
SPECIAL ISSUE PAPER 85 

Bond graph based frequency domain sensitivity analysis 
of multidisciplinary systems 

W Borutzky1* and  J Granda2 
1Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany 
2Department of Mechanical Engineering, California State University, Sacramento, California, USA 

Abstract: Multidisciplinary systems are described most suitably by bond graphs. In order to deter-
mine unnormalized frequency domain sensitivities in symbolic form, this paper proposes to construct 
in a systematic manner a bond graph from another bond graph, which is called the associated 
incremental bond graph in this paper. Contrary to other approaches reported in the literature the 
variables at the bonds of the incremental bond graph are not sensitivities but variations (incremental 
changes) in the power variables from their nominal values due to parameter changes. Thus their 
product is power. For linear elements their corresponding model in the incremental bond graph also 
has a linear characteristic. By deriving the system equations in symbolic state space form from the 
incremental bond graph in the same way as they are derived from the initial bond graph, the sensitivity 
matrix of the system can be set up in symbolic form. Its entries are transfer functions depending on 
the nominal parameter values and on the nominal states and the inputs of the original model. The 
sensitivities can be determined automatically by the bond graph preprocessor CAMP-G and the 
widely used program MATLAB together with the Symbolic Toolbox for symbolic mathematical 
calculation. No particular program is needed for the approach proposed. The initial bond graph 
model may be non-linear and may contain controlled sources and multiport elements. In that case 
the sensitivity model is linear time variant and must be solved in the time domain. The rationale and 
the generality of the proposed approach are presented. For illustration purposes a mechatronic 
example system, a load positioned by a constant-excitation d.c. motor, is presented and sensitivities 
are determined in symbolic form by means of CAMP-G/MATLAB. 

Keywords: �rst-order frequency domain sensitivities, incremental bond graph, sensitivity matrix in 
symbolic form 

NOTATION I identity matrix of appropriate 
dimensions 

A, B, C, D matrices of a linear time invariant J moment of inertia 
multi-inputs, multi-outputs system k constant of an eVort modulated eVort 

c �ow variable at a port of an element or source 

E(t) 
component 
voltage of an independent voltage 

kT torque constant of a constantly excited 
d.c. motor 

source L self-inductance 
f eVort variable at a port of an element L f Laplace transform of a function f (t) 

f, g 
or component 
functions f, g : Rdim(x)+ dim(u)+ dim(p)!R 

M
ij 

mutual inductance coeYcients of 
mutually interacting coils 

F(s) 
i 

transfer function 
current 

Mload 
p 

load moment 
system parameter, generalized 

I inertia parameter momentum, hydraulic pressure 
p parameter vector 
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q 
Q 
r 

vector of generalized displacements 
hydraulic volume �owrate 
ratio of a gyrator, number of 
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R resistance 
s complex variable: sµC 
S sensitivity matrix 
t time 
u input variable of a single-input, single-

output system 
u(t) vector of system input variables 
x(t) state vector 
y system output variable 
y(t) vector of system output variables 

¢ determinant of a matrix 
¢p deviation of a parameter p from its 

nominal value 
¢P change in power due to a parameter 

change 
¢v deviation of a variable v from its 

nominal value 
ì �ux linkage 
¼

C
Õ1 function ¼

C
Õ1 : Rn+ r!R de�ning the 

constitutive relation of an n-port C �eld 
with r parameters 

¼ function ¼
R 

: R1+ r!R de�ning the 
R 

constitutive relation of a one-port 
resistor with r parameters 

ö angular velocity 

INTRODUCTION 

For the design of reliable systems it is important to 
know whether a system will still operate as intended 
when some system parameters vary slightly due to 
tolerances in the manufacturing process or due to 
changes in the ambient, e.g. temperature or pressure. 
This need is obvious, e.g. for integrated circuits. For 
instance, heat production needs to be taken into 
account because it aVects the operating point of inte-
grated electronic devices since junction diodes depend 
on the junction temperature. 

The sensitivity of the behaviour in the time domain 
or in the frequency domain with regard to parameter 
changes is expressed by partial derivatives. If y denotes 
an output of a lumped parameter system model and p a 
parameter, e.g. a resistance R, then 

qy p 

qp y 

is called the relative or normalized sensitivity of y with 
respect to the parameter p. The partial derivative qy/qp 
is called the unnormalized sensitivity. The objective in 
this paper is the determination of unnormalized sensi-
tivities. In the following the adjective unnormalized is 
omitted. Sensitivities can be calculated in the time 
domain as well as in the frequency domain. In the second 
case they are of complex value and depend on the fre-

quency ö in general. In this paper the presentation 
focuses on frequency domain sensitivities. 

A brute force method to determine a sensitivity is 
to replace the diVerentials by diVerences. Performing 
numerical diVerentiation, however, has the drawback 
of poor accuracy because the diVerence of the com-
puter representations of two nearly equal numbers 
results in a loss of information. Moreover, it is costly 
in regard to computation time because at each fre-
quency and for each parameter a simulation run must 
be performed. To avoid numerical diVerentiation an 
approach common in network analysis is to construct 
a so-called adjoint network N̂ from the initial network 
N and to exploit Tellegen’s theorem for an eYcient 
calculation of sensitivities [1 ]. In the area of bond-
graph-based physical system modelling it has been 
proposed to derive from the bond graph of a system 
a pseudo bond graph for the sensitivities in which the 
variables at a bond are sensitivities rather than power 
variables [2, 3 ].  

Instead of representing dependences between sensi-
tivities in a pseudo bond graph, the approach pre-
sented in this paper starts from the observation that 
parameter changes cause perturbed power variables 
e+¢e and f +¢ f at the ports of an element [4 ]. Both 
�ow and eVort at a port are aVected by a parameter 
variation due to the interaction with the rest of the 
system. In principle, a parameter change aVects all 
variables in the system. [ The variables e(t ) and  f (t ) 
denote nominal values while (¢e )(t ) and (¢ f )(t) 
denote deviations from nominal values at time t.] This 
paper proposes to derive a true bond graph G for the 
incremental power variables ¢e and ¢ f from the initial 
bond graph G. The derived bond graph G̃ is called the 
associated incremental bond graph. Unnormalized sen-
sitivities can be determined in symbolic form by deriv-
ing the system equations from the incremental bond 
graph. This approach is in accordance with the 
incremental network approach in network theory. The 
advantage over an approach that corresponds to the 
adjoint network approach is that the incremental bond 
graph provides a better insight into the eVect of par-
ameter changes because they are visualized in the 
incremental bond graph by sources. 

The paper is organized in the following manner. In 
the next section, �rst-order submodels to be used in the 
incremental bond graph are developed for linear bond 
graph elements. An incremental bond graph is con-
structed by simply replacing the elements by their corre-
sponding submodels. Once the incremental bond graph 
is available, system equations for the incremental power 
variables can be derived and by that way unnormalized 
sensitivities. In Section 3 the case of linear time-invariant 
systems is considered and illustrated by an example in 
Section 4. The presentation continues by extending the 
approach to bond graphs with non-linear multiport 

Proc Instn Mech Engrs Vol 216 Part I: J Systems and Control Engineering I06101 © IMechE 2002 



87 

2 

BOND GRAPH BASED FREQUENCY DOMAIN SENSITIVITY ANALYSIS 

elements (Section 5). Finally, the results are summarized 
and some conclusions are drawn. 

INCREMENTAL MODELS CORRESPONDING 
TO THE BOND GRAPH ELEMENTS 

In order to keep the presentation easy to survey, in this 
section, sources, stores and resistors are assumed to be 
one-port elements with a linear characteristic, while 
transformers and gyrators are assumed to have two 
ports. In the following tµR, t>0, has the meaning of 
time. Power variables e(t) and f (t), as well as the param-
eter in the linear constitutive relation between the power 
variables of a port, denote nominal values. Deviations 
from the nominal values of power variables are denoted 
by (¢e)(t) and (¢f )(t). They may have any value in R 
and are not limited to positive values. In order to avoid 
an overloading of variable names by indices, an index n 
meaning nominal is dropped. 

Consider a linear resistor with the resistance R: 

e
R

(t)�Rf
R

(t)=0  (1)  

The basic idea is that a variation ¢R in the resistance 
causes perturbed power variables (e

R
+¢e

R
)(t),  and 

( f
R

+¢
R

) (t ) at the power port: 

(e
R

+¢e
R

)(t)�(R+¢R) (  f
R

+¢f
R

)(t)=0  (2)  

Substituting equation (1) into equation (2) and neglect-
ing the higher-order term ¢R ¢ f

R 
a linear relation 

between the incremental power variables ¢e
R 

and ¢f
R

is obtained: 

(¢e
R

) (t)=R(¢f
R

) (t )+ f
R

(t) ¢R 

qe
R=R(¢f

R
)(t)+ (t) ¢R (3)

qR 

Equation (3) may be interpreted as a resistor with power 
port variables ¢e and ¢f and a modulated eVort sink 
attached to a 1-junction (Fig. 1). The sink represents the 
eVect of the parameter change ¢R. It is modulated by 
the nominal power variable (qe

R
/qR)(t)= f

R
(t) in the 

initial bond graph. As can be seen from Fig. 1 the 
incremental model corresponding to a resistor diVers 

from the R element simply by an additional sink which 
does not aVect causalities in the initial bond graph. 

Note that the product ¢e
R 

¢f
R 

is only a fraction of 
the power change ¢P due to the parameter change ¢R 

¢P=(e
R

+¢e
R

)(  f
R

+¢ f
R

)�e
R 

f
R 

=¢e ¢ f
R

+further terms (4) 
R 

For both types of one-port stores a similar result is 
obtained. Consider, for instance, an inertia. A change 
¢I in the inertia parameter results in perturbed power 
variables at its ports and consequently in a perturbed 
generalized momentum p+¢p: 

1 
( f

I
+¢ f

I
)(t)= 

I+¢I 
( p+¢p)(t)  (5)  

Again, neglecting higher-order terms ¢I ¢ f
I 

a sum of 
incremental �ows is obtained 

(¢p)(t) ¢I 
(¢ f

I
)(t)= � 

I I
f
I
(t) 

(¢p)(t) qf 
= + I (t) ¢I (6)  

I qIA B 
that may be displayed by a bond graph as depicted in 
Fig. 2. As for the incremental model of an R element, 
the additional sink in the incremental model of a store 
modulated by the sensitivity of the �ow f

I 
with respect 

to the store parameter (qf
I
/qI )(t)=( f

I
/I ) (t) does not 

aVect causalities. However, contrary to a store in the 
initial bond graph its corresponding submodel in the 
incremental bond graph is not energy conservative due 
to the sink which re�ects the change in the store param-
eter. In the following the program CAMP-G/MATLAB 
is used. For convenience the sink in Fig. 2 is split into 
an independent sink that represents the change in the 
inertia parameter ¢I and a modulated transformer 
(Fig. 3). 

As for a resistor and a store, an incremental bond 
graph may be developed for a two-port transformer and 
a two-port gyrator in the same way. The result for a 
gyrator is depicted in Fig. 4. Because of the two sinks 
the incremental model corresponding to a gyrator is not 
power conservative. Since the constitutive relations for 
1- and 0-junctions are linear, they hold also for the 

Fig. 1 Submodel in the incremental bond graph correspond- Fig. 2 Submodel in the incremental bond graph correspond-
ing to a resistor ing to an inertia 
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Fig. 3 Incremental bond graph of an inertia 

Fig. 4 Incremental bond graph of a gyrator 

incremental power variables; i.e. the incremental bond 
graph which corresponds to a 0-junction again is a 
0-junction. 

Finally, for example, an eVort-modulated eVort source 
is to be replaced by an incremental bond graph shown 
in Fig. 5. The incremental model that corresponds to an 
independent source is a source of the same type with 
vanishing output. Having determined for each basic 
bond graph element a model that relates the incremental 
power variables, it is easy to construct the associated 
incremental bond graph from a given bond graph. The 
elements are replaced by their corresponding incremental 
bond graphs. 0- and 1-junctions remain the same for the 
incremental power variables. The incremental models of 

Fig. 5 Incremental bond graph of an eVort-modulated 
eVort source 

the other bond graph elements diVer from the original 
element only by an additional sink. Hence, the structure 
of the associated incremental bond graph diVers from 
that of the initial bond graph only by the additional 
sinks which express explicitly the eVect of parameter 
changes. Since the independent sources transform into 
sources of the same type with vanishing output, the 
resulting associated incremental bond graph retains the 
structure of the original bond graph but with diVerent 
sources at diVerent locations. If all elements in an initial 
bond graph are replaced by their corresponding 
incremental model, the resulting incremental system 
bond graph accounts for all parameter changes. Owing 
to the linearity of the junction structure the result of 
changes in several parameters is the superposition of 
all eVects due to a change in a single parameter. 
Consequently, if the eVect of a change in only one par-
ameter is of interest, it is suYcient to replace only the 
aVected element by its incremental model. In that way, 
computation time may be saved in the determination of 
the required sensitivity from the incremental system 
bond graph. 

3 DERIVING FREQUENCY DOMAIN 
SENSITIVITIES FROM THE INCREMENTAL 
BOND GRAPH 

A linear time-invariant system is described by the two 
vector equations with the state vector x(t), the vector 
u(t) of system inputs, the vector y(t) of outputs and 
matrices A, B, C and D of appropriate dimensions. 
These matrices depend on the time invariant parameter 
vector p: 

xÇ (t)=A(p)x(t)+B(p)u(t) (7a) 

y(t)=C(p)x(t)+D (p)u(t)  (7b)  

As is known, the matrices A, B, C and D can be built 
by means of submatrices of the junction structure matrix 
and the constitutive equations of the elements [5 ]. 
Another method proposed in reference [6 ] is to use a 
computer-generated approach directly from a graphical 
input of the input of the bond graph. Since the incremen-
tal bond graph diVers from the initial bond graph only 
by the sources that express parameter changes, the 
equations of the incremental bond graph are 

¢xÇ (t)=A(p) ¢x(t)+B̃ (x(t),  u(t), p) ¢p (8a)  

¢y(t )=C(p) ¢x(t)+D̃ (x(t),  u(t ), p) ¢p (8b)  

In these equations, ¢p denotes the parameter changes. 
The matrices B̃ and D̃ depend on the nominal vectors 
x(t) and u(t) satisfying equations (7a) and (7b) and the 
parameter vector p. Consequently, they depend on time. 
If sµC, then the Laplace transform yields 

(sI�A)L x=BL u (9)  
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and 

(sI�A)(L ¢x)(s)=(L B̃ )(s) ¢p (10)  

Once the LU factors of the matrix (sI�A) are known, 
they can be used to solve for L x and again to solve for 
L ¢x. By using the LU factors twice the computational 
eVort is greatly reduced. If L ¢x is substituted into the 
Laplace transform of equation (8b), the following 
equation is obtained: 

(L ¢y) (s)= [C(sI�A)Õ1L B̃ +L D̃ ](s) ¢p (11)  

Assuming in�nitesimal small parameter changes, the 
matrix in equation (11) is just the sensitivity matrix 

qL y
S(s) ) = [C(sI�A)Õ1L B̃ +L D̃ ] (s)  (12)  

qp 

to be determined. 
Note that in equations (7a) and (7b) the entries in the 

matrices depend on the components of the parameter 
vector p. In general these dependences are non-linear. 
By building the total diVerentials dxÇ and dy from equa-
tions (7a) and (7b) and taking into account that du 
vanishes, the matrices B̃ and D̃ are obtained: 

B̃ (t)= 
q
q 
p 

(Ax+Bu)(t) (13a) 

D̃ (t)= 
q
q 
p 

(Cx+Du)(t)  (13b)  

Thus, once the equations (7a) and (7b) have been 
deduced from the initial bond graph, the matrices B̃ and 
D̃ can be computed by symbolic diVerentiation with 
respect to the parameters according to equations (13a) 
and (13b). After Laplace transform of equation (7a), 
L x can be expressed by L u; i.e. the matrices L B̃ and 
L C̃ depend on L u and the constant parameter vector 
p. Finally, the sensitivity matrix is computed according 
to equation (12) as a function of p and L u. 

Alternatively, the equations for the incremental power 
variables may be derived from the associated incremental 
bond graph. Assuming in�nitesimal small increments the 
coeYcients in the equations are the sensitivities to be 
determined. 

Note that the ratio of an incremental variable L ¢y 
to a parameter change ¢p is a transfer function 
between the output variable L ¢y and the input variable 
¢p, which essentially is the output of a modulated source 
in the incremental bond graph. As Brown [7 ] has shown, 
transfer functions can be determined by applying 
Mason’s rule directly to the bond graph. Alternatively, 
programs, e.g. the bond graph preprocessor CAMP-G 
and the widely used general-purpose program MATLAB 
for numerical and symbolic calculations, can derive 
transfer functions in symbolic form automatically from 

the unnormalized sensitivities to be determined if 
incremental changes are assumed to be small. 

In the following section the entire process is illus-
trated. First CAMP-G is used to enter the incremental 
bond graph of an electrical motor and to generate a 
MATLAB procedure. In a second step, MATLAB is 
used to produce the sensitivity matrix S. 

4 AN EXAMPLE 

For an illustration of the approach described so far con-
sider the simple example of a d.c. motor with constant 
excitation. The schematic diagram of the positioning 
system is shown in Fig. 6. The corresponding bond graph 
is depicted in Fig. 7. In that bond graph, M oad denotesl 
an external disturbing load moment. From the bond 
graph the following state equations can be derived: 

R 
� m kT 

d p J m L a p 0 1  E m = m + 
dt p k R p 1 0C D C D A B C D 

e � T � a e load MC DJ L 
m a x B u 

A 
(14)  

If the current through the armature, i , is chosen as an 
output variable y, the matrices C and 

aD become 

1 p E 
= 0 m + (0  0 )  

a e load
[i ] L p MA B C D C Da (15)  
y D 

C 

According to equations (13a) the matrix B̃ is 

B̃ = 
q 

(Ax+Bu)
qp 

q 
= (Ax)

qp 

C DR kT� m p + p
q J m L e 

= m a 
q(R , L , kT , R , J ) kT R a a m m � p � a p

J m L e 

A m a Bk 1 1 R 
0 � T p p � p m p

L2 e L e J m J2 m 
= a a m m 

1 R 1 kT� p a p � p 0 p
L e L2 e J m J2 m 

a bond graph by setting up the state space model and a a m m 
qAtransforming it into a matrix of transfer functions [8, 9 ].  = x (16)  

The essential point is that these transfer functions are qp 
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Fig. 6 Positioning system with constantly excited d.c. motor 

According to equation (13b) the matrix D̃ becomes 

D̃ = 
q 

(Cx+Du)
qp 

q 
= (Cx)

qp 

q 1 
= p

q(R , L , kT, R , J ) AL eB 
a a m m a 

1 
= 0 � p 0 0 0

L2 eA B 
a 

qC 
= x (17)  

qp 

The matrix (sI�A)Õ1 becomes 

R kTas+ 
1 L L a a(sI�A)Õ1= (18)  ¢ k R 

� T s+ mA BJ J 
m m 

with 

R R R R 
¢ ) s2+ a + m s+ m a + (19)  A B k2T 

L J J L J L a m m a m a 
From the above matrices a lengthy expression, not given 
here, is obtained for the sensitivity matrix 

S=C(sI�A)Õ1L B̃ +L D̃ (20)  

Alternatively, the associated incremental bond graph 
may be entered into the program CAMP-G (Fig. 8). 
CAMP-G can generate a �le campgsym which directs 

MATLAB to derive the matrices A, C, B̃ and D̃ , and  
any sensitivities that are required. Note that in Fig. 8 the 
two sinks in the incremental model of the gyrator have 
been combined into one. The �le campgsym must be 
edited in appropriate places according to the choice of 
the output variable y. If the �le is invoked at the 
MATLAB prompt, the program produces the same 
matrices as above and the sensitivity matrix given in 
Fig. 9. For CAMP-G/MATLAB the incremental bond 
graph entered is just an ordinary bond graph for which 
MATLAB generates the transfer matrix H. However, 
since the sinks in the incremental bond graph re�ect the 
parameter changes, the resulting transfer matrix is the 
sensitivity matrix to be set up. Note that bonds are lab-
elled by numbers; variable names and parameter names 
are not used as annotations by CAMP-G. For instance, 
the parameter of the gyrator is not denoted by the torque 
constant kT, but by means of the numbers of the incident 
bonds. In CAMP-G the gyrator ratio is 1/G8x9. Taking 
into account the notation used in CAMP-G it can be 
shown that for instance the characteristic polynomial in 
Fig. 9 is indeed the determinant ¢ of (sI�A)Õ1 given 
by equation (19). 

As has been mentioned by the end of Section 2, com-
putation simpli�es if the eVect of a change in only one 
parameter is of interest. Then only one element must 
be replaced by its associated incremental submodel. 
Suppose that there is a change in mechanical friction. 
Its eVect on the current into the voltage source will be 
studied. The incremental bond graph for that case is 
given in Fig. 10. From the incremental bond graph in 
Fig. 10 the following two equations can be immedi-
ately derived. 

1 
sL ¢i= (�R L ¢i�k

T
L ¢ö)  (21)  

L a 
a 

and 

1 
sL ¢ö= [kTL ¢i�R L ¢ö�(L f

Rm 
) ¢R ]

J m m 
m 

(22)  

From equations (21) and (22) the sensitivity qL i/qR m 

Fig. 7 Bond graph of the positioning system 
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Fig. 8 Associated incremental bond graph for the positioning system 

Fig. 9 Sensitivity matrix of the positioning system produced by MATLAB 
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Fig. 10 Sensitivity bond graph for the case of a deviation in mechanical friction 

is obtained after some steps: 

qL i [k /(L J )]L f 
= T a m Rm (23)  

qR (s+R /L )(s+R /J )+k2T
/(L J )m a a m m a m 

In equation (23) the denominator is the determinant 
given by equation (19). An equivalent expression to that 
in equation (23) is obtained if the incremental bond 
graph of Fig. 10 is entered in CAMP-G and the pro-
cedure campgsym generated by CAMP-G is run in 
MATLAB. Figure 11 shows how bonds are labelled by 
CAMP-G. The generated sensitivity is shown in Fig. 12. 

The approach presented so far may be applied also to 
models in which switches are represented by a Boolean-
controlled modulated transformer and a resistor 
accounting for the ON state resistance. 

5 EXTENSION TO NON-LINEAR MULTIPORT 
ELEMENTS 

5.1 Non-linear one-port elements 

The approach presented so far is not limited to linear 
one-port elements, nor elements with one single param-
eter. As a simple example, consider a hydraulic ori�ce. 
Its static behaviour is given by the well-known square 

Fig. 11 Sensitivity bond graph entered in CAMP-G 

root law: 

Q=c
d
A S2 

|¢p | sgn(¢p)  (24)  
r 

In equation (24) the parameter cd denotes the discharge 
coeYcient and A the cross-sectional area. The equation 
not only is a non-linear relation between the hydraulic 
power variables Q and ¢p but also includes the cross-
sectional area A which may depend on the position x of 
the spool in spool valves; i.e. the element may depend 
not only on parameters that may vary but also on con-
trol signals determined by other parts of the model. 
(Moreover, for small pressure drops the discharge 
coeYcient cd is not a constant, but a non-linear function 
of the volume �owrate Q which contains another 
parameter, namely the oil viscosity.) 

By taking a closer look at the formulae of the 
incremental models derived in Section 2 it can be seen 
that they may be obtained by building total diVerentials. 
Hence, suppose a non-linear one-port resistor is given 
by the constitutive equation 

e
R

(t)=¼
R

( f
R

(t),  p)  (25)  

with a constant parameter vector p. In the following all 
non-linear functions are assumed to be diVerentiable. 
Building the total diVerential of e

R 
immediately yields 

the relation between the small deviations of the power 
port variables from nominal values due to changes in 
the parameters of the resistor: 

q¼ q¼ 
¢e

R
(t)= R ( f

R
(t), p) ¢f

R
(t)+ R ( f

R
(t ), p) ¢p

qf
R 

qp 
(26)  

Thus, while the original model may be non-linear, 
the associated incremental model is linear time variant. 
As in the case of a linear resistor, equation (26) may 
be represented by a resistor with a (time-dependent) 
resistance and a modulated eVort sink attached to a 
1-junction. The 1-junction represents the incremental 
�ow ¢ f

R 
(Fig. 13). In practice it may happen that, 

although an element or a component model has several 
parameters, the eVect of a change in only one parameter 
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Fig. 12 Sensitivity (1/L f
Rm 

)(qL i/qR ) generated by MATLAB m 

Fig. 13 Incremental model of a non-linear one-port resistor 

is of interest. In that case the second term of equation 
(26) reduces to a product of two scalars. 

Although the objective in this article is sensitivities 
rather than the development of a bond graph for the 
linearized system, the procedure is similar to that 
adopted by Karnopp [10]. In fact, the work on sensi-
tivity analysis presented in this article has been inspired 
by the previous work of Karnopp on the bond graph 
representation of linearized systems. For instance, in ref-
erence [10] the bonds of the bond graph representing 
the linearized system carry small deviations of the power 
variables from their steady state values and the product 
of these deviations is only a part of the power conveyed 
between two ports in the initial bond graph model. 

5.2 Multiports 

Bond graph elements may depend on more than one 
parameter. They may also have more than one power 
variable as input; i.e. they may be multiport elements. 
An in�nitesimal small variation in the output power vari-
ables due to small perturbations in the parameters again 
is obtained through derivation of the total diVerential. 
As an example, consider a non-linear multiport C store, 
e.g. a movable-plate capacitor, with the constitutive 
equation 

e
C
(t)=¼

C
Õ1(q(t), p)  (27)  

in which q(t ) denotes the generalized displacement 
and p a constant parameter vector. In�nitesimally small 
parameter changes result in the linear time-variant 

q¼
C
Õ1 q¼

C
Õ1 

¢e
C
(t)= (q(t),  p) ¢q(t)+ (q(t),  p) ¢p

qq qp 
(28)  

Again, equation (28) may be represented in a multi-
bond graph by a C store and a sink attached to an array 
of 1-junctions, or it may be depicted equivalently by 
means of single bonds, as shown in Fig. 14. A similar 
result is obtained for multiport I elements. 

5.3 Models containing non-linear multiports 

If the constitutive relations of a multiport are non-
linear, the constitutive relations of the corresponding 

Fig. 14 Incremental model of a non-linear multiport C store 
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incremental model are linear time variant [cf. equations Gawthrop [11]. The relation between the initial bond 
(26) and (28)]. Consequently, in that case, equations de- graph and the incremental bond graph is depicted in 
duced from the incremental bond graph cannot be trans- Fig. 15. The (time domain) solution of the equations of 
formed into the frequency domain by means of the the initial model provides values for the vector of system 
Laplace transform. However, equations can be deduced output variables, y, and the vector of state variables, x. 
that determine the state sensitivities qx/qp and the output In addition, generalized displacements may or must be 
sensitivities qy/qp as functions of time provided that x(t) computed (vector q). Some power variables in the initial 
and u(t ) of the original model are known; i.e. the equa- bond graph depending on state and input variables are 
tions for x(t) and the sensitivities qx/qp and qy/qp must input to modulated sinks that link the initial bond graph 
be solved simultaneously. in a unilateral direction to the incremental bond graph. 

From the original bond graph equations, The equations derived from the incremental bond graph 
determine �nite deviations of the state and the output xÇ (t)= f (x(t), u(t),  p) (29a) 
vector, if �nite parameter changes are known; i.e. per-

y(t)=g(x(t), u(t),  p)  (29b)  turbed power variables can be computed. In the same 
way that generalized displacements may be computedcan be derived. The incremental bond graph model 
from the initial bond graph model, sensitivities can beprovides the equations 
computed, if in the equations of the incremental bond 

q f qf graph deviations of the power variables from nominal ¢xÇ (t)= (x(t),  u(t ), p) ¢x(t)+ (x(t ), u(t), p) ¢p
qx qp values are replaced by sensitivities [cf. equations (30a) 

(30a) and (30b)]. 

qg qg Example: a simple model containing a linear multiport ¢y(t)= (x(t ), u(t), p) ¢x(t )+ (x(t ), u(t), p) ¢p
qx qp 

Consider a simple circuit containing a transformer (30b) 
with mutually interacting coils (Fig. 16). The full circles 

for the deviations of the state vector and the output 
vector from nominal values due to parameter changes 
¢p. The state sensitivity function (qx/qp) (t) and the 
output sensitivity function (qy/qp)(t) are given by the 
following equations: 

qxÇ qf qx q f 
(t)= (x(t),  u(t), p) + (x(t),  u(t),  p)

qp qx qp qp 
(31a) 

qy qg qx qg
(t)= (x(t),  u(t),  p) + (x(t ), u(t), p)

qp qx qp qp 
(31b) 

These equations can be solved if the x(t) and  u(t) in the  
initial model are known. Consequently, equations (30a), 
(30b), (31a) and (31b) must be solved simultaneously. 

Alternatively, a pseudo bond graph can be constructed 
in which each bond instead of the incremental power 
variables carries the sensitivities of the power variables. 
For instance, diVerentiation of the constitutive relation 

e
R

(t)=¼
R

( f
R

(t), p)  (32)  

of a non-linear one-port resistor with a single parameter 
p yields Fig. 15 Relation between initial and incremental bond graph 

qe
R

(t) q¼ qf
R

(t) q¼ 
= R ( f

R
(t), p) + R ( f

R
(t ), p)

qp qf
R 

qp qp 
(33)  

If the sensitivities qe /qp and q f /qp are used as bond
R R

variables the pseudo bond graph corresponding to 
equation (33) has the same structure as that in Fig. 13. 

A pseudo bond graph approach has been proposed 
by Cabanellas et al. [2 ] and has been extended by Fig. 16 Transformer with mutual interacting coils 
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above the coils denote their relative orientation. In this Accordingly, the matrix D̃ is 
case, both currents i1 and, i2 enter the ends with full q ì ì 
circles and their mutual inductance coeYcient M12 is D̃ = 1 + 2 

q(L L Mpositive. Such a transformer is appropriately described 1 , L2 , M12 , R) C 1 12
D 

by means of a two-port I �eld as depicted in Fig. 17. Its 
constitutive equation is 

1 1 

i1 
L1 

ì 
= 

M12 1 (34)  C
2
D C 

2
Di 1 1 ìA BM12 L2 

In equation (34), L1 and L2 denote the self-inductance 
coeYcients of the two coils, while M12 is the mutual-
inductance coeYcient. 

For the two �ux linkages ì1 and ì2 the following state 
space equation is easily obtained: 

0 0ìÁ ì1 = R R 1 + 1 
Á [E ]Cì
2
D A� � B 2

Cì D A0B (35)  
M12 L2 

x B 
u 

A 

If the load current i1 on the voltage source is chosen as 
an output variable y, the matrices C and D become 

1 1 ì 
[i1 ]= A 12L1 M B Cì 

1
2
D (36)  

C 

and D=0. Hence, 

s 0 

sI�A= R R (37)  
s+AM12 

BL2 
Thus the characteristic polynomial is 

R 
¢ ) s2+ s (38)  

L2 
From equation (35) the matrix B̃ is obtained according 
to equation (13a): 

E 
q

B̃ = R R 
� ì ìC M12 

Dq(L1 , L2 , M12 , R) 
1� 

L2
2 

0 0 0 0 

= ì ì (39)  
0 R 2 R 1 �i2A M212 

BL22 

Fig. 17 Bond graph of the circuit in Fig. 16 

= A� 
L 

ì
1
21 

0 � 
M 

ì
2
212 

0B (40)  

With the above matrices, manual calculation of the sensi-
tivity matrix S according to equation (12) is a lengthy 
procedure and is therefore not shown here. Alternatively, 
the incremental bond graph depicted in Fig. 18 is entered 
in CAMP-G, and MATLAB is employed to set up the 
sensitivity matrix from the data generated by CAMP-G. 
As can be seen from Fig. 18, the sinks in the incremental 
models of the I �eld and the resistor have been split up 
into a sink and a modulated transformer (see Fig. 3). 
The value of the sink is the change in the parameter, e.g. 
¢L

1 , while the modulus of the transformer is the corre-
sponding sensitivity, e.g. qi1

/qL1 . The incremental bond 
graph entered in CAMP-G can be seen partly from 
Fig. 19. (Other parts of the graph become visible by 
scrolling the bars on the left-hand side and on the 
bottom of the drawing window.) The bond graph pre-
processor CAMP-G generates the MATLAB procedure 
campsym.m. In this �le, comment signs are removed in 
appropriate places in order to identify ¢i1 as an output 
variable and to activate the calculation of the transfer 
functions matrix, i.e. the sensitivity matrix. Execution of 
the MATLAB procedure gives the results shown in 
Fig. 20 and Fig. 21. Taking into account that CAMP-G 
assigns numbers to the bonds of a bond graph instead 
of names for the power variables the system matrices 
generated by CAMP-G are the same as those that have 
been calculated manually [cf. equations (35) and (36)]. 
As can be seen from Fig. 21, the entries in the sensitivity 
matrix are lengthy expressions in which, for example, 
the transformer moduli T

ij 
have to be replaced by the 

appropriate partial derivatives with respect to the par-
ameters (see Fig. 18). 

6 CONCLUSION 

In this paper a bond graph based approach to the deter-
mination of �rst-order frequency domain sensitivities 
has been presented. Instead of representing constraints 
between sensitivities in a pseudo bond graph, it is pro-
posed to set up a true power bond graph for the devi-
ations ¢e and ¢ f from the nominal power variables that 
are due to small parameter changes. The associated bond 
graph for the incremental power variables is obtained 
systematically by replacing each bond graph element by 
a submodel that consists of standard bond graph 
elements. If only a certain sensitivity is of interest, it is 
suYcient to replace the aVected element by its associated 
incremental model. Although the product of the 
incremental power variables is indeed power, in fact it 

I06101 © IMechE 2002 Proc Instn Mech Engrs Vol 216 Part I: J Systems and Control Engineering 



96 W BORUTZKY AND J GRANDA 

Fig. 18 Incremental bond graph of the transformer circuit in Fig. 16 

is only a part of the change in power due to parameter incremental bond graph is fully systematic, it could be 
changes. Apart from additional sinks the structure of performed automatically in a bond graph modelling 
the original bond graph is retained by the incremental package and could be completely hidden from those 
bond graph. Owing to the additional sinks, a submodel modellers who just ask for output of sensitivities of inter-
that replaces a bond graph element does not have all est. This is only a matter of implementation. Incremental 
properties of that element; i.e. a submodel replacing a models of commonly used (non-linear) elements could 
resistor is not passive and a submodel replacing a trans- be stored in a library. If the modeller requests sensitivit-
former is not power conservative. However, the ies, the software could pick the incremental submodels 
additional sinks in the incremental model of an element needed in a way that is transparent for the user. In the 
do not aVect causalities. Moreover, equations can be case of linear time-invariant systems a tool for sym-
derived from the incremental bond graph in the same bolic mathematical calculation, e.g. MATLAB, could be 
way as they are derived from the initial bond graph. The exploited to provide sensitivities in symbolic form. In 
sensitivities to be determined are just the coeYcients in the non-linear case the simulation part of the software 
these linear equations, if the parameter changes are must solve simultaneously the equations of the initial 
assumed to be in�nitesimally small. The approach is bond graph model and the equations that determine the 
applicable to bond graphs containing non-linear multi- sensitivities. 
port elements. In the latter case the incremental bond In the linear case it might be argued that there is no 
graph model is linear time variant. Consequently, since need for an associated sensitivity bond graph because 
the Laplace transform cannot be used any longer, the sensitivities may be obtained by symbolic diVerentiation 
equations of the original model and those of the sensi- of transfer functions. In fact, if the Laplace transforms 
tivity model must be solved simultaneously in time of a system input u and an output variable y are 
domain. Finally, since the construction of the associated related by a transfer function F(s, p) and if p denotes a 
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Fig. 19 Incremental bond graph of Fig. 18 entered in CAMP-G 

Fig. 20 System matrices set up by CAMP-G/MATLAB 
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Fig. 21 Sensitivity matrix set up by CAMP-G/MATLAB 

parameter vector, then the sensitivity of L y with respect 
to p

i 
is given by 

qL y qF(s, p) 
= L u (41)  

qp
i 

qp
i 

Although F is in general a non-linear function of the 
parameters p

j 
( j=1,  . . .,  r), the diVerentiation may be 

carried out symbolically. In MATLAB, for example, 
jacobian could be used. However, for a user of the 
bond graph modelling approach the incremental bond 
graph is a valuable tool since it provides insight into the 
eVects of parameter changes of the model. Ultimately, 
in the case of linear time-invariant models all unnor-
malized sensitivities may be obtained in symbolic form 
in one step as has been shown in this paper by using 
MATLAB for the derivation of the general transfer 
function matrix from the incremental bond graph. 
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