
Methods for Failure Detection
for Mobile Manipulation

Anastassia Küstenmacher

Publisher: Dean Prof. Dr. Wolfgang Heiden

University of Applied Sciences Bonn-Rhein-Sieg,
Department of Computer Science

Sankt Augustin, Germany

March 2012

Technical Report 04-2012

ISSN 1869-5272

Copyright c÷ 2012, by the author(s). All rights reserved. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for proĄt or
commercial advantage and that copies bear this notice and the full citation on the
Ąrst page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speciĄc permission.

Das Urheberrecht des Autors bzw. der Autoren ist unveräußerlich. Das
Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Das Werk kann
innerhalb der engen Grenzen des Urheberrechtsgesetzes (UrhG), German copyright

law, genutzt werden. Jede weitergehende Nutzung regelt obiger englischsprachiger
Copyright-Vermerk. Die Nutzung des Werkes außerhalb des UrhG und des obigen
Copyright-Vermerks ist unzulässig und strafbar.

b

 1

Abstract

The work presented in this paper focuses on the comparison of well-known and new

fault-diagnosis algorithms in the robot domain. The main challenge for fault diagnosis is

to allow the robot to effectively cope not only with internal hardware and software faults

but with external disturbances and errors from dynamic and complex environments as

well. Based on a study of literature covering fault-diagnosis algorithms, I selected four

of these methods
1
 based on both linear and non-linear models, analysed and

implemented them in a mathematical robot-model, representing a four-wheels-OMNI

robot. In experiments I tested the ability of the algorithms to detect and identify

abnormal behaviour and to optimize the model parameters for the given training data.

The final goal was to point out the strengths of each algorithm and to figure out which

method would best suit the demands of fault diagnosis for a particular robot.

1
 The algorithms chosen were: Parity Space (PS), Hidden Markov Model (HMM), Particle Filter (PF) and

 2

Acknowledgments

I would like to thank my supervisor Paul G. Plöger who took a lot of time to discuss the

topic with me. He gave me new ideas and helped me understand the theory behind the

algorithms.

Kai Pervölz supported me with his teachings about mobile manipulators. The

discussions with him about fault diagnosis have been interesting and helpful.

Thanks to my family for being patient with a robot-crazy mom and wife.

 3

Contents

Abstract ... 1

1. Introduction .. 5

1. 1 Problem Statement ... 6

1. 2 Motivation and Challenges ... 6

1. 3 Thesis Statement .. 7

1. 4 Related Works .. 8

1. 5 Reader’s Guide ... 10

2. Theoretical Background of Fault Diagnosis (in general) 11

2. 1 Basic Definitions ... 11

2. 2 Classification of Fault Diagnosis Methods ... 13

2. 3 Model-Based Scheme ... 14

2. 4 Fault Modelling .. 15

2. 5 Process Modelling .. 16

2. 6 Applications in the Industrial World ... 18

3. Fault Diagnosis in the Robot Domain .. 19

3. 1 Fault Classification .. 20

3. 2 Robot Model (Design Example) .. 22

3. 3 Mobile Manipulators ... 25

3. 3. 1 Mobile Manipulator Examples .. 27

4. Fault Diagnosis Methods ... 30

4. 1 Parity Space and Principle Component Analysis 30

4. 1. 1 Background Theory ... 30

4. 1. 2 The Algorithm .. 34

4. 1. 3 Principle Component Analysis (PCA) .. 36

4. 1. 4 Applications .. 37

4. 1. 5 Summary ... 39

4. 2 Hidden Markov Model .. 40

4. 2. 1 Background Theory ... 40

4. 2. 2 HMM Representation .. 41

4. 2. 3 HMM Problems and Solutions ... 42

4. 2. 4 Application of HMM in Fault Diagnosis .. 46

4. 2. 5 Numerical Example ... 46

4. 2. 6 Summary ... 56

4. 3 Particle Filter (PF) ... 58

4. 3. 1 Background Theory ... 58

4. 3. 2 Particle Filter Enhancements .. 61

4. 3. 3 Numerical Example ... 62

4. 3. 4 Summary ... 69

4. 4 Observable Operator Model (OOM) ... 70

4. 4. 1 Background Theory ... 70

4. 4. 2 Learning with OOMs: Challenges and Their Solutions 78

4. 4. 3 OOM Flavours ... 79

4. 4. 4 Numerical examples ... 80

4. 4. 5 Summary ... 89

5. Comparison of Solutions ... 91

6. Conclusions .. 94

 4

Appendices .. 96

A. State Estimation with Hidden Markov Model .. 96

B. State Estimation with Particle Filter .. 102

C. State Estimation with Observable Operator Model 108

Reference: ... 110

 5

1. Introduction

Fault diagnosis plays an important part in the development of complex systems.

The ability to monitor and diagnose complex physical systems is critical for

constructing efficient autonomous systems that can perform their tasks robustly in

dynamic environments over a long period of time.

Fault Diagnosis allows complex systems to efficiently cope not only with internal faults

but with external faults as well. Since a robot must closely interact with its environment,

there is high probability for external faults for the environment may by unknown or

changing. Consider a robot system consisting of a number of components, each of

which is responsible for detection internal faults. If a robot performs the task of

grabbing a pencil from a table, the respective manipulator component can detect if it

grabs the object or if it fails to do so. Would it grab another object from the same table,

the manipulator would not recognise an error. This action however could be detected by

an external device like a camera. The new data would then be translated to the central

controller for analysis and eventual recovery. Fault monitoring provides a fault report

which will enable the system to adapt to the situation and avoid errors in the future.

In many cases the physical model of the system is known. This means that we are able

to calculate the correct outputs, compare them to the ones we received from the sensors,

and draw conclusions about faults. The main problem is the handling of the physical

model of the robot, as it is hard to exactly determine. Since the world is dynamic, the

robot’s environment can always change, therefore the robot model has to be customized

accordingly. If the physical model is unknown, it has to be estimated from a set of

training data.

To a given or an estimated model we can apply model-based fault detection and

isolation (FDI) algorithms. The general principle is to compare the expected behaviour

of the system given by the model with actual behaviour, known through on-line

observations.

 6

1. 1 Problem Statement

The objective of the work is to recognize errors and abnormal behaviour in complex

systems with large number of heterogeneous modules and devices which interact with

dynamic environments.

The interest in fault diagnosis has been increasing in the last three decades. Building a

flexible system is of importance especially in automobile, aircraft and chemical

industries. The increasing complexity of robot systems attracted the attention of

universities and scientists for Fault diagnosis. Research in fault-tolerant control has

created a large variety of algorithms and ways of implementing them. Unfortunately

there is no universal technique that could be easily applied to any model. To develop a

fault tolerant system we first need to survey existing fault diagnosis methods in dynamic

systems. We then chose the appropriate algorithms, test them and narrow them down to

the best possible solution for implementing in a mobile manipulator. The

implementation itself is not a part of this work.

1. 2 Motivation and Challenges

The increasing complexity of robot systems influences the probability of component and

system faults. Fault tolerant behaviour in robots is desirable for a variety of rather

obvious reasons. Timely fault diagnosis increases the ability to complete tasks

satisfactory and improves performance and safety – the robot becomes more efficient

economically.

The ability of a system to recognise errors and draw conclusions about future actions

according to the situation enables it to avoid failures such as mission abortion, material

damage and human accidents. After estimating the severity of a fault and determining its

location, the system can be easily repaired. Fault tolerant robots are more flexible to

new circumstance and environment.

Fault tolerant behaviour not only identifies unsatisfactory performance and defines the

location of an error, but it also enables the system to keep on performing its task. The

majority of the approaches in the fault detection and isolation literature deal with

internal faults such as defects in hardware or software. State-of-the-art researches for

fault diagnosis focus on dealing with external influences. This might be a manipulator

 7

grapping the wrong object, but one with a similar shape or suddenly switching off the

light in a bright room, etc.

Most existing literature on Fault monitoring is concerned with detecting abnormal

behaviour in mobile robots or fix-based manipulators separately. Only few written

works investigate fault diagnosis in the field of mobile manipulation. I assume this lack

of scientific debate is due to the infancy of the topic and the complexity of the matter –

system redundancy, cooperative coordination between vehicle and arm platform and the

control structure design.

To select a fault diagnosis algorithm adequate for a mobile manipulator it has to be

taken into account that the environment of the mobile manipulator is dynamic, that

sensor measurements can be disturbed by noise, that actuators are imprecise and that the

system state can depend on various operating conditions. Furthermore we have to accept

that there is only limited computational power, that some information of interest is

unobservable and that some faults demand a sequence of observations in order to be

detected. Real-time detection of faults is essential for the robot.

1. 3 Thesis Statement

In this work I intend to discuss and compare four fault diagnosis approaches, for a better

understanding of their theoretical basics and their practical application. The final goal is

to point out the strengths of each algorithm and to figure out which method best suits the

demands of fault diagnosis for a robot.

After comparing the algorithms Parity Space to Particle Filter and Hidden Markov

Model (HMM) to Observable Operator Model (OOM), I came to the following

conclusions:

- For a linear state-space model with additive faults analytical results can be

derived by the Parity space approach [1]. If a model is unknown but known to

be linear, the principle component analysis can be used [2].

- In systems with temporal dependencies the Hidden Markov Model (HMM) can

be applied to describe a model and to solve the fault diagnosis problem. The

HMM uses the Expectation-Maximization (EM) algorithm for training, but it

leads to local maxima only, and in the most points of interest, the optimization

surface is very complex and has many local maxima. [3]

 8

- Some problems can be solved using state estimation, where the fault is an

unknown state among other states in the process. In this case, fault detection and

isolation may be tracked with Particle Filters. Using this algorithm the

developer can influence the accuracy of results and computational resources by

adjusting the number of particles. [4]

- The Observable Operator Model (OOM) is an alternative new approach to

HMM. Its theory is expressed in terms of linear algebra. OOM is applicable to a

broader range of processes. This new algorithm does not have a local maxima

problem as is the case with the EM approach. Most datasets obtained via the

OOM learning algorithm are more accurate than HMM models. OOM is stable

in the detection phase, but suffers from the negativity probability problem [5].

1. 4 Related Works

There are various classified approaches of the existing fault diagnosis methods. The

usual classification is shown in the papers [6], [7], [8]. In these papers the authors

broadly divide fault diagnosis methods into three general categories: quantitative model-

based methods, qualitative model-based methods, and history-based methods. The

authors define the methods for the industrial domain; unfortunately an application for

robots is not of concern here.

In his thesis work [9], P. Sundvall chiefly considers the model-based diagnosis. He

focuses on the fault handling methods in general and relates how they have been

implemented in different robots. In the model-based approach the dependency between

inputs and outputs is mathematically defined, which means that there has to be a process

model.

In contrast to the model-based methods, in history-based methods [12] only a large

amount of input and output data is available. The primary benefits of model-based

diagnosis over other techniques are that it does not need pre-computation (it is entirely

online) and that it uses less computational power. It can provide very accurate results

(the exactness of the underlying model improves the accuracy of the algorithm).

R Isermann in his book [10] has shown the theoretical and experimental research of new

ways to detect and diagnose faults. This book, which aptly introduces the matter of fault

diagnosis, is based on the results of the author’s own research projects during the last 25

years and on publications by many other research groups.

 9

M. Staroswiecki in his tutorial paper [11] about model-based fault diagnosis techniques

introduces the mathematics of constructing sufficient models for various kinds of faults.

I selected four methods based on both linear and non-linear models. F. Gustafsson [1]

[2] and J. Gertler [13] analyse the parity space approach for fault detection and

identification. They present the parity space algorithm based on the well known Chow-

Willsky scheme [14]. It can take advantages of the linear state space system.

The other approach has been described by L. Rabiner [3]. His work focuses on the

theoretical description of HMM and its implementation in speech recognition

applications.

The works on model-based fault diagnosis include GDE/Sherlock [15], [16], Livingstone

1, 2 [17], [18] and Titan mode estimation which maintain reliability using a variant of

the Viterbi algorithm [3]. Unfortunately the authors only take into account discrete

states and known models (the model estimation was not provided).

For many robot applications a diagnosis with a discrete model is inadequate. To

overcome this problem the model needs to be a hybrid system. Such a system consists of

a set of discrete states which correspond to functional modes, fault conditions and

continuous states which represent the observable state of the robot (e.g. wheel speed,

motor current etc.).

Particle Filters are the solution for such kind of problems. They belong to a family of

sequential Monte Carlo methods for approximate inference in parity observable Markov

Chains [4]. They represent the probability of the system states by a set of particles.[20]

The classical Particle Filter approach has several disadvantages in the fault diagnosis

domain, such as a high improbability value of faults and an increasing amount of

samples that require a lot of computing power. There are various approaches to

addressing this problem in the literature. The goal of the Risk Sensitive Particle Filter

algorithm [21], [22] by S. Thrun is to increase the amount of particles in “risky” or

important states (e.g. the manipulator breaking its joint).

V. Verma presents a further algorithm with the Variable resolution Particle Filter [21],

[23]. It is based on the observation that some faults have similar symptoms so that they

can be grouped together. E. Benanzera [24] combines Livingstone and Particle Filter.

Plagermann [25] applies the Gaussian process classification for learning effective

proposal distributions of Particle Filter. As a result, the efficiency and robustness of the

state estimation is improved. The Rao-Blackwellized Particle Filter [26] is motivated by

problems of low prior fault probabilities and restricted computational resources.

 10

H. Jaeger [5] introduces a new alternative approach in the robot field – the Observable

Operator Model (OOM). This theory seems to be similar to the Hidden Markov Model

(HMM) as both can be expressed in matrix formalisms. The matrixes and state vectors

of OOMs may contain negative elements, whereas the HMM matrixes include only non-

negative probability values. Jaeger gives a theoretical comparison of the OOM to the

HMM – but no published material on the comparison of the two theories with results

based on an experimental fundament exists yet. In my work I will attempt to close this

gap.

1. 5 Reader’s Guide

In this paper I describe the activities carried out while working on the Thesis. The

second chapter presents the theoretical fundamentals of fault diagnosis in general. The

diagnosis methods of the industrial domain are grouped and exemplified. Mobile

manipulator theory and fault handling in the robot domain are described in the third

chapter. In chapter four I acquaint the reader with the four selected fault diagnosis

algorithms. Besides introducing the theoretical background, I evaluate the efficiency of

these methods also by means of practical examples. The results of implementing the

methods in the four-wheel OMNI robot are illustrated at the end of each section. Based

on these solutions the advantages and disadvantage are discussed. Eventually, I provide

outcomes and conclusions of the research work in chapter five.

 11

2. Theoretical Background of Fault Diagnosis (in general)

Consider a mobile manipulator in a room. To perform a task, it needs to move to a table

and take an object. The mobile manipulator commands a fault diagnosis system for

controlling its behaviour. It sets a defined speed to its wheel and measures its location

every two seconds. From this information, the diagnosis system of the robot calculates

the distance for each time unit and defines the expected location. The fault diagnosis

system can now generate a diagnosis statement that will point out a fault if the expected

location does not correspond to the measured location. When a fault is detected, the

diagnosis system tries to identify its nature. For example, if a wheel gets stuck, the

system records all the information about the occurrence and passes it on to the “central

controller”, which should come up with a solution for the problem.

From a general perspective [27] fault diagnosis can be explained as follows: The task is

to generate a diagnosis that states whether a fault arises or not. If a fault is determined,

its location has to be identified.

Hence there are three main challenges of fault diagnosis: The generation of the

diagnosis statement, the choice of the relevant parameters and the representation of

expected or normal behaviour. The observations or measurements are chiefly output

data obtained from the sensors, but can also be observations made by humans.

2. 1 Basic Definitions

The terminology used in this paper field is based on definitions of the IFAC Technical

Committee SAFEPROCESS.

“

- Fault

Unpermitted deviation of at least one characteristic property or variable of the

system from acceptable/usual/standard behaviour.

- Fault Detection

Determination of faults present in a system and time of detection.

- Fault Isolation

 12

Determination of kind, location, and time of detection of a fault. Follows fault

detection.

- Fault Identification

Determination of the size and time-variant behaviour of a fault. Follows fault

isolation.

- Fault Diagnosis

Determination of kind, size, location, and time of detection of a fault. Follows

fault detection. Includes fault detection, isolation and identification.”

For this work we will use an abstract version of these definitions, as fault identification

is not of concern for our thesis:

- Fault detection defines whether a fault has occurred.

- Fault isolation sets where and when a fault has occurred.

- Fault diagnosis contains both fault detection and fault isolation.

Most fault diagnosis methods are based on the concept of redundancy (extra resources)

in the system, so that a parameter can be calculated in more than one way. If, for

example, several sensors are available to measure the same quantity, such type of

redundancy is called hardware redundancy [10]. Hardware redundancy is a classical

approach of fault diagnosis methods. Obvious disadvantages of using the hardware

redundancy concept are higher costs, increased weight and complexity. The trend of

current fault diagnosis techniques is based on the analytical redundancy concept!"

"

“There exist analytical redundancy if there exists two or more (but not

necessarily identical) ways to determinate a variable, where one way uses a

mathematical process model in analytical form.” [42]

If two different sensors measure the same parameter according to the following

relation: xyxy =∧=
21

, then the accuracy of parameter x can be validated [42].

The third kind of redundancy concept used is the concept of hybrid redundancy. It

includes hardware and analytical redundancies.

 13

2. 2 Classification of Fault Diagnosis Methods

There are various approaches to classify the existing fault diagnosis methods.

One popular classification of industrial fault detection and isolation (FDI) methods is

shown in Figure 1.

Figure 1 Classification of diagnostic algorithms [6]

In “A review of process fault detection and diagnosis part1: Quantitative model-based

methods” [6] the authors broadly divide the most frequently used approaches to fault

diagnosis in engineering into three general categories: quantitative model-based

methods, qualitative model-based methods, and process history-based methods. In the

model-based approach the relation between inputs and outputs is mathematically

defined, which means the process model is assumed. In contrast to model-based

methods, in history-based methods only a large amount of input and output data is

available. As depicted above, the model-based approaches can be classified as

quantitative [7] or qualitative [8]. In quantitative methods the underlying model is

expressed in terms of a mathematical relationship between inputs and outputs of the

system, e. g. differential equations, transfer functions, state-space models, etc. In

contrast, qualitative methods are based on artificial-intelligent techniques, such as fuzzy

logic and neural networks, using qualitative reasoning and modelling such as causalities

 14

and IF-THEN rules. They predict the behaviour of the system in normal and faulty

conditions and then compare predicted and actual behaviour to diagnose the faults [43].

2. 3 Model-Based Scheme

There is an increasing interest in theory and applications of model-based fault diagnosis

algorithms. The simple diagram in Figure 2 displays an example on how these models

are usually integrated into a control system as its diagnosis constituent [45], [46].

Figure 2 Scheme for the model-based diagnosis [45], [46].

Usually the model-based fault diagnosis scheme consists of two steps: detection and

isolation. During the first step the actual behaviour is generated and compared to the one

of the process model. Together with the process model the detection algorithm

calculates corresponding features. The Parity Space method for example will generate

residuals (the deviation of the actual behaviour from the nominal one), Particle Filter

will generate state variables (for the details see chapter 3 and 4), etc. During the second

step, the isolation process, the faults are evaluated.

Output

 Y(t)
Actuators Process

Sensors

Input

U(t)

faults,

noise

faults,

noise

Process model

Feature generation faults,

noise

Features:

- residuals

- state variables

- parameter estimates
Change

detection

Normal

behaviou

r

 15

2. 4 Fault Modelling

The knowledge about the modelling of faults is important for the right choice of suitable

fault diagnoses methods. “Fault” was defined as a deviation of any property of a

variable [10]. Faults can be classified as follows:

- Additive Faults. These faults are additive to input or output of the process. The

process model is fixed even when faults occur.

- Multiplicative Faults. These faults appear as changes in the process model.

Figure 3 Additive faults [10]

Figure 4 Multiplicative faults [10]

R. Isermann groups possible failure situations by their nature [10], [46], [58]:

- Abrupt Faults (sudden faults) are unexpected faults, which appear as a quick

change from normal to abnormal behaviour, for example the sudden breakage of

a wheel motor.

- Incipient Faults (slowly developing) are represented by drift-type changes. A

typical example is the degradation of a tool. The faults are typically small and

not easy to detect.

- Intermittent Faults (periodic faults) repeatedly occur and disappear with different

deviations between normal and abnormal behaviour value.

u

f=a’

u

process

fu fy

y Y=yu +f

process

y Y=(a+a’)u(t) =au(t)+fu(t)

 16

Figure 5 Time-dependency of faults: (a) abrupt; (b) incipient; (c) intermittent [10]

2. 5 Process Modelling

Within the bounds of this work we intend to describe and compare the four model-based

techniques
2
. Since comprehensive and accurate mathematical models of dynamic

processes are necessary for a model-based diagnosis, in this chapter we will introduce

some examples of mathematical models. They are obtained by either theoretical

modelling or experimentally [10].

In theoretical modelling the model is set up on the basis of mathematically formulated

physical laws.

During experimental modelling we obtain the mathematical model of a process from

measurements. Input and output signals are measured and evaluated by identification

methods in such a way that the relationship between input and output signal are

expressed in a mathematical model [46].

We can distinguish the following types of mathematical models: algebraic equations,

difference equations, finite state automata and differential equations. At any time

moment the state of the system (state x) is described by a set of variables. For example,

coordinates and Euler angles describe a state of a mechanical system. The input

commands which control the state of the system are control inputs u, the sensor output

is an observation y.

Model Examples:

A large class of engineering systems can be modelled by differential equations of state-

space representations.

2
 Parity Space, Hidden Markov Model, Particle Filter, Observable Operator Model

 17

Consider the system is working around nominal operating conditions and its behaviour

can be represented by a linear state-space model.

)()()()()(

)()()()()(
.

tutDtxtCty

tutBtxtAtx

+=

+=

x(t) – state vector, y(t) – output vector and u(t) – control vector

A(t), B(t), C(t) and D(t) are matrixes of appropriate dimensions. The matrixes are time-

variant (the elements of them depend on time), in the time-invariant case the elements of

matrixes are not changed over time.

The model for a discrete-time system is governed by the difference equations.

Otherwise for continuous-time system the model is defined by deferential questions,

Depending on the system type, the state-space model representations have the following

forms (see for details [71]):

System type State-space model

Continuous time-invariant
)()()(

)()()(
.

tDutCxty

tButAxtx

+=

+=

Continuous time-variant
)()()()()(

)()()()()(
.

tutDtxtCty

tutBtxtAtx

+=

+=

Discrete time-invariant
)()()(

)()()1(

tDutCxty

tButAxtx

+=

+=+

Discrete time variant
)()()()()(

)()()()()1(

tutDtxtCty

tutBtxtAtx

+=

+=+

Faulty operations in the state-space model are:

 Multiplicative faults (changes in the system parameters)

The system parameters for the state-space representation are model matrixes A, B, C and

D their changes can be presented as

(A+ A(t)), (B+ B(t)), (C+ C(t))

Additive faults (Faults are input signals to the model)

Additive faults in the sensors and actuators can be modelled by two additive signals:

 18

)()()(

)()()()(
.

tFtCxty

tFtButAxtx

y

x

ϕ

ϕ

+=

++=

When fRt ∈)(ϕ is some unknown fault vector,
yx FF , are matrixes of suitable

dimensions, whose entries are real numbers, which trace the fault influence, respectively

on state and measurement equations.

If we want the model to better depict its real world counterpart we need to add the

uncertainty about unknown inputs or process disturbances and measurement noise.

The general form of linear state-space representations is

)()()()(

)()()()()(
.

ttFtCxty

tFtEvtButAxtx

y

x

εϕ

ϕ

++=

+++=

v(t) is the vector of unknown inputs or disturbances acting on the process, and)(tε is the

measurement noise which corrupts the sensors.

2. 6 Applications in the Industrial World

Rama K. Yedavalli [41] presents the tutorial overview of the literature in the area of

fault diagnosis of dynamical systems

The model-based FDI methods have been used for various applications, such as

helicopter rotors [28], aircrafts [29], automotive vehicles [31], space shuttle main

engines [39], actuators/sensors [30], industrial furnaces [32], electro-hydraulic cylinders

[33], diesel engines [34], induction motors [35], [36], satellite systems [37], UAVs

(Uninhabited Aerial Vehicles) [38] and rocket engines [40].

 19

3. Fault Diagnosis in the Robot Domain

It is obvious that a robot includes a large amount of components controlled by various

software programs and hardware devices. As an example we take a look at the mobile

manipulator of the German Service Robotics Initiative project (DESIRE) [44]. The robot

consists of components such as head control, perception, drive unit, manipulation and

others. Each of the components is responsible for a concrete functionality. The

perception component includes three various cameras: two RGB cameras which record

from a position at the left and the right side of the robot’s heads and one 3D-camera at

the front of the torso. These devices are controlled by software of the perception

component which gives commands to cameras and processed delivered data. The

components interact with each other, e.g. the perception component provides data to the

drive unit from which it can construct, for example, a map about the environment. The

other way for component communication is via Eigenmodel. Eigenmodel is a

component of the robot for managing the collaboration of components. It collects

information from various components, analyses them and predicts the future actions of

the robot. If one component needs to provide the data for another, it will first inform

Eigenmodel about its action. Besides the coordination work the Eigenmodel is

responsible for recognising abnormal data. Fault diagnosis for such robot systems is a

complex task, because the number of possible faults is huge. It includes not only faults

which could arise in hardware and software applications but also faults during

component interaction and even worse faults caused by the environment..

 20

3. 1 Fault Classification

Based on this example we can classify the fault field in the robot domain (Figure 6).

 Figure 6 Fault classification

The triangle depicted in Figure 6 consists of five levels of fault’s classes. On the top of

the triangle the “easiest” fault class is located. The complexity of faults increases from

top to bottom, the lowest level corresponding to the most complex fault class. “Fault

complexity” stands for the difficulty to detect and identify a certain group of faults.

Hardware faults: are mechanical breakdowns of inner devices e.g. the camera switches

off when it should be recording, motors suddenly breaking down, etc.

HardHard

wareware

SoftwareSoftware

ComponentComponent

Composition of Composition of CComponentsomponents

External Faults (Interaction of Robot External Faults (Interaction of Robot

and Environment)and Environment)

 21

Software faults: result from program/data corruption. This could be a fault inside a

function like the division by zero, etc. By sending error messages, the procedure may

inform the diagnosis system about existing faults.

Component faults: include faults which take place during the collaboration of a software

program and a hardware device. This could be an error following from a transmission of

a wrong format to a device. The diagnosis system may monitor component faults via

following a sequence of steps: preconditions - > transitions –> post-conditions (See

Figure 7)

Figure 7 Diagnosis scheme for component’s faults

During precondition, the diagnosis system checks serviceable conditions of the device.

The device must be prepared for the input commands. The device must be able to

understand the format. The output of devices will be controlled during the post-

condition step. The diagnosis system prepares a protocol about the fault for recovery.

Composition of components faults: are faults resulting from the interaction of several

components to achieve a task. In this case the result of interaction is faulty, although the

single components may work fault-free separately. If, for example, a mobile

manipulator should grasp a desired object, it first has to move until the object will lie in

the reachable work space. It then pulls its mobile part up and performs the grapping

action. Would the manipulator now start the grapping action while still on the move to

the reachable work space, we would call this kind of fault a “composition of

components fault” (see Figure 8).

Input data

Device

preparation

TransitioTransitio

nn

Output

data

PostPost --

conditioconditio

nn

 Device Device

specificatispecificati

onon

PrecoPreco

nditionditio

nn

 22

Figure 8 Example of “composition of components fault” in Mobile Manipulator

External faults: take place during the interaction of a robot and its environment. External

faults could result from changing environments, interaction with human beings or other

autonomous systems. All these criteria involve deep analysis of the fault situation,

which might be beyond the scope of the fault diagnosis inside the system.

Imagine a robot running in a room filled with various objects. The robot needs to move

carefully to avoid collision with these objects. If the light in the room is suddenly

switched off (external fault), then the robot must understand the situation: It’s not his

sensors that cease to function but a change in the environmental conditions.

The monitoring of external faults is especially important for mobile manipulators,

because they closely interact with a dynamic environment.

3. 2 Robot Model (Design Example)

To fully understand the fault diagnosis techniques, they have to be implemented in

practical applications. Among a wide range of diagnosis techniques we selected four

distinct algorithms
3
. We are going to illustrate their functional efficiency on a particular

practical example – a four-wheel OMNI robot [72]. OMNI directional robots have

become popular mobile robots for the use in indoor environments, because they may

drive in any directions without having to rotate first. An OMNI drive mobile robot

frequently serves as a moving platform for mobile manipulators. The geometry of the

3
 Parity Space, Hidden Markov Model, Particle Filter, Observable Operator Model

 Robot moves to the object

 Manipulator grasps the object

TimeTime

Manipulator Manipulator

componentcomponent

Drive Drive

componentcomponent

Composition Composition

 FaultFault

 23

OMNI driver robot is depicted in Figure 13. It has two intersecting axes, the horizontal

axis corresponding to the x-direction and the vertical axis corresponding to the y-

direction. ϕ is the angle between the wheel and the x-axis, R is the radius of the robot

platform and
1
F ,

2
F ,

3
F

4
F are forces from the motors. Assumed the robot does not

slip on the flow, it will translate along the x-axis when
1
F =-

2
F ,

1
F =

4
F and

2
F =

3
F and

along the y-axis when
1
F =

2
F ,

3
F =

4
F and

1
F =-

3
F . The wheels work against each other

when
1
F =-

2
F ,

1
F =-

4
F and

2
F =-

3
F .

Figure 9 Arrangement of the wheels and distribution of forces [72]"

The forward kinematics for obtaining the robot velocities from the given wheel

velocities are given by the following expression:

TT

yx vvvv

RRRR

wvv),,(

4

1

4

1

4

1

4

1
coscoscoscos

sinsinsinsin

),,(432,1





















−−

−−

= φφφφ

φφφφ

 "(3. 2. 1)

Wheel velocities are presented through the
4321 ,,,(vvvv) vector and the robot velocities

are described by the Euclidean velocity (
yx
vv ,) of the robot on the ground and its

angular velocity (ω). φ and R are fixed parameter which are defined for the robot:

φ =0.588 radian and R=0.25 m.

The localisation problem is chosen for a test application of the selected fault diagnosis

techniques. The localisation problem is formulated as an estimation of the robot position

 24

from the given sensor data."Although the localisation seems a simple problem compared

to others, it seems to be a good starting point. After testing various fault diagnosis

techniques, conclusions not only about the algorithms’ performance but also about the

possibility to apply them in more complex systems, e.g. mobile manipulators, can be

drawn.

Since the mobile platform is a mandatory part of a mobile manipulator, the task of

localisation for a mobile robot can be extended to the localisation problem of a mobile

manipulator.

In general, the localisation, calculating the changing position over time, is a dynamic

process. At least two models are required to conduct the process. One model is needed

to describe the evolution of the state with time (system model), and the other to relate

observable measurements of the state (measurement model).

There are two known forms available to build these models: state-space form and

probabilistic form.

The state-space model for fault diagnosis is presented in section 2. 5, hence we will

focus our attention on probabilistic models.

Many real-world applications are able to analyze their own data by estimating unknown

quantities from some given observations. The prior knowledge of the modelled

phenomenon is available. This knowledge allows us to formulate Bayesian

(probabilistic) models. A Bayesian model includes prior distributions of unknown

quantities and probability functions, which expresses the relationship between the

unknown quantities and observable events [4]. The main drawback of probabilistic

modelling is the long-time model estimation.

To build an appropriate probability and state-space model for a four-wheel OMNI robot,

we define a group of states [73]:

- normal behaviour (no fault)

- broken motor (the output of the motor is fixed to the value “zero”, regardless of

input)

- stuck motor (the output of the motor is a fixed constant, regardless of input)

- gradual degradation of performance (the output of the motor grows with a

negative exponential function)

 25

3. 3 Mobile Manipulators

A mobile manipulator is a robot arm build on top of a moving base. It is becoming more

and more popular in our days since it extends the performance ability of mobile robots

and manipulators. Mobile manipulators appear in a broad spectre of robot applications,

ranging from underwater and space robots to service robots. They obtain wide

application in fields where robots typically interact with the environment.

The key problem of model-design of mobile manipulators is the coordinated work

between vehicle platform and arm. The investigations on mobile robots were successful

in the fields of localisation, navigation and learning environment. Most work on

manipulators focuses on the properties of specific objects to be manipulated, rather than

on moving in or understanding the global environment.

There are three important reasons for the existence of mobile manipulators, one of them

being its superior dexterous manipulation.

Secondly a mobile manipulator is able to execute more complicated tasks, for example

operating a door inwards, towards itself. By performing this action the mobile base has

to move to avoid getting hit by the door while the arm has to grasp the door-handle and

move simultaneously with the base.

Thirdly it extends the reachable workspace of the manipulator. The robot can for

example grasp an object lying on a table and put it to a shelf which is situated far from

the table.

One of the characteristics of mobile manipulators is the high degree of kinematics

redundancy (more than six degrees of freedom) created by the addition of the mobile

platform to the manipulator. The redundancy gives the mobile manipulator several

advantages. Joint torques can be optimized, singular configurations of the manipulator

can be avoided and decoupled force/position control along the same task direction can

be achieved [75]. The higher degree of redundancy allows various fault recovery

possibilities that improve the performance of the robot. If, for example, one of the

manipulator joints is broken, the robot may be able to continue the task by recalculating

the inverse kinematics of the manipulator for using all joints except the broken one.

Note that not every mobile manipulator is redundant, for example in the paper [76], the

authors introduce mobile robots equipped with low degree-of-freedom “palm

manipulators” (see Figure 13).

As the authors of A. Petrovskaya and A. Ng [77] note, the main advantage of mobile

manipulators is the combination of both navigation and manipulation. Most of the works

 26

on mobile manipulation nonetheless treat the problem as two tasks to be solved

separately: The mobile platform navigates to an appropriate point and then the

manipulator separately performs actions with an object. A. Petrovskaya and A. Ng [77]

created an algorithm based on the probabilistic approach that models the position of the

robot within the environment and simultaneously manipulates the object!""

Using probabilistic models for fault diagnosis techniques brings the advantage of a

broad spectrum of already existing inference algorithms. We will discuss some of them

in chapter four (Hidden Markov model, Particle Filter and OOM).

 27

3. 3. 1 Mobile Manipulator Examples

German Service Robotics Initiative project (DESIRE)

The project DESIRE [44], which was established by the German ministry of research

involves partners in the German robotics community. The goal of the DESIRE project is

to research and implement methods and algorithms for the development of service

robots for domestic applications.

Figure 10 DESIRE robot [44]

 28

Care-O-Bot

The Care-O-Bot [78] is a mobile manipulator service robot built by the Fraunhofer

Institute. It operates in indoor environments with tasks such as fetch-and-carry and

being a walking aid.

"

Figure 11 The Care-O-Bot II from the Fraunhofer Institute.

Picture: http://www.care-o-bot.de/

"

"

"

"

"

"

"

"

"

"

"

"

http://www.care-o-bot.de/

 29

Stanford Artificial Intelligence Robot (STAIR)

Palmbots

The Palmbot [76] is equipped with a simple two degree-of-freedom nongrasping “palm

manipulator” as shown in Figure 13. The palm can slide under, push, support, roll, or

topple objects. Since the manipulator does not grasp the objects, the object can have a

wide variety of shapes and sizes. A single robot can manipulate small objects, and two

robots can cooperatively manipulate large objects.

"

Figure 13 Palmbots [76]

"

"

 30

4. Fault Diagnosis Methods

Fault diagnosis is a relatively new field of research in the robot domain. I met no

techniques developed especially for the robot’s needs. Developers mostly borrow the

methods used for industrial applications and modify them for a particular robot. In this

chapter we introduce and discuss four different fault diagnosis techniques, parity space

(PS), hidden Markov model (HMM), particle filter (PF) and observable operator model

(OOM) and examples of how they might be applied to the model of a four-wheel OMNI

robot (see section 3. 2.).

4. 1 Parity Space and Principle Component Analysis

The idea of the parity space approach [9], [47], [14], [13], [48] for fault diagnosis is to

deliver a technique for computing residual vectors which become non-zero if the actual

system differs from the ideal system due to faults. From the analysis of the residuals, the

fault diagnosis can conclude fault locations. Parity space is simple in computation and a

straightforward method [14] which is applied to the linear state-space model with

additive faults.

If no model is given a priori, but the relationship between input and output signals is

known to be linear, then the principle component analysis (PCA) can be used as the tool

to estimate a state-space model from the data.

4. 1. 1 Background Theory

The background theory presented by F. Gustafsson [1], [2] and J. Gertler [13], [48] will

be summarized in this section.

A linear state-space representation (see section 2. 5) of the system data is observable

and a data vector from the sliding window over time is constructed in the form (4. 1. 1)









=

t

t

t

U

Y
Z (4. 1. 1)

 31

The aim is to compute a residual vector (4. 1. 2)

t

T

t
ZPr = (4. 1. 2)

This residual vector is insensitive to the states and disturbances, but reacts on faults.

The detection is performed based on the size of a residual and the isolation is achieved

via direction of a residual.

Figure 14 presents the schematic representation of parity space as a fault diagnosis

technique. The residual generates a deviation between the output y(t) and the model’s

“original output” computation. The conclusion about the fault location is postulated

during the residual evaluation step.

Figure 14 Structure of parity space algorithm for fault diagnosis system

To outline the basic idea of parity space methodology we consider a mixed stochastic-

deterministic model represented by linear state-space equations

tttfttdttuttt

ttvttfttdttuttt

efDdDuDxCy

vBfBdBuBxAx

++++=

++++=+

,,,

,,,,1
 (4. 1. 3)

t
u – deterministic known inputs

t
d – deterministic unknown disturbance

tf – deterministic unknown additive faults (i

tt fmf *= , if is all zero except for the

element i which is one)

decision
original

output

r(t)

Process

Model Residual

generator

Residual

evaluator

input

u(t)

output

y(t)

 32

t
v – stochastic unknown state disturbance with zero mean and covariance matrix Q

t
e – measurement noise with zero mean and covariance matrix R

There are many approaches to derive the parity space. One of them is based on the

discrete-time state-space model (4.1.3.), which uses data from a sliding window of size

L. The measurements can be expressed explicitly in matrix form as

ttftvtdtuxt EFHVHDHUHOxY
Lt

+++++=
+− 1

 (4. 1. 4)

H (Hankel matrix) is a function of the state-space matrixes defined as

























=

−
sss

L

ss

s

s

DCBBCA

DCB

D

H

...

.

.

.

.

.

.

.

.

0...

0...0

2

for all signals s = u, d, f, v

and the observation matrix

























=

−1

.

.

.

L
CA

CA

C

O

The stuck measurement vector

TT

t

T

Ltt yyY),...,(1+−= (4. 1. 5),

is sampled from several time instants (normally over the sliding window of size L).

The inputs
t
u , deterministic and stochastic disturbances

t
d and vt are stacked into U, D

and V accordingly.

The fault stacked vector for unity fault with constant magnitude m is defined as

i

t
mFF = (for details, see [50]).

 33

Residual Generator

If Y and U are stacked outputs and inputs from the sliding window, we can define a

residual as

)(
tut

T

t
UHYwr −=

)(
1 ttvtftdx

T EVHFHDHOw
Lt

++++=
+−

 (4.1.6)

)(ttvtf

T EVHFHw ++=

The residual
t
r has to satisfy the following properties:

1. It should belong to parity space (w) defined by

0=Ow
T and 0=

d

T
Hw

 That implies insensitivity of the residual r to any initial state and disturbance.

2. The parity space also should satisfy

 0≠f
THw

 it means

 0)(≠=−= tf

T

tut

T

t FHwUHYwr

 whenever 0≠
t
F

Residual Analysis

The aim of a diagnosis system is to determine which fault(s) occurred. The residual

vector
t
r should have a different form for each fault.

If there are m different faults f1, f2,…, fm, the task is to define which fi has occurred. If

m residuals can be designed in that way that the i-th residual is only affected by the i-th

fault, then the fault isolation can be achieved easily [50].

This implies that the residual vectors should form a certain pattern, called residual

structure R. Table 1 shows a residual structure R consisting of three faults. Here a 0 on

position (i, j) means the residual in the row i is insensitive to a fault in column j, while a

1 means the residual i reacts on the fault j.

 34

fault F1 F2 F3

R1 1 0 0

R2 0 1 0

R3 0 0 1

Table 1 Residual structure R

There are two possible approaches to solve the isolation problem for the parity space

algorithm:

a) Transformation matrix:

The transformation matrix T can be defined based on the residual structure R so that

i

f

T

t RHTTr == ω (4.1.7)

The isolation design is done by first choosing a residual structure R and then

calculating the transformation matrix T from equation (4. 1. 7). This design assumes

that the fault magnitude is constant within the sliding window.

b) Fault decoupling

In this algorithm each residual is designed separately by the condition

0][=
−i

fd

T

i FHOHW

Here i
F

− is a fault vector that includes all faults except for fault i. The advantage of

this isolation technique is the insensitivity in residuals to measurement noise. The

disadvantage is that more measurements are needed and that one projection
i

W is

needed for each fault.

4. 1. 2 The Algorithm

The parity space algorithm includes following steps :

Given: State-space model (4.1.3), input data U, measured data Y

Design parameters: sliding window size L, h- detection threshold and residual structure

R.

Computation:

 35

1. Compute the Model Matrixes
fud HHHO ,,,

2. Compute data-vectors
t
Y and

t
U over sliding window

3. Compute a Parity Space W

4. Compute a residual
t
r

5. Perform detection

6. Perform isolation

In the fragment of the MATLAB-code we illustrate the computational steps 3, 4, 5 and

6.

We have defined design parameters and calculated model matrixes:

Design parameters: R-residual structure matrix, h – threshold

Computed matrixes:
fud HHHO ,,,

% COMPUTE PARITY SPACE

% Define the Null space N of (O, Hd)

[U,D,V]=svd([Q Hd]);

n=rank(D);

N=U(:,n+1:end);

% calculate transformation matrix T
i

i

tf

TTi

tf

T RFHTNFHw
:,

==

% there to define the vectors f1, f2, f3 which are columns of R matrix

% kron is Kronecker product

T = R / (N*Hf*kron(ones(L,1),[f1 f2 f3]));

% Caclculate parity space

w = (T*N)’;

% RESIDUAL ANALYSIS

% Compute residual)(
tut

T

t
UHYwr −=

r=w’*(Y-Hu*U) ;

% Detection:

if r’r>h

% Isolation. Fault i in direction fi where:
i

T

i
Rri maxarg= , Ri is column i of R

 [val,i]=max(r’*R);

end

 36

When there is no model available, we need an alternative approach to compute a

correspondence to a parity space residual. If the relationship between input and output

data is known to be linear the principle component analysis can be used.

4. 1. 3 Principle Component Analysis (PCA)

“Principal components analysis (PCA) is a technique used to reduce multidimensional

data sets to lower dimensions for analysis.” [52]

The detailed algorithm can be found in A. Hagenblad andF. Gustafsson paper [51].

Below we give a brief description of the PCA method.

As with parity space we transform the input and output into U and Y vectors. This is

going to be our training data; it has been obtained from measured or simulated data. The

data is combined into the vector









=

t

t

t

U

Y
Z .

The principle component analysis is used to split up the data vector into parts, model

^

t
Z and residual

~

t
Z

trtxtt

t

t

t
rPxPZZ

U

Y
Z +=+=








=

~^

r
P is a basis for the residual space (c.f. T

w in section 4.1.1.)

PCA Procedure

Given: input data U, measured data Y

Design parameters: sliding window size L, h- detection threshold and residual structure

R, number of components.

Computation:

1. Estimate mean value µ and covariance matrix Σ from training data

2. Calculate singular value decomposition (SVD) of Σ .

T
PDP=Σ

P is a projection matrix that contains the principal components which are the

eigenvectors associated to the eigenvalues
i
λ .

 37

D =)...(1 mdiag λλ is a diagonal matrix with eigenvalues as diagonal elements in

a decreasing magnitude order.

3. Split the SVD into two parts as:

)(
rx
PPP = , 








=

r

x

D

D
D

0

0

The largest singular values are considered to be part of the model
x
P and the

other small singular values to the residual part
r
P . Hence for a noise-free system

the elements of
r
D will be zero. The order of the model is a design parameter, i.e.

the number of principle components which is needed to build a model.

4. Compute the model and residual

t

T

xx
t ZPPZ =

^

t

T

rr
t ZPPZ =

~

Fault Diagnosis with PCA

The new data is depicted as stack vectors 







=

t

t

t

U

Y
Z . They are projected into the

projection matrix
r
P . The result of the projection is the residual for this data set from

which the diagnosis can be generated.

t

T

rt
ZPr =

Since there is no model available, the isolation of the fault is a more difficult process

compared to the parity space algorithm. If data about a particular fault is known then the

fault can be estimated by calculating the corresponding residual and by estimating its

mean and covariance [51].

4. 1. 4 Applications

We attempt to build a state-space model for a four-wheel OMNI robot and if possible

(prerequisite: linear model), implement the parity space algorithm.

 38

State-Space Model

The parity space method is applied to a mixed stochastic-deterministic model

represented by linear state-space equations. The creation of state-space models for fault

diagnosis is described in section 2.5.

To represent the localisation problem in a four-wheel OMNI robot we need a model of

the robot to describe how a robot moves and turns and a sensor model, describing the

sensor output as a function of the environment.

The position of the moving robot can be described with the following formula:

tt

T

t

y

x

t

y

x

y

x































 −

+

































=

+















ω

υ

υ

ϕϕ

ϕϕ

θθ 100

0cossin

0sincos

100

010

001

1

x, y are the positions and θ is the orientation in a rectilinear two-dimensional coordinate

system. The sample interval between time t and t+1 is T. For the simplicity we assume

that T is 1.

















ω

υ

υ

y

x

 is the robot speed vector which can be generated by using the formula (3.2.1.).

ϕ is the angle of deviation between robot frame and world frame. The angle is not

constant – it depends on the robot angular velocity as the sum of the current angle and

its calculated angular velocity: ωϕϕ += −1tt
. This property means that our state-space

system is non-linear hence we can not apply parity space to the four-wheel OMNI robot

example.

Nonetheless particle space and PCA were applied with success in various applications.

PCA is widely used in chemical plants and as an on-board car-engine diagnosis for fault

monitoring [53]. It seems parity space is applied in the car industry, introduced by GM

and Daimler (only mentioned by Gertler [54]). In the robotics domain V. Filaretov and

M. Vukobratovic apply non-linear parity space to a manipulator robot [55].

Toolbox: There are MATLAB frameworks in fault diagnosis for various methods which

also support the parity space algorithm such as A Fault Detection Toolbox for MATLAB

[56] and MATLAB-based FDI-toolbox [57].

 39

4. 1. 5 Summary

The proposed algorithm is shown to be able to detect and identify faults for a linear

state-space model with additive faults. The method computes a residual to detect that a

fault has occurred. The vector is zero in no-fault case, and non-zero otherwise. To be

able to identify a fault location, residuals are created in such a way, that each fault gets

its own residual. In case no model is available a priori, training data in combination with

PCA can be used. We can split the data in two parts, model and residual, by applying

the singular value decomposition (SVD) of the covariance matrix for the given training

data.

In spite of its simplicity in computation, the parity space approach has several

disadvantages. The main disadvantage of this algorithm is its sensitivity to noise.

Residuals become quite noisy even with low levels of measurement noise, or when the

design model deviates from the original system. This problem is scarcely treated in the

literature, and there are no design rules to be found. This is a critical point for the robot

domain, because it is a difficult task to build a model that fully incarnates the original.

Another drawback is that faults are not always suitably modelled as additive faults. PCA

and parity space are restricted to the linear model but a lot of available model

descriptions are non-linear, for instance the OMNI example presented in section 3. 2.

With PCA no model is needed, but fault isolation will be more difficult. In case outliers

corrupt the data, traditional PCA proves to be ineffective. Y. Tharrault, G. Mourot, J.

Ragot, and D. Maquin [59] developed a robust, alternative version of PCA that seems to

arrive at completely satisfactory results.

 40

4. 2 Hidden Markov Model

In recent years, probabilistic models were successfully applied in the industrial and the

robot domain. The probabilistic state-space formulation and the requirement for

updating the states with new measurements are ideally fitted for the Bayesian model,

which provides a general framework for the dynamic state estimation problem.

Hidden Markov model uses the probability calculus for modelling and reasoning actions

and perceptions. The probabilistic model of a system is state-of-the-art in the robot

domain because it is the right tool to represent the uncertainty in the robot’s

environment, in its perceptions and of its actions.

4. 2. 1 Background Theory

We replicate and summarize the insights of the tutorial paper [3] to describe the HMM

theory.

In a stochastic system which can occupy one of N states
t
x (state at time t), the state

evolution is random. Any joint distribution can be factored into a series of conditional

distributions:

∏
=

−=
T

t

ttT xxxpxpxxxp
1

10010),...,|()(),...,,(

This formula is the mathematical expression for the temporal process.

For a Markov process, the next state depends only on the current state:

)|(),...,,|(1101 tttt
xxpxxxxp ++ = .

Often, the term Markov chains is used to describe a discrete-time Markov processes

[60].

∏
=

−=
T

t

ttT xxpxpxxxp
1

1010)|()(),...,,(

Figure 15 Graphical interpretation of Markov process [79].

)|(23 xxp)|(12 xxp)|(01 xxp
0
x

1
x 2

x
3
x)(0xp

 41

We have a stationary Markov chain, if a process of change defined by some law is not

changed over time. If this process has N states, then it can be described by a NxN

transition matrix with elements defined as condition distributions:

)|(1 jxixpa
ttij
=== +

.

So far we have considered Markov models with directly visible states, but in a real-

world application it is too restrictive an assumption and states might be only partially

observable.

If the system is a Markov chain with unknown variables and observable evidence

variables, then it can be described by a hidden Markov model (see Figure 16).

Figure 16 Architecture of hidden Markov model [79]

4. 2. 2 HMM Representation

Formalization of HMM is defined as a tuple πλ ,,,, BAOS= , satisfying the following

conditions:

- },...,{ 10 −=
N
ssS set of N system states

- },...,{ 10 −=
M
ooO set of M observations

- A is a N x N transition probability matrix, its entries describing the probability

that one state becomes another state)|(1, itjtji sqsqPA === +
, Ni ≤≤1 ,

Nj ≤≤1

- B is a N x M observation matrix, its elements are the probability of observing an

event related to the given state)|(, jtktkj sqovPB === , Mk ≤≤1 , Nj ≤≤1

0
x

1
x 2

x
3
x

1
y

2
y 3

y

hidden

states

observed

process

 42

- π is an initial distribution vector i.e. the start state of the system.

)(1 ii SqP ==π , Ni ≤≤1

The system at any time step lays in one of the state. This state is hidden and not directly

observable, but some observable variables about the state, are obtained.

4. 2. 3 HMM Problems and Solutions

Three Fundamental Problems

HMM provides a formal mathematical solution to three fundamental problems [3]:

1. Definition of probability of observable sequence for given HMM P(O|λ)

2. Definition of sequence of states leading to sequence of observations for HMM

3. Definition of HMM based on sequence of observations

Solutions

1. Definition of the probability of an observable sequence

The solution of the problem is Forward procedure (for details [3])

The idea is to define the forward variable for the given sequence of observations

t
OOO ,...,

21
 which ended up in state

i
S :

)...()(21 ittt SqOOOPi =∧=α where Tt ≤≤1

 The)(i
t

α can be computed recursively:

a.) Initialization:

)|()()()(111111 iii SqOPSqPSqOPi ====∧=α

)(1 iSqP = is the initial probability of being in state
i
S and

)|(11 iSqOP = the element in observation matrix.

 b.) Induction:

)...()(11211 jtttt SqOOOOPj =∧= +++α

 43

)()|()|(111 iSqOPSqSqP tjtt

i

itjt α==== +++∑

)|(1 itjt SqSqP ==+
 is the element of the transition matrix and

)|(11 jtt SqOP =++
 the given element of observation matrix.

2. Most probable path (MPP)

This class of problems is solved using the Viterbi algorithm [3],[80].

The MPP algorithm is a recursive relationship between the most likely path to each state

1+tx followed by the transition
1+→

tt
xx .

3. Learning algorithm

The third problem of HMMs is to determine a method to adjust the model parameters

(A, B,π) to maximize the probability of the observation sequence. To

choose),,(πλ BA= in such a way that)|(λOP is maximized. The method is known as

Baum-Welch method or expectation-modification (EM) method [3], [80] .

In order to describe the procedure of an iterative update and an improvement we first

introduce the auxiliary parameters:

),...|()(21 λγ Titt OOOSqPi ==

),...|(),(211 λε Tjtitt OOOSqSqPji =∧== +

)(i
t
γ is the probability of being in state

i
S at time t, given the observation sequence and

the model

),(ji
t
ε is the probability of being in state

i
S at time t, and state

jS at time t+1, given

the model and the observation sequence

If we sum up)(i
t
γ and sum up),(ji

t
ε over a certain time period, we get quantities

which can be interpreted as:

∑
−

=

=
1

1

)(
T

t

t
iγ Expected number of transitions (4. 2. 1)

 out of state i during the path

 44

 ∑
−

=

=
1

1

),(
T

t

t jiε Expected number of transitions from (4. 2. 2)

 state i to state j during the path

Using the (4. 2. 1) and (4. 2. 2) formulas we can give a method for re-estimation of the

model parameters of a HMM:

i

_

π = expected frequency in state
i
S at time (t=1)=)(1 iγ (4. 2. 3)

_

ij
a = (expected number of transitions from state

i
S to state

jS)/

 (expected number of transitions from state
i
S)

∑

∑
−

=

−

==
1

1

1

1

)(

),(

T

t

t

T

t

t

i

ji

γ

ε

 (4. 2. 4)

 =)(
_

kb j (expected number of time in state
jS and observing symbol

k
v)/

 (expected number of times from state
jS)

∑

∑

−

=

−

=

=

=
1

1

1

..

1

)(

)(

T

t

t

T

vOts

t
t

j

j

kt

γ

γ

 (4. 2. 5)

So if we knowλ , we can estimate the expectation of quantities such as the expected

number of times in state i and the expected number of transitions from state i to state j.

If we know the quantities such as the expected number of times in a state and as an

expected number of transitions from state i to state j, we can estimate the maximal

likelihood of
ijij kba πλ)},({},{= .

 45

Algorithm scheme

1. Get the observation sequence
T
OO ...

1

2. Define the initial model as),,(πλ BA= .

3. Compute new estimates

, πandBA based on equations (4. 2. 3), (4. 2. 4),

(4. 2. 5) using the model λ so the re-estimated model),,(

πλ BA= is found.

4. Analyze the re-estimated model
_

λ . It can be either

a) identical to the initial one
_

λ =λ (termination criteria), i.e. λ defines a

critical point of the likelihood function or

b) more likely than model λ in the sense that)|()|(
_

λλ OPOP > , i.e., we

have found a new model
_

λ from which the observation sequence is more

likely to have been produced. Then we need again go to step 2 of the

algorithm.

If we iteratively use
_

λ in place of λ and repeat the re-estimation calculation, we then

can improve the probability of O being observed from the model until some limited

point is reached.

EM (expectation-modification) is successfully applied for problems such as the speech

recognition, in biology the recognition of an albumen structure.

The essential drawback of the learning algorithm is that it gets stuck in a local

maximum and leads to a wrong estimated model.

The EM approach is guaranteed to converge to a local maximum of the likelihood.

There is no guarantee that the algorithm will find the global maximum. Often the value

of the local maximum critically depends on the initial settings of the parameters.

According to Rabiner [3] the best parameter initialization is a thorny task:

“Experience has shown that either random (subject to the stochastic and the nonzero

value constraints) or uniform initial estimates of the π and A parameters is adequate for

giving useful re-estimates of these parameters in almost all cases. However, for B

parameters, experience has shown that good initial estimates are helpful in the discrete

 46

case, and are essential in the continuous distribution case. Such initial estimates can be

obtained in a number of ways, including manual segmentation of the observation

sequence(s) into states with averaging of observations within states, maximum

likelihood segmentation of observations with averaging, and segmental k-means

segmentation with clustering.”

4. 2. 4 Application of HMM in Fault Diagnosis

For systems based on discrete states, the applications GDE/Sherlock [15], [16],

Livingstone1, 2 [17], [18] and Titan (reactive model-based programming) [18], [19]

provide a framework that can be used efficiently for both diagnosis and recovery. These

algorithms obtain reliability by estimating the system state from the set of measurements

as a “most probable path” [3].

4. 2. 5 Numerical Example

The objective of this subsection is to apply the HMM forward-algorithm to the four-

wheel OMNI robot for fault diagnosis. In order to analyse and make an inference about

the dynamic system of the robot, two models are required. We need a system model to

describe the evolution of the states and a measurement model which describes the

relation between states and measurements. These models can be designed in

probabilistic form, where states correspond to normal and faulty conditions of the robot.

The groups of possible faults are described in section 3. 2. Each group consists of one or

several fault modes.

1. Normal operation N (no fault);

2. The group of abrupt motor faults consists of four faults namely W1, W2, W3

and W4. They correspond to a wrong output value of the wheel motors 1, 2, 3

and 4.

3. The stuck motor group is comprised of the faults M1s, M2s, M3s and M4s.

They describe the output of wheel motors 1, 2, 3 and 4 being fixed to a constant

value regardless of the input.

4. Gradual degradation of performance includes the faults M1d, M2d, M3d and

M4d. They correspond to the output of wheel motors 1, 2, 3 and 4 being

multiplied with a negative exponential function.

 47

Altogether we have 13 system states. Following the HMM theory, we construct a

modification of states as a probability table (the notations for the table were taken from

[81].

i

)

|(11

it

t

sq

sqp

=

=+

)

|(21

it

t

sq

sqp

=

=+

…

)

|(121

it

t

sq

sqp

=

=+

)

|(131

it

t

sq

sqp

=

=+

1
1,1

a
2,1

a …
12,1

a
13,1

a

2
1,2

a
2,2

a …
12,2

a
13,2

a

: : : : : :

12
1,12

a
2,12

a …
12,12

a
13,12

a

13
1,13

a
2,13

a …
12,13

a
13,13

a

Table 2 Transition matrix

Notation
ji

a
,

=)|(1 itjt
sqsqp ==+

 is the probability distribution for the next state given

current.

According to the table we can construct the following system model for four-wheel

OMNI robot:

 [0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;

 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0;

 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0;

 0.5 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0.2143 0.1 0.1 0 0;

 0.5 0.2143 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0 0 0.1 0.1;

 0.025 0.2 0.025 0.025 0.0083 0.5 0.2 0.0083 0.0083 0 0 0 0;

 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0;

 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0;

 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0;

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0;

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0;

 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2;

 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5]; (4. 2. 6)

 48

The robot has some sensors and it can gather state information. We assume that in our

four- wheel OMNI robot example a measurement relates to each state. Table 3 shows a

compact representation of probabilities of measurements depending on a system-state.

i

)

|1(

it

t

sq

Op

=

=

)

|2(

it

t

sq

Op

=

=

…

)

|12(

it

t

sq

Op

=

=

)

|13(

it

t

sq

Op

=

=

1)1(1b)2(1b …)12(1b)13(1b

2)1(2b)2(2b …)12(2b)13(2b

: : : : : :

12)1(12b)2(12b …)12(12b)13(12b

13)1(13b)2(13b …)12(13b)13(13b

Table 3 Probability of measurements

Notation)(kb
i

=)|(itt sqkOp ==

The measurement probability matrix is:

[0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;

 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0;

 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0;

 0.075 0.025 0.025 0.6 0.025 0.025 0.025 0 0 0.1 0.1 0 0;

 0.075 0.025 0.025 0.025 0.6 0.025 0.025 0 0 0 0 0.1 0.1;

 0.025 0.2 0.025 0.025 0.025 0.5 0.2 0 0 0 0 0 0;

 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0;

 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0;

 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0;

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0;

 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0;

 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2;

0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5]; (4. 2. 7)

Notice that since neither the real robot nor its simulator was available the probabilistic

models were constructed approximately by hand.

 49

The diagnosis of the behaviour modes for the robot, based on probabilistic models, can

be conducted by the HMM forward algorithm. K. Murphy developed the MATHLAB

toolbox which supports the inferences and a learning algorithm for HMMs. We applied

the methods of this toolbox to perform fault diagnosis in the four-wheel OMNI robot.

The script hmm4wheelOMNI.m gives the example (see Appendix A.) The diagnosis

was executed in the following steps:

1. Set given parameters: model matrixes, forward kinematics of the robot

2. Define design parameters: time T, start state prior0

3. Load/generate input and measurement data

4. Preprocess measurement data

5. Apply forward-backward algorithm

6. Plot results

Given Parameters

The example is applied to the probabilistic model described in the matrixes above (4. 2.

6) and (4. 2. 7). Besides system and measurement matrixes the forward kinematics

matrix of the four-wheel OMNI robot is given.

We will need it for preprocessing the sensor data.

Design Parameters

A user can modify these design parameters to check experimental results under various

conditions like time steps, accuracy and start state of the robot.

controlMat(:,:)=[sin(angle) -sin(angle) -sin(angle) sin(angle);...

 -cos(angle) -cos(angle) cos(angle) cos(angle);...

 1/(4*R) 1/(4*R) 1/(4*R) 1/(4*R)];

 50

Load/generate input and measurement data

The sensor measurements and input wheel velocities for each time step are saved in the

RobotPoseData.mat file. The user can load all the variables from this file or create new

ones or generate data inside of the script. The information is given in the following

variables:

- u(:,:) – 4xT matrix of input data. To each time step a vector of robot motor

velocities corresponds ()Tvvvv
4321

,,, . By collecting the vectors we receive the

input matrix u.

- velObs(:,:) – 3xT matrix of measurements. As measurements data we use linear

and angular velocities of the robot.

Preprocess Measurement Data

The data from the matrix velObs(:,:) are analysed to construct measurements which can

be observed in the system states. As we postulated in the observation matrix, one

measurement corresponds to each robot state (see the observation matrix (4. 2. 7)). Now

we consider the part of the script which encodes this analysis.

Normal state at time t

A robot operating in a normal condition means that its measurement vector velObs(:,t) is

identical to the original one robotVelN(:,t) which is generated from the following

equation:

Note: Since all fault cases belonging to one group can be deduced in a similar manner

the only case with motor 1 for each group will be considered.

Sudden motor fault at time step t

A fault has occurred when

robotVelN(:,t)=controlMat(:,:,1)*u(:,t);

velObs (:, t) ~= robotVelN (:, t)

 51

We define that it is wheel motor 1 which produces the wrong output.

The forward kinematics for obtaining the robot velocities from the given wheel

velocities are given in section 3. 2 by the expression (3. 2. 1) .

Applying this expression for our notation we receive following equations:

),3(
4

),4(

4

),3(

4

),2(

4

),1(

),2()cos(),4()cos(),3()cos(),2()cos(),1(

),1()sin(),4()sin(),3()sin(),2()sin(),1(

trobotVelN
R

tu

R

tu

R

tu

R

tu

trobotVelNangletuangletuangletuangletu

trobotVelNangletuangletuangletuangletu

=+−+

=++−−

=+−−

 (4. 2. 8)

If only wheel 1 produces the wrong output and the other wheels’ outputs are correct,

then the following statement holds true:

robotVelN(1,t) - velObs(1,t) = u(1,t)sin)(angle - ErrValue*sin)(angle

robotVelN(2,t) - velObs(2,t) =- u(1,t)cos)(angle + ErrValue*cos)(angle

robotVelN(3,t) - velObs(3,t) =- u(1,t)/4R+ ErrValue/4R

ErrValue is the wrong value of wheel motor 1 output.

We express the ErrValue from the three equations and save the results in the

velMatrix(:,1)

velMatrix(:,1)=[(velObs(1,t)-robotVelN(1,t))/sin(angle)+u(1,t)+smallErr;

 (-velObs(2,t)+robotVelN(2,t))/cos(angle)+u(1,t)+smallErr;

 4*R*(velObs(3,t)-robotVelN(3,t))+u(1,t)+smallErr];

If the differences (velMatrix(1,1)-velMatrix(2,1)), (velMatrix(2,1)-velMatrix(3,1)) and

velMatrix(1,1)-velMatrix(3,1)) are equal to zero then a fault with wheel motor 1

occurred.

Stuck motor

To diagnose this group of faults we need to analyse the sequence of length L of the

latest outputs. If from L latest observations we can conclude that for example the wheel

 52

motor 1 produces the same wrong output (ErrValue) then the measurement “stuck wheel

1” (W1s) is observed.

“Gradual degradation” of motor

The fault attacking the system grows in proportion to time, for example if the wheel

velocity differs from the expected velocity only slightly but increases with time, then a

“gradual degradation” of the motor occurred.

To diagnose this scenario, the sequence of L latest outputs has to be observed and a

“decay rate” has to be generated as 1-4*R*((robotVelN(3,t)-velObs(3,t))/u(1,t)).

If the “decay rate” belongs to segment (0, 1) and decreases with each time step, we have

a “gradual degradation” scenario.

Forward-Backward Algorithm

After preprocessing the measurement data the observation matrix can be constructed.

If, for example, the measurement sequence corresponds to the observations of states 1,

1, 1, 8, 8, 8 (1 = normal behaviour, 8 = wheel motor 2 stuck) then the observation matrix

for our example is the 13x6 matrix. Each column in this matrix corresponds to a column

from obsmat with a number from the sequence (1, 1, 1, 8, 8, 8). Hence the observation

matrix for the given sequence is [obsmat(:,1) obsmat(:,1) obsmat(:,1) obsmat(:,8)

obsmat(:,8) obsmat(:,8)]

Now the forward method (a function of HMM toolbox) to estimate the probability of the

current state is executed.

 [alpha, beta, gamma, loglik] = fwdback(prior0, transmat0, obsmat1, 'act', act);

% Create observation matrix

for i=1:T

 obsmat1(:,i)=obsmat(:,obserVal(i));

end

 53

The arguments of the function are the system matrix (4. 2. 6) transmat0, the generated

observation matrix obsmat1, the initial state prior0 and the control inputs (in this

example we do not use the parameter act, therefore it is zero). Only the return value

alpha includes the probability distribution of system states. The other parameters are

outside the scope of the task.

Plot Results

The following results have been simulated by this script:

1. Diagnosis of the “gradual degradation” fault of wheel motor 4

Given: T=10, L=4.

Original robot behaviour: The robot starts to run in normal conditions but from time step

2 onwards a “gradual degradation” of wheel motor 4 occurs.

Figure 17 Simulation results for the “gradual degradation of wheel motor 4”

scenario

 54

Notice that in this example the parameter, L=4 thus the first three time steps the system

diagnose only Sudden motor4 faults

2. Diagnosis of the “gradual degradation” fault of wheel motor 1

Given: T=10, L=4

Original robot behaviour: Robot starts to run in normal conditions but from time step 2

“gradual degradation of motor 1” arise.

Figure 18 Simulation results for the “gradual degradation of motor 1” scenario

 55

3. Diagnosis of the stuck motor 1

Given: T=90, L=4

Original robot behaviour: Until time step 50 robot runs in normal condition, then wheel

motor 1 gets stuck.

Figure 19 Simulation results for the stuck motor1 scenario

 56

4. Diagnosis of “sudden faults” of motor 1

Given: T=10, L=4

Original robot behaviour: Sudden faults of the motor 1 in time step 5,9,10

Figure 20 Simulation results for the “sudden faults of motor 4” scenario

4. 2. 6 Summary

The Parity space approach described in the previous section could not satisfy all needs

of fault diagnosis for robot systems, since it requires a well-defined system model and is

only applicable for additive faults. The other fault diagnosis model-based technique is

the hidden Markov model. HMM is a temporal probability model of stochastic

processes composed of a transition model describing the evolution and a sensor model

describing the observation process. It solves inference problems with forward-backward

algorithms; the practical examples given in this section illustrated the accuracy of the

method. Williams [18], [19] presented the successful implementation of HMM for fault

diagnosis. The disadvantage of HMM as a fault diagnosis method is that it supports only

discrete states. To increase the robustness of the system over a long period of time, one

needs to use models that describe both the discrete stochastic behaviour and the

continuous dynamics of it.

 57

HMMs are usually trained using the expectation-maximization (EM) algorithm (the

practical example will be given in subsection 4. 4. 4). As a learning algorithm, HMM is

not entirely satisfactory due to slow convergence and the presence of many suboptimal

solutions.

In spite of some drawbacks, HMM takes a leading role in application areas such as

speech recognition, bio sequence analysis and control engineering.

 58

4. 3 Particle Filter (PF)

Particle Filters [1] are powerful methods to track probability distribution over state

variables of complex systems with mixtures of discrete and continuous variables.

Particle Filters are the techniques for implementation of recursive Bayesian filters by

Monte Carlo sampling.

4. 3. 1 Background Theory

Bayesian filtering is a general tool used for estimating the states of a dynamic system

from sensor measurements based on a predict/update cycle. The estimation of the

probability about the current state based on a sequence of observations and input data

(see figure 21) can be calculated recursively using the Bayesian filter [25].

∫ −−−−−−− = 12:01:01111:0:0),|(),|()|(),|(ttttttttttttt dsuzspusspszpuzsp η (4. 3. 1)

Figure 21 Graphical model for the dynamic system in an abstract view [25]

t
S - state at time t

t
u - input or control command at time t

t
z - observation at time t

The prediction stage uses the system model to predict the state probability distribution

from the current estimation onwards.

∫ −−−−−−−− = 12:01:011111:1),|(),|(),|(tttttttttt dsuzspusspuzsp

The update operation uses the latest measurement to modify the prediction [4].

),|()|(),,|(11:11:01:0 −−−− =
tttttttttt
uzspszpuzzsp η

1−tS
t
S

1−tz
2−tu

1−tu
t
z

 59

Particle filter is used as a sample based representation of the Bayesian filter (4. 3. 1)

The underlying theory is based on the work of “Architectures for Efficient

Implementation of Particle Filters” presented by M.Bolic [82]

The principle idea behind particle filters is to represent the posterior probability by a set

of random particles with associated weights and then compute estimates based on these

sampling and weights.

More specifically, at every time instant n a random measure M

m

m

n

m

n
ws 1

)()(

:0 },{ =
 is defined,

where)(m

n
s is the m-th particle of the state at time n,)(

:0

m

n
s is the m-th trajectory of the

state, and)(m

n
w is the weight of the m-th particle (or trajectory) at time instant n. If these

particles are obtained from the observations
n

z
:0

and the trajectories are drawn from the

conditional probability)|(:1:1 nn
zsp , then the particles approximate this probability by

∑
=

−≈
M

m

m

nn

m

nnn sswzsp
1

)(

:0:0

)(

:0:0)()|(δ .

The implementation of Particle Filters involves three important operations:

1. Generation of particles (sample step),

2. Computation of the particle weights (importance step)

3. Resampling

There is a family of particle filters that is based only on the first two steps (Sequential

Importance Sampling Filter). The filters that perform all three operations are called

Sample Importance Resampling Filters (SIRF).

1. Generation of particles

The generation of particles)(m

n
s is performed by drawing them from an importance

density function)(
n
sπ . If we choose an importance density function

∏ −=
n

kkkn
zsszss

1

:01:011:0),|()|()(πππ ,

we can compute the weights of the particles recursively:

),|(~ :0

)(

1

)(

n

m

nn

m

n
zsss −π

 60

The importance density),|(:11 nnn
zss −π plays a basic role in the design of particle filters,

because it generates particles that have to represent a desired probability. If the drawn

particles are in regions where the probability has small values, the estimates obtained

from the particles and their weights would be poor and subsequent tracking of the signal

would very likely diverge. By contrast, if the particles are from regions where the

probability mass is significant, the Particle Filter will have improved performance.

Various strategies have been proposed for design density functions [64], [65]. One

might argue that the optimal importance density function should be designed as a target

distribution

),|(:01 nnn
zss −π =),|(1 kkk zssp −

.

However, the drawbacks of this strategy are the difficulties to sample and perform

weight calculation. Another strategy for drawing particles is to use a transition prior as

an important density function

),|(:01 nnn
zss −π =)|(1−kk ssp

2. Computation of the particle weights

The importance step consists of two steps: computation of the weights and

normalization. In the former step the weights are evaluated up to a proportionality

constant and subsequently, in the latter they are normalized. If the importance function

has the form, the weights are updated via

),|(

)|()|(

:0

)(

1:0

)(

)(

1

)()(
)(

1

)*(

n

m

n

m

n

m

n

m

n

m

nnm

n

m

n
zss

sspszp
ww

−

−

−=
π

"

After applying this formula the weights should normalized.

3. Resampling

While time progresses, few weights become very large and some of the particles

decrease in weight so that they become negligible. The resampling is the procedure for

removing the trajectories that have small weights and focus on dominating trajectories.

There are various standard algorithms used for resampling, such as residual resampling

(RR), branching corrections [67] and systematic resampling (SR) [66].

 61

4. 3. 2 Particle Filter Enhancements

The Particle Filter approach becomes several modifications. The reason for this is that

classical filters have some drawbacks applied to the problem of fault diagnosis.

Authors in their work define some challenges for online diagnosis problems which are

difficult to address only by classical Particle Filter algorithm [63]. There are

1. Very low prior fault probabilities

2. Restricted computational resources

3. High dimensional state space (number of samples grows exponentially with the

dimensionality of a problem)

4. Non-linear stochastic transitions and observations. Ability to apply the algorithm

to non-linear models

5. Multimodal system behaviour

There are various approaches to addressing theses problems in the literature.

The goal of the Risk Sensitive Particle Filter algorithm [21] [22] by S. Thrun is to

increase the amount of particles in “risky” or important states. The concept is to identify

a risk function which binds the low probability states (which are most probable fault

states) with high costs whereas the states with high probability with low cost. The states

get few particles but the cost miscalculating their probability is high. Particle filter

sample from the product of risk function and original distribution.

V. Verma presents a further algorithm with the Variable resolution Particle Filter [21]

[23]. It is based on the observation that some faults have similar symptoms so that they

can be grouped together. If some fault from this group occurred the algorithm will

breaks apart the group and diagnose the received states.

E. Benanzera [24] combines two approaches Livingstone and look-ahead

RaoBlackwellized filter in aim to reduce computational complexity associated with

particle filter technique and extend Livingstone approach to handle stochastic hybrid

system.

The low a priory probability of fault states supplements challenges for detection

algorithm. Plagermann [25] applies the Gaussian process classification and regression

techniques"for learning effective proposal distributions of particle filter.

 62

4. 3. 3 Numerical Example

This section presents software that implements particle filtering for fault diagnosis in the

four-wheel OMNI robot (the full version of this example is given in Appendix B). The

objective is to estimate and illustrate the fault states of the robot. The groups of states

are described in section 3. 2. Each group consists of one or several fault modes. For this

example the number of faults has been reduced compare particle filter to the HMM

example.

1. Normal operation N (no fault);

2. The group of abrupt motor faults consists of the four faults W1, W2, W3 and

W4. They correspond to the output value zero of wheel motors 1, 2, 3 and 4.

3. The stuck motor group is comprised only of the fault M1s. It describes the

output of wheel motor 1 being fixed to a constant value regardless of the input.

4. Gradual degradation of performance includes only the fault M1d. It corresponds

to the output of wheel motor 1 being multiplied with a negative exponential

function.

A robot might need given measurements of robot velocities to automatically diagnose

whether any of the faults occur. In this example the discrete state can only be one fault

of the listed fault groups or the normal mode (no fault). Once the robot knows its

discrete state it can generate a control action to solve its velocity problem.

The transition matrix of discrete states is:

par.T = [0.75 0.05 0.05 0.05 0.05 0.05 0;

 0.025 0.7 0.025 0 0.05 0.05 0.05;

 0.1 0.05 0.8 0.05 0 0 0;

 0.1 0 0.05 0.8 0.025 0 0;

 0.1 0.05 0 0.05 0.8 0 0;

 0.05 0.05 0.025 0.025 0.025 0.8 0.025;

 0.05 0.05 0.025 0.025 0.025 0.025 0.8];

The control action to solve the velocity problem is described as:

 63





















=

















4

3

2

1

v

v

v

v

Kv

v

y

x

θ

, (4. 3. 2)

K=





















−−

−−

RRRR 4

1

4

1

4

1

4

1

coscoscoscos

sinsinsinsin

ϕϕϕϕ

ϕϕϕϕ

 (4. 3. 3)

The matrix K is modified depending on the discrete state. If, for example, the system is

in state W1 then the first column of the matrix K would be zero whereas the others

columns stay unchanged. To implement the particle filter, I used the software package

from Nando de Freitas, which uses classical particle filters and Rao-Blackwellised

particle filters [83]. The software also includes efficient state-of-the-art resampling

routines.

The script was executed in the following steps:

1. Initialisation of parameters

2. Generation of data

3. PF estimation

a) Sequential importance sampling step

b) Resampling step

2. Summery and plots

Initialisation of Parameters

Parameters such as the number of particles, time steps, transition matrix for a discrete

state, four-wheel OMNI robot constants and the control matrix K are defined in this part

of the numerical example.

 64

Generation of Data

Compared to the numerical example in subsection 4. 2. 5 (HMM), in this example only

the notation of velObs(:,:) is changed to y(:,:).

The sensor measurements and input wheel velocities for each time step are saved in the

RobotPoseData.mat file.

- u(:,:) – 4xT matrix of input data. To each time step a vector of robot motor

velocities corresponds ()Tvvvv
4321

,,, . By collecting the vectors we receive the input

matrix u

- y(:,:) – 3xT matrix of measurements. As measurements data we use linear and

angular velocities of the robot.

PF Estimation

In this part of the script we attempt to track the current state and diagnose the faults.

In each time step t = 1,…, T.

- the important sampling procedure is performed:

o for each particle i = 1,…, N

! the new discrete state is generated from the previous one:

z(t)~p(z(t)|z(t-1))

! then the new continuous state is obtained from the currently

generated discrete state and the previous continuous state:

x(t)~p(x(t)|z(t),x(t-1))

o for each particle i = 1, …, N the importance weights based on the

observations))(|)(()(txtyptw = are evaluated

o importance weights are normalised

- the particles with replacement N according to the importance weights are

resampled.

Sampling of the continuous state in detail

To calculate the continuous state we use the formula (4.3.2). Matrix K is used to

generate the control action (robot velocities), its view depending on the current discrete

 65

state. Sometimes we will modify the input vector u(:,:) in order to achieve the desired

result for the robot velocities.

Abrupt motor fault at time step t

The diagnosis of faults from the second group W1, W2, W3 and W4 is pretty simple.

We need to modify the columns of the matrix K accordingly to the wheel order number

so that for the state W1 the first column is zero, for W2 the second column is zero, for

W3 and W4 the third and fourth columns are zero.

Stuck wheel motor 1 (M1s)

To diagnosis the fault M1s we need to find out the stuck value of wheel 1. If the latest

values of the wheel 1 velocities have the same value and it differs from the expected

value, then M1s has occurred.

If, for example, input wheel vector u(:,t)=[-2,-2,2,2], but wheel 1 of the robot gets stuck

to 5m/c, then the true values of the robot’s velocities could be derived from (4. 3. 2) by

replacing the given vector u(:,t) with new_u(:,t)=[5,-2,2,2].

We attempt to find the new_u(:,t):

where x_pf(3,t-1,i) is the robot angular velocity θ in time t-1.

Instead of the expression

4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1)

we can use

-x_pf(2,t-1,i)/cosϕ -u(2,t-1)-u(3,t-1)-u(4,t-1) or

x_pf(1,t-1,i)/sinϕ -u(2,t-1)-u(3,t-1)-u(4,t-1).

“Gradual degradation” of wheel motor 1 (M1d)

To diagnose the M1d fault we need to find the decay rate and analyse its modification

over time. The decay rate of the last two time steps reads:

new_u=[4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1);u(2,t);u(3,t);u(4,t)]

pred_val(1)=u(1,t-1)/(4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1));

pred_val(2)=u(1,t-2)/(4*R*x_pf(3,t-2,i)-u(2,t-2)-u(3,t-2)-u(4,t-2));

 66

Then the current value of the motor wheel 1 output can be estimated:

Plot Results

In this paragraph various experimental results of the implementation of fault diagnosis

using the classical particle filter are illustrated. Each plot has three axes: t – time, z
t
 –

system states and)|(:1 tt
yxp , where units of the z

t
 axis correspond to the following

states: 1-Normal condition, 2-W1, 3-W2, 4-W3, 5-W4, 6-M1s, 7-M1d.

1. Diagnosis of the stuck motor 1

Given: N (number of particles) =200 and N (number of particles) =50, T(time)=10

Original behaviour: Two experiments run using 200 and 50 particles for the same fault

scenario “motor 1 gets stuck”. The motor 1 gets stuck from the second time step

onwards. The initial distribution of particles is chosen randomly.

Figure 22 The estimated filtering distribution for “motor 1 gets stuck” scenario, left

plot using 200 particles and right plot using 50 particles.

new_u=[u(1,t)/(pred_val(1)+abs(pred_val(1)-pred_val(2)));u(2,t);u(3,t);u(4,t)];

% compute robot velocities

v_pf(:,t,i) = par.K(:,:,1)* new_u;

 67

2. Diagnosis of the “gradual degradation” fault of wheel motor 1

Given: N =200 and T=10

Original behaviour: The “gradual degradation” fault of wheel motor 1 from the fourth

time step onwards. The initial distribution of particles is chosen randomly.

Figure 23 Estimated filtering distribution for “gradual degradation” of wheel

motor 1.

 68

3. Diagnosis of the stuck wheel motor 1 to zero value

Given: N =200 and T=30

Original behaviour: Wheel motor 1 stuck with the value “zero” from the twentieth time

step onwards. The initial distribution of particles is chosen randomly.

Figure 24 Estimated filtering distribution for the “motor 3 gets stuck with output

zero” scenario.

Notice: The input vector u(:,:) in this experiment has the same values in the sequence

from step1 to step 19. This condition influences the estimate of the “stuck motor 3”

state.

During the experiments it occurred that particle filter produced unexpected results: all

states had the same probability distribution value or were described as normal states in

the M1d scenario, when the decay rate was calculated for the last six steps instead of

only the last two.

In my opinion it happened because the decay value did not constantly decrease over

time. I conclude that the particle filter needs knowledge about the noise process for the

fault mode.

 69

4. 3. 4 Summary

The hidden Markov models described in the previous section operate on discrete modes

and use monitors to translate continuous variables into discrete values. The monitors

only once determine consistent value from the measurements, and hence this system

cannot generally diagnose a temporal event [17]. To overcome this problem we need a

hybrid model. Particle filter is a technique for reasoning with hybrid models. The idea of

particle filters is to represent the posterior density by a set of random particles with

associated weights. The advantages of particle filter algorithms are that they support

complex, non-linear, non-Gaussian models. It is an attractive algorithm for fault

diagnosis for more than one reason: First, it can be applied to almost any probabilistic

robot model that can be formulated as a Markov chain. Particle filter’s computational

time is independent of model complexity only for a certain number of particles. A

developer can design an amount of particles to match the available computational

resources. Finally, they are relatively easy to implement.

However, there are various problems with using particle filters for implementing in a

fault diagnosis technique. The number of particles in improbable states (that are often

faulty states) are few and the obvious solution of increasing the number of particles

leads to increasing computational requirements. There are several approaches to address

this problem in literature which improve fault detection while keeping the

computational complexity low. The other drawback of particle filter is that the number

of particles grows exponentially with state-space dimensionality. The significant

disadvantage with particle filters for fault diagnosis is the need to know models for the

state transition and noise process apriory,

The practical application of low-dimensional state-space with seven discrete modes and

one continuous state shows sufficient diagnosis results for various experimental setups.

The experiment proved that results become inaccurate for a quantity of particles below

hundred (see Figure 22).

 70

4. 4 Observable Operator Model (OOM)

The Observable Operator Model (OOM) is an alternative new approach to HMM. Its

theory, developed by H. Jaeger of the international university Bremen, is expressed in

terms of linear algebra. OOM looks almost like HMM: both can be expressed in matrix

formalisms, although the matrixes and state vectors of OOMs may contain negative

components, whereas the elements of HMM matrixes include only non-negative

probability values.

4. 4. 1 Background Theory

This subsection gives a tutorial introduction to OOM by summarising and recapitulating

the material of original works [5],[84],[85]. In our thesis we are only going to present

the OOM theory for discrete time and discrete value processes. Non-stationary,

continuous-time and arbitrary-valued processes are sketched in “Characterizing

distributions of stochastic processes by linear operators” by H. Jaeger [68].

Abstract Form of OOM

To perform any task a robot needs to make predictions about the effects of its actions. In

other words the robot should build a number of future trajectories and follow them to

achieve a certain goal. Imagine for instance a robot in a room which needs to move from

a door to a window. There are various possible paths which the robot could use to get to

the window. The expectations about future trajectories depend not only on the location

of the goal but also on the robot’s current observations (everything with informational

value for the expected future). While performing the task, the robot has to generate

information about the future of the system based on its observations during each time

step.

Based on this knowledge we want to introduce the basics of OOM. It is a mathematical

model of constantly updating operations, where every possible observation is presented

by one operator called observable operator. The key insight about OOM is “(…) the

observation that these observable operators are linear.” [5].

We are going to present an interpretation of OOM a discrete time, finite-value and

stationary stochastic process.

 71

Let (
n
X)

Nn∈
 be such a process with values in a finite set O={ α

aa ,...,
1 } of possible

observations. Consider a set O* that denotes the set of all finite strings over O including

the empty string.

For every *
_

Oa∈ (where
_

a is a sequence of
r
aa ...

0
), we define a real-valued function

ROf
a

→*:_ (4. 4. 1)

_

a

f is a prediction function of the process that describes the future distribution of the

process after an initial observation
_

a . In our robot illustration
_

a would correspond to

the robot’s path that it had in short-time till the current position, and _

a

f would

correspond to the distribution of future trajectories started at that moment.

F is the space of future distributions of the process (
n
X), namely vector space.

a
t is a linear observable operator for every Oa∈ FFt

a
→: by

aaa
a

tt

faaPft __)|()(
_

= (4. 4. 2)

aa

_

is concatenation of sequence
_

awith a

)|(
_

aaP is the short form of)...|(10 −saaaP or as full formulation

),...,0|(1 ssnsnn
aXaXaXP === +−+

This leads to the following definition:

“Let (
n
X)

Nn∈
 be a stationary stochastic process with values in a finite set O. The

structure),)(,(εftF Oaa ∈
 is called the observable operator model of the process. The

vectors _

a

f are called states of the process; the state εf is called the initial state. The

vector space dimension F is called the dimension of the process.” [5]

 72

Matrix OOM

Section 4. 2 introduces HMM techniques for analysing discrete-time, discrete-state and

stochastic process
Nnn

Y ∈)(. The outcomes of the random variables)(
n
Y are given in set

},...,{ 1 α
aaO = . A Markov chain (

n
X)

Nn∈
 produces a sequence of hidden states from

the set },...,{ 1 m
ss . Now we will show how HMM can be generalised to serve as a basis

for creating OOM.

Assume we have a hidden Markov model with the parameters

- m x m stochastic matrix M collecting state transition probabilities

- set of m x m observation matrixes
a
O for every Oa∈ , each

a
O consisting of elements

with the value zero except for the diagonal elements which are the observation

probabilities)|(jsXaYP == "

- initial distribution T

m
sXPsXPw))(),...,((0100 ===

The matrixes M,
a
O "and

0
w are used to compute the probability of finite observation

sequences.

Let 1 = (1, . . . , 1) is the m-dimensional row vector of units, and let
a

T

a
OMT = !

Then the probability to have the sequence
r
aa ...

0
 is

00
...1)...(0 waar
TTaaP

r

= (4. 4. 3)

This is a matrix representation of the forward algorithm for determining probabilities of

observation sequences in HMMs (see section 4. 2. 3). It shows that the distribution of

the process)(
n
Y is specified by the operators

a
T "and the initial vector

0
w .

At this point we can derive the matrix definition of a finite-dimensional OOM by first

relaxing the requirement that T
M includes only non-negative elements to the weaker

requirements a) that the sum of elements of each column of T
M is 1, and b) that the sum

of the
0
w component is 1, meaning that negative entries are allowed. The symbolτ in

OOMs stands in the places, where T appears in HMMs. Now we can get the matrix

definition of OOM [5]:

 73

“An m-dimensional (matrix) OOM is a triple),)(,(0wRA
Oaa

m

∈= τ where m
Rw ∈

0
 and

mm

a
RR →:τ are linear maps represented by matrixes, satisfying three conditions:

1. 11
0
=w ,

2. ∑ ∈
=

Oa a
τµ has column sums equal to 1

3. for all sequences
r
aa ...

0
it is holds that 0...1

0
0

≥w
aa

r

ττ .”

For more details and numerical examples about the generation of OOM from HMM, see

[69].

Condition 1 and 2 were mentioned in relaxation a) and b) while the condition 3 ensures

that calculated probabilities obtain non-negativity values. Note that for the given

operator
Oaa ∈)(τ no known way exists to decide whether the condition 3 holds true [5].

If _

a

τ is concatenations of operators
0

...
aa

r

ττ then we can compute the probabilities of a

finite-length sequence by

0

_

0 _1)(waP
a

τ= (4. 4. 4)

In this section we have described OOM as the matrix structure),)(,(0wR
Oaa

m

∈τ . In the

previous section we have discovered the abstract OOM structure),)(,(εftF Oaa ∈
.

The two structures are related via dimension of process and dimension of a OOM

matrix. If a process has the dimension m, then a concrete matrix OOM of the matrix

dimension m exists. A matrix m-dimensional OOM specifies a process with the

dimension k, mk ≤ . An m-dimensional process has no matrix OOM with a dimension

smaller than m.

Thus, if a process has the dimension m, and we have a k-dimensional OOM A describing

this process, then an m-dimensional OOM A’ exists which is equivalent to A.

Furthermore, A’ is minimal-dimensional in its equivalence class. A minimal-

dimensional OOM A’ can be constructively obtained from A in several ways which are

described in [5].

 74

Generation Procedure

To solve the diagnosis problem (determine the current system state) we describe

techniques of how to generate state vector _

a

w of OOM),)(,(0wRA
Oaa

m

∈= τ after

history
_

a has been observed.

The entire generation procedure is executed as follows:

1. Define initial state vector as
0
ww =

2. Choose next observation
n
a

n
a is the observation at time n after

10
,..., −naa have already been produced.

 At time n=0, the probability of producing a is)(0 aXP = . To generate the

symbol
0
a with the correct distribution we need to consider the probabilities for

each observation Oa∈ and then to choose one with the highest value. For this

we introduce probability vector T
aXpaXPp))()...((0

1

00

α
=== . This is done

by calculating
00 1)(waXP

a
τ== using (4. 4. 4) for all Oa∈ . A faster way to

do this is to calculate the row vector
a
τ1 for all a, and collect them in the matrix

∑





















=

ατ

τ

a

a

1

.

.

.

1 1

 (4. 4. 5)

and derive

∑= 00
wp . (4. 4. 6)

At every time step n>0 the observation
n
a can be chosen according to the

probability vector p = T
aaPaaP))|()...|((
__

1 α =∑ _

a

w .

 75

3. Having the observation
n
a we can take the corresponding operator

n
a
τ and

update the state vector by
na

na

n w

w
w

n

n

τ

τ

11
=+

(for details see [5]) and continue

at step 2.

HMMs and OOMs

The conceptual difference between the representation of HMM and OOM lies in the

display of their theories in the stochastic system. HMM views stochastic systems as

trajectories in a state-space, where observations are locations in that state-space, while

OOM understands trajectories as a sequence of (linear) operations. Each observation

corresponds to the sequence of operations built on the previous observation.

Figure 25 (a) The standard view of trajectories. A time step operator T yields a

sequence ABAA of states. (b) The OOM view. Operators A and B are concatenated to

yield a sequence of observations. [69]

OOM and HMM have different understandings of their states. HMM states denote the

set of physical states of the target system. By contrast, OOM states represent the

expectation about the system’s future and the observable development provided by an

observed past.

OOMs are more general than HMMs since OOM can express every HMM, but HMM

can not express every OOM.

 76

Learning Algorithm

The learning algorithm for OOM estimates linear operators from a sequence of

observations. Before presenting the basic OOM learning algorithm, we quickly provide

an overview the most important properties of OOM.

Model equivalence

The central theorem of the OOM theory is about the equivalences (describing the same

stochastic process) of two minimal-dimensional OOMs:

“Two minimal-dimensional OOMs),)(,(0wRA
Oaa

m

∈= τ and)',)'(,(' 0wRA
Oaa

m

∈= τ

are equivalent if and only if there exist an bijective linear map mm
RR →:ρ , satisfying

the following conditions:

1. '

00)(ww =ρ ,

2. 1' −
= ρρττ

aa
 for all Oa∈ ,

3. ww ρ11 = for all m
Rw∈ .”[5]

A matrix ρ satisfies condition 3 only if each column of ρ sums up to one. Having one

minimal-dimensional OOM A, we can derive the other equivalent OOMs by applying

any transformation matrix ρ with the columns’ sum = 1.

Indicative and characteristic events

The key concepts of the OOM learning algorithm are based on indicative and

characteristic events. These events are received from dividing the process trajectories

into past and future.

We have already defined set *
O as a collection of all strings with elements from set O.

k
O is the set of strings with length k

m

k
AAO ∪∪= ...

1
. If for some sequences mbb

_

1

_

,...,

a non-singular m x m matrix with elements
jiji bAP ,

_

])|[((where]|[
_

ji bAP

denotes∑
∈

]|[
__

_ j

Aa

baP

i

) exists, then
i
A (i=1,…,m) is a set of characteristic events.

 77

Figure 26 Storing out a process realisation into indicative and characteristic events

[70]

Interpretability

Based on the theory of characteristic events we can estimate the probability of OOM

producing a certain characteristic event when it is started in statew . We assume that for

a m-dimensional process with a set of visible possible observations O the characteristic

events
m
BB ,...,

1
and OOM),)(,(0wRA

Oaa

m

∈= τ exist. A is interpretable with respect to

m
BB ,...,

1
, if the states w of A have the property T

m
wBPwBPw))|()...|((1= [5]. The

idea behind interpretable OOM is to take the next event probabilities from the current

state vector. An important property of the interpretability summed up by H. Jaeger

reads:

“In an OOM that is interpretable with respect to
m
BB ,...,

1
it holds that

1. ,))()...((10

T

m
BPBPw =

2. ,))()...((
_

1

_

0_

T

m
a

BaPBaPw =τ ” [5]

This property allows us to estimate the state vectorw from the sequence of observations

using frequency counts. With the estimated state vectors we construct the operators

using linear algebra. This property is the key to the computational advantage associated

with OOMs.

OOM basic learning algorithm

It is often a problem in the robot domain that a model of a specific robot system is not

available, only a sequence of observations }...{ 10 N
aaaS = , produced by some hidden

process. Learning OOM is a technique for estimating or computing a model from the

 78

given sequence. In this part of the paragraph the fundamental steps of the learning

algorithm and a simple example of its implementation are presented. A detailed

description can be found in [5].

Step 1 Design model dimension m and length of characteristic event k

Step 2 Choose characteristic events
m
BB ,...,

1
and indicative sequences maa

_

1

_

,...,

so that matrix
mjiijS BaPV ,...,1,

_
))((== is non-singular,

where

1||

)(
)(

_

_
#

+−

∈
=

i

i

iS

BaN

SwithinBbwherebaoffrequency
BaP

Step 3 Compute matrix
mjiijSa aBaPW ,...,1,

_
##

))((== for every Oa∈

Step 4 Obtain .)(1##
~

−
= VW

aa
τ

A simple example can be found in the lecture H. Jaeger (Discrete-time, discrete-valued

observable operator models: a tutorial) [reference]

4. 4. 2 Learning with OOMs: Challenges and Their Solutions

The basic OOM learning algorithm does not have a local minima problem from which

the EM algorithm (see subsection 4. 2. 3) suffers and it is computationally cheap.

Besides these advantages it has the following drawbacks:

1. The statistical efficiency (model variance) depends on the choice of indicative

and characteristic events. For the infinite sequence, the selection of indicative

and characteristic events may be randomly chosen to estimate a correct model

operator. With finite training data however, the selection of indicative and

characteristic events is difficult. Several methods are determined to overcome

the problem. One of them is the extension of the basic learning algorithm by the

efficiency sharpening (ES) method, which solves the problem by only using

these events for the estimation of an initial model
0
A . The better models

,...,
21
AA are iteratively obtained from

0
A without using such events at all [5].

 79

2. As there are only heuristic solutions to the problem that the OOM learning

algorithm needs to know the “correct” model dimension in advance, we have to

define criteria for choosing the dimensionality. The dimension m should be

chosen large enough, because the model needs to capture all the properties of the

training sequence distribution, and small enough to prevent overfitting.

3. Even with efficient characteristic and indicative events, the basic OOM learning

algorithm has limited statistical efficiency. Since only the substrings of some

determined length are considered in the learning algorithm, the other information

contained in the training data is ignored. This problem can be solved by using a

suffix tree [5] to represent the state sequence.

4. The most critical issue with the OOM learning algorithm is the negative

probability problem (NPP). It is unknown whether an OOM-like system is

indeed a valid OOM or not. Thus the learning algorithms of OOMs can obtain

invalid models which assign negative numbers to probabilities of some (rare)

events instead of small positive numbers. The problem is still not solved. H.

Jaeger describes an unexplainable trick to overcome it. The idea is to transform

the reverse)(' nrA (ES-method) matrix (before using it) into a valid OOM by

inserting all negative elements in the operator matrixes of)(' nrA , set them to zero

and renormalize their columns [5]. Another solution of this problem is using an

alternative version of OOM – norm-OOM (see the next subsection).

4. 4. 3 OOM Flavours

"

Input-output observable operator models (IO-OOMs) [86] are extensions of the basic

OOM theory with added input data to control the system output.

The IO-OOM is defined as set of observable operators represented by matrixes of real-

valued elements and an initial state vector. Note that for every fixed input the structure

is just an ordinary OOM (Figure 27). So an IO-OOM is a set of classical OOMs, one for

each possible input, where the given input switches between these OOMs. All incoming

OOMs share the same state-space. The detailed description of IO-OOM theory and

examples is presented in [86].

 80

Figure 27 IO-OOM structure [OOM slides]

As already mentioned, the critical issue of OOM is the negativity probability problem,

which remains unsolved in OOM theory. To avoid NPP, M. Zhao and H. Jaeger in one

of theirs latest works [86] introduce another similar model class, norm observable

operator models (norm-OOM). The idea of norm-OOMs is the following: in the way an

OOM model stochastic process can be extended for describing numerical functions, so

can NPP be avoided by applying a nonnegative function on the state vectors of OOM.

In particular, for norm-OOMs, we can compute the probability of an initial sequence

*
_

Oa∈ by ,)(
2

0

_

_waP
a

τ= where ||.|| is Euclidian norm. Although the NPP-problem is

solved, norm-OOM still suffers from the complexity of the theory and calculation

problems.

4. 4. 4 Numerical examples

In this section practical implementation of the OOM theory will be conducted. There are

two main tasks: checking the efficiency of the OOM probability estimation algorithm

and comparing the model learning techniques of OOM and HMM. The first example

illustrates the ability of the OOM generation procedure to estimate the system behaviour

for the given model. The objective of this implementation is to show how it can be

applied in fault diagnosis.

The second example presents the experimental study of learning algorithms for two

different schemes of modelling dynamic systems without control: HMM and OOM. For

OOM1 OOM2 OOM n

Control1 Control2 Controln

 81

the OOM representation, we use the Matlab package developed by H. Jaeger [4]. To

evaluate how well an HMM can learn the data, K. Murphy's Matlab toolbox is available

[87].

Example for State Estimation

For demonstration purposes we apply the prediction algorithm to the four-wheel OMNI

robot described in section 3. 2. The values for the transition matrix and the observation

matrix are obtained from the original matrixes given in the HMM example, subsection

4. 2. 5, only with a reduced number of fault states (only four faults were considered:

wheel 1, 2, 3 and 4 broken).

Transition matrix:

markovMat = [0.8 0.05 0.05 0.05 0.05;

 0.1 0.75 0.05 0.05 0.05;

 0.1 0.05 0.75 0.05 0.05;

 0.1 0.05 0.05 0.75 0.05;

 0.1 0.05 0.05 0.05 0.75];

Observation matrix:

obsmat = [0.8 0.05 0.05 0.05 0.05;

 0.1 0.75 0.05 0.05 0.05;

 0.1 0.05 0.75 0.05 0.05;

 0.1 0.05 0.05 0.75 0.05;

 0.1 0.05 0.05 0.05 0.75];

Jaeger’s Matlab package uses an HMM representation to create an interpretable OOM

from it. To test the OOM diagnosis algorithm we assume a sequence of states which

reflects normal and fault states. The sequence was generated by hand. According to the

sequence the output data can be simulated. Commanding sensor measurements and a

probabilistic model, we can apply the diagnosis algorithm to estimate system behaviour

and compare it with the given real behaviour.

We assume four various robot behaviour scenarios: the robot starts in the normal state

and at some moment in time one of its wheels breaks. For the first scenario it is wheel 1,

 82

for the second wheel 2, etc. The duration of each scenario was divided into ten moments

and diagnosis was performed for each one. For the first three recorded moments the

behaviour is fixed to be normal, for all following moments it is defined that the

corresponding faults take place. The algorithm results are depicted in Figure 28.

Figure 28 Estimated probability distribution using OOM

In all cases we can see that faults were detected with a high probability value. It lies

between 0.5 and 0.6 although in the fifth (transient moment) it is hard to draw

conclusions about the system state since both normal and fault states have a similar

probability value. The full version of the example is given in Appendix C.

After this simple example we can conclude that the OOM algorithm achieves good

estimation results for a well-defined model. So the second task will be to test how well

the OOM learning algorithm can estimate a model of the robot from training data.

Implementation and Comparison of HMM and OOM Learning Algorithms

In this section the performance of OOM and HMM learning algorithms on the same

dataset are checked. The aim of the example is to test the HMM and OOM learning

 83

algorithms, to compare their output for 1.000 states and to check the OOM validation

for 100.000 states.

The code of this example is a slight update of tutorialDemo.m file from the original

package [88].

We will first consider the main steps of the exemplary application and then provide the

details. Finally the experimental result will be explained.

Steps of the example:

1. Generate training dataset S

2. Design parameters:

a) Model dimension,

b) Block length

3. Application of OOM learning algorithm

a) Learn model from dataset S with OOM algorithm

b) Draw results for 1000 generated states of OOM

4. Application of HMM learning algorithm

a) Learn model from dataset S with EM algorithm

b) Draw results for 1000 generates states of HMM

5. Draw results for 100.000 generates states of OOM

1. Generate training dataset S

In order to apply learning algorithms we need the training dataset. Since neither a real

robot nor simulators were available to receive a training sequence, it has to be generated

from a defined model. In our case an OOM was created from an HMM. Design

parameters are the number of states stateNr (OOM dimension) and the number of

observations obsNr.

Transition matrix:

markovMat = [0.8 0.1 0.1;

 0.1 0.8 0.1;

 0.1 0.1 0.8];

Observation matrix :

obsmat = [0.8 0.1 0.1;

 0.1 0.8 0.1;

 0.1 0.1 0.8];

 84

The values for transition matrix and observation matrix are obtained from the original

matrixes given in the subsection 4. 2. 5 with a reduced number of fault states and

normalized matrix rows. The OOM package supports only a three-dimensional model

and no more than three observations.

2. Design parameters

Based on these matrixes we create an OOM for use as a training data generator. The

package provides two adjustable parameters: the dimension M of the vector space and

the length L of the sequences to be sampled from the data.

3. Application of OOM learning algorithm

learnOOM (trainData, modelDimension, sampleBlockLength) is an implementation of

the learning algorithm (see Appendix D). It learns an OOM model from training data

trainData, which must be a single sequence. The dimension of the model is set by the

modelDimension parameter and is learnt by sampling from trainData statistics of

subsequences of length sampleBlockLength.

To present the results of the learning algorithm we generate a state sequence of length

1000 for the generator OOM and plot it as a set of points with different colours.

Actually we will use an interpretable version of the generated OOM.

The generated OOM can be transformed into many different equivalent, interpretable

OOMs depending on the choice of characteristic events. As mentioned by H. Jaeger [5],

the interpretability enables us to visualize the state dynamics of an OOM. The three

dimensions of OOM, its interpretable states being probability vectors, are non-negative

and thus lie in the intersection of the positive orthant of 3
R with the hyperplane

}11|{ 3
=∈= xRxH ."This intersection is a triangular surface, its corners marking the

three unit vectors of
3
R [5].

Figure 30 depicts three plots of states obtained from generating runs of three 3-

dimensional OOMs over an observation alphabet of size 3, which was made

interpretable with reference to the same characteristic events as the original generator.

Note that if this plot shows points outside the triangular area, the model is not a valid

OOM in that it would predict negative probabilities for some events in some states. In

the appendix B function plotStates3DColored the algorithm of state evaluation is

conducted.

 85

4. Application of HMM learning algorithm

The same probabilistic data is used to receive a HMM model trained by the EM

algorithm. A similar graphical representation of states for HMM [5] is applied to plot

states.

5. Draw results for 100.000 generated states of OOM

It has already been mentioned that the plot depicts triangle and lying insight of it system

states if one or several states outside the model are invalid. Even if all 1000 states are

situated in the triangle of OOM, we can not be sure whether the model is valid or not.

For this proposal the number of states is enlarged to 100.000 and plotted again.

Plot Results

To evaluate the generated hidden Markov model and observable operator model and

compare them with each other, their plots can be used. The plot of original model

depicted in Figure 29.

Figure 29 State sequence of length 1.000 of the original model

The points on the plot correspond to the states of the model. There are three kinds of

states each one with its own colour. It is not important to know which colour

corresponds to which kind of state. The goal is to show invalid OOM or HMM which

stuck to local minima.

OOM includes a set of linear operators and an initial system state. To generate the other

states we randomly choose an observation, select the corresponding operator and apply

the operator to current state – the result is the next state. The information about

 86

generated states and corresponding observations is saved. By repeating the process

1.000 times, we obtain the set of states with corresponding observations. Based on this

information the plot in Figure 30 can be created.

Efficiently estimated models:

Figure 30 HMM and OOM estimated models

The first plot shows an estimated HMM with 1.000 points (states), the second plot

presents an estimated OOM with 1.000 states and the third plot corresponds to an OOM

with 100.000 states

By applying two different learning schemes HMM and OOM to the given dataset we

receive learning models. To plot them, the technique described above is applied. If the

generated model is perfect its plot should be identical to the original one that is depicted

in figure 29. Plots in Figure 30 introduce well learned models for HMM and OOM

accordingly.

 87

Bad HMM (stuck in local minima)

Figure 31 Variants of bad HMM

During the experimental performance the generated learned HMMs got stuck in bad

local minima. The generation of bad models depends on a training dataset. In several

cases we had a training sequence of length 1.000 on which EM always got stuck in a

process model that had no memory at all (dim = 1, see second plot in Figure 31).

Invalid OOM

Not only the learning HMM algorithm shows unwelcome results, the learning OOM

method generates an invalid model too. As described in subsection 4. 4. 2, the critical

problem of the OOM learning algorithm is the negative probability problem when the

generated states include negative values. Graphically this problem is visualised by the

points lying outside of the triangular area.

a) The invalid OOM generates states with negative probabilities on both cases for

the sequences of length 1000 and 100000.

 88

Figure 32 States distribution generated by invalid OOM.

The first plot presents the 1.000 points (states) generated by the invalid OOM, the

second plot depict 100.000 points of the same OOM.

Figure 32 introduces the state distribution of invalid OOM model. In plot a) only two

states with negative probability appear. The generated state sequence with 100.000

entries already presents 250 invalid states for the same OOM. Note that the amount of

wrong states does not influence the model quality. Even if one million states would be

generated and only one comprises negative values the model would be invalid.

b) The learned OOM generates states with normal entries for the sequence of

length 1.000 but states with negative probabilities with sequence of length

100.000.

Figure 33 States distribution generated by invalid OOM

The first plot shows 1.000 points (states) generated by the invalid OOM, the second plot

shows 100.000 points of the same OOM.

 89

Unfortunately we can not be sure about the accuracy of the learned model even if it has

only valid states, invalid states could always occur in the future. Figure 33 depicts this

case: The model seems to be valid in the beginning, but when the sequence is enlarged

the model becomes invalid.

Statistical results

In the example described above the OOM learning algorithm and the EM algorithm for

HMM are applied to the generated training data. After repeating the experiment a

thousand times we analysed the received plots for learned HMM and OOM state

distribution. Based on the analysis the following conclusions about learning algorithm

efficiency could be drawn:

- In 553 of 1.000 cases the EM algorithm for HMM got stuck to local minima

(Figure 31). Moreover, in thirty of the 553 ”stuck” cases the process model had

dimension 1 (see second plot in Figure 31).

- The learned OOMs achieved better results, as only in 215 of 1.000 cases the

models were invalid (Figure 32). But this number rose to 331 when 100.000

states were checked.

The results of these experiments prove that the hidden Markov models were not able to

learn the given training dataset in a satisfactory manner. This lack in the HMM learning

algorithm is due to the fact that the EM algorithm reaches a local minimum and is

unable to move away from it. The OOM learning algorithm on the other hand does not

have a local minima problem and always generates a sufficient model. But in spite of

these facts it is not really an alternative since it suffers from invalid models which

produce states with negative values. Although the OOM algorithm possesses invalid

models the total experimental result shows that it performs better, at least as far as this

data set was concerned.

4. 4. 5 Summary

In this section we have established the basic theory of observable operator models

(OOM) and compared the OOM learning algorithm with the EM algorithm for the

hidden Markov model (HMM).

 90

OOM is a recently developed class of models to describe a linear decision process. It is

presented as a mathematical model of linear operators, which updates the future

expectations based on observations. OOM sets the observable events a of a process to

the linear observable operator
a
τ acting on a real-value vector space of system states w

(probability distributions). OOM is an alternative, more general approach to the hidden

Markov model. Its theory is expressed in terms of linear algebra and its learning

algorithm ES estimates models more accurate.

The OOM learning algorithm has a crucial remaining unsolved problem - the negative

probability problem (NPP), since no algebraic criterion is available to control whether

an OOM-like system is a valid model or not. Using norm observable operator models

(norm-OOMs) allows avoiding the NPP. But this approach is in its infancy stage and

many questions are still to be answered.

Based on the statistical data of the experimental results, we conclude that the OOM

algorithm achieves a more accurate model than the HMM method for the given dataset,

but the NPP problem is a great obstacle for implementing OOM in practical

applications.

 91

5. Comparison of Solutions

The investigations about the various fault diagnosis approaches are summarized in a

comparison table, which shows assumptions strengths and weaknesses for each

algorithm.

 92

 Parity Space Hidden

Markov

Model

Particle Filter Observable Operator

Model

Modelling of

Data

Linear Gaussian

State-space model

Partially observed

finite state-space

Markov chain

Markovian

nonlinear, non-

Gaussian state-

space model

Exhaustive collection of

probabilities of every

possible observation

sequence describing discrete

time discrete value stationary

process.

Modelling of

Faults

Additive

Fault modes

(fault causes

process to behave

according to fault

model)

Fault modes Fault modes

Advantages Simplicity

- Established

both in theoretical

and practical

application fields

- Comfortable

structure (hidden

states and

observations)

- Well interpreted

hidden states in

term of

application

- Does not require

fixed computation

time, since it

depends on the

number of

particles

- Non-Gaussian

distributions

- Non-linear state

and observation

model

- Mixtures of

discrete and

continuous states

- Model class richer than for

HMM

- Theory expressed in terms

of linear algebra

Disadvantages - Good model

representation

obligatory

- Sensitivity

measurement errors

and state noise

- Linear model

- Gaussian noise

- Supports only

discrete system

states

Computational

power needed

Lack of practical

applications

L
ea

rn
in

g
 A

lg
o
ri

th
m

s

 Principle

Component Analysis

(PCA)

Expectation

Maximization

(EM) Algorithm

- Basic

Learning

Algorithm

Efficiency

Sharpening

(ES)

Algorithm

Advan-

tages

Few parameters to

tune: window size L

and number of

components

Wide range of

applications

- More

effective than

learning

algorithm of

HMM

- Generates

more

accurate

model than

HMM EM-

algorithm

- Needs less

runtime than

HMM

algorithm

Disadvan

-tages

- Restricted to linear

model

- Order of model

needs to be decided

Gets trapped in

local maxima

 - Invalid

generated

model (NPP)

- Statistical

inefficiency

Invalid

generated

model

(NPP)

Table 4 Comparison of Algorithms

 93

For a linear state-space model with additive faults, analytical results can be derived by

the parity space approach. If a model is unknown but known to be linear, the principle

component analysis can be used. The method has too many restrictions to be applied in

fault diagnosis

If the process describing system behaviour is a Bayesian model with Markov

assumptions then the data can be modelled as hidden Markov process. The HMM filter

solves diagnosis problems for discrete-state finite HMM. It is one of the most general

and widely-used filters in practice. It has a well established structure to represent a

diagnosis model of faulty and normal behaviours and is therefore simple to implement.

The HMM training algorithm (EM) is not completely satisfactory due to slow

convergence and the presence of many local solutions (local maxima problem).

If data are modelled as a continuous-state Markov model and continuous-states are

expressed via linear or nonlinear equations, with particle filter it is possible to compute

approximately the developing sequence of posterior distributions. Approximation errors

and the need for computational power can be managed by setting the number of

particles. This property makes the use of particle filter especially attractive in practice.

Unfortunately, it has a drawback for fault diagnosis since the filter needs to have a state

transition and noise model for the faulty modes. If a non-modelled fault occurs its filter

response is unpredictable. "

The observable operator model (OOM), an alternative to HMM, is a mathematical

model of linear operators for describing stochastic time-series processes. Compared

with HMM OOM has several attractive properties: its theory presented in terms of linear

algebra is easier to work with. OOM is able to express a broader range of processes than

HMM. The available learning techniques are more accurate and do not get stuck to local

maxima. Unfortunately, the basic version of the OOM learning algorithm is statistically

inefficient and suffers from the negative probability problem (NPP). The novel

approach to OOM estimation efficiency sharpening (ES) has a better statistical

efficiency, but the NPP problem is still not solved. A variation of OOM, the norm-OOM

allows avoiding the NPP. OOM for non-stationary processes could be used to diagnose

environment faults. As the process of changing robot states depends on the environment

and therefore is non-stationary, the design of a model for a non-stationary process can

more exactly describe the normal and faulty behaviour of a robot with respect to

changes in the environment.

 94

6. Conclusions

The goal of this paper was to attempt a comprehensive evaluation of fault diagnosis

methods in the robot domain. The objective of this work was to provide a kind of

manual which should help a user to decide which of the four presented algorithms

would best fit the demands of a particular autonomous system. The complex of the

presented algorithms included one of the pioneering techniques in the fault diagnosis

field – parity space, one of the most ubiquitous and famous – the hidden Markov model,

a state-of-the-art algorithm – particle filter and a novel, developing approach –

observable operator model.

The work can only be a first step in laying a foundation for an extended evaluation of

diagnosis methods in the future. The apparent next step is to check the efficiency of the

presented methods by applying them to the datasets provided by real robots, increasing

the range of possible fault situations. Its complexity makes the mobile manipulator a

good choice as a robot platform for testing the algorithms.

The OOM learning algorithm ES estimates more accrued models of stationary processes

than HMM. This fact makes the OOM techniques very promising for future

implementation as fault diagnosis methods. In my opinion norm-OOM should be the

next diagnosis algorithm for evaluation. The negative probability problem being solved,

an OOM for non-stochastic processes, could be a very promising tool for an efficient

fault diagnosis of robots in a dynamic environment.

Hopefully in the future these achievements will help not only to select appropriate

diagnosis algorithms for the demands of a given robot, but also to develop a complete

fault handling system including fault recovery.

 95

 96

Appendices

A. State Estimation with Hidden Markov Model

% FILE NAME : HMM4WheelOMNI.m

% PURPOSE : HMM for Four Wheel Omni Driver.

% TOOLBOX : Murphy, Kevin. Hidden Markov Model Toolbox for Matlab
% http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html

T = 10; % Number of time steps.
O = 13; % Number of observations
Q = 13; % Number of states
smallErr=0.000001; % Value of an error

% ==
% INITIALISATION AND PARAMETERS
% ==

% =====PROBABILISTIC MODEL REPRESENTATION=============================
% Transition matrix for discrete state depending on observations

transmat=zeros(Q,Q);
transmat(:,:,1) = ...
[0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;
 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0;
 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0;
 0.5 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0.2143 0.1 0.1 0 0;
 0.5 0.2143 0.2143 0.2143 0.6 0.2143 0.2143 0.2143 0.2143 0 0 0.1 0.1;
 0.025 0.2 0.025 0.025 0.0083 0.5 0.2 0.0083 0.0083 0 0 0 0;
 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0;
 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0;
 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0;
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0;
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0;
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2;
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5];

act=ones(1,T);

% measurement matrix
obsmat = zeros(Q,Q);
obsmat = ...
[0.8 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0 0 0 0;
 0.075 0.6 0.025 0.025 0.025 0.1 0.1 0.025 0.025 0 0 0 0;
 0.075 0.025 0.6 0.025 0.025 0.025 0.025 0.1 0.1 0 0 0 0;
 0.075 0.025 0.025 0.6 0.025 0.025 0.025 0 0 0.1 0.1 0 0;
 0.075 0.025 0.025 0.025 0.6 0.025 0.025 0 0 0 0 0.1 0.1;
 0.025 0.2 0.025 0.025 0.025 0.5 0.2 0 0 0 0 0 0;
 0.025 0.2 0.025 0.025 0.025 0.2 0.5 0 0 0 0 0 0;
 0.025 0.025 0.2 0.025 0.025 0 0 0.5 0.2 0 0 0 0;

http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html

 97

 0.025 0.025 0.2 0.025 0.025 0 0 0.2 0.5 0 0 0 0;
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.5 0.2 0 0;
 0.025 0.025 0.025 0.2 0.025 0 0 0 0 0.2 0.5 0 0;
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.5 0.2;
 0.025 0.025 0.025 0.025 0.2 0 0 0 0 0 0 0.2 0.5];

L=4; % sliding window size

% ================== Four Wheel OMNI Robot ==========================
% Robot parameters
angle = 0.588; % angle between wheels
R=0.25; % robot radius

% Forward kinematics matrix the product of this matrix and
% wheel velocities vector is robot velocities vector

controlMat(:,:)=[sin(angle) -sin(angle) -sin(angle) sin(angle);...
 -cos(angle) -cos(angle) cos(angle) cos(angle);...
 1/(4*R) 1/(4*R) 1/(4*R) 1/(4*R)];

obserVal=ones(1,T); % sequence of observations
threshold=0.1;

% ================== Load data =======================================
% - u(:,T)-matrix of 4xT size consists set of wheel velocities
% - velObs(:,T)-matrix of 3xT size includes set of robot velocities

load('C:\KA\Master_Thesis\MATLAB\PF\4wheelOMNI\RobotPoseData.mat');

% ==
% SEQUENCE OF OBSERVATIONS
% ==

% ======= Generation of the sequence of observations ===
stuckDecayArr=zeros(3,T);
robotVelN=zeros(3,T);
velMatrix=zeros(3,4);
for t=1:T
 % calculate robot velocity "robotVelN" for the given control "u"
 % "u" is vector of wheel velocities
 robotVelN(:,t)=controlMat(:,:,1)*u(:,t);

 % compare measured and calculated velocities
 if(velObs(:,t)~=robotVelN(:,t))

 % fault is here
 velMatrix(:,1)=[
 (velObs(1,t)-robotVelN(1,t))/sin(angle)+u(1,t)+smallErr;
 (-velObs(2,t)+robotVelN(2,t))/cos(angle)+u(1,t)+smallErr;
 4*R*(velObs(3,t)-robotVelN(3,t))+u(1,t)+smallErr];
 velMatrix(:,2)=[
 (-velObs(1,t)+robotVelN(1,t))/sin(angle)+u(2,t)+smallErr;
 (-velObs(2,t)+robotVelN(2,t))/cos(angle)+u(2,t)+smallErr;
 4*R*(velObs(3,t)-robotVelN(3,t))+u(2,t)+smallErr];
 velMatrix(:,3)=[
 (-velObs(1,t)+robotVelN(1,t))/sin(angle)+u(3,t)+smallErr;
 (velObs(2,t)-robotVelN(2,t))/cos(angle)+u(3,t)+smallErr;
 4*R*(velObs(3,t)-robotVelN(3,t))+u(3,t)+smallErr];
 velMatrix(:,4)=[
 (velObs(1,t)-robotVelN(1,t))/sin(angle)+u(4,t)+smallErr;
 (velObs(2,t)-robotVelN(2,t))/cos(angle)+u(4,t)+smallErr;
 4*R*(velObs(3,t)-robotVelN(3,t))+u(4,t)+smallErr];
 % motor 1 faults

 98

 if(-0.00001<(velMatrix(1,1)-velMatrix(2,1))&
 (velMatrix(1,1)-velMatrix(2,1))<0.00001)&&...
 (-0.00001<(velMatrix(2,1)-velMatrix(3,1))&
 (velMatrix(2,1)-velMatrix(3,1))<0.00001)
 obserVal(t)=2;

 % save each value 1-4*R*((robotVelN(3,t)-
 % velObs(3,t))/u(1,t)) of
 % the motor1 with corresponding obserVal(t)=2 and
 % vector velMatrix(1,1)

 stuckDecayArr(:,t)=[obserVal(t);
 velMatrix(1,1);
 1-4*R*((robotVelN(3,t)-
 velObs(3,t))/u(1,t))];

 if(t>=L)

 % copy last L data to stuckVal
 stuckVal=(stuckDecayArr(2,t-L+1:t));
 dacayVal=(stuckDecayArr(3,t-L+1:t));
 k=find(stuckDecayArr(1,t-L+1:t)==2);
 % check weither last L faults happend with the motor1

 s=find(0<=dacayVal&dacayVal<1);
 if(length(k)==L)

 %Motor 1 stuck
 copyArr(1,1:L)=stuckVal(1);
 if(-0.00001<sum(copyArr-stuckVal)& …
 sum(copyArr-stuckVal)<0.00001)
 obserVal(t)=6;

 %Motor 1 dacay
 elseif (length(s)==L)
 sortArr=sort(dacayVal,1);
 if(-0.00001<sum(sortArr-dacayVal)&
 sum(sortArr-dacayVal)<0.00001)
 obserVal(t)=7;
 end
 end
 end
 end

 % motor 2 faults
 elseif (-0.00001<(velMatrix(1,2)-velMatrix(2,2))&
 velMatrix(1,2)-velMatrix(2,2))<0.00001)&&...
 (-0.00001<(velMatrix(2,2)-velMatrix(3,2))&
 (velMatrix(2,2)-velMatrix(3,2))<0.00001)
 obserVal(t)=3;
 stuckDecayArr(:,t)=[obserVal(t);
 velMatrix(3,2);
 1-4*R*((robotVelN(3,t)-
 velObs(3,t))/u(2,t))];
 if(t>=L)
 stuckVal=(stuckDecayArr(2,t-L+1:t));
 dacayVal=(stuckDecayArr(3,t-L+1:t));

 % check weither last L faults happend with the motor2
 k=find(stuckDecayArr(1,t-L+1:t)==3);
 s=find(0<=dacayVal&dacayVal<1);

 if(length(k)==L)

 99

 %Motor 2 stuck
 copyArr(1,1:L)=stuckVal(1);
 if(-0.00001<sum(copyArr-stuckVal)&
 sum(copyArr-stuckVal)<0.00001)
 obserVal(t)=8;

 %Motor 2 dacay
 elseif (length(s)==L)
 sortArr=sort(dacayVal,1);
 if(-0.00001<sum(sortArr-dacayVal)&
 sum(sortArr-dacayVal)<0.00001)
 obserVal(t)=9;
 end
 end
 end
 end

 % motor 3 faults
 elseif (-0.00001<(velMatrix(1,3)-velMatrix(2,3))&
 (velMatrix(1,3)-velMatrix(2,3))<0.00001)&&...
 (-0.00001<(velMatrix(2,3)-velMatrix(3,3))&
 (velMatrix(2,3)-velMatrix(3,3))<0.00001)
 obserVal(t)=4;
 stuckDecayArr(:,t)=[obserVal(t);
 velMatrix(3,3);
 1-4*R*((robotVelN(3,t)-
 velObs(3,t))/u(3,t))];

 if(t>=L)
 stuckVal=(stuckDecayArr(2,t-L+1:t));
 dacayVal=(stuckDecayArr(3,t-L+1:t));
 % check weither last L faults happend with the motor3

 k=find(stuckDecayArr(1,t-L+1:t)==4);

 s=find(0<=dacayVal&dacayVal<1);
 if(length(k)==L)

 %Motor 3 stuck
 copyArr(1,1:L)=stuckVal(1);
 if(-0.00001<sum(copyArr-stuckVal)&
 sum(copyArr-stuckVal)<0.00001)
 obserVal(t)=10;

 %Motor 3 dacay
 elseif (length(s)==L)
 sortArr=sort(dacayVal,1);
 if(-0.00001<sum(sortArr-dacayVal)&
 sum(sortArr-dacayVal)<0.00001)
 obserVal(t)=11;
 end
 end
 end
 end

 % motor 4 faults
 elseif (-0.00001<(velMatrix(1,4)-velMatrix(2,4))&
 (velMatrix(1,4)-velMatrix(2,4))<0.00001)&&...
 (-0.00001<(velMatrix(2,4)-velMatrix(3,4))&
 (velMatrix(2,4)-velMatrix(3,4))<0.00001)
 obserVal(t)=5;
 stuckDecayArr(:,t)=[obserVal(t);

 100

 velMatrix(3,4);
 1-4*R*((robotVelN(3,t)-
 velObs(3,t))/u(4,t))];
 if(t>=L)
 stuckVal=(stuckDecayArr(2,t-L+1:t));
 dacayVal=(stuckDecayArr(3,t-L+1:t));
 k=find(stuckDecayArr(1,t-L+1:t)==5);
 % check weither last L faults happend with the motor4

 s=find(0<=dacayVal&dacayVal<1);
 if(length(k)==L)

 %Motor 4 stuck
 copyArr(1,1:L)=stuckVal(1);
 if(-0.00001<sum(copyArr-stuckVal)&
 sum(copyArr-stuckVal)<0.00001)
 obserVal(t)=12;

 %Motor 4 dacay
 elseif (length(s)==L)
 sortArr=sort(dacayVal,1);
 if(-0.00001<sum(sortArr-dacayVal)&
 sum(sortArr-dacayVal)<0.00001)
 obserVal(t)=13;
 end
 end
 end
 end
 end
 else
 % normal mode
 obserVal(t)=1;
 stuckDecayArr(:,t)=[1;u(1,t);1];
 end
end

%===================== Plot mode states =============================
figure(1)
clf
plot(1:T,z,'r','linewidth',2);
ylabel('Observation modes','fontsize',15);
xlabel('Time','fontsize',15);
axis([0 T+1 0 Q+1]);
grid on;
% ==
% HMM ESTIMATION
% ==

% This part of code involve the functions from K. Murphy's HMM toolbox

tic; % Initialize timer for benchmarking
flops(0);
prior0 = normalise(transmat(1,:,1));
transmat0 = mk_stochastic(transmat);
obsmat0 = mk_stochastic(obsmat);
obsmat1=zeros(Q,T);

% Create observation matrix
for i=1:T
 obsmat1(:,i)=obsmat(:,obserVal(i));
end

% estimation of fault states forward-backward algorithms

 101

% HMM toolbox
[alpha, beta, gamma, loglik] = fwdback(prior0, transmat0, obsmat1,
'act', act);
time_pf = toc;

% ==
% SUMMARIES AND PLOTS
% ==
disp(' ');
disp('Overlooked errors');
disp('-----------------------------');
disp(' ');
disp('Execution time (seconds)');
disp('-------------------------');
disp(' ');
disp(['HMM filter = ' num2str(time_pf)]);
disp(' ');
filtDistPlot=[zeros(10,T)
 alpha(1,:)
 zeros(10,T)
 alpha(2,:)
 zeros(10,T)
 alpha(3,:)
 zeros(10,T)
 alpha(4,:)
 zeros(10,T)
 alpha(5,:)
 zeros(10,T)
 alpha(6,:)
 zeros(10,T)
 alpha(7,:)
 zeros(10,T)
 alpha(8,:)
 zeros(10,T)
 alpha(9,:)
 zeros(10,T)
 alpha(10,:)
 zeros(10,T)
 alpha(11,:)
 zeros(10,T)
 alpha(12,:)
 zeros(10,T)
 alpha(13,:)
 zeros(10,T)
]; % Zero pad to make plots look nice.

figure(2)
clf;
hold on
ylabel('t - time','fontsize',15)
zlabel('Pr(z_t|y_{1:t})','fontsize',15)
xlabel('z_t - state modes','fontsize',15)
title('HMM filter','fontsize',15)
for t=1:1:T,
 waterfall([1:153],t,filtDistPlot(:,t)');
end;
view(-20,60);
rotate3d on;
set(gca,'ygrid','off');
set(gca,'xtick',10:11:145);
set(gca,'xticklabel',{'N','W1','W2','W3','W4','M1s','M1d','M2s','M2d',
 'M3s','M3d','M4s','M4d'})

 102

B. State Estimation with Particle Filter

% FILE NAME : PF4omniDriver.m

% PURPOSE : PF for Four Wheel Omni Driver.

% TOOLBOX : N. de Freitas, software for classical particle filters
% and Rao- %Blackwellised particle filters
% http://www.cs.ubc.ca/~nando/sofware.html

clear;
echo off;

% ==
% INITIALISATION AND PARAMETERS
% ==

N = 200; % Number of particles.
T = 30; % Number of time steps.

% Here, we give you the choice to try three different types of
% resampling algorithms: multinomial (select 3), residual (1) and
% deterministic (2). Note that the code for these O(N) algorithms is
generic.

resamplingScheme = 2;

n_x = 3; % Continuous state dimension.
n_z = 7; % Number of discrete states.
n_y = 3;
n_u = 4; % Number control values

par.A = zeros(n_x,n_x,n_z); % Control matrix for state equation
par.B = zeros(n_x,n_x,n_z); % State noise
par.C = zeros(n_y,n_x,n_z); % observationmatrix
par.D = zeros(n_y,n_y,n_z); % observation noise
par.E = zeros(n_x,n_x,n_z);
par.K = zeros(3,n_u,n_z); % State control matrix
par.G = zeros(n_y,3,n_z);
for i=1:n_z,
 par.A(:,:,i) = eye(n_x,n_x);
 par.C(:,:,i) = eye(n_y,n_x);
 par.B(:,:,i) = 0.01*eye(n_x,n_x);
 par.D(:,:,i) = 0.01*eye(n_y,n_y);
 par.G(:,:,i) = eye(n_y,n_x);
end;

% Transition matrix for discrete state.
par.T = [0.75 0.05 0.05 0.05 0.05 0.05 0;
 0.025 0.7 0.025 0 0.05 0.05 0.05;
 0.1 0.05 0.8 0.05 0 0 0;
 0.1 0 0.05 0.8 0.025 0 0;
 0.1 0.05 0 0.05 0.8 0 0;
 0.05 0.05 0.025 0.025 0.025 0.8 0.025;
 0.05 0.05 0.025 0.025 0.025 0.025 0.8];

for i=1:n_z,
 par.T(i,:) = par.T(i,:)./sum(par.T(i,:));
end;

http://www.cs.ubc.ca/~nando/sofware.html

 103

par.pz0 = [0.75; 0.05; 0.05; 0.05; 0.05; 0.05]';
par.pz0 = par.pz0./sum(par.pz0);

par.mu0 = zeros(n_x,1); % Initial Gaussian mean.
par.S0 = 0.1*eye(n_x,n_x); % Initial Gaussian covariance.
par.fd = [0.01; 0.001];

%================== Four Wheel OMNI Robot ==========================

% Robot parameters
angle = 0.588; % angle between wheels
R=0.25; % robot radius
stuck_val = 0;
% Control matrix for the state equation
par.K(:,:,1)=[sin(angle) -sin(angle) -sin(angle) sin(angle);
 -cos(angle) -cos(angle) cos(angle) cos(angle);
 1/(4*R) 1/(4*R) 1/(4*R) 1/(4*R)];
for i=2:5
 par.K(:,:,i)=par.K(:,:,1);
 par.K(:,i-1,i)= par.K(:,i-1,i)*stuck_val;
end

% ==
% GENERATE THE DATA
% ==

% Load data from the file.
load('C:\KA\Master_Thesis\MATLAB\PF\4wheelOMNI\RobotPoseData.mat');

% The data includes input vector and true fault modes which happand
% with robot

% Initialization
x = zeros(n_x,T);
y = zeros(n_y,T);
z = ones(1,T);

% A sequence of observable states
for i=20:T
 z(i)=4;
end
u=zeros(4,T);

% Set input wheel velocities for each time step
for i=2:T
 u(:,i)=[2;-2;-2;2];
end

x(:,1) = [0;0;0];
angle=zeros(T,1);
robot_vel=zeros(3,1);

% create observasions for the given state sequence
for t=2:T,
 stuckVal=1;
 if(z(t)==6)
 robot_vel = par.K(:,:,1)*[3;u(2,t);u(3,t);u(4,t)];
 elseif (z(t)==7)
 par.K(:,:,7)=par.K(:,:,1);
 par.K(:,1,7)=par.K(:,1,7)*1/(1.01^(t-1));
 % define velocities
 robot_vel = par.K(:,:,7)*u(:,t);
 else

 104

 % define velocities
 robot_vel = par.K(:,:,z(t))*u(:,t);
 end

 x(:,t) = robot_vel;
 y(:,t) = par.C(:,:,z(t))*x(:,t);
 if(t>2)
 pred_val=[1 1];
 pred_val(1)=1/((4*R*x(3,t)-u(2,t)-u(3,t)-u(4,t))/u(1,t));
 pred_val(2)=1/((4*R*x(3,t-1)-u(2,t-1)-u(3,t-1)-u(4,t-1))/u(1,t-1));
 new_u=[u(1,t)/(pred_val(1)+abs(pred_val(1)-pred_val(2)));
 u(2,t);
 u(3,t);
 u(4,t)];
 n_u1=par.K(:,:,1)*new_u;
 end
end;

% ============== Plot the discrete modes ===========================
figure(2)
clf
plot(1:T,z,'r','linewidth',2);
ylabel('z_t','fontsize',15);
axis([0 T+1 0 n_z+1])
grid on;

% ==
% PF ESTIMATION
% ==

% INITIALISATION:
% ==
z_pf = ones(1,T,N); % These are the particles for the
 % estimate of z. Note that there's no
 % need to store them for all t. We're
 % only doing this to show you all the
 % nice plots at the end.
z_pf_pred = ones(1,T,N); % One-step-ahead predicted values of z.
x_pf = 10*randn(n_x,T,N); % These are the particles for the
estimate x.
x_pf_pred = x_pf;
y_pred = 10*randn(n_y,T,N); % One-step-ahead predicted values of y.
w = ones(T,N); % Importance weights.

initz = 1/n_z*ones(1,n_z);
for i=1:N,
 z_pf(:,1,i) = length(find(cumsum(initz')<rand))+1;
end;
v_pf = zeros(3,T,N);
k=zeros(3,T);
disp(' ');
tic;
rot_angle=zeros(T,N);
L=4; %sliding window size
% Initialize timer for benchmarking
angl = 0.588;
for t=2:T,
 fprintf('PF : t = %i / %i \r',t,T); fprintf('\n');

% SEQUENTIAL IMPORTANCE SAMPLING STEP:
% ==
 for i=1:N,

 105

 % sample z(t)~p(z(t)|z(t-1))
 z_pf_pred(1,t,i) = length(find(cumsum(par.T(z_pf(1,t-
1,i),:)')<rand))+1;
 z_val=z_pf_pred(1,t,i);

 % sample x(t)~p(x(t)|z(t|t-1),x(t-1))
 if(z_pf_pred(1,t,i)==6)
 % Wheel 1 stuck.
 % Calculation of correct velocities for the preveous state
 correct_vel=par.K(:,:,1)*u(:,t-1);
 if(correct_vel~=x_pf(:,t-1,i))
 if((u(2,t)==u(2,t-1))&&
 (u(3,t)==u(3,t-1))&&
 (u(4,t)==u(4,t-1)))
 v_pf(:,t,i) = x_pf(:,t-1,i);
 else
 new_u=[
 4*R*x_pf(3,t-1,i)-u(2,t-1)-u(3,t-1)-u(4,t-1);
 u(2,t);
 u(3,t);
 u(4,t)];
 v_pf(:,t,i) = par.K(:,:,1)*new_u;
 end
 else
 v_pf(:,t,i) = par.K(:,:,2)*u(:,t); % define velocities
 end
 % Wheel 1 decay scenario
 elseif(z_pf_pred(1,t,i)==7)
 if(t>2)
 pred_val=[1 1];
 %calculate the decay value for previous
 pred_val(1)=u(1,t-1)/(4*R*x_pf(3,t-1,i)-
 u(2,t-1)-u(3,t-1)-u(4,t-1));
 pred_val(2)=u(1,t-2)/(4*R*x_pf(3,t-2,i)-
 u(2,t-2)-u(3,t-2)-u(4,t-2));

 new_u=[u(1,t)/(pred_val(1)+abs(pred_val(1)-pred_val(2)));

u(2,t);
u(3,t);
u(4,t)];

 n_u=par.K(:,:,1)*new_u;
 else
 v_pf(:,t,i) = par.K(:,:,2)*u(:,t);
 end

 elseif(z_pf_pred(1,t,i)==8)
 new_u=[u(1,t);
 4*R*x_pf(3,t-1,i)-u(1,t-1)-u(3,t-1)-u(4,t-1);
 u(3,t);
 u(4,t)];
 v_pf(:,t,i) = par.K(:,:,1)*new_u;
 else
 v_pf(:,t,i) = par.K(:,:,z_pf_pred(1,t,i))*u(:,t);
 end

 x_pf_pred(:,t,i) = v_pf(:,t,i) + ...
 par.B(:,:,z_pf_pred(1,t,i))*randn(n_x,1);

 end;

 % Evaluate importance weights.
 % ==

 106

 for i=1:N
 y_pred(:,t,i) = par.C(:,:,z_pf_pred(1,t,i))*x_pf_pred(:,t,i) + ...
 par.D(:,:,z_pf_pred(1,t,i))*randn(n_y,1);
 Cov = par.D(:,:,z_pf_pred(1,t,i))*par.D(:,:,z_pf_pred(1,t,i))';

 w(t,i) = (det(Cov)^(-0.5))*exp(-0.5*(y(:,t)-y_pred(:,t,i))'* ...
 pinv(Cov)*(y(:,t)-y_pred(:,t,i))) + 1e-99;
 end;
 w(t,:) = w(t,:)./sum(w(t,:)); % Normalise the weights.

% SELECTION STEP:
% ==
 if resamplingScheme == 1
 outIndex = residualR(1:N,w(t,:)'); % Higuchi and Liu.
 elseif resamplingScheme == 2
 outIndex = deterministicR(1:N,w(t,:)'); % Kitagawa.
 else
 outIndex = multinomialR(1:N,w(t,:)'); % Ripley, Gordon, etc.
 end;
 z_pf(1,t,:) = z_pf_pred(1,t,outIndex);
 x_pf(:,t,:) = x_pf_pred(:,t,outIndex);

end; % End of t loop.
time_pf = toc; % How long did this take?

% ==
% SUMMARIES AND PLOTS
% ==

z_plot_pf = zeros(T,N);
for t=1:T,
 z_plot_pf(t,:) = z_pf(1,t,:);
end;

z_num_pf = zeros(T,n_z);
z_max_pf = zeros(T,1);
for t=1:T,
 for i=1:n_z,
 z_num_pf(t,i)= length(find(z_plot_pf(t,:)==i));
 end;
 [arb,z_max_pf(t)] = max(z_num_pf(t,:));
end;

detect_error_pf = sum(z~=z_max_pf');
if(z(1)~=z_max_pf(1))
 detect_error_pf=detect_error_pf-1;
end

disp(' ');
disp('Overlooked errors');
disp('-----------------------------');
disp(' ');
disp(['PF = ' num2str(detect_error_pf)]);
disp(' ');
disp(' ');
disp('Execution time (seconds)');
disp('-------------------------');
disp(' ');
disp(['PF = ' num2str(time_pf)]);
disp(' ');

 107

figure(3)
clf;
domain = zeros(N,1);
range = zeros(N,1);
thex=[0.5:0.05:n_z+.5];
hold on
ylabel('t','fontsize',12)
zlabel('Pr(z_t|y_{1:t})','fontsize',12)
xlabel('z_t','fontsize',12)
for t=1:1:T,
 [range,domain]=hist(z_plot_pf(t,:)',thex);
 waterfall(domain,t,range/sum(range))
end;
view(-30,80);
rotate3d on;
set(gca,'ygrid','off');
title('Particle Filter')

 108

C. State Estimation with Observable Operator Model

% FILE NAME : OOM4wheelOMNI.m

% PURPOSE : OOM for Four Wheel Omni Driver.

% TOOLBOX : Jaeger, Herbert. OOM Matlab implementation.
% http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip

% ==
% INITIALISATION AND PARAMETERS
% ==

global dim alphabetsize charEvLength charEvents w0Int tlInt;

%===================== BUILD A MODEL==================================
stateNr = 5; % number of states
obsNr = 5; % number of observations
Msparsity = 0.3;
Osparsity = 0.5;

procureOOM4OMNI(stateNr, obsNr, Msparsity, Osparsity);

% generate run of lenght numberOfPoints, collect states in 2 or 3
% lists according to observable producing the state
tl=tlInt;
w0=w0Int;
modDim = length(tl(1,:,1));
numberOfPoints=10;
statePlotLength = numberOfPoints;
modStatePL3D = zeros(statePlotLength,3,min([alphabetsize 6]));
modStateCounters = ones(alphabetsize);
%w = w0;
squeezedTL = zeros(alphabetsize,modDim);
for i = 1:alphabetsize
 squeezedTL(i,:) = sum(tl(:,:,i));
end

%===
load('C:\KA\Master_Thesis\MATLAB\PF\4wheelOMNI\RobotPoseData.mat');

pvec=zeros(5,numberOfPoints);
w=zeros(5,numberOfPoints+1);
w(:,1)=w0;
for n = 1:numberOfPoints
 % update model
 pvec(:,n) = squeezedTL * w(:,n); % probability vector
 choice = obsArr(n);
 w(:,n+1) = tl(:,:,choice) * w(:,n);
 w(:,n+1) = w(:,n+1) / sum(w(:,n+1));
end

% ==
% SUMMARIES AND PLOTS
% ==

filtDistPlot=[zeros(10,numberOfPoints)
 pvec(1,:)
 zeros(10,numberOfPoints)

http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip

 109

 pvec(2,:)
 zeros(10,numberOfPoints)
 pvec(3,:)
 zeros(10,numberOfPoints)
 pvec(4,:)
 zeros(10,numberOfPoints)
 pvec(5,:)
]; % Zero pad to make plots look nice.
figure(2)
clf;
hold on
ylabel('t - time','fontsize',14)
zlabel('Pr(b|a_{1:t})','fontsize',14)
xlabel('System states','fontsize',14)
%title('OOM','fontsize',15)
for t=1:1:numberOfPoints,
 waterfall([1:55],t,filtDistPlot(:,t)');
end;
view(-20,60);
rotate3d on;
set(gca,'ygrid','off');
set(gca,'xtick',10:11:58);
set(gca,'xticklabel',{'N','W1','W2','W3','W4'})

 110

Reference:

1. F. Gustafsson. Adaptive filtering and change detection. JohnWiley & Sons, Ltd,

2001."

2. F. Gustafsson. Statistical signal processing approaches to fault detection.

Annual Reviews in Control (JARAP), 31(1):41-54, 2007."

3. L.R. Rabiner. A tutorial on hidden Markov model and selected applications in

speech recognition. Proceedings of the IEEE 77(2):257-286, February 1989."

4. A. Doucet, N. de Freitas, N. Gordon (editors). Séquentiel Monte Carlo Methods

in Practice. Springer. 2001. "

5. H. Jaeger, M. Zhao, K. Kretzschmar, T. Oberstein, D. Popovici, A. Kolling

Learning observable operator models via the ES algorithm. In S. Haykin, J.

Principle, T. Sejnowski, and J. McWhirter, editors, New Directions in Statistical

Signal Processing: from Systems to Brain, MIT Press, Cambridge, MA., pages

417-464 2006. "

6. V. Venkatasubramanian, R.Rengaswamy, Kewen Yin, and Surya N. Kavuri. A

review of process fault detection and diagnosis part1: Quantitative model-based

methods. Computers and Chemical Engineering, 27:293–313, 2003.

7. V. Venkatasubramanian, R.Rengaswamy, Kewen Yin, and Surya N. Kavuri. A

review of process fault detection and diagnosis part 2: Qualitative models and

search strategies. Computers and Chemical Engineering, 27:313– 326, 2003. "

8. V. Venkatasubramanian, R.Rengaswamy, Kewen Yin, and Surya N. Kavuri. A

review of process fault detection and diagnosis part 3: Process history based

methods. Computers and Chemical Engineering, 27:327–346, 2003. "

9. P. Sundvall. Mobile robot fault detection using multiple localisation modules.

Master’s thesis, KTH School of Electrical Engineering, Stockholm, Sweden,

2006.

10. R. Isermann Fault-diagnosis systems: An introduction from fault detection to

fault tolerance. Berlin: Springer-Verlag, 2006.

11. M. Staroswiecki. Model based FDI: the control approach. Plenary lecture.

Bridge Workshop, Sancicario. Italy. March 2001.

12. Steven. X. Ding Model-Based Fault Diagnosis Techniques: Design Schemes,

Algorithms, and Tools. Springer, May 2008.

13. J. Gertler. Fault detection and isolation using parity relations. Control

Engineering Practice, 5(5):653-661, 1997.

 111

14. E. Chow, A Wilsky. Analytical redundancy and the design of robust failure

detection systems. Automatic Control, IEEE Transactions on, 29(7): 603-614

July 1984.

15. J de Kleer and B.C. Williams. Diagnosing multiple faults. Artificial Intelligence,

32(1):97– 130, 1987.

16. J de Kleer and B.C. Williams. Diagnosis with behaviour models. In Proceedings

of IJCAI-89, pages 1324-1330, 1989

17. J. Kurien and P. Nayak. Back to the future for consistency-based trajectory

tracking. In Proceedings of AAAI-00, ppages 370-377, 2000

18. B.C. Williams and P. Nayak. A model-based approach to reactive self-

configuring systems. In Proceedings of AAAI-96, 2:971-978, Portland, OR,

August 1996.

19. B.C. Williams, M.D. Ingham, S.H. Chung, and P.H. Elliott. Model-based

programming of intelligent embedded systems and robotic space explorers. In

Proceedings of the IEEE, 91(1): 212—237, January 2003.

20. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

21. V Verma, G Gordon, R Simmons, S Thrun. Particle Filters for Rover Fault

Diagnosis, Robotics and Automation Magazine, June 2004

22. S. Thrun, J. Langford, and V. Verma. Risk sensitive Particle Filters. In Neural

Information Processing Systems (NIPS), December 2001.

23. V. Verma, S. Thrun, and R. Simmons. Variable resolution Particle Filter. In

International Joint Conference of Artificial Intelligence, 2003.

24. E. Benazera, R. Dearden, and S. Narasimhan. Combining Particle Filters and

consistency-based approaches. In 15th Int. Workshop on Principles of

Diagnosis, Carcassonne, France, 2004.

25. C. Plagemann, D. Fox, W. Burgard. Efficient Failure Detection on Mobile

Robots Using Particle Filters with Gaussian Process. Proposal European

Robotics Symposium 2006, Springer-Verlag Serlin Heidelberg, Germany, pages.

93-107

26. R. Dearden, T. Willeke, F. Hutter, R. Simmons, V. Verma and S. Thrun. Real-

time Fault Detection and Situational Awareness for Rovers: Report on the Mars

Technology Program Task. In Proceedings of IEEE Aerospace Conference,

pages 826-840, 2004.

 112

27. M. Nyberg. Model Based Fault Diagnosis Methods, Theory, and Automotive

Engine Application., PhD, Department of Electrical Engineering, Linköping

University, Linkoeping, Sweden, 1999

28. R. Ganguli. Health monitoring of a helicopter rotor in forward flight using fuzzy

logic. AIAA Journal, 40(12):2373–2381, September 2002.

29. A. Marcos, S. Ganguli, and G. Balas. Application of H¥ fault detection and

isolation to a boeing 747-100/200 aircraft. In Proceedings of AIAA-2002-4944,

Monterey, CA, August 2002.

30. M. Borairi and H. Wang. Actuator and sensor fault diagnosis of nonlinear

dynamic systems via genetic neural networks and adaptive parameter estimation

technique. In Proceedings of IEEE International Conference on Control

Applications, pages. 278–282 , September 1998.

31. Y.-W. Kim, G. Rizzoni, and V. Utkin. Automotive engine diagnosis and control

via nonlinear estimation IEEE Control Systems Magazine, 18:84–99, October

1998.

32. D.-L. Yu. Diagnosing simulated faults for an industrial furnace based on

bilinear model IEEE Transactions on Control Systems Technology, 8:435–442,

May 2000.

33. P. Garimella and B. Yao. Model based fault detection of an electro hydraulic

cylinder. In Proceedings of American Control Conference, 1:484-489, June

2005.

34. E. Mesbahi. An intelligent sensor validation and fault diagnostic technique for

diesel engines. Journal of Dynamic Systems, Measurement, and Control, 123:

141–144, March 2001.

35. Z. Ye and B. Wu. A review on induction motor online fault diagnosis. In

Proceedings of the 3rd International Power Electronics and Motion Control

Conference, 3:1353-1358, August 2000.

36. S. Lee, M. D. Bryant, and L. Karlapalem. Model and information theory-based

diagnostic method for induction motors. Journal of Dynamic Systems,

Measurement, and Control, 128:584–591, September 2006.

37. R. H. Chen, H. K. Ng, J. L. Speyer, L. S. Guntur, and R. Carpenter. Health

monitoring of a satellite system. Journal of Guidance, Control, and Dynamics,

29(3):593–605, 2006.

 113

38. H. Rotstein, R. Ingvalson, T. Keviczky, and G. J. Balas. Fault detection design

for uninhabited aerial vehicles, Journal of Guidance, Control, and Dynamics,

29(5):1051–1060, 2006.

39. A. Duyar and W. Merrill, Fault diagnosis for the space shuttle main engine.

Journal of Guidance, Control, and Dynamicss, 15(2):384–389, 1992.

40. Y. Zhang, J. Wu, M. Huang, H. Zhu, and Q. Chen, Liquid-propellant rocket

engine health-monitoring techniques. Journal of Propulsion and Power,

14(5):657–663, 1998.

41. R. K. Yedavalli Robust Estimation and Fault Diagnostics for Aircraft Engines

with Uncertain Model. Data Proceedings of the 2007 American Control

Conference Marriott Marquis Hotel at Times Square New York City, USA, July

2007.

42. Y. Zhang. Detection and diagnosis in dynamic systems. Lecture 1. Introduction

to Fault Detection and Diagnosis (FDD), Department of Computer Science and

Engineering, Aalborg University Esbjerg, 2006.

43. C. Bonivento, A. Isidori, L. Gentili, L. Marconi, and A. Paoli. Fault detection

and isolation and fault tolerant control. Research work. Online at

http://www.casy.deis.unibo.it/files/fdiftc.pdf (Accessed: September 06, 2008),

2001.

44. The Desire Consortium. Deutsche service robotik initiative. Online at

http://www.projekt-desire.de/ (Accessed: September 03, 2008), 2008.

45. A. Shakhimardanov. Report on the Research and Development Project 2 Fault

Tolerance and Robustness in Robotics: A Survey. R&D2 project,

Fachhochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany, 2006 .

46. R. Isermann. Model-based fault-detection and diagnosis – status and

applications. Annual Reviews in Control 29:71-85, 2005.

47. M. Basseville and I.V. Nikiforov. Detection of abrupt changes: theory and

application. Information and system science series. Prentice Hall, Englewood

Cliffs, NJ., 1993.

48. J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel

Dekker, Inc, 1998.

49. P. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy- A survey and some new results, Automatica 26(3): 459–474,

1990.

http://www.casy.deis.unibo.it/files/fdiftc.pdf
http://www.projekt-desire.de/

 114

50. M. Kinnaert Fault diagnosis based on analytical models for linear and nonlinear

systems – A tutorial. In Proceedings Safeprocess, Washington, U.S.A. pages

133-139, 2003

51. A. Hagenblad, F. Gustafsson and I. Klein. A comparison of two methods for

stochastic fault detection: The parity space approach and principal components

analysis. Proceedings of 13th IFAC Symposium on System Identification, pages

1090–1095. 2003

52. Wikipedia. Online at http://en.wikipedia.org/ (Accessed: September 04, 2008),

2008.

53. H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra, J. Dull, K.

Sarkar, M. Klein, M. Vasa, and D. Handy. Vedas: A mobile and distributed data

stream mining system for real-time vehicle monitoring. Proceedings of SIAM

International Conference on Data Mining, 2004.

54. Home Page of Fault Detection and Diagnosis in Engineering Systems. Online at

http://teal.gmu.edu/~jgertler/lab/paper.html (Accessed: September 04, 2008),

2008.

55. V. Filaretov, M. Vukobratovic and A. Zhirabok. Parity relation approach to

fault diagnosis in manipulation robots. Mechatronics 13(2):141-152, March

2002.

56. A. Varga. A Fault Detection Toolbox for MATLAB Computer-Aided Control

Systems Design, 2006 IEEE International Symposium on, 4(6): 3013–3018

October 2006.

57. S. X. Ding, E. Atlas, S. Schneider, Y. Ma, T. Jeinsch and E. L. Ding: An

introduction to a MATLAB-based FDI-toolbox, Proc. of IFAC Symposium

SAFEPROCESS, Beijing, 2006.

58. P. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy- a survey and some new results. Automatica 26(3):459–474,

1990.

59. Y. Tharrault, G. Mourot, J. Ragot, D. Maquin. Fault detection and isolation with

robust principal component analysis. Control and Automation, 2008 16
th

Mediterranean Conference on, Ajaccio, France, pages 59-64, June 2008

60. A.T. Bharucha-Reid Elements of the Theory of Markov Processes and Their

Applications. New York: McGraw-Hill, 1960

http://en.wikipedia.org/
http://teal.gmu.edu/~jgertler/lab/paper.html

 115

61. D. E. Bernard, G. A. Dorais, C. Fry, E. B. Gamble Jr., B. Kanefsky, J. Kurien,

W. Millar, N. Muscettola, P. Nayak, B. Pell, K. Rajan, N. Rouquette, B. Smith,

and B. C. Williams, Design of the remote agent experiment for spacecraft

autonomy. In Proceedings of the IEEE Aerospace Conference, 1998.

62. L. Fesq, M. Ingham, M. Pekala, J. V. Eepoel, D. Watson, and B. Williams,

Model-based autonomy for the next generation of robotic spacecraft. In

Proceedings of 53
rd

 International Astronautical Congress, October 2002.

63. R. Dearden and T. Willeke and F. Hutter and R. Simmons and V. Verma and S.

Thrun Real-time Fault Detection and Situational Awareness for Rovers: Report

on the Mars Technology Program Task. In Proceedings in IEEE Aerospace

Conference pages 826- 840, 2004

64. T. Clapp and S. Godsill, Improvement strategies for Monte Carlo particle filters,

in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N.

Gordon, Eds., New York: Springer Verlag, 2001.

65. A. Doucet, S. J. Godsill, and C. Andrieu, On sequential Monte Carlo sampling

methods for Bayesian filtering. Statistics and Computing, pages. 197-208, 2000.

66. J. Carpenter, P. Clifford, and P. Fearnhead, Improved particle fillter for non-

linear problems. IEEE Proceedings on Radar and Sonar Navigation, 146(1):2-7,

1999.

67. D. Crisan, P. Del Moral, and T. J. Lyons, Non-linear filtering using branching

and interacting particle systems. Markov processes and Related Fields,

5(3):293-319, 1999.

68. H. Jaeger. Characterizing distributions of stochastic processes by linear

operators. GMD Report 62, German National Research Centre for Information

Technology, 1999. http://www.faculty.iubremen.de/hjaeger/pubs/oom

distributionsTechRep.pdf. (Accessed: September 04, 2008),

69. H. Jaeger. A short introduction to observable operator models of stochastic

processes. Proceedings of the Cybergenetics and Systems 1998 Conference, 1,

Austrian Society for Cybergenetics Study, 38-43 1998

70. T. Oberstein. Efficient Training of Observable Operator Models using Context

Graph. Master’s thesis, Institute for autonomous intelligent systems, Fraunhofer

AIS Mathematical Institute / ZAIK, University Cologne, Gremany, 2002.

71. C. Chen. Linear system theory and design. 3rd ed., Oxford University Press,

1999

http://www.faculty.iubremen.de/hjaeger/pubs/oomdistributionsTechRep.pdf
http://www.faculty.iubremen.de/hjaeger/pubs/oomdistributionsTechRep.pdf

 116

72. R. Rojas. Omnidirectional Control, Freie Universität Berlin; Institut für

Informatik; Veranstaltung „Robotik“ http://www.inf.fu-

berlin.de/lehre/WS04/Robotik/omnidrive.pdf (Accessed: September 04, 2008),

2008

73. M. Mladenov, M. Mock, K.-E Grosspietsch. Fault monitoring and correction

in a walking robot using LMS filters. Intelligent Solutions in Embedded

Systems, 2008 International Workshop on pages: 1-10 July 2008.

74. J. Tan and N. Xi Integrate task planning and control for mobile manipulators

Robotics and Automations. Proceedings ICRA 02, IEEE Internetional

Conference on 1:382-387

75. J. Tan, N.Xi and Y. Wang Integrated Task Planning and Control for Mobile

Manipulators. The international Journal of Robot Research, 22(5): 337-354,

May 2003.

76. W.H.Huang, G.F. Holden, Nonprehensile palmar manipulation with a mobile

robot. Intelligent Robots and Systems, Proceedings IEEE/RSJ International

Conference on 1:114-119, 2001.

77. A. Petrovskaya and A. Y. Ng Probabilistic mobile manipulation in dynamic

environments, with application to opening doors. In IJCAI, 2007

78. M. Hans, B. Graf, and R. Schraft. Robotic home assistant Care-O-bot: past-

present-future. Robot and Human Interactive Communication, 2002.

Proceedings.11th IEEE International Workshop on page 380–385.

79. E. Sudderth. Hidden Markov models, graphical models. Slides

http://www.eecs.berkeley.edu/~pliang/cs294-spring08/lectures/hmm (Accessed:

September 24, 2008)

80. S. Russell, P. Norvig. Artificial Intelligence - A Modern Approach. 2nd Edition.

Prentice Hall. 2003.

81. A. W. Moore. Hidden Markov Models. Slides from a tutorial presentations

http://www.cs.cmu.edu/~awm/tutorials (Accessed: September 30, 2008)

82. M. Bolic. Architectures for Efficient Implementation of Particle filters, Ph.D.

thesis, Department of Electrical Engineering, State University of New York at

StonyBrook, 2004.

http://www.inf.fu-berlin.de/lehre/WS04/Robotik/omnidrive.pdf
http://www.inf.fu-berlin.de/lehre/WS04/Robotik/omnidrive.pdf
http://www.eecs.berkeley.edu/~pliang/cs294-spring08/lectures/hmm
http://www.cs.cmu.edu/~awm/tutorials

 117

83. N. de Freitas, Software for classical particle filters and Rao-Blackwellised

particle filters http://www.cs.ubc.ca/~nando/sofware.html. (Accessed:

September 24, 2008)

84. H. Jaeger, M. Zhao and A. Kolling. Efficient estimation of OOMs. Advances in

Neural Information Processing Systems 18 (Y. Weiss, B. Schölkopf and j. Platt,

eds.), MIT Press, Cambridge, MA pages 555-562, 2005.

85. H. Jaeger Discrete-time, discrete-valued observable operator models: a tutorial ,

Slides, International University Bremen, July, 2003 (Accessed: September 30,

2008)

86. M. Zhao, H. Jaeger. Norm observable operator models. Technical report 8,

School of Engineering and Science, July, 2007.

87. Murphy, Kevin. Hidden Markov Model Toolbox for Matlab.

http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html

(Accessed: September 4, 2008)

88. Jaeger, Herbert. OOM Matlab implementation. http://www.faculty.iu-

bremen.de/hjaeger/OOM/OOMGeneric.zip (Accessed: September 23, 2008)

http://www.cs.ubc.ca/~nando/sofware.html
http://www.ai.mit.edu/~murphyk/Software/HMM/hmm_download.html
http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip
http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMGeneric.zip

	Abstract
	Acknowledgments
	Contents
	1. Introduction
	1.1 Problem Statement
	1.2 Motivation and Challenges
	1.3 Thesis Statement
	1.4 Related Works
	1.5 Reader's Guide

	2. Theoretical Background of Fault Diagnosis (in general)
	2.1 Basic Definitions
	2.2 Classification of Fault Diagnosis Methods
	2.3 Model�Based Scheme
	2.4 Fault Modelling
	2.5 Process Modelling
	2.6 Applications in the Industrial World

	3. Fault Diagnosis in the Robot Domain
	3.1 Fault Classification
	3.2 Robot Model (Design Example)
	3.3 Mobile Manipulators
	3.3.1 Mobile Manipulator Examples

	4. Fault Diagnosis Methods
	4.1 Parity Space and Principle Component Analysis
	4.1.1 Background Theory
	4.1.2 The Algorithm
	4.1.3 Principle Component Analysis (PCA)
	4.1.4 Applications
	4.1.5 Summary

	4.2 Hidden Markov Model
	4.2.1 Background Theory
	4.2.2 HMM Representation
	4.2.3 HMM Problems and Solutions
	4.2.4 Application of HMM in Fault Diagnosis
	4.2.5 Numerical Example
	4.2.6 Summary

	4.3 Particle Filter (PF)
	4.3.1 Background Theory
	4.3.2 Particle Filter Enhancements
	4.3.3 Numerical Example
	4.3.4 Summary

	4.4 Observable Operator Model (OOM)
	4.4.1 Background Theory
	4.4.2 Learning with OOMs: Challenges and Their Solutions
	4.4.3 OOM Flavours
	4.4.4 Numerical examples
	4.4.5 Summary

	5. Comparison of Solutions
	6. Conclusions
	Appendices
	A. State Estimation with Hidden Markov Model
	B. State Estimation with Particle Filter
	C. State Estimation with Observable Operator Model

	Reference

