
Fast Radial Symmetry Detection for
Traic Sign Recognition

Matias Alejandro Valdenegro Toro

Publisher: Dean Prof. Dr. Wolfgang Heiden

University of Applied Sciences Bonn-Rhein-Sieg,
Department of Computer Science

Sankt Augustin, Germany

August 2015

Technical Report 04-2015

ISSN 1869-5272

Copyright c÷ 2015, by the author(s). All rights reserved. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for proĄt or
commercial advantage and that copies bear this notice and the full citation on the
Ąrst page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speciĄc permission.

Das Urheberrecht des Autors bzw. der Autoren ist unveräußerlich. Das
Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Das Werk kann
innerhalb der engen Grenzen des Urheberrechtsgesetzes (UrhG), German copyright

law, genutzt werden. Jede weitergehende Nutzung regelt obiger englischsprachiger
Copyright-Vermerk. Die Nutzung des Werkes außerhalb des UrhG und des obigen
Copyright-Vermerks ist unzulässig und strafbar.

Uniform Resource Name urn:nbn:de:hbz:1044-opus-15922
URN-Resolver at the German National Library http://nbn-resolving.de

b

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:1044-opus-15922
http://nbn-resolving.de

Radial Symmetry Detection for Traffic Sign Recognition

Report on R&D

Corrected edition

Matias Valdenegro∗

B-IT Master Studies Autonomous Systems

University of Applied Sciences Bonn-Rhein-Sieg

Fraunhofer Institute for Intelligent Analysis and Information Systems

Advisors: Dr. Stefan Eickeler ∗∗ and Prof. Dr. Paul Plöger ††

Originally delivered on January 15, 2014.
Corrected on November 21, 2014.

∗matias.valdenegro@smail.inf.h-brs.de
∗∗stefan.eickeler@iais.fraunhoffer.de
††paul.ploeger@h-brs.de

i

mailto:matias.valdenegro@smail.inf.h-brs.de
mailto:stefan.eickeler@iais.fraunhoffer.de
mailto:paul.ploeger@h-brs.de

ii

Abstract

Advanced driver assistance systems (ADAS) are technology systems and devices

designed as an aid to the driver of a vehicle. One of the critical components of any

ADAS is the traffic sign recognition module. For this module to achieve real-time per-

formance, some preprocessing of input images must be done, which consists of a traffic

sign detection (TSD) algorithm to reduce the possible hypothesis space. Performance

of TSD algorithm is critical.

One of the best algorithms used for TSD is the Radial Symmetry Detector (RSD),

which can detect both Circular [7] and Polygonal traffic signs [5]. This algorithm runs

in real-time on high end personal computers, but computational performance of must

be improved in order to be able to run in real-time in embedded computer platforms.

To improve the computational performance of the RSD, we propose a multiscale

approach and the removal of a gaussian smoothing filter used in this algorithm. We

evaluate the performance on both computation times, detection and false positive rates

on a synthetic image dataset and on the german traffic sign detection benchmark [29].

We observed significant speedups compared to the original algorithm. Our Im-

proved Radial Symmetry Detector is up to 5.8 times faster than the original on de-

tecting Circles, up to 3.8 times faster on Triangle detection, 2.9 times faster on Square

detection and 2.4 times faster on Octagon detection. All of this measurements were

observed with better detection and false positive rates than the original RSD.

When evaluated on the GTSDB, we observed smaller speedups, in the range of 1.6

to 2.3 times faster for Circle and Regular Polygon detection, but for Circle detection

we observed a decreased detection rate than the original algorithm, while for Regular

Polygon detection we always observed better detection rates. False positive rates were

high, in the range of 80% to 90%.

We conclude that our Improved Radial Symmetry Detector is a significant improve-

ment of the Radial Symmetry Detector, both for Circle and Regular polygon detection.

We expect that our improved algorithm will lead the way to obtain real-time traffic

sign detection and recognition in embedded computer platforms.

iii

Corrections in this edition

• Removed the mention to a non-existing figure in the Radial Symmetry section.

• Equation 34 has been corrected. In the original version, the sum limits were not

correct.

iv

Contents

Abstract iii

Corrections in this edition iv

List of Figures viii

List of Tables ix

1 Introduction 1

2 Related Work 2

2.1 Advanced Driver Assistance Systems . 2

2.2 Traffic Sign Recognition . 3

2.3 Traffic Sign Detection . 5

2.4 Circle Detection . 7

2.5 Regular Polygon Detection . 10

2.6 Discussion . 11

3 Background 12

3.1 Radial Symmetry . 12

3.2 Image Gradient . 12

3.3 Gaussian Smoothing . 14

3.4 Hough Transform . 15

3.5 Regular Polygons . 16

3.6 Traffic Signs . 18

4 The Radial Symmetry Detector 20

4.1 Circle Detector . 21

4.1.1 Parameters . 27

4.2 Regular Polygon Detector . 27

4.2.1 Parameters . 30

4.3 Implementation Details . 33

4.3.1 Normalization . 33

4.3.2 Detection Merging . 33

4.3.3 Threshold Tuning . 34

5 Improvements to the Radial Symmetry Detector 36

5.1 General Approach . 36

5.2 Multiple scale approach . 36

v

5.3 Thresholding . 38

5.4 Circle Detection . 39

5.5 Regular Polygon Detection . 40

5.6 Improving the Original Regular Polygon Detector 42

6 Experimental Setup 42

6.1 General Remarks . 42

6.2 Detector Configuration . 43

6.3 Evaluation on Synthetic Images . 43

6.4 Evaluation on a Traffic Sign Dataset . 46

6.5 Multiple Radius Evaluation . 47

6.6 ROC Curve Evaluation . 47

6.7 Speedup Error Propagation . 49

7 Experimental Results and Analysis 49

7.1 Synthetic Image Results . 49

7.1.1 Circle Detector . 49

7.1.2 Regular Polygon Detector . 50

7.2 Traffic Sign Dataset Results . 52

7.2.1 Circle Detector . 52

7.2.2 Regular Polygon Detector . 52

7.3 Multiple Radius Evaluation . 53

7.3.1 Circle Detector . 53

7.3.2 Regular Polygon Detector . 55

7.4 ROC Curve Results . 57

8 Conclusions 59

8.1 Future Work . 60

9 References 62

A Experimental Data 68

A.1 Synthetic Image Evaluation . 68

A.1.1 Circle Detector . 68

A.1.2 Triangle Detector . 71

A.1.3 Square Detector . 74

A.1.4 Octagon Detector . 77

A.2 Traffic Sign Dataset Evaluation . 80

A.2.1 Circle Detector . 80

vi

A.2.2 Triangle Detector . 81

A.2.3 Square Detector . 82

A.2.4 Octagon Detector . 83

A.3 Multiple Radius Evaluation . 84

A.3.1 Circle Detector . 84

A.3.2 Triangle Detector . 85

A.3.3 Square Detector . 86

A.3.4 Octagon Detector . 87

vii

List of Figures

1 Example result from the Sobel Operator . 14

2 Gaussian Smoothing Example . 15

3 Line and his Accumulator Array after applying the Hough Transform . . . 17

4 Circumcircle and Incircle of a Regular Polygon 18

5 Regular Polygon Generation Algorithm . 18

6 Ideogram based Traffic Signs . 20

7 Text based Traffic Signs . 20

8 Normal Vectors to a Circle . 21

9 Positive and Negative voting positions . 22

10 Circular Radial Symmetry Detector Algorithm 24

11 Results of the Circular RSD on Synthetic Image 25

12 Results of the Circular RSD on real Image 26

13 Equiangular Property shown in a Square . 29

14 Polygon Radial Symmetry Detector Algorithm 30

15 Results of the Regular Polygon RSD on Synthetic Image 31

16 Results of the Regular Polygon RSD on Real Image 32

17 Detection Merging Algorithm . 35

18 Threshold Tuning Algorithm . 35

19 Vote image examples with different scales 37

20 Improved Radial Symmetry Detector Algorithm 39

21 Detections generated by the Improved Circle RSD 40

22 Improved Regular Polygon Detector example 41

23 Triangle Detections . 42

24 Gaussian Image noise with varying values of standard deviation σ 45

25 Histogram of estimated radius/apothem distributions of the GTSDB 48

26 ROC Curves with σ = 50 . 58

27 Triangle Detector ROC Curve . 58

28 False Positives in a image of the GTSDB . 62

29 Circle Detector Detection Rates with Noise 68

30 Circle Detector False Positive Rates with Noise 69

31 Circle Detector Computation Time (ms) with Noise 70

32 Triangle Detector Detection Rates with Noise 71

33 Triangle Detector False Positive Rates with Noise 72

34 Triangle Detector Computation Time (ms) with Noise 73

35 Square Detector Detection Rates with Noise 74

36 Square Detector False Positive Rates with Noise 75

viii

37 Square Detector Computation Time (ms) with Noise 76

38 Octagon Detector Detection Rates with Noise 77

39 Octagon Detector False Positive Rates with Noise 78

40 Octagon Detector Computation Time (ms) with Noise 79

41 Circle Detector Performance under the GTSDB by Circle radius 80

42 Triangle Detector Performace under the GTSDB by Apothem. 81

43 Square Detector Performance under the GTSDB by Apothem. 82

44 Octagon Detector Performance under the GTSDB by Apothem. 83

45 Multiple Radius Evaluation for the Circle Detector 84

46 Multiple Radius Evaluation for the Triangle Detector 85

47 Multiple Radius Evaluation for the Square Detector 86

48 Multiple Radius Evaluation for the Octagon Detector 87

List of Tables

1 Threshold tuning parameters used for synthetic image evaluation 45

2 Circle Detector Performance under the GTSDB 52

3 Triangle Detector Performance under the GTSDB 54

4 Square Detector Performance under the GTSDB 54

5 Octagon Detector Performance under the GTSDB 54

6 Multiple Circle Detector Evaluation Computation Times (ms) 55

7 Multiple Triangle Detector Evaluation Computation Times (ms) 55

8 Multiple Square Detector Evaluation Computation Times (ms) 56

9 Multiple Octagon Detector Evaluation Computation Times (ms) 56

List of Abbreviations

ADAS Advanced Driver Assistance Systems

DR Detection Rate

FPR False Positive Rate

GTSDB German Traffic Sign Detection Benchmark [29]

NA N-Angular Image (Equiangular Image)

ROC Receiver-Operating Characteristic

RPD Regular Polygon Detector

RSD Radial Symmetry Detector

TSD Traffic Sign Detection

TSR Traffic Sign Recognition

ix

1 Introduction

All developed countries have issues with traffic-related accidents, such as exceeding speed

limits, driving under the influence of alcohol, or simply dangers inherently associated with

roads and highways, such as other cars, animals on the road and reckless driving.

Traffic accidents produce unnecessary human (and animal) casualties. Many gover-

ments aim to reduce this kind of casualties, and different measures are taken: traffic

regulations, banning the use of distractive devices (cellphones), restricting the availability

of alcohol, etc.

But technology can also be used to save human lives. Many devices have been built

with this purpose, and Advanced Driver Assistance Systems (ADAS) are one type of de-

vices [30]. ADAS are designed as an aid to the driver of a vehicle, with the purpose to

avoid “dangerous situations”.

In theory, a properly designed ADAS can make a vehicle be aware that the driver is

under the influence of alcohol and refuse to start, or notice that the driver is drowsy and

take actions to wake him or her up. It can tell the driver that he is driving over the speed

limit, or provide more sophisticate features like night vision and collision avoidance.

One very desirable component of commercial ADAS is the Traffic Sign Recognition

module (TSR) [21]. The purpose of this module is to recognize Traffic Signs in a video

feed from a camera installed in the vehicle, then provide this information to other ADAS

modules. This kind of information is required for many tasks, such as knowing the cur-

rent speed limit, guiding the driver through traffic, and general knowledge of potentially

dangerous zones.

Common architectural implementations of TSR split this process into two stages: De-

tection and Recognition [21]. First the detection stage “detects” candidate traffic signs

in the input image, and then the recognition stage is run over the candidate traffic signs,

where some candidates might not contain traffic signs.

This is done to increase computational performance, since other wise the recognition

algorithm would have to be executed over the entire input image, and this could lead

to problems such as a very high number of false positives, or a very poor computational

performance.

1

For TSR systems to be commercially usable in automotive grade hardware, they re-

quire to run with real-time performance, and have a very low number of false positives

[8]. This means running in real-time in automotive grade embedded systems, rather than

high end personal computers.

In the present work we develop improvements to the Radial Symmetry Detector [7],

a traffic sign detection algorithm, which can run in real-time on high end personal com-

puters. More computational optimizations are needed to achieve real-time performance

in automotive grade embedded systems, which usually have low power requirements, and

thus lower computational power than personal computers.

2 Related Work

We divided this State of the Art into different subsections, each one describing the state

of the art of a different subtopic, but all of this subtopics form part of the bigger picture

of Advanced Driver Assistance Systems and the subproblem of Traffic Sign Recognition

and Detection.

2.1 Advanced Driver Assistance Systems

Advanced Driver Assistance Systems (ADAS) are technological systems and devices to

aid the driver in the task of driving the vehicle to his destination. The help to the driver

consists of multiple aids inherent to the driving task, such as to increase awareness of

situations on the road, protect the driver from potential harms, and protect others from

the driver.

The basic idea of ADAS is to increase road and vehicle safety and to avoid accidents

on the road [47]. There are multiple types of ADAS systems that cover a range of different

use cases:

(Adaptive) Cruise Control Cruise control is a system that keeps a constant speed of

the vehicle, which is set by the driver. Adaptive Cruise Control adds speed control

with consideration of the vehicle in front in the same lane, to keep a constant distance

to it [40].

Navigation Give information to the driver about vehicle position and route guidance.

The classic implementation of this functionality are GPS navigation devices.

Enhanced Information Systems Under this category we consider systems that provide

enhanced information about the road environment to the driver, such as night vision,

2

adverse lighting enhancement, legal speed limits, distance to neighboring vehicles,

and blind spot monitoring.

Collision Avoidance This consists of systems that help the driver avoid collisions with

other vehicles and/or the environment [55].

Lane Change Assistance and Control Systems that aid the driver to change lanes,

and it could also notify the driver if he or she is drifting from the lane markings on

the road [56].

Drowsiness Detection Detect if the driver is able to drive without sleeping during the

driving process. Also can be considered as detect if the driver is going to fall asleep

and take the appropiate protective actions [53].

Autonomous Parking Park the vehicle without human intervention. The driver should

be able to indicate where does he want the vehicle to be parked, and the vehicle

should perform the process automatically [57].

Autonomous Driving Drive the vehicle without human intervention other than setting

the destination. This is a very complex problem, since many real world conditions

must be considered, such as traffic, other non-autonomous vehicles, traffic laws and

legal speed limits, varying weather and lighting conditions, etc. There are some big

advances on this topic triggered by the DARPA Challenge competition such as [54].

ADAS are very complex systems, since they consider a great number of variables that

can be measured on the vehicle, and usually are implemented as embedded systems, which

also introduces computing power constraints.

One important component is the Traffic Sign Recognition module. Many research has

been done about this topic has been done, which is covered in the next section.

2.2 Traffic Sign Recognition

Traffic Sign Recognition (TSR) is the task of recognizing the type and semantic mean-

ing of a traffic sign from an image. For this process the usual implementation is done

using Machine Learning and Pattern Recognition algorithms, trained using a suitable set

of traffic signs from the target country’s traffic signs. This means that the classificator

algorithm must be trained with a different set of traffic signs and semantic information

for each country or zone.

The recognition process is usually split into 3 stages [21]:

3

1. Detection: Possible Traffic Sign candidates are detected in the input image, and are

given to the Recognition stage. This stage is used to reduce the number of possible

Traffic Sign candidates that the Recognition stage must classify.

2. Tracking: The purpose of this stage is to track Traffic Signs over a certain number

of video frames. This information can be used to aid the Detection stage of the

process.

3. Recognition: The final stage recognizes and classifies Traffic Signs using a suitable

Machine Learning or Pattern Recognition algorithm.

Much research has been devoted to the problem of Traffic Sign Recognition [21]. There

are several conditions that make this problem harder:

• Lighting conditions vary (day, night, dawn, dusk, etc), as well as the weather condi-

tions such as rain, fog and snow.

• Traffic Signs can be Occluded by Trees, Cars, Trucks and Pedestrians.

• People often vandalize Traffic Signs, and they degrade naturally due to sunlight and

paint quality.

• Traffic Signs are usually perpendicular to the road, but the orientation can vary, as

well as size and the height of the pole where it is placed.

• Since ADAS are installed in moving vehicles, camera frames could contain motion

blur.

Since the color of Traffic Signs is standarized [18], many TSR techniques are based on

color information, while the competing technique is to use shape information to detect

Traffic Signs.

The Radial Symmetry Detector (RSD) [7] and Regular Polygon Detector (RPD) [5]

have been developed for Traffic Sign Detection. Barnes at al use cross correlation for TSR

and classification [7] [8].

A Hardware platforms for real-time TSR is presented in [48]. The authors use a FPGA

to implement a TSR system, with the Hough Transform and color segmentation to detect

Circular Red signs but performance is not real-time.

Evaluating the performance of TSR systems is also a problem, [44] proposed a method-

ology to evaluate performance, based in a metholody in the field of Visual Surveillance,

4

but the authors did not provide a dataset. The German Traffic Sign Recognition Bench-

mark (GTSRB) has provided a big dataset of 50000 images for TSR evaluation [49].

A Rectangle Detector which is an Extension of the RSD was presented in [35], tuned

specifically for rectangular US speed signs. The authors combined Viola-Jones classifica-

tion to remove false detections with Linear Discriminant Analysis for recognition/classification

to obtain a 98.75% detection rate, 97.5% classification rate and a global recognition rate

of 96.25%.

SIFT and SURF have been used for Traffic Sign Recognition , in conjunction with

a 4-stage System Architecture for robust Circular Traffic Sign Recognition. Höferlin &

Zimmermann [31] introduce the refinement stage which refines location estimates to aid

the classification process. For Detection they use the RSD and SIFT, Tracking is done

with the Kalman Filter and classification with a Multilayer Neural Network over SIFT

and SURF features. They obtained 96.4% recognition rate.

In a competition done using the GTSRB [49], with respect to correct classification rate

(CCR), Committee of Convolution Neural Networks (CNN) [13] were the best algorithm,

with a 99.46% CCR. Second came a human classificator with average CCR of 98.84% (with

a max of 99.22%). Third came Multiscale Convolutional Neural Networks [46] with 98.31%,

fourth came Random Forests [62] with 96.14% and 5th to 7th came Linear Discriminant

Analysis [32] with 95.68%, 93.18% and 92.34%. Linear Discriminant Analysis can run in

real-time, but Convolutional Neural Networks cannot.

2.3 Traffic Sign Detection

Performance of many TSR systems depends on the ability of correctly detecting Traffic

Signs in a image, with the purpose of posterior recognition and/or classification. Then for

Traffic Sign Detection (TSD) many algorithms and techniques have been developed.

Most detection techniques can be divided into 2 types [43]:

Color Segmentation

Detects Traffic Signs according to their color. Since Traffic Sign color is standarized

[18], this kind of segmentation is possible, but color perception in a camera is not

lighting invariant, does not account for sign degradation due to weather and sunlight,

and can fail when there is occlusion on the signs.

Shape Segmentation

Detects Traffic Signs according to their shape, by using a specific shape detector.

5

This is possible due to the standarization of Traffic Sign shapes in most countries

[18]. This kind of methods are based on gradient information, and thus are lighting

invariant, but they are sensitive to noise in the image.

Fang & Chen [19] used 2 Neural Networks to extract color and shape features from an

image by using fuzzy logic sets, then use a Kalman Filter to track the detected signs over

several frames. Their method works with Circular and Polygonal Traffic Signs, and color

segments the image with the HSI color space, since the hue value is invariant to lighting.

Computation time is in the range of 1 to 2 seconds for a 320x240 image on a standard

Pentium 4 PC (1 to 0.5 Hz).

Barnes et al adapted the Radial Symmetry Detector and Regular Polygon Detector for

Traffic Sign Detection and reported their results in [7], [4], [5] and [8]. More about this

detector is covered on the Circle and Polygon detection sections.

Bahlmann et al [2] used Haar wavelet computed by Adaboost training with color and

shape information, without the need of manually tuning thresholds. With their system,

they reduce the false positive rate by an order of magnitude (0.3% to 0.03%), which is

quite an improvement. Computation times allow for a processing frequency of 10 Hz.

Garcia et al [22] used an Hough-based algorithm to detect Circles and Lines that form

Triangles, with a processing speed of 5 to 50 Hz. To achieve such high processing rate with

the Hough Transform, they preprocess contour information and reject contourns that do

not match a Traffic Sign, such as with aspect ratio and closedness.

Edge Orientation Histogram has also been used to detect Traffic Signs [1], where fea-

tures can be learned and then used to compare against computed features in the image,

yielding detections. 80% to 90% detection rate can be achieved with 0.1% false positive

rate, with a processing rate of 7.5 Hz.

Maldonado-Bascon et al [41] used Support Vector Machines (SVM) for detection, by

doing color segmentation in HSI color space and then classify shape blobs with a linear

SVM, to finally recognize them with a Gaussian Kernel SVM. Their method can detect

Circular, Rectangular, Triangular and Octagonal Traffic Signs, and has a detection rate

of 93.24% and a computation time of 1.77 seconds over 720x576 pixel images (0.56 Hz).

The Bilateral Chinese Transform [10] is a variation of Hough-like algorithms such as

the RSD, but only gradient edges that are 180◦ from each other vote for the middle point

6

as a center, which has the advantage of not requiring radius information about the shape

being detected. Authors report 86% detection rate with 25 false positives over 89 images

at 640x480 resolution, with processing time of 30 milliseconds (33 Hz), but in a subsequent

paper [9] the same transform takes 0.8 seconds to process 960x1080 images, which is an

inconsistency.

The Radial Symmetry Detector has been implemented in a NVIDIA GeForce 9400M

GPU [23] on a embedded computer platform with a Atom CPU. Glavtchev et al achieved

88% detection rate at 33 Hz processing rate with this setup, which is closer to the ideal

implementation of TSD on embedded platforms.

Chen et al [11] used pure color segmentation in HSV color space, then detected Traffic

Signs using Haar wavelets from Adaboost training, from where they achieve a 90% com-

bined recognition rate with 50 millisecond processing time for detection (20 Hz).

A generic way to detect Traffic Signs is to use a generic object detector. Since Traffic

Signs have known color and shapes, using a generic shape detector, such as Circle, Rect-

angle and Triangle Detectors is a good way to obtain high correct detection rates. This

approach has the advantage of not being Traffic Sign-specific, so detector research can also

be used for other purposes.

2.4 Circle Detection

The most used algorithm for Circle Detection is the Generalized Hough Transform (GHT)

[3] and the Circular Hough Transform (CHT) [17] [37] and their variants, which can be used

to detect any kind of shape that can be described with an analytical equation f(x,a) = 0,

where x is a coordinate vector, and a is a parameter vector.

The Hough Transform (HT) is an algorithm that takes an input image with a target

shape to be detected and produces an accumulator array by successive “voting” of param-

eters of the shape in the parameter space represented by the accumulator array. Then the

detection of the shape is performed by finding maxima in the accumulator array, which is

usually implemented by thresholding.

The Generalized Hough Transform has exponential computational complexity, in the

order of O(Mm), where m is the number of parameters in the parameter vector, and M is

the number of values of the parameters. For Circles there are 3 parameters, so the GHT

has complexity O(n3), where n depends on the discretization of the parameter space. The

7

accumulator array has exponential space complexity as well.

The GHT has a very costly complexity, which translates into very high computation

times, and this is the biggest drawback of using this transformation. Much research has

been devoted to reducing the computational complexity of the Hough Transform.

Properties of the shapes being detected can be used to reduce the complexity of the

HT, for example for Ellipses, in [52] they remove straight lines from the edge set and then

use the property that for 2 parallel tangets to an elipse, the middle point between them

must be the center of the ellipse, and this center is incremented, so votes must accumulate

in ellipse centers.

Randomness can also be used to decrease computation times, as with the Random-

ized Hough Transform (RHT) [60], which take n random pixels of the image and use the

GHT to vote for this pixels in the accumulator array, and then search for the shape in

this reduced accumulator array. This increases performance significantly and reduces the

dimension of the accumulator array, but results depend on the precision parameter δ and

previous information about the shape being detected.

Computation times of the RHT are in the range of several seconds, while the GHT

can take several minutes, depending on the shape being detected and the image size. The

dimension of the accumulator array for circles and ellipses has been reduced to 2 [61].

Geometric symmetry has algo been used to reduce the computation time of the HT.

In [26] Ho & Chen used the symmetry of Circles and Ellipses to construct the symmetric

horizontal and vertical axes when scanning the image in scanline order. Then the inter-

section of these axes define the center of the Circle or Ellipse, and then the parameters

(major and minor axis, and orientation) can be determined with a voting algorithm. This

method has been improved to use a 1D accumulator array in [24].

An improvement of the RHT is presented in [12], on which Chen & Chung decided

not to use an accumulator array, but a distance metric from which they select 4 edge

pixels at random and determine if this points are likely part of a circle. Then they gather

evidence for the possibility of a circle by iterating on the edges of the circle hypothesis.

This algorithm is fast when compared to the RHT, but still in the range of several seconds

to detect a Circle.

Many of this algorithms do not run in real time (at least 10 frames per second), and

8

take several seconds to detect one Circle. But the HT and its variants have some desirable

properties, such as noise resistance and robustness to distortions and discontinuities in the

shape

Kim & Kim in [36] used the properties of chords in a circle to compute the center of

the circle with a 2 dimensional HT, and then use a 1D HT to compute the radius. This

algorithm has computational complexity O(n3)+O(n4
en

2), where n is the number of pixels

in the image and ne is the maximum number of endpoints of the possible chords. The

results of this contribution show computation time between 0.3 to 22 seconds.

Rad et al in [45] presented the Fast Circle Detection (FCD) algorithm that by finding

all gradient pair vectors and use them to detect the center and radius of the circle. Two

conditions that can be evaluated fast are required to find the gradient pair vectors. The

authors report computation times from 0.3 to 1.6 seconds, which is a big improvement

from the current state of the art up to this point.

Loy & Zelinsky in [39] proposed the Fast Radial Symmetry algorithm to detect points

of interest in images, and then use this technique to build the Radial Symmetry Detector

(RSD) [7] where the gradient direction is used to vote for a circle center at a distance r

pixels away. If r matches the circle radius, then the votes accumulate at the center and

can be detected by simple thresholding of the accumulator array.

The biggest advantage of the Radial Symmetry Detector is that is able to run in real-

time, since it has computationa complexity O(kp), where p is the number of pixels of the

image, and k is the size of the set if different circle radius values for detection. Barnes et al

report in [7] that a computation time of 13.2 milliseconds on a 320x240 image was achieved.

The biggest disadvantage of the Radial Symmetry Detector is that it requires infor-

mation about the radius of the circles being detected (in pixels), and that performance is

sensitive to the gradient magnitude threshold [4], which means that noise will reduce the

performance of the detector.

Another deficit of the RSD is that it was tested on a high end computer platform (3.4

GHz Intel Xeon) [8], and thus is not able to run in real-time on embedded or low power

platforms, such as the ones used to implement ADAS. More computational optimizations

are required for embedded implementations. Also the number of false positives is high (0.3

- 0.8 false positive rate), which is discouraging for a commercial vehicle implementation.

9

More recent research has been done on Circle Detection without using the HT, such as

[15] where a Swarm Intelligence algorithm (Adaptive Bacterial Foraging) is used to detect

circles, with computation times in the range of 300 to 1000 milliseconds. Also Learning

Automata [14] has been applied to detect multiple circles, which shows a considerable

improvement over previous automata and genetic algorithm techniques, with computation

time in the order of 100 to 200 milliseconds.

In [28] Houben developed a image preprocessing technique using color information to

improve the detection performance of several traffic sign detectors such as the RSD.

2.5 Regular Polygon Detection

There are not many generic regular polygon detectors in the literature. Detector al-

gorithms are generally dedicated to one kind of regular polygons, commonly Triangles,

Squares, Octagons, and some detectors specialize on Rectangle detection.

The HT can also be used to detect polygons in general. In [16] Davies uses the HT to

vote for the polygon center, but the number of peaks is O(n3) where n is the number of

sides of the polygon.

Also using the HT polygon sides can be detected as Lines and an algorithm such as [33]

can be used to detect polygons, but this takes time O((n+m)4) and space O((n+m)2),

where n is the number of lines and m is the number of line intersections. This method

can run in real-time for small number of lines (6 from the publication), but for for more

than 30 it will not be able to achieve real-time performance.

The Radial Symmetry Detector has been extended to a Regular Polygon Detector

(RPD) in [38] by constructing a line of votes at r distance from the voting gradient ele-

ment that is perpendicular to the gradient. The RSD can be considered a specific case of

the RPD when the number of sides n→∞.

The RPD runs in real-time (20 Hz) in a high end Intel processor, but it has a mod-

erately high number of false positives. As with the RSD, computational performance is

dependent on the amount of noise in the image.

Square Detection can be considered a special case of Rectangle Detection, [34] used a

Windowed Hough Transform and geometric properties of lines of a Rectangle, specifically

10

that sides of a rectangle are perpendicular to each other, so they form a known pattern

in the maximums of the accumulator array. This method does not run in real-time and

takes several seconds to compute.

Barnes et al proposed a new robust regular polygon detector [6] that used a 5 dimen-

sional space to represent polygons, where they compress this space to a 3 dimensional

space where search can be performed. They use a maximum likelihood approach to re-

cover the 2 lost dimensions. This algorithm runs with a frame time of 50 milliseconds on

320x240 images.

In [5], Barnes & Loy proposed more computational optimizations to the RPD. By

removing the equiangular image computation, the RPD can run at more than 20 Hz in

a “standard PC”, but this increases the number of false positives, but the authors use a

multiple frame information to reduce the false positive rate.

Non-HT techniques are also present in the literature, such as [27] where a fuzzy shell

clustering algorithm is used to detect rectangles, and this method is improved in [51] where

a Neural Network and competitive learning is used to detect Rectangles.

2.6 Discussion

We can see that traffic sign recognition is a very well studied problem, and many recogni-

tion and classification algorithms exist. Many of this algorithms do not run in real-time,

or they do only when applied to small images.

The optimal way to maximize performance of the recognition algorithm is to run it

only in the image section where the traffic sign is located.

Since the detection algorithm must always be run in the full input image, the per-

formance of it is critical. One of the fastest detector algorithm is the Radial Symmetry

Detector [7] and its generalization for regular polygons [5]. Both of them can run in

real-time by taking some assumptions on sign size and orientation, but only on high end

processors oriented for servers (Intel Xeon).

So clearly there is a need to optimize the Radial Symmetry Detector with respect to

computational performance. Also this algorithm could have other uses, since its structure

is not specific to traffic signs only, and can be used to detect circles and regular polygons,

with many more applications than just traffic sign detection.

11

There is room for improvement of the Radial Symmetry Detector. The use of the gaus-

sian filter in the Circle Detector is necessary to resist noise, but it creates a performance

problem, since without doubt is the most expensive part of the algorithm.

3 Background

3.1 Radial Symmetry

Symmetry is a property of mathematical objects. It can be expressed as invariance to

transformations, for example, the equation y = x2 is invariant if we replace x by −x,
which can be considered as a transformation that “mirrors” through the X axis. Symme-

try is usually associated to geometric figures, since its very easy to see and understand.

Invariance can be thought as a property of an mathematical object that does not change

when a transformation is applied to the object. For example, if we rotate a triangle, the

values of the interior angles do not change, and thus they are invariant to rotation. The

same for area and length of the sides. But the position of the triangle in some world coor-

dinate frame will change when the rotation is applied, and thus is not invariant to rotation.

Giving a definition of Radial Symmetry is not trivial. For a radially symmetric object,

if we cut the object with a plane that intersects the axis of the object, then we get 2 halfs

that are mirrored from each other 1. This property holds for any plane that goes through

the axis of the object.

A more formal definition is that a radially symmetric object is constructed radially

from a central point (the axis) 2.

All radially symmetric objects have a symmetry axis that usually is the center of the

object. Two geometry objects that are relevant for this report are Circles and Regular

Polygons, specifically Triangles, Squares and Octagons.

3.2 Image Gradient

The gradient is a generalization of the concept of derivative to functions of multiple vari-

ables [50]. Given a function f(x1, x2, ..., xn) : R
n → R then the gradient of f is denoted

1As defined by the Collins English Dictionary at http://www.collinsdictionary.com/dictionary/

english/radial-symmetry
2As defined by the American Heritage Dictionary of the English Language at http://www.

ahdictionary.com/word/search.html?q=radial+symmetry

12

http://www.collinsdictionary.com/dictionary/english/radial-symmetry
http://www.collinsdictionary.com/dictionary/english/radial-symmetry
http://www.ahdictionary.com/word/search.html?q=radial+symmetry
http://www.ahdictionary.com/word/search.html?q=radial+symmetry

as ∇f and is defined as ∇f : Rn → Rn:

∇f =

(

∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

)

So the gradient of a multivariable function is a vector with the same dimensionality as

the number of variables of the function. Some interesting properties of the gradient are

that the gradient vector points to the direction of biggest growth of the function.

For 2D images, we can consider a grayscale image as a function I : {0,W}×{0, H} →
D, where D = {0, 1, 2, 3, ..., 255} 3. The gradient of this image can be computed by using

finite differences approximation for the derivative:

f ′(x) =
f(x+ h)− f(x)

h

When h is small, this is a good approximation of the derivative f ′(x). When applied to

the grayscale pixel values, the gradient (Gx,Gy) in the x and y directions can be computed

by using the sobel operator [25], where the image I is represented as a w × h matrix:

Gx = Sx ∗ I Gy = Sy ∗ I (1)

Where ∗ represents the convolution operation and the convolution kernels Kx and Ky

are given by:

Sx =

1 0 −1
2 0 −2
1 0 −1

Sy =

1 2 1

0 0 0

−1 −2 −1

(2)

After convolving the image I with the sobel operator kernels Sx and Sy, 2 new images

of the same size as the original one are obtained, each representing the x and y components

of the gradient. The angle-magnitude representation of the gradient can be computed as:

|G| =
√

G2
x +G2

y
6 G = atan2(Gy, Gx) (3)

An example result of using the Sobel Operator in a image is shown in Figure 1. The

gradient of a grayscale image is usually used to extract edges from the image, but other

possible interpretations can be used to extract other type of information from the image.

3This is the most common image representation in software, using unsigned byte channels, which have

a range from 0 to 255.

13

(a) Color Image (b) Gradient Magnitude

Figure 1: Example result from the Sobel Operator. Source: Wikimedia Commons, Files
Valve original (1).PNG and Valve sobel (3).PNG

3.3 Gaussian Smoothing

The purpose of smoothing is to remove noise from the image by blurring the image with

a kernel filter that is made with the gaussian function:

f(x) =
1√
2πσ

e
−x2

2σ2 (4)

Since images are 2D, the gaussian smoothing kernel is given by a 2D gaussian:

Gσ(x, y) = f(x)f(y) =
1

2πσ
e

−(x2+y2)

2σ2 (5)

To construct a gaussian smoothing kernel, we must consider x as the horizontal distance

from the kernel center to the element being computed, and y as the vertical distance. The

smoothed S image from a given image I is given by:

S = Gσ ∗ I (6)

Where ∗ is the convolution operaton. Gaussian kernels are preferred to other types of

smoothing kernels because they are rotationally invariant, which in practice means that

the smoothed image will not show the well known ringing effect of mean filtering.

The parameter σ is the standard deviation of the associated normal distribution and

controls how far pixels from the center affect the filtered value. Bigger values of σ will

make the output image more blurred and “out of focus”, while small values of σ will reduce

the effect of the filter. This can be seen in Figure 2.

14

(a) Original Image (b) 5× 5 Gaussian Kernel with σ = 5

(c) 10× 10 Gaussian Kernel with σ = 10 (d) 20× 20 Gaussian Kernel with σ = 20

Figure 2: Gaussian Smoothing Example

Another advantage of gaussian smoothing is that it can be implemented as a separable

filter:

S = G(y)σ ∗ (G(x)σ ∗ I) (7)

Where G(y)σ is a 1D gaussian kernel in the y direction, and G(x)σ is a 1D gaussian

kernel in the x direction. In practice, convolving an image of size w × h with a filter of

size k × k will take time in the order of O(whk2), while the separable filter will take time

in the order of O(whk), which is clearly an improvement.

3.4 Hough Transform

The Hough Transform is a object detection algorithm that contains the theoretical back-

ground of the Radial Symmetry Detector. It works by using a voting scheme, where voting

is done by using some properties or equations of the object being detected, which are col-

15

lected in a array called the accumulator array.

Then the most likely object position and parameters will obtain the biggest number of

votes in the accumulator array. Then the object can be detected by finding the maxima

in the accumulator array. This also makes the Hough Transform resistant to noise in the

original image.

Initially the Hough Transform was developed to detect lines in Images [17]. For this

the polar representation of a line is used:

r = x cos θ + y sin θ (8)

Given a accumulator array A, an Image indexed by (r, θ) (hough space), usually dis-

cretized in some range such that r ≥ 0 and θ ∈ [0, π]. Then for each point (x, y) of the line

(detected by some method, such as edge detection) and for each value in the discretized

space of θ the following computation is performed:

r = x cos θ + y sin θ

A(r, θ) = A(r, θ) + 1
(9)

Then for each point in the line, a sinusoidal curve is drawn in the accumulator array

in hough space. For all points (x, y) that belong to the same line, the corresponding sinu-

soidal curves will intersect in a point (r, θ) that will correspond to the parameters of the

line in polar coordinates.

This means the “votes” will accumulate in the most likely parameters (r, θ) of the line,

and thus by finding the maxima in the accumulator array, the line is detected. An example

Image and his Accumulator Array is shown in Figure 3. In this image, the peaks in the

accumulator array on the right are clearly visible.

The Hough Transform has also been generalized to detect circles [61] and other types

of shapes [3].

3.5 Regular Polygons

Regular polygons are polygons that have the following properties:

• All sides have the same length.

• All interior angles have the same value.

16

Figure 3: Line (left) and his Accumulator Array (right) after applying the Hough Trans-
form. Source: Wikimedia Commons, File Hough-example-result-en.png

• All exterior angles have the same value.

Defining what is the radius of a regular polygon is not trivial, and this factor is very

important when using radial symmetry detectors. From geometry, there are 2 possible

regular polygon radii:

Incircle Is the circle that is inside (inscribed) the polygon, and is tangent to each and

every side. The radius of this circle is called the apothem [58].

Circumcircle Is the circle that is outside (circumscribed) the polygon, and touches each

and every vertex. The radius of this circle is called the Circumradius or simply the

radius of the polygon.

Both Incircle and Circumcircle of a Hexagon can be seen in Figure 4.

Given the number of sides of the regular polygon n and the apothem r, then the length

of the polygon’s sides l is given by:

l = r tan
(π

n

)

(10)

And given the Circumradius R then the apothem r is given by:

r = R cos
(π

n

)

(11)

17

(a) Circumcircle of a Hexagon (b) Incircle of a Hexagon

Figure 4: Circumcircle and Incircle of a Regular Polygon

Data: Number of Sides n and Circumradius R
Result: Regular Polygon Vertices
α← 2π

n
;

l← ∅;
for i← 0 to n do

x← R cos(iα);
y ← R sin(iα);
l← l ∪ (x, y);

end

Figure 5: Regular Polygon Generation Algorithm

To generate the vertices of a n-sided polygon, the algorithm on Figure 5 can be used.

This algorithm is used during experimentats to generate regular polygons and paint them

in images.

3.6 Traffic Signs

Traffic Signs are information signs posted at the side or above streets, roads and highways

with the intention of giving the driver about driving regulations in the specific zone where

they are placed.

The design of Traffic signs is country specific, but in general they share some common

characteristics:

• They are placed in posts at sides or above the road.

• They are shaped in common geometrical shapes, such as circles, triangles, squares,

polygons, rectangles, etc.

18

• Their color and shape are standarized, but this is standard is different in each coun-

try.

• The language and interpretation are country specific.

There are two basic types of traffic signs:

• Ideogram-based Traffic Signs: An ideogram is a graphical symbol that is used to

represent an idea or concept [59], so a traffic sign that contains an ideogram is the

one that contains a symbol that represents the conveyed message. For example, a

Traffic Sign with the symbol of an animal means that there is danger of this kind of

animal in the road. Some signs of this kind can be seen in Figure 6.

• Text-based Traffic Signs: They contain text with the information, usually used when

there is no other way to convey the message with a symbol, such as speed limits,

direction and distances to nearby landmarks. This type of traffic signs are mostly

rectangular. Some signs of this kind can be seen in Figure 7.

The Vienna Convention on Road Signs and Signals [18] is a multilateral treaty that

standarized traffic signs shape, color and symbols, and has been ratified by 62 countries,

mostly in Europe and Asia. For traffic signs, it defines that the possible shapes (depending

on their use) are:

Circle

Stop Sign, Priority for oncoming Traffic, Standard Prohibition, Parking and End of

Prohibition. Standard Mandatory signs.

Triangle

Danger Warning Sign, Yield Sign.

Diamond or Square

Danger Warning Sign, Priority and End Priority

Rectangle

Priority over oncoming Traffic, Special Regulation Signs, Information Signs, Motor-

way and Highway specific signs, and Temporary signs.

Octagon

Stop Sign

This information eases the process of traffic sign detection, since it can be reduced to

the problem of detecting Circles, Triangles, Squares, Rectangles or Octagons in a image.

19

Figure 6: Ideogram based Traffic Signs. From the GTSDB [29]

Figure 7: Text based Traffic Signs. From the GTSDB [29]

4 The Radial Symmetry Detector

The Radial Symmetry Detector (RSD) is a detector algorithm based on the symmetry

around the radii of circles and regular polygons. It is described in a series of papers by

Barnes, Loy and Zelinsky [39] [7] [5] and it can detect circles and regular polygons in

images.

A common requisite for both Circle and Regular Polygon RSDs is that the radius of

the circle/polygon is known. The basic theoretical working of the RSD relates to the fact

that the gradient vector at each point of a circle and polygon points to the center of the

circle, as seen in Figure 8.

Then, if votes are cast at r units along the gradient vector for each point in the circle,

where r is the radius of the circle. Then votes should accumulate exactly at the center of

the circle, and thus the circle could be detected by finding maxima in vote space. This

assumption indicates why the radius of the circle is required information to use this de-

tection algorithm.

Since the usual requirement is to detect circles of certain radii, and for computational

complexity consideratinos, the authors of the RSD decide to use a set of radii R that

contains all radii that are of interest for detection. Then the algorithm will detect all

20

B

A

Tangent

Normal to Tangent

Figure 8: A and B are normal vectors to the circle, and the tangent and normal to the
tangent are also shown

radii r ∈ R circles or regular polygons in the image, and ignore other circles with different

radius value.

4.1 Circle Detector

The Circle Detector as described in [39] has the following general structure:

• Compute the gradient of the input image I.

• Compute orientation and magnitude vote images.

• Combine vote images.

• Threshold vote image to obtain detections.

First, the gradient of the input image is computed, and the length of each gradient

value is computed for each pixel. If the length of the gradient is smaller than the gradient

magnitude threshold, then it is set to (0, 0).

Then, 2 vote images are constructed for each radii r ∈ R that will be considered for

detection. Both vote images are of the same size as the original input image. The first vote

image is denominated the orientation image Or, and has a one channel integer pixel format.

The second vote image is denominated the magnitude image Mr, and has one channel

floating point pixel format. Both vote images are initialized with each pixel at value

21

0. Then for every non-zero gradient g(p) at position p = (x, y), two votes are cast, at

positions:

p+ = p+ round

(

r
g(p)

||g(p)||

)

p− = p− round

(

r
g(p)

||g(p)||

) (12)

r g(p)

-r g(p)

Figure 9: Positive and Negative voting positions

The position p+ is denominated the positively affected pixel, and position p− is de-

nominated the negatively affected pixel [39]. This positions can be seen in Figure 9. Each

vote is cast at both vote images, according to:

Or(p+) = Or(p+) + 1

Or(p−) = Or(p−)− 1

Mr(p+) = Mr(p+) + ||g(p)||
Mr(p−) = Mr(p−)− ||g(p)||

(13)

We know that the gradient of a circle always points towards the center, but this also

depends on the contrast of the circle in the image. Usually the gradient points from dark

to light, and in this case a light circle on a dark background will have their gradient point-

ing in the right direction (towards the center), but a dark circle on a light background

will have their gradient pointing in the opposite direction. To consider both options, the

detector votes for both possible center positions (negative and positively affected pixels).

After both vote images have been filled, then both vote images Or andMr are combined

into a radial symmetry contribution image Sr [39] according to the following formula for

each pixel position p:

22

Sr = Fr ∗Ar

Fr(p) =
Mr(p)

kr

(

|Õr(p)|
kr

)α

Õr(p) =

{

Or(p) if Or(p) < kr

kr otherwise

(14)

Where Ar is a 2D gaussian smoothing kernel of size r× r and standard deviation 0.5r.

In [39] the authors of the RSD recommended that the gaussian kernel Ar must sum to r,

but we found that this property is not strictly necessary and a gaussian that sums to 1

will also work.

The objective of this gaussian smoothing kernel is to smooth the combined image, so

that votes are “scattered” and the vote image is smoother, removing or attenuating the

noise present in the original image, which is propagated to the vote images. Without

doubt, this is the most computationally expensive part of the RSD algorithm.

The factor kr is used as a normalization factor, so the number of votes across different

radius values in the vote image Sr are approximately the same. This normalization factor

can be obtained by experimental measurement. The authors of the RSD showed their

experimental measurements to come up with the following Normalization value:

kr =

{

8 if r = 1

9.9 otherwise
(15)

α is called the radial strictness factor, and according to the authors it “determines how

strictly radial the radial symmetry must be for the transform to return a high value” [39].

After computing the radial symmetry contribution image Sr for each radius being

considered, is possible to compute a general radial symmetry contribution image S as the

average of the contributions between all radii:

S(p) =
1

|R|
∑

r∈R

Sr(p) (16)

Finally, maxima must be found in the radial symmetry contribution images. This can

be done either on S or Sr, by thresholding the radial symmetry contribution image with a

detection threshold Dt, which is the standard method to find maxima on hough-like vote

images or accumulator arrays. The value of Dt can be obtained experimentally, and how

to do so will be described later in this report.

23

A algorithmic description of this algorithm is presented in Figure 10. Two results of

the execution of the RSD are shown in Figures 11 and 12. The first shows the results on a

Synthetic image that contains circles of radius 10 pixels, and the second shows the results

from a real traffic sign of radius approximately 25 pixels.

Data: Input image I, Gradient Magnitude Threshold Gt, Detection Threshold Dt,
set of radii R

Result: Circle Detections
Compute the gradient G of image I;
for each pixel g(p) ∈ G do

if ||g(p)|| < Gt then
skip pixel;

end
for each radius value r ∈ R do

Compute orientation Or and magnitude Mr vote images according to
equation (13);
Compute radial symmetry contribution Sr acoording to equation (14);

end

end
Compute S = 1

|R|

∑

r∈R Sr;

for each pixel s(p) ∈ S do
if s(p) > Dt then

Emit circle detection at pixel position p;
The radius of the circle can be recovered by checking the maxima in each Sr

at position p;

end

end

Figure 10: Circular Radial Symmetry Detector Algorithm

In [8], Barnes & Zelinsky propose some computational optimizations to use the RSD for

traffic sign detection. The modifications relate to the way the vote images are constructed.

They propose to use only the orientation vote image Or and process it as follows:

Fr(p) =

(

Õr

kr

)α

(17)

Where kr is the normalization constant. Then Fr(p) is smoothed using a gaussian

smoothing kernel Ar:

Sr(p) = Fr(p) ∗Ar (18)

24

(a) Original Image (b) Image Gradient

(c) Orientation Vote Image (d) Magnitude Vote Image

(e) Radial Symmetry Contribution Image (f) Detected Circles

Figure 11: Results of the Circular RSD on Synthetic Image of r = 10, and Dt = 20

This reduced computation costs increases performance. They also study the sensibil-

ity of the detector to the gradient magnitude threshold, since real images are noisy, noise

propagates to the vote images and also reduces the computational performance of the

25

(a) Original Image (b) Image Gradient

(c) Orientation Vote Image (d) Magnitude Vote Image

(e) Radial Symmetry Contribution Image (f) Detected Circles

Figure 12: Results of the Circular RSD on a real Image with r = 25, and Dt = 18. Traffic
Sign Image extracted from the GTSDB [29]

algorithm, since noise will propagate through the sobel operator and it will be amplified,

making more noise in the gradient, and less pixels will fail the gradient magnitude thresh-

26

old test.

Barnes & Zelinsky propose a gradient magnitude threshold of Gt =
√
11299 ∼ 105.05

[8] that provides a good tradeoff between noise reduction, detector performance, and

computational performance.

4.1.1 Parameters

The parameters of the circular RSD are:

Set of radii R The set of radius of the circles to consider for detection, in pixels in the

image. This parameter can be experimentally estimated, since for a given camera

installed in a vehicle going at a constant velocity, traffic sign images can be capture

and statistically processed to obtain the most likely circle radii values. Traffic signs

smaller than 5 to 10 pixels cannot be successfully classified (they are too small), and

the maximum radius size can be experimentally determined. The GTSDB will later

be used to determine limits for the set of radii [29].

Gradient Magnitude Threshold Gt This parameter determines which gradient values

will effectively vote for the circle center, and gradients with magnitude smaller than

Gt will be ignored. This threshold can be used to skip large sections of the image,

with a big computational performance improvement, but also can be used to remove

noise and its effect on the vote images. Sensible values of this parameter are 2%-5%

of the maximum gradient magnitude in the image [39] [38]. As previously mentioned,

an empirical value of Gt = 105.05 was proposed in [8].

Radial Strictness α This parameter determines how strict the symmetry must be. The

authors recommended a value of α = 2 which is “suitable for most applications”

[39]. Bigger α values will attenuate non-radial feature points.

Detection Threshold Dt This parameter determines detections, and should have a value

that matches the peaks in the vote image S or Sr. This value can be obtained ex-

perimentally, and how to do so will be explained later.

4.2 Regular Polygon Detector

The regular polygon detector was initially presented in [38] and consists of a modification

of the circular RSD to detect regular polygons. The structure of the algorithm is very

similar:

• Compute the gradient of the input image I.

27

• Compute vote image and equiangular images.

• Combine vote and equiangular images.

• Threshold vote image to obtain detections.

The radius of a regular polygon is difficult to define, and for the polygon RSD, this

radius will be considered as the radius of the incircle of the regular polygon (the apothem).

The number of sides of the regular polygon is a required information to use this regular

polygon detector.

The vote image is computed in a similar way to the circular RSD, but instead of voting

on a single point, the votes are laid out in a line perpendicular to the gradient at a distance

r units away. Two lines are voted, at the positive and negative directions from the gradient

pixel. The length of the line w is given by:

w = r tan
(π

n

)

(19)

Where n is the number of sides of the regular polygon being detected. The negatively

and positively affected pixel positions are given by Equation (12), and the parametric

equation of both positive and negative oriented lines are given by:

L+(p,m) = round(p+ +mg⊥(p)) = round

(

p+ r
g(p)

||g(p)|| +mg⊥(p

)

L−(p,m) = round(p− −mg⊥(p)) = round

(

p− r
g(p)

||g(p)|| −mg⊥(p

) (20)

Where m is the line parameter, and g⊥(p) is a unit vector perpendicular to g(p). If

g(p) = (gx, gy) then:

g⊥(p) = (−gy, gx) (21)

Then, for the positive oriented line, pixels where m ∈ [−w,w] receive a positive vote

(+1), and pixels where m ∈ [−2w,−w − 1] ∪ [w + 1, 2w] receive a negative vote (-1).

For the negative oriented line, pixels where m ∈ [−w,w] receive a negative vote (-1),

and pixels where m ∈ [−2w,−w − 1] ∪ [w + 1, 2w] receive a positive vote (+1).

This process is done to construct the vote image Or, with one channel integer pixel

format. The second vote image is called the equiangular vote image Br. Loy & Barnes in

[38] described the equiangular property of the gradient vectors of a regular polygon.

28

The gradient vectors of a regular polygon on each side are spaced 360◦

n
degrees apart,

and when computing the angle of each gradient vector θ, if we compute nθ and reconstruct

the vector v from its angle-magnitude form then:

v(p) = (||g(p)|| cos(nθ), ||g(p)|| sin(nθ)) (22)

Then for each side of the regular polygon, all vectors vn(p) point in the same direction.

This is shown in Figure 13. If we compute the vectorial sum
∑

vn(p), then this sum will

have a maximum magnitude, which can be used by the RSD as an additional vote to check

for the existence of a regular polygon.

Figure 13: Equiangular Property shown in a Square

The equiangular image Br is a two channel (x and y) floating point pixel format image

and is computed as:

Br(q) = Br(q) + sign(Or(q))v(p) ∀q ∈ L(p,m) (23)

Where sign(Or(q)) represents the sign of the vote given to the vote image Or for the

same gradient pixel, so the votes are “projected” with the corresponding negative or pos-

itive vote.

The vector value of the equiangular image can also be used to determine the orienta-

tion of the regular polygon, but Loy & Barnes mention that if this information is already

known, then the equiangular image is not necessary.

Then both vote and equiangular images are combined as:

29

Sr(p) =
Or(p)||Br(p)||

(2wr)2
(24)

The value (2wr)2 is a normalization factor used to normalize the vote values for dif-

ferent radii.

Data: Input image I, Gradient Magnitude Threshold Gt, Detection Threshold Dt,
set of radii R and number of sides n

Result: Circle Detections
Compute the gradient G of image I;
for each pixel g(p) ∈ G do

if ||g(p)|| < Gt then
skip pixel;

end
for each radius value r ∈ R do

Compute vote image Or according to equation (20);
Compute equiangular vote image Br according to equation (23);
Compute radial symmetry contribution Sr acoording to equation (24);

end

end
Compute S = 1

|R|

∑

r∈R Sr;

for each pixel s(p) ∈ S do
if s(p) > Dt then

Emit circle detection at pixel position p;
Radii (apothem) of the regular polygon can be recovered by checking the
maxima in each Sr;
Orientation of the regular polygon can be recovered by checking the
orientation of the vector Br(p)

end

end

Figure 14: Polygon Radial Symmetry Detector Algorithm

4.2.1 Parameters

Set of radii R Same as the Circular RSD, but the radius valu of the regular polygon

must correspond to the apothem.

Number of sides of regular polygon n Traffic signs have known number of sides, ei-

ther triangles (3), squares (4) or octagons (8), but the detector will work with any

regular polygon, as long as the number of sides is known.

Gradient Magnitude Threshold Gt Same as the Circular RSD.

30

(a) Original Image (b) Image Gradient

(c) Vote Image (d) Magnitude of the Equiangular Image

(e) Radial Symmetry Contribution Image (f) Detected Triangles

Figure 15: Results of the Regular Polygon RSD on Synthetic Image of a triangle with
r = 10, and Dt = 34

Detection Threshold Dt Same as the Circular RSD.

31

(a) Original Image (b) Image Gradient

(c) Vote Image (d) Magnitude of the Equiangular Image

(e) Radial Symmetry Contribution Image (f) Detected Triangles

Figure 16: Results of the Regular Polygon RSD on Real Image of a triangular traffic sign
with r = 12, and Dt = 8. Traffic Sign Image extracted from the GTSDB [29]

32

4.3 Implementation Details

When implementing both the Circular and Regular Polygon RSD, we came up with several

implementation details that were not covered in the original publications, so here we will

describe them as documentation for the future.

4.3.1 Normalization

The RSD authors proposed in [39] that the orientation vote image can be normalized by

dividing by the maximum, which is correct. But they also argued that in their experiments,

the value:

kr =

{

8 if r = 1

9.9 otherwise

Can be used to normalize Or, but in my own experiments, this was not the case. The

maximum value of the orientation vote image ranged from 5 to 30, which is out of range

from the values given by the RSD authors.

The simple solution was to always compute the maximum value of Or and use it as

the value of kr.

4.3.2 Detection Merging

Using a threshold to find maxima in the vote image has the disadvantage that unless the

threshold is exactly equal to the peak value, multiple detections could happen, since it is

very likely that values in the neighborhood of the peak will also have values very close to

the peak value.

This is a common problem with Hough Transform based algorithms. A very simple

solution is to use a detection merging algorithm, which takes the output list of detections

from the detector algorithm and “merges” detections that are “too close” from each other

according to some distance merge threshold Mt, and produces a new list of merged detec-

tions, that will correspond to the final output of the detector.

A detection object is composed of a center (cx, cy) and a radius r, and represents the

radius of the detected circle, or the apothem of the detected regular polygon

The detection algorithm that we implemented is very simple. It iterates over all detec-

tions, and tries to merge each possible pair of detections. When this is no longer possible,

33

it stops.

To merge 2 detections A = {ca = (xa, ya), ra} and A = {cb = (xb, yb), rb} into detection

M = {cm = (xm, ym), rm}, define the following:

l = min{xa − ra, xb − rb} r = max{xa + ra, xb + rb}
d = min{ya − ra, yb − rb} u = max{ya + ra, yb + rb}

(25)

Then the center cm and radius rm of the merged detection are:

cm =

(

l + r

2
,
u+ d

2

)

rm = max

{

r − l

2
,
u− d

2

} (26)

The complete algorithm in pseudocode is presented in Figure 17. This algorithm

has computational complexity O(n2) where n = |D| is the number of detections in the

detection list. Currently we are using a value of Mt = 7 px.

4.3.3 Threshold Tuning

Finally, the detection threshold Dt must be carefully set to obtain correct detections. If

the detection threshold is too low, too many false positives will be detected, and if the

detection threshold is too high, then the number of false positives will be low, but the

number of correct detections will also be low.

So tuning of an appropiate value for the detection threshold is required, and this is

formulated by doing exhaustive search over a subset of the threshold value space, and

select the threshold that maximizes the detection rate. This detection rate is defined as:

detection rate =
Number of Correct Detections

Number of possible Detections in the Image
(27)

And the false positive rate is defined as:

false positive rate =
Number of Incorrect Detections

Number of Detections made by the Detector
(28)

The idea of the threshold tuning algorithm is to execute the detector over some test

image set, varying the detection threshold Dt in some defined range of values, and then

select the threshold that produces the maximum detection rate (closest to 1.0).

In practice there are many values of the detection threshold that produce a maximum

detection rate (or very close to the maximum). To discriminate between them, we chose

34

Data: List of detections D and distance merging threshold Mt

Result: Merged Detections
ret ← ∅;
temp ← D;
if |D| < 1 then

return ret;
end
ret = ret ∪ temp.firstElement;
for i← 0 to |temp| do

detectionMerged← false;
a = tempi;
for j ← 0 to |D| do

b = retj ;
if ||a.c− b.c|| < Mt then

retj = merge a and b according to Equation (26);
detectionMerged← true;
break;

end

end
if detectionMerged is false then

ret = ret ∪ a;
end

end
return ret;

Figure 17: Detection Merging Algorithm

the biggest detection threshold from the subset of thresholds that are % away from the

maximum detection rate, and then minimize the false positive rate over this subset.

The Threshold tuning algorithm is shown in Figure 18. Currently we are using a value

of Bt = 0.02.

Data: Detector d, Number of Images n and best detection rate threshold Bt

Result: Optimal Detection Threshold Dt

Run the detector of a dataset of n images and store the pairs (Dt, detection rate,
false positive rate) in list r;
best = max{r.detectionRate} ;
bests = {xsuch as|x.detectionRate− best.detectionRate| < Bt} ;
ret = min{bests.falsePositiveRate} ;

Figure 18: Threshold Tuning Algorithm

35

5 Improvements to the Radial Symmetry Detector

The main issue with the performance of the Circle Radial Symmetry Detector [39] is the

use of the gaussian smoothing filter to “disperse” votes of the F image into the S image.

This is done to reduce the influence of noise into the voting process. Since gradient-based

algorithms are very sensitive to noise, this is a fundamental step.

Removing the gaussian smoothing filter might greatly increase computational perfor-

mance, but at the cost of decreasing the noise resistance given by this smoothing.

5.1 General Approach

The general approach (which is credited to Stefan Eickeler) is the following:

• Remove the gaussian smoothing filter.

• Reduce the size of the vote images according to a multiscale approach.

• Use a different thresholding method that considers multiple scales, but this is op-

tional.

5.2 Multiple scale approach

Multiscale approaches are common in Computer Vision and Image Processing [25]. The

idea of applying a multiscale approach to the Radial Symmetry Detector is to reduce the

size of the vote images, which should reduce the computational costs involved.

Then instead of considering a set of different radii values R, we use a set of scales S,

which contains scale factors, which are relative to a base radius value rbase. Then the

equivalent of the radius values are:

R = rbases ∀s ∈ S (29)

And then at each scale s ∈ S, the corresponding affected pixel positions p+ and p− are

given by:

p+(p) = round

(

p

s
+ rbase

g(p)

||g(p)||

)

p−(p) = round

(

p

s
− rbase

g(p)

||g(p)||

) (30)

Where again g(p) is the gradient vector at pixel p. Vote images are computed ex-

actly as in the original RSD algorithm, but using the new vote positions. Given that the

36

input image I has size w × h pixels, then for each scale s ∈ S being considered the size

of the vote image is ⌈w
s
⌉×⌈h

s
⌉. This makes the vote image smaller as the the scale increases.

The number of scales is configurable and there is minimum or maximum value, except

for the extreme cases where the vote images might be extremely small.

(a) Original Image (b) Image Gradient

(c) Vote Image at scale s = 1.0 (d) Vote Image at scale s = 1.2

(e) Vote Image at scale s = 1.4 (f) Vote Image at scale s = 1.6

Figure 19: Vote image examples with different scales. Base radius is 10 pixels. Circles
have radius of 10, 12, 14 or 16 pixels.

37

5.3 Thresholding

Now that we have a vote image pyramid according to scale, then we need to devise a new

thresholding mechanism that considers this new information. So the following threshold-

ing methodology has been devised by Stefan Eickeler.

For each vote image v ∈ V generated by the previously mentioned voting method,

there is an associated scale vs. Then for each pixel p ∈ v, we will test the following value

with the detection threshold:

t(p) =
v(p)2

v2s
(31)

If t(p) > Dt

3
, then we perform a second threshold test by computing a test value tr

over the neighborhood of scale vs, which means the scale that is immediately lower and

bigger than vs.

We denote the immediately next scale as vs+1 and the immediately previous scale vs−1.

First, from scale a we have pixel sample position pa, then we sample scale b at pixel sample

position pb given by:

pb =
a

b
pa (32)

The value of pb should be clamped to the size of the vote image at scale b. Then the

second threshold test value for each neighboring scale b is given by:

t(pb) =
v(pb)

2

b2
(33)

And then we average this values into tr for the neighboring scales, as well as the sum

of squares into trs:

tr(p) =
1

|V |

s+1
∑

i=s−1

t(pvi
)

trs(p) =
1

|V |

|V |
∑

i=1

(

t(pvi
)
)2 −

1

|V |

|V |
∑

i=1

t(pvi
)

2 (34)

Where |V | is the number of vote images. We also compute a mean radius value µr for

the shape:

µr =

∑s+1

s−1
rbase vi t(pvi

)
∑s+1

s−1
t(pvi

)
(35)

38

This mean radius value is used in case of a successful detection. A successful detection

is emitted if and only if:

tr(p) > Dt and trs(p) > St (36)

Where Dt is the detect threshold and St is called the square sum threshold. This

detection has center position given by p vs and radius/apothem given by µr.

The full Improved Radial Symmetry Detector algorithm is shown in Figure 20.

Data: Input image I, Gradient Magnitude Threshold Gt, Detection Threshold Dt,
Square Sum Threshold St, base radius rbase, set of scales S

Result: Detections
Compute the gradient G of image I;

Create a vote image with size ⌈w
s
⌉ × ⌈h

s
⌉ for each s ∈ S and store them in V ;

for each pixel g(p) ∈ G do
if ||g(p)|| < Gt then

skip pixel;
end
for each scale value s ∈ S do

Cast vote into the vote image v that corresponds to scale s;
end

end
for each scale value s ∈ S do

for each pixel q(p) of the vote image corresponding to scale s do

if q(p) > Dt

3
then

Compute tr(p), trs(p) and µr from q(p) and neighboring scales of s;
if tr(p) > Dt and trs(p) > St then

Emit shape detection at position sp with radius/apothem µr;
end

end

end

end

Figure 20: Improved Radial Symmetry Detector Algorithm

5.4 Circle Detection

To detect Circles, we used the same voting mechanism as Barnes et al in [8], which only

uses the votes from the orientation image Or. Instead we make +1 votes into a 2x2 square

and −1 votes into a similar 2x2 square. Vote images generated for Figure 19 were generated

by using this technique, and the detections obtained by using the improved thresholding

39

algorithm are shown in Figure 21.

Figure 21: Detections generated by the Improved Circle RSD

5.5 Regular Polygon Detection

To detect regular polygons, we used 2 approaches. Both approaches use the same line

voting scheme of Loy & Barnes [38]. The first approach is to use direct voting into a

Orientation integer image, in the same way as described in Section 4.2.

The voting line is given by:

L+(p,m) = round(p+ +mg⊥(p)) = round

(

p

s
+ rbase

g(p)

||g(p)|| +mg⊥(p)

)

L−(p,m) = round(p+ −mg⊥(p)) = round

(

p

s
− rbase

g(p)

||g(p)|| −mg⊥(p)

) (37)

The size of the voting line w is slightly different due to scale and is given by ws, where

s is the scale:

ws = s rbase tan
π

n
(38)

The second approach uses voting into the equiangular image and then combines the

equiangular image Bs into a final scalar vote image Fs using the following equation:

Fs(p) =
||Bs(p)||
2sws rbase

(39)

We should note that for regular polygons, the radius is substituted by the apothem of

the corresponding regular polygon. An example triangle detector output can be seen in

40

Figure 22, and the corresponding detections are shown in Figure 23.

(a) Original Image (b) Image Gradient

(c) Vote Image at scale s = 1.0 (d) Vote Image at scale s = 1.2

(e) Vote Image at scale s = 1.4 (f) Vote Image at scale s = 1.6

Figure 22: Improved Regular Polygon Detector example different scales. Base apothem is
10 pixels. Triangles have apothem of 10, 12, 14 or 16 pixels.

41

Figure 23: Triangle Detections

5.6 Improving the Original Regular Polygon Detector

Loy & Barnes defined the equiangular (or N-Angular) vote image in [38], but since its

expensive to compute it, and if the traffic sign orientation is known, then there is no need

to compute this image.

But the equiangular vote image represents very strong features that are only valid for

regular polygons. We wanted to test the hypothesis that the equiangular image is better

at detecting regular polygons than plain ±1 votes.

For this we built a Regular Polygon Detector that has the exact same structure as

Loy & Barnes Regular Polygon Detector [38], but uses only the equiangular image. This

image is then combined into a scalar vote image Fr with the following equation:

Fr(p) =
||Bs(p)||

2wr
(40)

Then the vote image Fr is then thresholded by using the same simple thresholding

algorithm used by Loy & Barnes.

6 Experimental Setup

6.1 General Remarks

We ran the experiment on a Asus Zenbook UX32VD Laptop, with a Core i5-3317U Proces-

sor with a clock frequency of 1.7 Ghz and 10 GB of RAM. This processor uses TurboBoost

and the clock frequency could go as high as 2.4 Ghz.

42

The compiler was GCC 4.8.2 and all code was compiled in release mode (without any

debug symbols) and using optimization level 3 (-O3 compiler flag).

To measure computation time, We used the clock gettime with CLOCK PROCESS CPUTIME ID,

which measures the CPU time used by the process. This function should have nanosecond

precision.

6.2 Detector Configuration

We implemented 7 detector algorithms, with different configurations:

Circle Detection

• OCRSD: Radial Symmetry Detector as presented in [39]

• SCRSD: Radial Symmetry Detector for Circular Traffic Signs as presented in

[7].

• ICRSD: Improved Circle Radial Symmetry Detector presented in Section 5.4.

Regular Polygon Detector

• RPD: Regular Polygon Detector as presented in [38].

• RPD-NAO: Regular Polygon Detector as presented in [38], but only using the

Equiangular Image as voting information. This was discussed in Section 5.6.

• IRPD: Improved Regular Polygon Detector presented in Section 5.5.

• IRPD-NAO: Improved Regular Polygon Detector presented in Section 5.5,

but only using the Equiangular image as voting information.

To evaluate the different detector algorithms, We took three different approaches.

The first approach is to generate synthetic images containing shapes to be detected, with

different radius. This way we have a precise knowledge about the ground truth information,

and performance of each detector algorithm with different conditions can be evaluated.

6.3 Evaluation on Synthetic Images

Shapes are generated at random positions p, which are uniformly distributed U(a, b) in

the X and Y directions, according to:

px ∼ U(ǫ, w − ǫ)

py ∼ U(ǫ, h− ǫ)
(41)

43

Where image I has size w×h pixels. ǫ is a border value to avoid shapes being generated

into the border of the image, and currently has a value of:

ǫ = 1.5r + 10 (42)

Where r is the radius or apothem of the shape being drawn, with a 10 pixel constant

border. For the current experimental results, we used an image size of 320 × 240 pixels.

The orientation θ of each shape is also randomly determined, given by a uniform distri-

bution θ ∼ U(0, 360). Special care was taken to avoid overlapping shapes, since 3 shapes

are generated for each test image.

Then we test detectors by generating a image dataset of 100 images, and do thresh-

old tuning for the dataset. We repeat this process for each radius/apothem value in

r ∈ [10, 30], and compute detection rate, false positive rate and computation time for each

radius. This range was selected by considering 2 factors. Traffic signs smaller than 10 pix-

els cannot be correctly classified, so this should be the minimum radius to be evaluated.

If we look at the GTSDB [29], the estimated radii distribution for circles is peaked around

radius 9, and then the tail gets near 0 at around radius 30, so the bound r ∈ [0, 30] was

chosen.

4 shapes were evaluated independently, Circles, Squares, Triangles and Octagons. This

shapes were chosen because they represent the most common traffic sign shapes.

One problem with this approach is that in reality images have noise, and synthetic

images are noise-free. To simulate this behaviour, we add gaussian noise to each image

pixel [25], according to the Gaussian probability distribution function N(µ, σ) (PDF):

P (x |µ, σ) = 1

σ
√
2π

e
−(x−µ)2

2σ2 (43)

This Gaussian noise has zero mean µ = 0, and a given standard deviation σ. We

generate random noise values that are Gaussian distributed e ∼ N(0, σ) and add it to

each image pixel p ∈ I of the generated image I:

I(p) = I(p) + e (44)

This is done for each image pixel on the image I. This method assumes that the im-

ages I are one channel grayscale, so scalar noise values are directly added to the grayscale

values and then clamped to the range [0, 255]. We should note that this means that for

big standard deviation values, noise will be clipped to the maximum pixel value of 255. In

44

(a) σ = 0 (b) σ = 10 (c) σ = 20

(d) σ = 30 (e) σ = 40 (f) σ = 50

Figure 24: Gaussian Image noise with varying values of standard deviation σ

Figure 24 we can see gaussian image noise with different standard deviations, from σ = 0

to σ = 50.

The chosen range of noise was σ ∈ [0, 10, 20, 30, 40, 50]. This represents noise ranges

from none to an amount that will generate enough variation to be clipped by the maximum

range of the image values (255). Gaussian noise of σ = 50 will be approximately in the

range of [−150, 150].

The parameters used to do threshold tuning are given in Table 1.

Original RSD/RPD Improved RSD/RPD

Minimum Detection Threshold Dt 1 0
Maximum Detection Threshold Dt 100 75000
Detection Threshold step 1 5000
Minimum Square Sum Threshold St - 0
Maximum Square Sum Threshold St - 1000000
Square Sum Threshold step - 100000
Gradient Magnitude Threshold Gt 105 105
Scales - { 0.95, 1.0, 1.05 }

Table 1: Threshold tuning parameters used for synthetic image evaluation

45

Then finally we generated a new dataset of 100 images of the given shape and used

it as cross validation set. Then we ran the detector with this new dataset and computed

Detection Rates, False Positive Rates and Computation Times. The mean and standard

deviation is computed for the whole dataset and set as detection rate for this radius value.

6.4 Evaluation on a Traffic Sign Dataset

The second approach consisted on testing each detector algorithm over the German Traffic

Sign Detection Benchmark dataset [29] (GTSDB).

The GTSDB provides 900 real world traffic sign images, as well as ground truth in-

formation. Ground truth contains the traffic sign type, and the x and y coordinates of

the bounding box of the traffic sign. All traffic signs contained in this dataset are either

Circles, Triangles, Squares or Octagons.

Since the GTSDB does not contain ground truth information about the radius or

apothem of the traffic sign, it must be estimated from the available information. To do

this first we estimate the biggest side of the bounding box, where ul is the upper left point

of the bounding box, and lr is the lower right point:

w = |ulx − lrx|
h = |uly − lry|

(45)

Then the biggest half-side hs is given by:

hs = max

{

w

2
,
h

2

}

(46)

Then the radius/apothem r of the traffic sign is given by:

r =
hs

cos(π
4
)
=

hs√
2
∼ 0.707hs (47)

The histogram of estimated radius/apothem for the 4 basic shapes can be seen in Fig-

ure 25. We also split the GTSDB dataset according to shape, and “cut” each traffic sign

into his own image, with a size of 320x240 pixels. This is done to normalize the dataset

reduce the time needed when doing experiments, since also Barnes et al also used the same

image size.

But since the estimated radius/apothem is only an estimation, we still could be several

pixels away from the real radius. To compensate for this, we configured each detector with

a radii set of R = {r − 1, r − 2, r − 3}, and for the improved detector, with a scale set of

46

S = {0.95, 1.0, 1.05}.

We also do threshold tuning to compute the maximum performance that can be ex-

tracted from each detector. The parameters are the same than Synthetic Image Evaluation

and are given in Table 1. We split the dataset into batches of shapes with the same ra-

dius/apothem and tune them together.

6.5 Multiple Radius Evaluation

The proposed evaluation on synthetic images has a problem, it does not consider the fact

that in real life applications, we usually want to detect shapes with varying radiuses, which

translates to a detector configured with a set R of radii values, since we do not know what

exactly is the radius of the shape being detected on each image.

For this all detector algorithms evaluated use either a multiple radii set R or a multiple

scale set S. Then a more realistic situation could be simulated by generating images with

different radius/apothem values and running a detector configured with this radii/apothem

values appropiately.

For this we generated 100 image 3 shapes each and with radius/apothem selected

randomly from the set R = {10, 12, 14, 16, 18, 20}. The probability of each radius to be

selected is the same (a Uniform distribution).

The Original detectors are configured with a set of radii R = {10, 12, 14, 16, 18, 20}.
The improved detectors are configured with a set of scales S = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
and a base radius value of rbase = 10. All other detector parameters are the ones specified

in Table 1.

For this experiment we compute mean and standard deviation of the detection rates,

false positive rates and computation times, but for all the detection process over the

whole 100 image dataset. We also evaluate the effect of noise by adding gaussian noise

with different standard deviation values, from σ = 0 to sigma = 50 in steps of 10 units.

6.6 ROC Curve Evaluation

ROC curve is a common visualization technique for detector performance [20]. It plots

the False Positive Rate versus the Detection Rate (or True Positive Rate), but each point

of the curve is generated by changing the detection threshold inherent to most detector

algorithms.

47

5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243

0

20

40

60

80

Radius

C
ou

n
t

(a) Circles

6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344

0

10

20

30

Apothem

C
ou

n
t

(b) Triangles

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

0

2

4

6

8

Apothem

C
ou

n
t

(c) Squares

7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445

0

1

2

3

4

Apothem

C
ou

n
t

(d) Octagons

Figure 25: Histogram of estimated radius/apothem distributions of the GTSDB

48

To compute the ROC curves, we run each detector over a generated dataset of 200

images of the corresponding shape, with a radius/apothem of r = 10, and gaussian noise

σ = 50. We vary the detection threshold from Dt = 0 to Dt = 100, in steps of 1 unit. For

the improved detectors, we vary the detection threshold from Dt = 0 to Dt = 10000 in

steps of 100 units. Gradient magnitude threshold is Gt = 105.

After generating each pair of false positive and detection rates, we plot them and fit a

curve which is draw as the ROC curve [42].

6.7 Speedup Error Propagation

To compare computation times of 2 algorithms the speedup is usually used, which is

defined as:

S =
To

Ti

(48)

Where To is the time taken by the original algorithm, and Ti is the time of the improved

algorithm. To do error propagation, we use the standard error propagation formula of a

function f , where we assume independent variables:

σ2
f =

n
∑

i=0

(

∂f

∂xi

)2

σ2
xi

(49)

Where σ2
f is the variance of the function f , and σ2

xi
is the variance of the i-th variable.

If we apply this equation to the speedup function S then we obtain:

σ2
S =

σ2
To

T 2
i

+
T 2
o σ

2
Ti

T 4
i

(50)

Where σTo
is the standard deviation of the time taken by the original algorithm, and

σTi
is the standard deviation of the time taken by the improved algorithm. We will use

the value of σS when computing speedup of computation times.

7 Experimental Results and Analysis

7.1 Synthetic Image Results

7.1.1 Circle Detector

Raw data results can be seen in Figures 29, 30 and 31 in the Appendix. For the Detection

rate (DR) we can see that all detectors have very high detection rates, and differences

49

are minimal. The Improved Circle Detector is clearly the best, and only in few cases its

detection rate is smaller than the original circle detectors.

Regarding the False Positive Rate (FPR), all detectors have very low false positive

rates, with only a few radius values giving false positive rate bigger than 1%. The original

circle detectors have also some variance in the detection rate, while the improved circle

detector has a very small variance, which cannot even be seen in the plot.

For Computation Time, clearly the improved circle detector has better performance

than the original detectors. But with noise from σ = 40, performance gets unstable, with

a sharp peak around radius r = 18. With noise of σ = 50, the performance benefit is

almost lost, with smaller computation time only from radius r = 22.

This performance variation can be attributed to the Gradient Magnitude Threshold

Gt. Too much noise will make more gradient pixels pass this threshold test, which will

degrade performance.

We should mention that the original circle detectors have linear time complexity in

the radius r, while our improved circle detector has constant time complexity.

7.1.2 Regular Polygon Detector

Raw data results for Triangles can be seen in Figures 32, 33 and 34 in the Appendix.

In Figure 32 we can see that all detectors have very high detection rates, except for

the Improved Polygon Detector with the Equiangular Image (IRPD-NA). Also the Orig-

inal Polygon Detector (ORPD) has issues when the noise increases, the detection rate

decreases significantly from apothem r = 25, and for r = 30 it is 0 for big noise values.

We should remember that the original RPD algorithm does not use gaussian smooth-

ing, so this could be a sign of the cost of not using this kind of smoothing. This can also be

seen in the False Positive Rate in Figure 33, where the False Positive Rate of the original

detector is very high for big noise and radius values.

False Positive Rates are low for all detectors except for the Improved Detector with

the Equiangular Image. The Improved Detector also has some issues with FPR around

0.2− 0.4 in some cases with increased noise, while the original detector does not have this

issue.

50

About Computation Times, we can see in Figure 34 across different noise values the

original RPD with only Equiangular Image is the best, while the Improved Detector com-

ing second, but this difference gets smaller as noise increases. Also the Original Detector

has better performance than the Improved Detector as noise increases.

About the square detector, Detection Rates (in Figure 35) are again high for all de-

tectors except the Improved detector with Equiangular Image, but this gap gets smaller

as the apothem value increases, but this improved detector never reaches detection rate

above 90%.

About False positive rates (in Figure 36), when there is no noise they are small, around

20% in average, but as noise increases the FPR decreases for all detectors, except for the

Improved Detector with Equiangular Image. This detector has a high false positive rate,

around maximum of 90%, which makes it useless for most uses.

Logic says that FPR rates should increase with noise, and not decrease, so this is a ex-

traneous situation. For Computation Times as shown in Figure 35, performance behaviour

is the same as the Triangle Detector, where the original RPD with only Equiangular Image

has the best performance, followed by the Improved detector, but this trend reverts when

noise increases, where the original RPD is faster than the improved RPD.

Finally, about Octagon Detection, the same trend than the previous detector remains,

where the Improved detector with Equiangular Image has the smallest detection rate,

while the other detectors have very high detection rates. FPR are similar, with low FPR

values for all detectors except the Improved detector with Equiangular Image.

About computational performance, again the RPD with Equiangular Image is the best,

followed very closely by the Improved detector.

All detector algorithms have linear time complexity in the apothem value. Also the

computation times when noise increases degrade very fast, with maximum noise of σ = 50

have performance in the order of hundreds of milliseconds, which clearly is not appropiate

for real-time performance.

Clearly the Improved detector with Equiangular Image is useless as a regular polygon

detector, with very high false positive rates, and at least 20-30% lower detection rates

than the other polygon detectors.

51

7.2 Traffic Sign Dataset Results

7.2.1 Circle Detector

Aggregate results from testing each detector with the GTSDB can be seen in Table 2 and

specific results divided by Radius can be seen in Figure 41. For this dataset, we can see

that in average the detection rate of the Improved Detector is lower than the Original

Detector, while the false positive rate of the Improved Detector is slightly better (lower).

For most cases the performance of the Sign RSD is better than the Original detector.

Computational performance is clearly better for the Improved detector, with a speedup

of 1.62. The Improved Circle Detector has constant time complexity, while the 2 original

detectors have linear time complexity in the radius value.

OCRSD SCRSD ICRSD

Average Detection Rate 0.57 0.58 0.40
Detection Rate σ 0.25 0.24 0.18
Average False Positive Rate 0.86 0.86 0.74
False Positive Rate σ 0.15 0.14 0.24
Computation Time (ms) 57 57 35
Computation Time σ 13 14 22

Table 2: Circle Detector Performance under the GTSDB

7.2.2 Regular Polygon Detector

For the Triangle Detector, aggregate results can be seen in Table 3 while results divided

by apothem can be seen in Figure 42. We can see that all improved detectors have better

detection rates than the RPD, with the IRPD and IRPD with Equiangular Image having

the highest detection rates at 64%.

But FPR are high, not being lower than 95% for all detectors, which make this kind of

detectors a bit useless for real work. It should be noted that using only the Equiangular

Image in the RPD (as in RPD-NAO) practically doubles the detection rate, from 19% to

44%. This is one the hypotheses that were proposed in the present work.

About computational performance, clearly the fastest detector is the IRPD, with a

speedup of 2.1. In this case this detector is superior to the RPD in both detection rate

and computation times, which makes it a strong improvement over the original.

For the Square Detector, aggregate results can be seen in Table 4 while results divided

52

by apothem can be seen in Figure 43. Again, all improved detectors have detection rates

bigger than the original RPD, with the greatest detection rate going to the RPD-NAO.

Clearly the use of the Equiangular Image is a big improvement. The other improved de-

tectors have a slightly lower detection rate.

FPR are high but lower than with Triangle Detection. The lowest detection rate goes

with the Improved Detectors. The RPD-NAO might have the biggest detection rate, but

the smallest detection rate are given by the IRPD and IRPD-NAO.

All Improved Detectors have better computational performance than the original de-

tectors, and the best speedup is given by the IRPD, with a speedup of 3.1. If we make

some sacrifices about the detection rate, the IRPD and IRPD-NAO are the best detectors

in this category.

For the Octagon Detector, aggregate results can be seen in Table 5 while results divided

by apothem can be seen in Figure 44. Again all Improved detectors have better detection

rates than the Original RPD, with the RPD-NAO having the best detection rate at 90%.

About False Positive Rates, the FPR of all Improved detectors is lower at 86%, but

the RPD-NAO has a slightly higher FPR than the original detector.

In computational performance, clearly the IRPD and IRPD-NAO are the best algo-

rithms, and if some tradeoff about detection rate could be made, then this two detectors

are the best for Octagon detection. The speedup over the original detector is 1.8.

As a general remark, we can see that computational performance always improves as

the regular polygon number of sides is increased, due to the line length w being smaller.

We should note that the averages given in Tables 2, 3, 4 and 5 were computed as simple

averages for each radius/apothem batch. Since the distribution of radius/apothem values

is not uniform, there are more samples of some values than others, which means that the

averages could be skewed. A simple solution for this is to compute averages weighted by

the amount of radius/apothem values present for each batch.

7.3 Multiple Radius Evaluation

7.3.1 Circle Detector

First, for the Circle detector the raw data plots can be seen in Figure 45. We can see

that for all the evaluated circle detectors, the detection rates are very high, almost always

100%, and the false positives are very low, very near 0%.

53

RPD RPD-NAO IRPD IRPD-NAO

Average Detection Rate 0.19 0.44 0.64 0.64
Detection Rate σ 0.25 0.28 0.25 0.25
Average False Positive Rate 0.95 0.96 0.98 0.98
False Positive Rate σ 0.08 0.07 0.03 0.03
Computation Time (ms) 383 331 183 187
Computation Time σ 345 268 103 106

Table 3: Triangle Detector Performance under the GTSDB

RPD RPD-NAO IRPD IRPD-NAO

Average Detection Rate 0.52 0.84 0.78 0.78
Detection Rate σ 0.36 0.23 0.26 0.26
Average False Positive Rate 0.86 0.80 0.71 0.71
False Positive Rate σ 0.17 0.26 0.27 0.27
Computation Time (ms) 267 232 115 117
Computation Time σ 218 177 70 73

Table 4: Square Detector Performance under the GTSDB

RPD RPD-NAO IRPD IRPD-NAO

Average Detection Rate 0.55 0.90 0.80 0.80
Detection Rate σ 0.43 0.24 0.32 0.32
Average False Positive Rate 0.95 0.97 0.86 0.86
False Positive Rate σ 0.11 0.02 0.22 0.22
Computation Time (ms) 117 108 65 64
Computation Time σ 57 54 20 20

Table 5: Octagon Detector Performance under the GTSDB

Table 6 presents the computation times, and this and subsequent tables contain compu-

tation times with standard deviations, as well as speedups with their standard deviations

computer via error propagation. Here we can see the raw computation times for each

detector (with standard deviations), as well as computed speedups betwen the Sign RSD

(SCRSD) and the Improved detector. We can see that for small noise values, up to σ = 20

the speedups are considerably high, with values between 5 and 6. When noise increases

beyond σ = 20, the speedup decreases but stays at least twice as fast as the original

circle detector. Since all other metrics (DR and FPR) are the same, this is clearly a big

improvement.

The drop in speedup could be attributed to the fixed value of the gradient magnitude

threshold Gt. Too much noise will degrade the performance of the detector.

54

σ = 0 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50

OCRSD 78± 2 76± 1 79± 1 90± 6 90± 1 98± 5
SCRSD 74± 1 77± 2 76± 1 83± 3 91± 5 92± 7
ICRSD 13± 1 13± 1 14± 1 31± 1 36± 1 37± 5
Speedup 5.7± 0.5 5.9± 0.5 5.4± 0.4 2.7± 0.1 2.5± 0.2 2.5± 0.4

Table 6: Multiple Circle Detector Evaluation Computation Times (ms)

7.3.2 Regular Polygon Detector

For the Triangle Detector, the raw data plots can be seen in Figure 46. We can see that

as noise increases, the detection rate of the Original detector (RPD) decreases. It starts

in around 60% and ends in 40%. The improved detector starts with a detection rate of

about 50%, and increases as noise increases, ending in around 70%, dominating the other

detectors, but only when noise standard deviation is big.

The original detector (RPD) has high false positive rate, in the range of 60%, while

the improved detector (IRPD) starts with 80% FPR, but it decreases as noise standard

deviation increases, ending at around 30%. Logic dictates that FPR should increase with

increasing noise, but this behaviour by the IRPD contradicts this logic.

In Table 7 we can see the computed speedups between the RPD and the IRPD. The

IRPD is always faster, with speedups greater than 2.8, and when noise standard deviation

increases, the speedup also increases, with a maximum speedup of 3.8.

σ = 0 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50

RPD 85± 6 85± 6 236± 13 729± 36 1240± 64 1682± 104
RPD-NA 69± 8 66± 5 179± 9 689± 68 1132± 113 1512± 130
IRPD 30± 2 30± 2 66± 4 197± 5 340± 15 441± 10
IRPD-NA 35± 3 34± 2 69± 3 199± 9 333± 16 451± 42
Speedup 2.8± 0.3 2.8± 0.3 3.6± 0.3 3.7± 0.2 3.6± 0.2 3.8± 0.3

Table 7: Multiple Triangle Detector Evaluation Computation Times (ms)

For the Square Detector, in Figure 47 the plots are available. We can see that the Im-

proved detector (IRPD) completely dominates the Original detector (RPD) in detection

rates, false positive rates and computation times. About computation times, the IRPD-

NA is slighly faster but the detection rates and false positive rates are very bad.

Again the false positive rates of the IRPD decrease as noise standard deviation σ in-

creases. The detection rate of the IRPD in average is close to 70%.

55

Speedups are available in Table 8. Speedups are very close to 2.0, and they increase

with increasing noise standard deviation. The biggest speedup is very close to 3.0, which

signals a very nice improvement over the original detector.

σ = 0 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50

RPD 59± 3 59± 3 132± 7 358± 10 598± 32 789± 45
RPD-NA 40± 2 43± 3 129± 11 353± 48 541± 51 728± 64
IRPD 31± 4 26± 1 60± 2 135± 4 213± 4 275± 4
IRPD-NA 39± 5 42± 5 55± 2 127± 17 188± 6 245± 7
Speedup 1.9± 0.3 2.3± 0.1 2.2± 0.1 2.7± 0.1 2.8± 0.2 2.9± 0.2

Table 8: Multiple Square Detector Evaluation Computation Times (ms)

Finally, about Octagon Detection, we can see the data plots in Figure 48. Detection

rates for the original (RPD) and improved detectors (IRPD and RPD-NAO) are very high

and degrade with increasing noise (as expected). The detection rates of the improved

detector never go below 90%, while the other detectors have slightly lower detection rates.

False positive rates for the improved detector (IRPD) are considerably low (less than

5%), and they slightly increase as noise increases. FPR for the other detectors are always

bigger than the IRPD. The IRPD-NAO has very big FPR values, around 70%.

In Table 9 we can see the speedup results. Speedups are in the range of 1.8 to 2.4,

and they have no clear increasing or decreasing trend (probably due to experimental ran-

domization). The biggest speedup of 2.4 is gotten with the maximum noise with standard

deviation σ = 50.

σ = 0 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50

RPD 46± 1 46± 1 83± 4 175± 3 217± 7 348± 27
RPD-NA 32± 2 31± 2 61± 2 167± 15 269± 27 300± 13
IRPD 20± 1 21± 1 45± 1 83± 3 118± 2 149± 2
IRPD-NA 24± 1 24± 1 36± 2 73± 6 106± 5 130± 5
Speedup 2.3± 0.1 2.2± 0.1 1.8± 0.1 2.1± 0.1 1.8± 0.1 2.4± 0.2

Table 9: Multiple Octagon Detector Evaluation Computation Times (ms)

Doing a global comparison of the RPD experiments we can infer that as the number

of sides of the shape increases, the performance speedup decreases. With the Triangle De-

tector we obtained the biggest speedups, nearly 6 times faster than the original detector,

56

and the smallest speedups were gotten with the Octagon Detector, averaging 2 times faster.

The Improved detector with Equiangular Image (IRPD-NA) has a very bad detection

performance, with consistent lower detection rates and bigger false positive rates. Clearly

it is not a good choice as a detector. But performance-wise it is at least as good as the

IRPD, and in some cases it has a slightly lower computation time.

It should be also mentioned that in pretty much all cases the IRPD had lower variation

of the computation times than the Original RPD. This indicates that the IRPD has a more

stable behaviour with respect to computation time, but performance is still degraded by

noise.

7.4 ROC Curve Results

ROC curves can be seen in Figure 26. For the circle detector, all ROC curves are pretty

similar and indicate that all detectors can successfully perform 100% detection rate with

0% false positive rate.

For the Regular Polygon Detectors, their shape again is very similar, except for the

Improved RPD with Equiangular Image, which clearly cannot perform at 100 % detection

rate with 0% false positive rate. The minimum FPR to get 100% detection rate is around

50% false positive rate, which is useless for any serious work.

The ROC curve of the Triangle detector cannot be evaluated on Figure 26 due to scale,

so a “zoomed” version is available in Figure 27. Here we can see tha small differences,

where the IRPD is in between the curves for the ORPD-NA and the ORPD, but anyways

the difference is very small.

All detectors perform in the “good” side of the plot and they have the possibility of

tuning the detection threshold to obtain 100% detection rate with very low false positive

rate.

If we compute areas under the ROC curves, areas for all detectors will be very near 1.0,

except for the IRPD-NA, which has an approximate area of 0.7 for the Square Detector and

an area of 0.75 for the Triangle and Octagon Detectors. This signals that the IRPD-NA

has not good detection performance when compared with the other detectors.

57

0 0.2 0.4 0.6 0.8 1

0

0.5

1

False Positive Rate

D
et
ec
ti
on

R
at
e

OCRSD
SCRSD
ICRSD

(a) Circle Detector

0 0.2 0.4 0.6 0.8 1

0

0.5

1

False Positive Rate

D
et
ec
ti
on

R
at
e

ORPD
ORPD-NA

IRPD
IRPD-NA

(b) Triangle Detector

0 0.2 0.4 0.6 0.8 1

0

0.5

1

False Positive Rate

D
et
ec
ti
on

R
at
e

ORPD
ORPD-NA

IRPD
IRPD-NA

(c) Square Detector

0 0.2 0.4 0.6 0.8 1

0

0.5

1

False Positive Rate

D
et
ec
ti
on

R
at
e

ORPD
ORPD-NA

IRPD
IRPD-NA

(d) Octagon Detector

Figure 26: ROC Curves with σ = 50

0 5 · 10−2 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

False Positive Rate

D
et
ec
ti
o
n
R
a
te

ORPD
ORPD-NA

IRPD
IRPD-NA

Figure 27: Triangle Detector ROC Curve, Zoom for x ∈ [0, 0.2] and y ∈ [0.8, 1.0]

58

8 Conclusions

In the current report we have presented improvements to the Radial Symmetry Detector,

both for Circle and Regular Polygon detection.

To improve the RSD algorithm, we used a multiscale approach with the intention of

reducing the size of the vote images, and we also removed the gaussian smoothing filter

at the end of the voting process. We proposed a new optional thresholding method that

uses the multiple scale informatio as a way to improve detection rates and decrease false

positive rates.

This approach was successful in improving computational performance, while keeping

the same or better detection and false positive rates. To evaluate our new Improved Radial

Symmetry Detector, we used synthetic generated images containing shapes, as well as the

German Traffic Sign Detection Benchmark [29].

For synthetic generated images, at resolution of 320 × 240 pixels and in average, we

obtained speedups of 6 times faster than the original RSD for a Circle Detector, 3.4 times

faster for a Triangle Detector, 2.5 times faster for a Square Detector and 2.1 times faster

for a Octagon Detector. All of this improvements were followed by comparable or better

detection and false positive rates.

For real world images in the GTSDB, for the Circle Detector we obtained a small im-

provement of 1.6 times faster, with the cost of a smaller detection rates (20% difference)

and a slightly smaller false positive rate.

For the Triangle Detector, we obtained a 2.1 times faster performance improvement,

with a better detection rate and a comparable false positive rate. We must mention that

detection rates for the original and improved detectors were high, in the range of 90%.

For the Square Detector, a speedup of 2.3 times faster computational performance

was observed, with a considerable greater detection rate than the original regular polygon

detector, but at the cost of slightly increased false positive rates.

Finally for the Octagon Detector, we observed a speedup of 1.8 times faster, with a

increased detection and false positive rates.

Our improved Circle Radial Symmetry Detector has constant time complexity with

59

respect to radius of the detected circle, and it only depends on the size of the input image,

the number of scales being considered, the amount of noise in the image, and the gradient

magnitude threshold Gt and detection threshold Dt.

The Improved Regular Polygon Detector has linear time complexity with respect to

the apothem of detected regular polygon, and this performance also depends on the same

parameters as the Improved Circle RSD.

We can conclude that our improvements to the Radial Symmetry Detector have de-

creased the computational cost of running the algorithm in a input image, while keeping

comparable detection and false positive rates, while for some shapes, this metrics are bet-

ter than the original detector.

We also tested the sensitivity of the detector to the threshold value by plotting ROC

curves. We observed that the ROC curves are very comparable (almost equal), and they

all allow the detector to operate with 100% detection rate with a very low false positive

rate.

We expect that our improvements to the RSD will help make the way to have real-time

traffic sign detection and recognition on embedded computer platforms.

8.1 Future Work

But there is still much work to be done. We did not consider or control the orientation of

the shapes or traffic signs, and some detectors appear to be sensitive to this variable. More

work is needed to ensure that this variable is taken into account. The gradient orientation

along with the shape information could be used to improve the computational performance

of the detector, by only voting with the gradient pixels that meet this constraint. This

has already been done by Barnes et al [5].

We also did some rudimentary normalization of the vote images among different radii

values, but more work is needed in this area to build a strong detector that can successfully

compare votes in different radius/apothem scales. This could also improve the detection

and false positive rates of our improved detector.

A simple way of improving the performance of the regular polygon detector is to de-

crease the size of the voting line. We performed some basic experiments that were not

included in this report about this, and it shows that the line can be slightly decreased

60

with no effect in the detector and false positive rates, slightly increasing performance.

Uncertainty of the radius/apothem values must be mentioned. The GTSDB does not

contain this information and it has been estimated from the ground truth data, but this

will also affect the evaluated detector performance, since we do not know the sensibility

of the detector to uncertainty in the radius/apothem. We do not know the ground truth

radius of the traffic signs in the GTSDB, so this could be a variable to be considered in

the future.

Noise in the image is and will be always a problem in Image Processing and Computer

Vision algorithms. For the RSD and the Improved RSD algorithms, noise also affects the

computational performance. Currently we use a gradient magnitude threshold to deal

with part of the noise, but this is not enough, and more work is needed to make the RSD

more noise resistant, so noise does not degrade computational performance.

False positive rates are very high in some cases, and this could pose a problem for some

general purpose applications. For traffic sign recognition, this is not a big issue since the

candidate traffic signs will be recognized/classified by a posterior recognition stage, which

should be able to recognize signs and not signs.

Some false positives can be seen in Figure 28, where the RPD detected correctly the

square traffic sign, but it also detected the traffic lights, the direction sign and even a

incomplete square made by the traffic light post. But for other kinds of applications that

require circle and/or regular polygon detection, this could pose a problem.

Wwe only experimented with normal voting process already established in the liter-

ature, but other “voting kernels” could be tested and they might improve performance

and/or detection and false positive rates. We already know that voting kernels and smooth-

ing the vote image or accumulator arrays are equivalent [3], so a computational improve-

ment might be along this path.

Finally, more testing and experimentation must be done. Special care must be taken

with embedded hardware platforms. Since ADAS must run in automotive grade embed-

ded processors, performance characteristics could be different and might lead to different

requirements for a traffic sign detector algorithm. So the Radial Symmetry Detector and

the Improved RSD presented in this report must be tested on this kind of platforms, as

well as real datasets with continuous image frame from a camera.

61

Figure 28: False Positives in a image of the GTSDB

9 References

[1] Bram Alefs, Guy Eschemann, Herbert Ramoser, and Csaba Beleznai. Road sign

detection from edge orientation histograms. In Intelligent Vehicles Symposium, 2007

IEEE, pages 993–998. IEEE, 2007.

[2] Claus Bahlmann, Ying Zhu, Visvanathan Ramesh, Martin Pellkofer, and Thorsten

Koehler. A system for traffic sign detection, tracking, and recognition using color,

shape, and motion information. In Intelligent Vehicles Symposium, 2005. Proceedings.

IEEE, pages 255–260. IEEE, 2005.

[3] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern

recognition, 13(2):111–122, 1981.

[4] Nick Barnes. Improved signal to noise ratio and computational speed for gradient-

based detection algorithms. In Robotics and Automation, 2005. ICRA 2005. Proceed-

ings of the 2005 IEEE International Conference on, pages 4661–4666. IEEE, 2005.

[5] Nick Barnes and Gareth Loy. Real-time regular polygonal sign detection. In Field

and Service Robotics, pages 55–66. Springer, 2006.

[6] Nick Barnes, Gareth Loy, David Shaw, and Antonio Robles-Kelly. Regular poly-

gon detection. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International

Conference on, volume 1, pages 778–785. IEEE, 2005.

62

[7] Nick Barnes and Alex Zelinsky. Real-time radial symmetry for speed sign detection.

In Intelligent Vehicles Symposium, 2004 IEEE, pages 566–571. IEEE, 2004.

[8] Nick Barnes, Alexander Zelinsky, and Luck S Fletcher. Real-time speed sign detec-

tion using the radial symmetry detector. Intelligent Transportation Systems, IEEE

Transactions on, 9(2):322–332, 2008.

[9] Rachid Belaroussi, Philippe Foucher, J-P Tarel, Bahman Soheilian, Pierre Charbon-

nier, and Nicolas Paparoditis. Road sign detection in images: A case study. In Pattern

Recognition (ICPR), 2010 20th International Conference on, pages 484–488. IEEE,

2010.

[10] Rachid Belaroussi and Jean-Philippe Tarel. A real-time road sign detection using

bilateral chinese transform. In Advances in Visual Computing, pages 1161–1170.

Springer, 2009.

[11] Long Chen, Qingquan Li, Ming Li, and Qingzhou Mao. Traffic sign detection and

recognition for intelligent vehicle. In Intelligent Vehicles Symposium (IV), 2011 IEEE,

pages 908–913. IEEE, 2011.

[12] Teh-Chuan Chen and Kuo-Liang Chung. An efficient randomized algorithm for de-

tecting circles. Computer Vision and Image Understanding, 83(2):172–191, 2001.

[13] Dan Ciresan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. A committee

of neural networks for traffic sign classification. In Neural Networks (IJCNN), The

2011 International Joint Conference on, pages 1918–1921. IEEE, 2011.

[14] E Cuevas, F Wario, V Osuna-Enciso, D Zaldivar, and M Perez-Cisneros. Fast algo-

rithm for multiple-circle detection on images using learning automata. IET Image

Processing, 6(8):1124–1135, 2012.

[15] Sambarta Dasgupta, Swagatam Das, Arijit Biswas, and Ajith Abraham. Automatic

circle detection on digital images with an adaptive bacterial foraging algorithm. Soft

Computing, 14(11):1151–1164, 2010.

[16] ER Davies. Minimising the search space for polygon detection using the generalised

hough transform. Pattern recognition letters, 9(3):181–192, 1989.

[17] Richard O Duda and Peter E Hart. Use of the hough transformation to detect lines

and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[18] Inland Transport Committee Economic Commission for Europe. Convention on Road

Signs and Signals done at Vienna on 8 November 1968, 1968. [Online; accessed 28-

December-2013].

63

[19] Chiung-Yao Fang, Sei-Wang Chen, and Chiou-Shann Fuh. Road-sign detection and

tracking. Vehicular Technology, IEEE Transactions on, 52(5):1329–1341, 2003.

[20] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–

874, 2006.

[21] Meng-Yin Fu and Yuan-Shui Huang. A survey of traffic sign recognition. In Wavelet

Analysis and Pattern Recognition (ICWAPR), 2010 International Conference on,

pages 119–124. IEEE, 2010.

[22] Miguel Angel Garcia-Garrido, Miguel Angel Sotelo, and E Martm-Gorostiza. Fast

traffic sign detection and recognition under changing lighting conditions. In Intelligent

Transportation Systems Conference, 2006. ITSC’06. IEEE, pages 811–816. IEEE,

2006.

[23] Vladimir Glavtchev, Pınar Muyan-Ozçelik, Jeffrey M Ota, and John D Owens.

Feature-based speed limit sign detection using a graphics processing unit. In In-

telligent Vehicles Symposium (IV), 2011 IEEE, pages 195–200. IEEE, 2011.

[24] A Goneid, S El-Gindi, and A Sewisy. A method for the hough transform detection

of circles and ellipses using a 1-dimensional array. In Systems, Man, and Cyber-

netics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International

Conference on, volume 4, pages 3154–3157. IEEE, 1997.

[25] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd Edition).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[26] Chun-Ta Ho and Ling-Hwei Chen. A fast ellipse/circle detector using geometric

symmetry. Pattern Recognition, 28(1):117–124, 1995.

[27] Frank Hoeppner. Fuzzy shell clustering algorithms in image processing: fuzzy c-

rectangular and 2-rectangular shells. Fuzzy Systems, IEEE Transactions on, 5(4):599–

613, 1997.

[28] Sebastian Houben. A single target voting scheme for traffic sign detection. In Intel-

ligent Vehicles Symposium (IV), 2011 IEEE, pages 124–129. IEEE, 2011.

[29] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian

Igel. Detection of traffic signs in real-world images: The German Traffic Sign Detec-

tion Benchmark. In International Joint Conference on Neural Networks (submitted),

2013.

64

[30] T Hummel, M Kühn, J Bende, and A Lang. Advanced driver assistance systems.

an investigation of their potential safety benefits based on an analysis of insurance

claims in germany. german insurance association insurers accident research. German

Insurance Association Insurers Accident Research, Research report FS, 3, 2011.

[31] Benjamin Höferlin and Klaus Zimmermann. Towards reliable traffic sign recognition.

In Intelligent Vehicles Symposium, 2009 IEEE, pages 324–329. IEEE, 2009.

[32] Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers. Shark. The Journal

of Machine Learning Research, 9:993–996, 2008.

[33] Alfredo Ferreira Manuel J Fonseca Joaquim and A Jorge. Polygon detection from a

set of lines. 2003.

[34] Claudio Rosito Jung and Rodrigo Schramm. Rectangle detection based on a windowed

hough transform. In Computer Graphics and Image Processing, 2004. Proceedings.

17th Brazilian Symposium on, pages 113–120. IEEE, 2004.

[35] Christoph Gustav Keller, Christoph Sprunk, Claus Bahlmann, Jan Giebel, and Gre-

gory Baratoff. Real-time recognition of us speed signs. In Intelligent Vehicles Sym-

posium, 2008 IEEE, pages 518–523. IEEE, 2008.

[36] Heung-Soo Kim and Jong-Hwan Kim. A two-step circle detection algorithm from the

intersecting chords. Pattern recognition letters, 22(6):787–798, 2001.

[37] Carolyn Kimme, Dana Ballard, and Jack Sklansky. Finding circles by an array of

accumulators. Communications of the ACM, 18(2):120–122, 1975.

[38] Gareth Loy and Nick Barnes. Fast shape-based road sign detection for a driver

assistance system. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.

2004 IEEE/RSJ International Conference on, volume 1, pages 70–75. IEEE, 2004.

[39] Gareth Loy and Alexander Zelinsky. Fast radial symmetry for detecting points of in-

terest. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(8):959–

973, 2003.

[40] Meng Lu, Kees Wevers, and Rob Van Der Heijden. Technical feasibility of advanced

driver assistance systems (adas) for road traffic safety. Transportation Planning and

Technology, 28(3):167–187, 2005.

[41] Saturnino Maldonado-Bascon, Sergio Lafuente-Arroyo, Pedro Gil-Jimenez, Hilario

Gomez-Moreno, and Francisco López-Ferreras. Road-sign detection and recognition

based on support vector machines. Intelligent Transportation Systems, IEEE Trans-

actions on, 8(2):264–278, 2007.

65

[42] RA Maxion and RR Roberts. Proper use of ROC curves in Intrusion/Anomaly De-

tection. University of Newcastle upon Tyne, Computing Science, 2004.

[43] Andreas Møgelmose, Mohan M Trivedi, and Thomas B Moeslund. Vision-based traffic

sign detection and analysis for intelligent driver assistance systems: Perspectives and

survey. 2012.

[44] S Muller-Schneiders, Christian Nunn, and Mirko Meuter. Performance evaluation of

a real time traffic sign recognition system. In Intelligent Vehicles Symposium, 2008

IEEE, pages 79–84. IEEE, 2008.

[45] Ali Ajdari Rad, Karim Faez, and Navid Qaragozlou. Fast circle detection using

gradient pair vectors. In DICTA, pages 879–888. Citeseer, 2003.

[46] Pierre Sermanet and Yann LeCun. Traffic sign recognition with multi-scale con-

volutional networks. In Neural Networks (IJCNN), The 2011 International Joint

Conference on, pages 2809–2813. IEEE, 2011.

[47] Adnan Shaout, Dominic Colella, and S Awad. Advanced driver assistance systems-

past, present and future. In Computer Engineering Conference (ICENCO), 2011

Seventh International, pages 72–82. IEEE, 2011.

[48] MA Souki, L Boussaid, and M Abid. An embedded system for real-time traffic sign

recognizing. In Design and Test Workshop, 2008. IDT 2008. 3rd International, pages

273–276. IEEE, 2008.

[49] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. com-

puter: Benchmarking machine learning algorithms for traffic sign recognition. Neural

networks, 32:323–332, 2012.

[50] Gilbert Strang. Calculus. Wellesley-Cambridge Press, Wellesley, Mass, 1991.

[51] Mu-Chun Su and Chao-Hsin Hung. A neural-network-based approach to detecting

rectangular objects. Neurocomputing, 71(1):270–283, 2007.

[52] Saburo Tsuji and Fumio Matsumoto. Detection of ellipses by a modified hough trans-

formation. Computers, IEEE Transactions on, 100(8):777–781, 1978.

[53] Hiroshi Ueno, Masayuki Kaneda, and Masataka Tsukino. Development of drowsiness

detection system. In Vehicle Navigation and Information Systems Conference, 1994.

Proceedings., 1994, pages 15–20. IEEE, 1994.

66

[54] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,

MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-

tonomous driving in urban environments: Boss and the urban challenge. Journal of

Field Robotics, 25(8):425–466, 2008.

[55] Ardalan Vahidi and Azim Eskandarian. Research advances in intelligent collision

avoidance and adaptive cruise control. Intelligent Transportation Systems, IEEE

Transactions on, 4(3):143–153, 2003.

[56] C Visvikis, TL Smith, M Pitcher, R Smith, et al. Study on lane departure warning

and lane change assistant systems. Study on lane departure warning and lane change

assistant systems, 1(1):1–124, 2013.

[57] Massaki Wada, Kang Sup Yoon, and Hideki Hashimoto. Development of advanced

parking assistance system. Industrial Electronics, IEEE Transactions on, 50(1):4–17,

2003.

[58] Eric W. Weisstein. Regular polygon. From MathWorld—A Wolfram Web Re-

source. URL: http://mathworld.wolfram.com/RegularPolygon.html. Last visited

on 25/12/2013.

[59] Wikipedia. Ideogram — Wikipedia, the free encyclopedia, 2013. [Online; accessed

29-December-2013].

[60] Lei Xu, Erkki Oja, and Pekka Kultanen. A new curve detection method: randomized

hough transform (rht). Pattern recognition letters, 11(5):331–338, 1990.

[61] Raymond KK Yip, Peter KS Tam, and Dennis NK Leung. Modification of hough

transform for circles and ellipses detection using a 2-dimensional array. Pattern Recog-

nition, 25(9):1007–1022, 1992.

[62] Fatin Zaklouta, Bogdan Stanciulescu, and Omar Hamdoun. Traffic sign classifica-

tion using kd trees and random forests. In Neural Networks (IJCNN), The 2011

International Joint Conference on, pages 2151–2155. IEEE, 2011.

67

http://mathworld.wolfram.com/RegularPolygon.html

A Experimental Data

A.1 Synthetic Image Evaluation

A.1.1 Circle Detector

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

D
et
ec
ti
on

R
at
e

OCRSD SCRSD

ICRSD

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

D
et
ec
ti
on

R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

D
et
ec
ti
on

R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

D
et
ec
ti
on

R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

D
et
ec
ti
on

R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

D
et
ec
ti
on

R
at
e

(f) Noise σ = 50

Figure 29: Circle Detector Detection Rates with Noise from σ = 0 to σ = 50

68

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

F
al
se

P
os
it
iv
e
R
at
e

OCRSD SCRSD

ICRSD

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

F
al
se

P
os
it
iv
e
R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

F
al
se

P
os
it
iv
e
R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

F
al
se

P
os
it
iv
e
R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

F
a
ls
e
P
os
it
iv
e
R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Radius Value

F
a
ls
e
P
os
it
iv
e
R
at
e

(f) Noise σ = 50

Figure 30: Circle Detector False Positive Rates with Noise from σ = 0 to σ = 50

69

10 15 20 25 30

20

30

40

Radius Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

OCRSD SCRSD

ICRSD

(a) Noise σ = 0

10 15 20 25 30

20

30

Radius Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(b) Noise σ = 10

10 15 20 25 30

20

30

Radius Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(c) Noise σ = 20

10 15 20 25 30

20

30

Radius Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(d) Noise σ = 30

10 15 20 25 30

20

30

40

Radius Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(e) Noise σ = 40

10 15 20 25 30

30

35

40

Radius Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(f) Noise σ = 50

Figure 31: Circle Detector Computation Time (ms) with Noise from σ = 0 to σ = 50

70

A.1.2 Triangle Detector

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(f) Noise σ = 50

Figure 32: Triangle Detector Detection Rates with Noise from σ = 0 to σ = 50

71

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(f) Noise σ = 50

Figure 33: Triangle Detector False Positive Rates with Noise from σ = 0 to σ = 50

72

10 15 20 25 30

20

40

60

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30

20

40

60

80

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(b) Noise σ = 10

10 15 20 25 30

20

40

60

80

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(c) Noise σ = 20

10 15 20 25 30

100

200

300

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(d) Noise σ = 30

10 15 20 25 30

200

400

600

Apothem Value

C
o
m
p
u
ta
ti
on

T
im

e
(m

s)

(e) Noise σ = 40

10 15 20 25 30

200

400

600

Apothem Value

C
o
m
p
u
ta
ti
on

T
im

e
(m

s)

(f) Noise σ = 50

Figure 34: Triangle Detector Computation Time (ms) with Noise from σ = 0 to σ = 50

73

A.1.3 Square Detector

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(f) Noise σ = 50

Figure 35: Square Detector Detection Rates with Noise from σ = 0 to σ = 50

74

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(f) Noise σ = 50

Figure 36: Square Detector False Positive Rates with Noise from σ = 0 to σ = 50

75

10 15 20 25 30

20

30

40

50

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30

20

30

40

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(b) Noise σ = 10

10 15 20 25 30

20

30

40

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(c) Noise σ = 20

10 15 20 25 30

50

100

150

200

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(d) Noise σ = 30

10 15 20 25 30

100

200

300

Apothem Value

C
o
m
p
u
ta
ti
on

T
im

e
(m

s)

(e) Noise σ = 40

10 15 20 25 30

100

200

300

400

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(f) Noise σ = 50

Figure 37: Square Detector Computation Time (ms) with Noise from σ = 0 to σ = 50

76

A.1.4 Octagon Detector

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e

(f) Noise σ = 50

Figure 38: Octagon Detector Detection Rates with Noise from σ = 0 to σ = 50

77

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(b) Noise σ = 10

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(c) Noise σ = 20

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(d) Noise σ = 30

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(e) Noise σ = 40

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

(f) Noise σ = 50

Figure 39: Octagon Detector False Positive Rates with Noise from σ = 0 to σ = 50

78

10 15 20 25 30

15

20

25

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

RPD RPD-NAO

IRPD IRPD-NAO

(a) Noise σ = 0

10 15 20 25 30

15

20

25

30

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(b) Noise σ = 10

10 15 20 25 30

15

20

25

30

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(c) Noise σ = 20

10 15 20 25 30

40

60

80

100

120

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

(d) Noise σ = 30

10 15 20 25 30

50

100

150

Apothem Value

C
o
m
p
u
ta
ti
on

T
im

e
(m

s)

(e) Noise σ = 40

10 15 20 25 30

50

100

150

200

Apothem Value

C
o
m
p
u
ta
ti
on

T
im

e
(m

s)

(f) Noise σ = 50

Figure 40: Octagon Detector Computation Time (ms) with Noise from σ = 0 to σ = 50

79

A.2 Traffic Sign Dataset Evaluation

A.2.1 Circle Detector

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Radius Value

D
et
ec
ti
on

R
at
e OCRSD

SCRSD

ICRSD

(a) Detection Rate

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Radius Value

F
al
se

P
os
it
iv
e
R
at
e

OCRSD

SCRSD

ICRSD

(b) False Positive Rate

5 10 15 20 25 30 35 40 45

20

40

60

80

Radius Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

OCRSD

SCRSD

ICRSD

(c) Computation Times (ms)

Figure 41: Circle Detector Performance under the GTSDB by Circle radius

80

A.2.2 Triangle Detector

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e RPD

RPD-NAO

IRPD

IRPD-NAO

(a) Detection Rate

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

RPD

RPD-NAO

IRPD

IRPD-NAO

(b) False Positive Rate

5 10 15 20 25 30 35 40 45
0

500

1,000

1,500

2,000

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

RPD

RPD-NAO

IRPD

IRPD-NAO

(c) Computation Times (ms)

Figure 42: Triangle Detector Performace under the GTSDB by Apothem.

81

A.2.3 Square Detector

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e RPD

RPD-NAO

IRPD

IRPD-NAO

(a) Detection Rate

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

RPD

RPD-NAO

IRPD

IRPD-NAO

(b) False Positive Rate

5 10 15 20 25 30 35 40 45
0

500

1,000

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

RPD

RPD-NAO

IRPD

IRPD-NAO

(c) Computation Times (ms)

Figure 43: Square Detector Performance under the GTSDB by Apothem.

82

A.2.4 Octagon Detector

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Apothem Value

D
et
ec
ti
on

R
at
e RPD

RPD-NAO

IRPD

IRPD-NAO

(a) Detection Rate

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Apothem Value

F
al
se

P
os
it
iv
e
R
at
e

RPD

RPD-NAO

IRPD

IRPD-NAO

(b) False Positive Rate

5 10 15 20 25 30 35 40 45

100

200

Apothem Value

C
om

p
u
ta
ti
on

T
im

e
(m

s)

RPD

RPD-NAO

IRPD

IRPD-NAO

(c) Computation Times (ms)

Figure 44: Octagon Detector Performance under the GTSDB by Apothem.

83

A.3 Multiple Radius Evaluation

A.3.1 Circle Detector

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

D
et
ec
ti
on

R
at
e OCRSD

SCRSD

ICRSD

(a) Detection Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

F
al
se

P
os
it
iv
e
R
at
e

OCRSD

SCRSD

ICRSD

(b) False Positive Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55

50

100

Noise σ

C
om

p
u
ta
ti
on

T
im

e

OCRSD

SCRSD

ICRSD

(c) Computation Times

Figure 45: Multiple Radius Evaluation for the Circle Detector

84

A.3.2 Triangle Detector

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

D
et
ec
ti
on

R
at
e RPD

RPD-NAO

IRPD

IRPD-NAO

(a) Detection Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

F
al
se

P
os
it
iv
e
R
at
e

RPD

RPD-NAO

IRPD

IRPD-NAO

(b) False Positive Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

500

1,000

1,500

Noise σ

C
om

p
u
ta
ti
on

T
im

e

RPD

RPD-NAO

IRPD

IRPD-NAO

(c) Computation Times

Figure 46: Multiple Radius Evaluation for the Triangle Detector

85

A.3.3 Square Detector

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

D
et
ec
ti
on

R
at
e RPD

RPD-NAO

IRPD

IRPD-NAO

(a) Detection Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

F
al
se

P
os
it
iv
e
R
at
e

RPD

RPD-NAO

IRPD

IRPD-NAO

(b) False Positive Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

200

400

600

800

Noise σ

C
om

p
u
ta
ti
on

T
im

e

RPD

RPD-NAO

IRPD

IRPD-NAO

(c) Computation Times

Figure 47: Multiple Radius Evaluation for the Square Detector

86

A.3.4 Octagon Detector

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

D
et
ec
ti
on

R
at
e RPD

RPD-NAO

IRPD

IRPD-NAO

(a) Detection Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Noise σ

F
al
se

P
os
it
iv
e
R
at
e

RPD

RPD-NAO

IRPD

IRPD-NAO

(b) False Positive Rates

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

100

200

300

400

Noise σ

C
om

p
u
ta
ti
on

T
im

e

RPD

RPD-NAO

IRPD

IRPD-NAO

(c) Computation Times

Figure 48: Multiple Radius Evaluation for the Octagon Detector

87

	Abstract
	Corrections in this edition
	List of Figures
	List of Tables
	Introduction
	Related Work
	Advanced Driver Assistance Systems
	Traffic Sign Recognition
	Traffic Sign Detection
	Circle Detection
	Regular Polygon Detection
	Discussion

	Background
	Radial Symmetry
	Image Gradient
	Gaussian Smoothing
	Hough Transform
	Regular Polygons
	Traffic Signs

	The Radial Symmetry Detector
	Circle Detector
	Parameters

	Regular Polygon Detector
	Parameters

	Implementation Details
	Normalization
	Detection Merging
	Threshold Tuning

	Improvements to the Radial Symmetry Detector
	General Approach
	Multiple scale approach
	Thresholding
	Circle Detection
	Regular Polygon Detection
	Improving the Original Regular Polygon Detector

	Experimental Setup
	General Remarks
	Detector Configuration
	Evaluation on Synthetic Images
	Evaluation on a Traffic Sign Dataset
	Multiple Radius Evaluation
	ROC Curve Evaluation
	Speedup Error Propagation

	Experimental Results and Analysis
	Synthetic Image Results
	Circle Detector
	Regular Polygon Detector

	Traffic Sign Dataset Results
	Circle Detector
	Regular Polygon Detector

	Multiple Radius Evaluation
	Circle Detector
	Regular Polygon Detector

	ROC Curve Results

	Conclusions
	Future Work

	References
	Experimental Data
	Synthetic Image Evaluation
	Circle Detector
	Triangle Detector
	Square Detector
	Octagon Detector

	Traffic Sign Dataset Evaluation
	Circle Detector
	Triangle Detector
	Square Detector
	Octagon Detector

	Multiple Radius Evaluation
	Circle Detector
	Triangle Detector
	Square Detector
	Octagon Detector

