, 
  for i=1:n_z, 
    z_num_pf(t,i)= length(find(z_plot_pf(t,:)==i)); 
  end; 
  [arb,z_max_pf(t)] = max(z_num_pf(t,:));   
end; 
 
detect_error_pf = sum(z~=z_max_pf'); 
if(z(1)~=z_max_pf(1)) 
    detect_error_pf=detect_error_pf-1; 
end     
     
 
disp(' '); 
disp('Overlooked errors'); 
disp('-----------------------------'); 
disp(' '); 
disp(['PF      = ' num2str(detect_error_pf)]); 
disp(' '); 
disp(' '); 
disp('Execution time  (seconds)'); 
disp('-------------------------'); 
disp(' '); 
disp(['PF      = ' num2str(time_pf)]); 
disp(' '); 
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figure(3) 
clf; 
domain = zeros(N,1); 
range = zeros(N,1); 
thex=[0.5:0.05:n_z+.5]; 
hold on 
ylabel('t','fontsize',12) 
zlabel('Pr(z_t|y_{1:t})','fontsize',12) 
xlabel('z_t','fontsize',12) 
for t=1:1:T, 
 [range,domain]=hist(z_plot_pf(t,:)',thex); 
  waterfall(domain,t,range/sum(range)) 
end; 
view(-30,80); 
rotate3d on; 
set(gca,'ygrid','off'); 
title('Particle Filter') 
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C.   State Estimation with Observable Operator Model 

 

 
% FILE NAME  :  OOM4wheelOMNI.m 
 
% PURPOSE    :  OOM for Four Wheel Omni Driver. 
 
% TOOLBOX    : Jaeger, Herbert. OOM Matlab implementation.  
%           http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip 
 

 
% ==================================================================== 
%              INITIALISATION AND PARAMETERS 
% ==================================================================== 

 
global dim alphabetsize charEvLength charEvents w0Int  tlInt; 
 
%===================== BUILD A MODEL================================== 
stateNr = 5;                  % number of states 
obsNr = 5;                    % number of observations 
Msparsity = 0.3;  
Osparsity = 0.5; 
 
procureOOM4OMNI(stateNr, obsNr, Msparsity, Osparsity); 
 
% generate run of lenght numberOfPoints, collect states in 2 or 3  
% lists according to observable producing the state 
tl=tlInt; 
w0=w0Int; 
modDim = length(tl(1,:,1)); 
numberOfPoints=10; 
statePlotLength = numberOfPoints; 
modStatePL3D = zeros(statePlotLength,3,min([alphabetsize 6])); 
modStateCounters = ones(alphabetsize); 
%w = w0; 
squeezedTL = zeros(alphabetsize,modDim); 
for i = 1:alphabetsize 
        squeezedTL(i,:) = sum(tl(:,:,i)); 
end 
 
%===================================================================== 
load('C:\KA\Master_Thesis\MATLAB\PF\4wheelOMNI\RobotPoseData.mat'); 
 
pvec=zeros(5,numberOfPoints); 
w=zeros(5,numberOfPoints+1); 
w(:,1)=w0; 
for n = 1:numberOfPoints 
        % update model         
        pvec(:,n) = squeezedTL * w(:,n); % probability vector 
        choice = obsArr(n); 
        w(:,n+1) = tl(:,:,choice) * w(:,n); 
        w(:,n+1) = w(:,n+1) / sum(w(:,n+1)); 
end 
 
% ==================================================================== 
%                          SUMMARIES AND PLOTS 
% ==================================================================== 
 
filtDistPlot=[zeros(10,numberOfPoints)         
       pvec(1,:)  
              zeros(10,numberOfPoints)  

http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip
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       pvec(2,:) 
           zeros(10,numberOfPoints)  
       pvec(3,:) 
              zeros(10,numberOfPoints)  
       pvec(4,:) 
              zeros(10,numberOfPoints)  
       pvec(5,:)               
          ];     % Zero pad to make plots look nice. 
figure(2) 
clf; 
hold on 
ylabel('t - time','fontsize',14) 
zlabel('Pr(b|a_{1:t})','fontsize',14) 
xlabel('System states','fontsize',14) 
%title('OOM','fontsize',15) 
for t=1:1:numberOfPoints, 
 waterfall([1:55],t,filtDistPlot(:,t)');  
end; 
view(-20,60); 
rotate3d on; 
set(gca,'ygrid','off'); 
set(gca,'xtick',10:11:58); 
set(gca,'xticklabel',{'N','W1','W2','W3','W4'}) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 110 

 

Reference: 

1. F. Gustafsson. Adaptive filtering and change detection. JohnWiley & Sons, Ltd, 

2001."

2. F. Gustafsson. Statistical signal processing approaches to fault detection. 

Annual Reviews in Control (JARAP), 31(1):41-54, 2007."

3. L.R. Rabiner. A tutorial on hidden Markov model and selected applications in 

speech recognition. Proceedings of the IEEE 77(2):257-286, February 1989."

4. A. Doucet, N. de Freitas, N. Gordon (editors). Séquentiel Monte Carlo Methods 

in Practice. Springer. 2001. "

5. H. Jaeger, M. Zhao, K. Kretzschmar, T. Oberstein, D. Popovici, A. Kolling 

Learning observable operator models via the ES algorithm. In S. Haykin, J. 

Principle, T. Sejnowski, and J. McWhirter, editors, New Directions in Statistical 

Signal Processing: from Systems to Brain, MIT Press, Cambridge, MA., pages 

417-464 2006. "

6. V. Venkatasubramanian, R.Rengaswamy, Kewen Yin, and Surya N. Kavuri. A 

review of process fault detection and diagnosis part1: Quantitative model-based 

methods. Computers and Chemical Engineering, 27:293–313, 2003. 

7. V. Venkatasubramanian, R.Rengaswamy, Kewen Yin, and Surya N. Kavuri. A 

review of process fault detection and diagnosis part 2: Qualitative models and 

search strategies. Computers and Chemical Engineering, 27:313– 326, 2003. "

8. V. Venkatasubramanian, R.Rengaswamy, Kewen Yin, and Surya N. Kavuri. A 

review of process fault detection and diagnosis part 3: Process history based 

methods. Computers and Chemical Engineering, 27:327–346, 2003. "

9. P. Sundvall. Mobile robot fault detection using multiple localisation modules. 

Master’s thesis, KTH School of Electrical Engineering, Stockholm, Sweden, 

2006. 

10. R. Isermann Fault-diagnosis systems: An introduction from fault detection to 

fault tolerance. Berlin: Springer-Verlag, 2006.  

11. M. Staroswiecki. Model based FDI: the control approach. Plenary lecture. 

Bridge Workshop, Sancicario. Italy. March  2001. 

12. Steven. X. Ding Model-Based Fault Diagnosis Techniques: Design Schemes, 

Algorithms, and Tools. Springer, May 2008.  

13. J. Gertler. Fault detection and isolation using parity relations. Control 

Engineering Practice, 5(5):653-661, 1997.    



 111 

14. E. Chow, A Wilsky. Analytical redundancy and the design of robust failure 

detection systems. Automatic Control, IEEE Transactions on, 29(7): 603-614 

July 1984.  

15. J de Kleer and B.C. Williams. Diagnosing multiple faults. Artificial Intelligence, 

32(1):97– 130, 1987. 

16. J de Kleer and B.C. Williams. Diagnosis with behaviour models. In Proceedings 

of IJCAI-89, pages 1324-1330, 1989 

17. J. Kurien and P. Nayak. Back to the future for consistency-based trajectory 

tracking. In Proceedings of AAAI-00, ppages 370-377, 2000 

18. B.C. Williams and P. Nayak. A model-based approach to reactive self-

configuring systems. In Proceedings of AAAI-96, 2:971-978, Portland, OR, 

August 1996. 

19. B.C. Williams, M.D. Ingham, S.H. Chung, and P.H. Elliott. Model-based 

programming of intelligent embedded systems and robotic space explorers. In 

Proceedings of the IEEE, 91(1): 212—237, January 2003.  

20. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005. 

21. V Verma, G Gordon, R Simmons, S Thrun. Particle Filters for Rover Fault 

Diagnosis, Robotics and Automation Magazine, June 2004  

22. S. Thrun, J. Langford, and V. Verma. Risk sensitive Particle Filters. In Neural 

Information Processing Systems (NIPS), December 2001. 

23. V. Verma, S. Thrun, and R. Simmons. Variable resolution Particle Filter. In 

International Joint Conference of Artificial Intelligence, 2003. 

24. E. Benazera, R. Dearden, and S. Narasimhan. Combining Particle Filters and 

consistency-based approaches. In 15th Int. Workshop on Principles of 

Diagnosis, Carcassonne, France, 2004. 

25. C. Plagemann, D. Fox, W. Burgard. Efficient Failure Detection on Mobile 

Robots Using Particle Filters with Gaussian Process. Proposal European 

Robotics Symposium 2006, Springer-Verlag Serlin Heidelberg, Germany, pages. 

93-107 

26. R. Dearden, T. Willeke, F. Hutter, R. Simmons, V. Verma and S. Thrun. Real-

time Fault Detection and Situational Awareness for Rovers: Report on the Mars 

Technology Program Task. In Proceedings of IEEE Aerospace Conference, 

pages 826-840, 2004.  



 112 

27. M. Nyberg. Model Based Fault Diagnosis Methods, Theory, and Automotive 

Engine Application., PhD, Department of Electrical Engineering, Linköping 

University, Linkoeping, Sweden, 1999 

28.  R. Ganguli. Health monitoring of a helicopter rotor in forward flight using fuzzy 

logic. AIAA Journal, 40(12):2373–2381, September 2002. 

29.  A. Marcos, S. Ganguli, and G. Balas. Application of H¥ fault detection and 

isolation to a boeing 747-100/200 aircraft. In Proceedings of AIAA-2002-4944, 

Monterey, CA, August 2002. 

30.  M. Borairi and H. Wang. Actuator and sensor fault diagnosis of nonlinear 

dynamic systems via genetic neural networks and adaptive parameter estimation 

technique. In Proceedings of IEEE International Conference on Control 

Applications, pages. 278–282 , September 1998. 

31.  Y.-W. Kim, G. Rizzoni, and V. Utkin. Automotive engine diagnosis and control 

via nonlinear estimation IEEE Control Systems Magazine, 18:84–99, October 

1998. 

32.  D.-L. Yu. Diagnosing simulated faults for an industrial furnace based on 

bilinear model IEEE Transactions on Control Systems Technology, 8:435–442, 

May 2000. 

33. P. Garimella and B. Yao. Model based fault detection of an electro hydraulic 

cylinder. In Proceedings of American Control Conference, 1:484-489, June 

2005. 

34.  E. Mesbahi. An intelligent sensor validation and fault diagnostic technique for 

diesel engines. Journal of Dynamic Systems, Measurement, and Control, 123: 

141–144, March 2001. 

35.  Z. Ye and B. Wu. A review on induction motor online fault diagnosis. In 

Proceedings of the 3rd International Power Electronics and Motion Control 

Conference, 3:1353-1358, August 2000. 

36.  S. Lee, M. D. Bryant, and L. Karlapalem. Model and information theory-based 

diagnostic method for induction motors. Journal of Dynamic Systems, 

Measurement, and Control, 128:584–591, September 2006. 

37.  R. H. Chen, H. K. Ng, J. L. Speyer, L. S. Guntur, and R. Carpenter. Health 

monitoring of a satellite system. Journal of Guidance, Control, and Dynamics,  

29(3):593–605, 2006. 



 113 

38.  H. Rotstein, R. Ingvalson, T. Keviczky, and G. J. Balas. Fault detection design 

for uninhabited aerial vehicles, Journal of Guidance, Control, and Dynamics, 

29(5):1051–1060, 2006. 

39.  A. Duyar and W. Merrill, Fault diagnosis for the space shuttle main engine. 

Journal of Guidance, Control, and Dynamicss, 15(2):384–389, 1992. 

40.  Y. Zhang, J. Wu, M. Huang, H. Zhu, and Q. Chen, Liquid-propellant rocket 

engine health-monitoring techniques. Journal of Propulsion and Power, 

14(5):657–663, 1998.  

41. R. K. Yedavalli Robust Estimation and Fault Diagnostics for Aircraft Engines 

with Uncertain Model. Data  Proceedings of the 2007 American Control 

Conference Marriott Marquis Hotel at Times Square New York City, USA, July 

2007. 

42. Y. Zhang. Detection and diagnosis in dynamic systems. Lecture 1. Introduction 

to Fault Detection and Diagnosis (FDD), Department of Computer Science and 

Engineering, Aalborg University Esbjerg, 2006. 

43. C. Bonivento, A. Isidori, L. Gentili, L. Marconi, and A. Paoli. Fault detection 

and isolation and fault tolerant control. Research work. Online at 

http://www.casy.deis.unibo.it/files/fdiftc.pdf (Accessed: September 06, 2008), 

2001. 

44. The Desire Consortium. Deutsche service robotik initiative. Online at 

http://www.projekt-desire.de/ (Accessed: September 03, 2008), 2008. 

45. A. Shakhimardanov. Report on the Research and Development Project 2 Fault 

Tolerance and Robustness in Robotics: A Survey. R&D2 project, 

Fachhochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany, 2006 . 

46. R. Isermann. Model-based fault-detection and diagnosis – status and 

applications. Annual Reviews in Control 29:71-85, 2005. 

47. M. Basseville and I.V. Nikiforov. Detection of abrupt changes: theory and 

application. Information and system science series. Prentice Hall, Englewood 

Cliffs, NJ., 1993. 

48. J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel 

Dekker, Inc, 1998. 

49. P. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy- A survey and some new results, Automatica 26(3): 459–474, 

1990. 

http://www.casy.deis.unibo.it/files/fdiftc.pdf
http://www.projekt-desire.de/


 114 

50. M. Kinnaert Fault diagnosis based on analytical models for linear and nonlinear 

systems – A tutorial. In Proceedings Safeprocess, Washington, U.S.A. pages 

133-139, 2003  

51. A. Hagenblad, F. Gustafsson and I. Klein. A comparison of two methods for 

stochastic fault detection: The parity space approach and principal components 

analysis. Proceedings of 13th IFAC Symposium on System Identification, pages 

1090–1095. 2003 

52. Wikipedia. Online at http://en.wikipedia.org/ (Accessed: September 04, 2008), 

2008. 

53. H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra, J. Dull, K. 

Sarkar, M. Klein, M. Vasa, and D. Handy. Vedas: A mobile and distributed data 

stream mining system for real-time vehicle monitoring. Proceedings of SIAM 

International Conference on Data Mining, 2004. 

54. Home Page of Fault Detection and Diagnosis in Engineering Systems. Online at 

http://teal.gmu.edu/~jgertler/lab/paper.html  (Accessed: September 04, 2008), 

2008. 

55. V. Filaretov, M. Vukobratovic and A. Zhirabok. Parity relation approach to 

fault diagnosis in manipulation robots. Mechatronics 13(2):141-152, March 

2002. 

56. A. Varga. A Fault Detection Toolbox for MATLAB Computer-Aided Control 

Systems Design, 2006 IEEE International Symposium on, 4(6): 3013–3018  

October 2006.  

57. S. X. Ding, E. Atlas, S. Schneider, Y. Ma, T. Jeinsch and E. L. Ding: An  

introduction to a MATLAB-based FDI-toolbox, Proc. of IFAC Symposium   

SAFEPROCESS, Beijing, 2006. 

58. P. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy- a survey and some new results. Automatica 26(3):459–474, 

1990. 

59. Y. Tharrault, G. Mourot, J. Ragot, D. Maquin. Fault detection and isolation with 

robust principal component analysis. Control and Automation, 2008 16
th

 

Mediterranean Conference on, Ajaccio, France, pages 59-64, June 2008    

60. A.T. Bharucha-Reid Elements of the Theory of Markov Processes and Their 

Applications. New York: McGraw-Hill, 1960 

http://en.wikipedia.org/
http://teal.gmu.edu/~jgertler/lab/paper.html


 115 

61. D. E. Bernard, G. A. Dorais, C. Fry, E. B. Gamble Jr., B. Kanefsky, J. Kurien, 

W. Millar, N. Muscettola, P. Nayak, B. Pell, K. Rajan, N. Rouquette, B. Smith, 

and B. C. Williams, Design of the remote agent experiment for spacecraft 

autonomy. In Proceedings of the IEEE Aerospace Conference, 1998. 

62. L. Fesq, M. Ingham, M. Pekala, J. V. Eepoel, D. Watson, and B. Williams, 

Model-based autonomy for the next generation of robotic spacecraft. In 

Proceedings of 53
rd

 International Astronautical Congress, October 2002. 

63. R. Dearden and T. Willeke and F. Hutter and R. Simmons and V. Verma and S. 

Thrun Real-time Fault Detection and Situational Awareness for Rovers: Report 

on the Mars Technology Program Task. In Proceedings in IEEE Aerospace 

Conference pages 826- 840, 2004 

64. T. Clapp and S. Godsill, Improvement strategies for Monte Carlo particle filters, 

in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. 

Gordon, Eds., New York: Springer Verlag, 2001. 

65. A. Doucet, S. J. Godsill, and C. Andrieu, On sequential Monte Carlo sampling 

methods for Bayesian filtering. Statistics and Computing, pages. 197-208, 2000. 

66. J. Carpenter, P. Clifford, and P. Fearnhead, Improved particle fillter for non-

linear problems. IEEE Proceedings on Radar and Sonar Navigation, 146(1):2-7, 

1999. 

67. D. Crisan, P. Del Moral, and T. J. Lyons, Non-linear filtering using branching 

and interacting particle systems. Markov processes and Related Fields, 

5(3):293-319, 1999. 

68. H. Jaeger. Characterizing distributions of stochastic processes by linear 

operators. GMD Report 62, German National Research Centre for Information 

Technology, 1999. http://www.faculty.iubremen.de/hjaeger/pubs/oom 

distributionsTechRep.pdf. (Accessed: September 04, 2008), 

69. H. Jaeger. A short introduction to observable operator models of stochastic 

processes. Proceedings of the Cybergenetics and Systems 1998 Conference, 1, 

Austrian Society for Cybergenetics Study, 38-43 1998 

70. T. Oberstein. Efficient Training of Observable Operator Models using Context 

Graph. Master’s thesis,  Institute for autonomous intelligent systems, Fraunhofer 

AIS Mathematical Institute / ZAIK, University Cologne, Gremany, 2002. 

71. C. Chen. Linear system theory and design. 3rd ed., Oxford University Press, 

1999 

http://www.faculty.iubremen.de/hjaeger/pubs/oomdistributionsTechRep.pdf
http://www.faculty.iubremen.de/hjaeger/pubs/oomdistributionsTechRep.pdf


 116 

 

72. R. Rojas.  Omnidirectional Control, Freie Universität Berlin; Institut für 

Informatik; Veranstaltung „Robotik“ http://www.inf.fu-

berlin.de/lehre/WS04/Robotik/omnidrive.pdf (Accessed: September 04, 2008), 

2008 

73. M. Mladenov,  M.  Mock, K.-E   Grosspietsch.  Fault monitoring and correction 

in a walking robot using LMS filters. Intelligent Solutions in Embedded 

Systems, 2008 International Workshop on pages: 1-10 July 2008. 

74. J. Tan and N. Xi Integrate task planning and control for mobile manipulators 

Robotics and Automations. Proceedings ICRA 02, IEEE Internetional 

Conference on 1:382-387  

75. J. Tan, N.Xi and Y. Wang Integrated Task Planning and Control for Mobile 

Manipulators. The international Journal of Robot Research, 22(5): 337-354, 

May 2003. 

76.  W.H.Huang, G.F. Holden, Nonprehensile palmar manipulation with a mobile 

robot. Intelligent Robots and Systems, Proceedings IEEE/RSJ International 

Conference on 1:114-119, 2001.  

77. A. Petrovskaya and A. Y. Ng Probabilistic mobile manipulation in dynamic 

environments, with application to opening doors. In IJCAI, 2007  

78. M. Hans, B. Graf, and R. Schraft. Robotic home assistant Care-O-bot: past-

present-future. Robot and Human Interactive Communication, 2002. 

Proceedings.11th IEEE International Workshop on page 380–385. 

79. E. Sudderth. Hidden Markov models, graphical models. Slides 

http://www.eecs.berkeley.edu/~pliang/cs294-spring08/lectures/hmm (Accessed: 

September 24, 2008)  

80. S. Russell, P. Norvig. Artificial Intelligence - A Modern Approach. 2nd Edition. 

Prentice Hall. 2003. 

81. A. W. Moore. Hidden Markov Models. Slides from a tutorial presentations 

http://www.cs.cmu.edu/~awm/tutorials (Accessed: September 30, 2008)  

82. M. Bolic. Architectures for Efficient Implementation of Particle filters, Ph.D. 

thesis, Department of Electrical Engineering, State University of New York at 

StonyBrook, 2004.  

http://www.inf.fu-berlin.de/lehre/WS04/Robotik/omnidrive.pdf
http://www.inf.fu-berlin.de/lehre/WS04/Robotik/omnidrive.pdf
http://www.eecs.berkeley.edu/~pliang/cs294-spring08/lectures/hmm
http://www.cs.cmu.edu/~awm/tutorials


 117 

83. N. de Freitas, Software for classical particle filters and Rao-Blackwellised 

particle filters http://www.cs.ubc.ca/~nando/sofware.html. (Accessed: 

September 24, 2008)  

84. H. Jaeger, M. Zhao and A. Kolling. Efficient estimation of OOMs. Advances in 

Neural Information Processing Systems 18 (Y. Weiss, B. Schölkopf and j. Platt, 

eds.), MIT Press, Cambridge, MA pages 555-562, 2005. 

85. H. Jaeger Discrete-time, discrete-valued observable operator models: a tutorial , 

Slides, International University Bremen,  July, 2003 (Accessed: September 30, 

2008)  

86. M. Zhao, H. Jaeger. Norm observable operator models. Technical report 8, 

School of Engineering and Science, July, 2007.  

87. Murphy, Kevin. Hidden Markov Model Toolbox for Matlab. 

http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html 

(Accessed: September 4, 2008)  

88. Jaeger, Herbert. OOM Matlab implementation. http://www.faculty.iu-

bremen.de/hjaeger/OOM/OOMGeneric.zip (Accessed: September 23, 2008)  

http://www.cs.ubc.ca/~nando/sofware.html
http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html
http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip
http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip

	Abstract
	Acknowledgments
	Contents
	1. Introduction
	1.1 Problem Statement
	1.2 Motivation and Challenges
	1.3 Thesis Statement
	1.4 Related Works
	1.5 Reader's Guide

	2. Theoretical Background of Fault Diagnosis (in general)
	2.1 Basic Definitions
	2.2 Classification of Fault Diagnosis Methods
	2.3 Model�Based Scheme
	2.4 Fault Modelling
	2.5 Process Modelling
	2.6 Applications in the Industrial World

	3. Fault Diagnosis in the Robot Domain
	3.1 Fault Classification
	3.2 Robot Model (Design Example)
	3.3 Mobile Manipulators
	3.3.1 Mobile Manipulator Examples


	4. Fault Diagnosis Methods
	4.1 Parity Space and Principle Component Analysis
	4.1.1 Background Theory
	4.1.2 The Algorithm
	4.1.3 Principle Component Analysis (PCA)
	4.1.4 Applications
	4.1.5 Summary

	4.2 Hidden Markov Model
	4.2.1 Background Theory
	4.2.2 HMM Representation
	4.2.3 HMM Problems and Solutions
	4.2.4 Application of HMM in Fault Diagnosis
	4.2.5 Numerical Example
	4.2.6 Summary

	4.3 Particle Filter (PF)
	4.3.1 Background Theory
	4.3.2 Particle Filter Enhancements
	4.3.3 Numerical Example
	4.3.4 Summary

	4.4 Observable Operator Model (OOM)
	4.4.1 Background Theory
	4.4.2 Learning with OOMs: Challenges and Their Solutions
	4.4.3 OOM Flavours
	4.4.4 Numerical examples
	4.4.5 Summary


	5. Comparison of Solutions
	6. Conclusions
	Appendices
	A. State Estimation with Hidden Markov Model
	B. State Estimation with Particle Filter
	C. State Estimation with Observable Operator Model

	Reference

