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1 Objectives and Requirements 

The objective of this research project is to develop a user-friendly and cost-effective interactive input 
device that allows intuitive and efficient manipulation of 3D objects (6 DoF) in virtual reality (VR) 
visualization environments with flat projections walls. 

During this project, it was planned to develop an extended version of a laser pointer with multiple laser 
beams arranged in specific patterns. Using stationary cameras observing projections of these patterns 
from behind the screens, it is planned to develop an algorithm for reconstruction of the emitter’s absolute 
position and orientation in space. Laser pointer concept is an intuitive way of interaction that would 
provide user with a familiar, mobile and efficient navigation though a 3D environment. 

In order to navigate in a 3D world, it is required to know the absolute position (x, y and z position) and 
orientation (roll, pitch and yaw angles) of the device, a total of 6 degrees of freedom (DoF). 

Ordinary laser-based pointers when captured on a flat surface with a video camera system and then 
processed, will only provide x and y coordinates effectively reducing available input to 2 DoF only. In order 
to overcome this problem, an additional set of multiple (invisible) laser pointers should be used in the 
pointing device. These laser pointers should be arranged in a way that the projection of their rays will 
form one fixed dot pattern when intersected with the flat surface of projection screens. Images of such a 
pattern will be captured via a real-time camera-based system and then processed using mathematical re-
projection algorithms. This would allow the reconstruction of the full absolute 3D pose (6 DoF) of the 
input device. 

Additionally, multi-user or collaborative work should be supported by the system, would allow several 
users to interact with a virtual environment at the same time. Possibilities to port processing algorithms 
into embedded processors or FPGAs will be investigated during this project as well. 
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2 State of the Art 

2.1 Known Designs 

There were no additional new designs found that utilizing approach or combination of approaches as 
originally intended in this project. Nevertheless, after changing the overall system design from “outside-
in” to “inside-out”, the project starts to cover another area of research in the field of fiducial marker 
systems. Additional state-of-the art search revealed at least one development project, which is related to 
our work: 

“…a system to track position and orientation of a generic mobile device equipped with a camera using a 
set of variable size fiducial markers. The system provides six degrees-of-freedom (6-DOF) by tracking 
fiducial markers through the camera and deriving the position and orientation of the device, thus making 
possible the implementation of innovative and affordable 3D user interfaces. The system has been 
integrated in a Cave Automatic Virtual Environment (CAVE) through the use of projectors and polarizers.” 
[1]. 

Despite being related to this project, there is a difference in illumination technique. In particular, a usage 
of polarizing filters to separate the markers’ image from visualization environment. With current state of 
the art in polarization technology it is impossible to reach a 100% channels separation. It results in the 
fiducial marker system interferences with the visualization content, that appear to the user as “ghosting” 
effects with partially visible patterns. The effect will significantly change with a change in viewing angle or 
a change in user’s head pose. The system we developed based on infrared technology outperforms the 
visual quality suggested by [1]. 

Sample references to the different approaches (outside-in, inside-out) can be found in the Appendix A. 

2.2 Preliminary Work 

As a preliminary work for the project, a first prototype of the laser-emitting device [16] was built1. This 
emitter consists of a set of five laser pointers, working in the infrared domain invisible to human eye, and 
a microcontroller that is capable of switching on and off each laser individually. Laser pointers were 
arranged on a metal plate emitting a static pattern, see Figure 2.1. 

      

Figure 2.1: An infrared laser emitting device with 5 lasers arranged on a metal plate in order to emit a certain fixed pattern (left). 
Microcontroller module for five laser emitters with serial-port communication channel (right). 

                                                      
1 In cooperation with the Institute for Occupational Safety and Health of the German Social Accident Insurance (Institut für 
Arbeitsschutz (IFA) der Deutschen Gesetzlichen Unfallversicherung (DGUV)) 
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Additionally to the laser-emitting device, a miniature model of the immersive visualization environment 
“Immersion Square” has been built using the original screen material. The model improves the overall 
usability of the working environment (Figure 2.2). The small size allows straightforward development of 
new approaches, effective rapid prototyping and testing. 

 

Figure 2.2: A model of the Immersion Square scaled down in size. The screens are made from the original materials allowing exactly 
same light distribution as in the original, large version. 

This model was successfully used in several experiments throughout the entire project period. All new 
infrared emitters were successfully tested and evaluated using this test environment. 

 

Figure 2.3: First prototype of the system built in the small Immersion Square test bench using the original 5-laser emitters design. 
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This setup (see Figure 2.3) was limited in several aspects. There were some major problems: 

• Incapability to support multiple users simultaneously without time-based switching with its 
increasing complexity due to synchronization problems. 

• Difficulties in physical production of the necessary high-precision dot pattern, or a beam splitter 
(diffractive optical element, DOE), where the price for such production compromises the entire 
project idea of a low-cost input device.  

• High sensitivity to the dot position deviations inside the pattern, rendering resulting system 
output inaccurate. 

• Very high power consumption levels of the laser system incompatible with a mobile, battery-
driven, hand-held, pointing device. 

This prototype was used during an initial stage of the project for testing and evaluating purposes of the 
already existing theoretical approaches. Due to its non-rigid frame, the laser pattern configuration was 
often influenced by external physical forces leading to severe quality problems in pose calculations. Being 
an experimental prototype, the overall size, weight and power consumption levels were rated as not 
acceptable to be a candidate for a mobile hand-held device. 

2.3 Evaluation of Available Solutions for a Pattern Emitter 

2.3.1 Multiple Laser Emitters 

A systematic search for an appropriate pattern emitter began after the first prototype with five separate 
laser emitters had been built and evaluated (see Figure 2.1, Figure 2.4). It has a number of limitations that 
led to further investigations for other possible solutions. If used as a hand-held device, there are some of 
the major limitations such as low precision in laser beams orientation and a limited number of points in 
the pattern. 

   

Figure 2.4: Multiple laser emitters arranged in a way that all individual beams pass through one common point. 

Low Precision in Laser Beams Orientation: All laser beams had to originate from the same point due to the 
mathematical approach that was used. This became a nearly impossible task in reality, since each module 
has an arbitrary displacement of the ray relative to the casing. That makes a rigidly manufactured holder 
an unpractical solution and leads to high errors in position estimation. Since each laser module has its 
own casing and it needs to be oriented at a particular angle in 3D space, the overall design becomes large 
and heavy. This increases the overall special dimensions beyond the acceptable for a hand-held device. 
High power consumption makes it nearly impossible to produce a lightweight mobile device with a 
reasonable working time due to large and heavy battery modules. (The prototype design from DGUV (see 
Figure 2.4) was draining its batteries so fast, that it was converted to use a wall-socket power adapter). 

Limited Number of Points in the Pattern: Only 5 laser modules were built in the prototype, making it 
already much bigger and heavier than acceptable. For the back projection approach, this device is not 
suitable as well, because it cannot project unique (individually identifiable) markers. 
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2.3.2 Laser Module with Diffraction Grating or Diffractive Optical Element 

Another alternative would be a diffraction grating or diffractive optical element (DOE). Such a design 
would require only one laser module and a relatively small DOE in front of it. This makes the module 
reasonably small for a hand-held pointer. Nevertheless, a laser beam split by a DOE loses it strength and 
each individual point inside projected pattern contains just a small fraction of the original beam’s energy 
(see Figure 2.5). This means that high power consumption and therefore a heavy and large battery might 
still cause problems. But the major problem is that diffractive optics can only produce a regular, repetitive 
pattern without significant loss in transmitted light energy. In addition to this, irregular power distribution 
across the pattern makes points located further from centre appears darker in the camera image (see 
Figure 2.5, right). 

     

Figure 2.5 Diffraction gratings splitting laser beams. 

As discussed below in Section 4.6.6, in order to solve the correspondence problem, none of the 3 points 
should be collinear. A regular grid pattern destroys this concept entirely. Since this approach cannot 
project unique (individually identifiable) markers, the problem stays the same for the back-projection 
approach as well. 

In case of a low quantity orders another problem of high production costs occurs. In fact, the production 
of an infrared version of the DOE is even more expensive than the one for the visible spectrum and it is 
way beyond the budget of this project, which makes this solution impractical. Not being able to find a 
reasonable solution for a hand-held laser emitter, the entire project design turned from the original 
“outside-in” to a new “inside-out” approach (Section 5). This enables us to take into consideration 
another set of light projection systems. 

2.3.3 DLP Image Projectors 

An Ideal solution for a light source to be used for the “inside-out” approach would be a sufficiently 
powerful DLP projector with an infrared light source. There are only several such systems available on the 
market and so far only in research laboratories. Most advanced and highly suitable for the project are two 
systems: “DLP LightCommander” from Logic PD, Inc. (see Figure 2.6) and “CEL5500S” from Digital Light 
Innovations (see Figure 2.7). 

 

Figure 2.6: “DLP LightCommander” from Logic PD, Inc. 

http://www.dlinnovations.com/cel5500
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Figure 2.7: DLP based universal light source “CEL5500S” from Digital Light Innovations 

Both of these projectors completely satisfy our needs for an “inside-out” approach. In fact, these 
projectors do have much more features and technical possibilities than what is necessary for our 
application: they can dynamically change the output image up to 60 times per second. This feature is not 
a necessity for this project; even a static infrared pattern would satisfy the requirements. The major 
drawback of such systems is that their prices exceed the project budget. Otherwise, these would be 
another valuable alternative for the project’s light source. 

2.3.4 An Array of Refractive Micro-Optical Elements 

Being a cutting-edge technology, a LED light sources with refractive micro-optical components are a very 
promising alternative for the project, see [15]. These elements are able to generate images consisting of 
points, they can be irregular as well, but the problem is that this technology is not available for general 
use and it’s still in the development stage (see Figure 2.8). An additional problem with this approach is a 
static (fixed) focal distance, allowing effective use (without blurring) of the device only in an “inside-out” 
configuration. 

  

  

Figure 2.8: LED light sources with refractive micro-optical components (top row). Micro-optics array projector (bottom row). 

A micro-optics array projector developed on similar refractive micro-optical components combined with 
micro-mask is able to produce static images up to VGA resolution (see Figure 2.8). Once equipped with an 
infrared light source, they would be another real alternative for the project’s light source. 

The energy loss is still quite a serious issue here, meaning that a large battery would render this device 
impractical. Nevertheless this solution can be successfully used in a back projection “inside-out” approach. 
This cutting-edge technology is still quite expensive when produced in small (prototype scale) quantities.  

http://www.dlinnovations.com/cel5500
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2.3.5 Static Micro-Mask Projector 

Another alternative to a LED with micro-mask combined with micro-lens array is a micro-mask combined 
with a standard (ordinary scale, C-mount) lens. This product is the most suitable one that is available on 
the market. It satisfies all requirements of the project and does not contain any extra, unnecessary 
features (unlike the solutions described in Section 2.3.3 and Section 2.3.4), keeping the price for this type 
of technology within an affordable range. This type of projector is capable of producing a binary image 
with a high spatial resolution, see Figure 2.9. Since no diffractive elements are used, the light source can 
be equipped with an infrared light source at little expense.  

   

Figure 2.9: Static micro-mask projector “EFFI-Lase” from EFFILUX 

This type of projection system was considered as the most inexpensive and promising one for further 
developments.
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3 General Frameworks 

In this chapter the results of two different alternative developments of software frameworks are 
presented.  Due to the uncertainty which platform would be used in the future, both Windows-based 
(GigE Vision) and Linux-based (FireWire) frameworks were developed in parallel. This created future 
flexibility and allowed different developers to concentrate on the solution of the problem using familiar 
tools. Additionally, a selection of the lenses and the infra-red filters for the cameras are discussed in this 
section as well. 

3.1 Development of a Multi-Camera Framework for GigE-Vision Protocol 
(Windows-based) 

A highly modular GigE-Vision software framework has been developed. The basis of the framework is the 
idea of hierarchical management with a specific set of basic controlling and performing classes. This kind 
of structure improves modularity of an application and reduces the need of inter-module communications 
utilizing the system of decision-making within each of the modules. An organization like this also provides 
portability of code, for example, as in the case of user graphical interface module, where the main 
computational part becomes independent of the user interface. 

 

Figure 3.1: General structure diagram of the hierarchical system’s management. Only one major branch is fully expanded (shown in 
red, with ^ symbol). 

Thus, each module performs a specified task within itself, referring to the parent in the hierarchy module 
only in the case of events which require a decision at a more global level. A generalized structure diagram 
of the hierarchical approach is shown in Figure 3.1. At run-time there could be any number of cameras, 
any number of calibration samples, unknown number of available camera features, unknown number of 
tracking objects, etc. Therefore, all modules of the framework are designed to support dynamic scalability. 

The root module of the system is App Manager. It has direct control over several others main control 
modules. At the moment there are four major controllers available: Calibration Manager, 
Camera Manager, Processing Manager, and UI Manager. More detailed information on the developed 
framework can be found in [22]. 
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3.2 Development of a Multi-camera Framework for FireWire cameras  
(Linux-based) 

During the project a software framework for the use of FireWire cameras under Linux has been 
developed. It is based on the previous development of an analogous framework on the library (libdc1394 
version 1.x). This library enables FireWire cameras to be used under the Linux platform. 

In January 2008 the version 2.0.0 of the library with a completely new API and a data structures has been 
published. In order to use the previously developed software, the acquisition module of the framework 
needs to be completely redesigned. 

The framework developed in this project based on C++ and uses different methods of the object-oriented 
language. The aforementioned library is a pure C library and therefore, does not fit to the concept of the 
framework. Due to this reason, a wrapper has been developed which encapsulates the methods of the 
libdc1394 library into a C++ object. For reasons of simplicity and maintenance the wrapper is limited to 
the most necessary ones, leaving space for future extensions. 

3.3 Lens Selection 

Considering the particular application of the system as an interactive device for immersive visualization 
environments, in particular the Immersion Square (IS) [2], the corresponding lenses for the observing 
camera system have to be chosen. In order to cover the screens of the IS using one camera per screen, the 
horizontal angle of view has to be roughly around 60 degrees. Our cameras sponsored by Matrix Vision 
have sensor size of 1/2 inch (6.4mm width, 4.8mm height). The closest available focal length is 6mm and 
it will result in viewing angle of 56 degrees. Therefore, the minimum requirements for the lens are as 
follows: mount type: C-mount; focal length of maximum 6 mm; sensor size at least 1/2"; high transfer 
characteristics in near-infrared spectral range. Schneider-Kreuznach has a special line of lenses for infrared 
applications: IR Cinegon 1.8/4.8 with its perfect transfer characteristics at near-infrared spectrum and 
wide angle with low distortions. Nevertheless, this kind of high-precision optics is not necessary and 
seemed to be too expensive. The standard lenses like H612A from Pentax or DF6HA-1B from Fujinon 
(Figure 3.2) are considered as suitable for this project. 

 

Figure 3.2: Pentax H612A and Fujinon DF6HA-1B; Blueprints units: mm. 

 

         Pentax H612A 

 

            Fujinon DF6HA-1B 
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These two lenses have almost identical optical characteristics, making both of them equally suitable. In 
practical comparison test Fujinon DF6HA-1B showed little less radial distortions in the image periphery. 
Besides that it is smaller in size and less expensive than the Pentax one. Therefore, the Fujinon lens has 
been selected for the current project. For more information on lens selection please refer to [22]. 

3.4 Near-Infrared Pass-Filter Selection 

One of the project’s requirements for IR illumination sources is that they have to be beyond visible 
spectrum, since one of the system’s application areas is immersive visualization. Fulfilling that requirement 
will help to avoid visual interferences with projectors and prevent distractions of the system’s users. 

 

Figure 3.3: Camera’s relative spectral response. 

Most of the near-infrared LEDs available have a peak emission at wave length of 850 nm, 880 nm, 
940 nm, 950 nm. According to the camera spectral response (Figure 3.3) it is at least three times more 
sensitive at 850 nm than at 950 nm. In most cases the same applies to the IR LEDs: 850 nm models are 
more powerful than 950 nm devices. Therefore, the decision to use base frequency of 850 nm for this 
development has been made. 

Due to the broad variety of external diameters of the lenses, every type of a lens will require a special IR 
filter. The idea to install an IR filter behind the lens seemed very attractive, thus making it independent of 
the lens installed. This kind of configuration will ease the lens exchange procedure, but poses an 
additional requirement for the IR filter selection. Therefore, the minimal requirement for a near-IR filter is 
to have an internal mount (C-mount). There are three such internal filters available from Schneider-
Kreuznach Company’s “B+W” division. Their spectral transmission characteristics are shown in Figure 3.4. 

 

Figure 3.4: Transmission characteristics of Schneider-Kreuznach B+W Near-IR filter 092, 098 and 093 for internal C-Mount. 
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Since we are targeting LEDs with a wave length of 850 nm, in order to find out which filter is most 
suitable for such an application and how well it will perform, a combined graph of filters transmission 
characteristics and camera relative response has been calculated (Figure 3.5). 

 

Figure 3.5: Relative responses the camera equipped with Schneider-Kreuznach B+W filter type 092, 098 and 093. 

The peak of the relative response of the camera equipped with the Schneider-Kreuznach B+W 093 C-
mount filter shows a best match for 850 nm. Therefore this filter type has been selected for the current 
project. For more information on filter selection please refer to [22]. 
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4 Outside-In Approach 

In this chapter the results of several sub-projects related to the outside-in approach are presented. This 
includes a Camera with an Embedded CPU [24], an external FPGA using analog video signal [23] and an 
external FPGA using digital CCD camera [26], a new temporary solution for the pattern emitter, a 3D 
system’s emulator [25], a method for dots pattern optimization and a solution for the outside-in approach 
[19]. A method for combining the data from an inertial measurement unit with the data from our outside-
in approach is presented here as well [28]. 

4.1 BLOB Detection on-board of the Camera with an Embedded CPU 

In this subproject a Connected Component Labelling (CCL) approach, using an intelligent camera with an 
embedded CPU, has been implemented. This was done to save network bandwidth, as only the 
coordinates of the found connected components are sent through the network. Another benefit of 
running CCL directly on the camera is the saving of processing power on the host PC, although this is not 
as critical as saving the network bandwidth. The focus of this subproject was mostly directed towards 
optimization, as an application running on an embedded system need to be optimized as much as 
possible due to limited resources, like processing power and memory. The algorithms developed were 
tested in comparison to a standard PC, in order to evaluate the advantage of running the algorithms 
directly on an embedded CPU on the camera. 

Laser ray projections on the visualization surface create a distinctive pattern of points. These point’s centre 
positions relative to the screen need to be found. An algorithm for a real-time point detection and 
calculation of centre coordinates was developed for the intelligent camera mvBlueCOUGAR G-p120a from 
Matrix Vision GmbH with built-in CPU. 

Figure 4.1 shows an example of a pattern build with eight LEDs as a test sample and the output of the 
algorithm (positions of the centre points). There was a series of experiments conducted in order to 
compare the performance of the camera-based solution to a reference solution that runs on a standard 
PC (see Figure 4.2) 

        

Figure 4.1: Test pattern of 8 infrared LEDs (left) and the coordinates of detected points, taken from another camera position (right). 

The results show that with the use of a single camera, no performance gain can be achieved; despite the 
fact that no image information has to be transmitted over a network from the camera to the PC. The 
camera‘s CPU can access the image locally and therefore, all processing is done on the camera. That 
reduces transmission from the entire image down to the coordinates of the detected points only. The 
main advantage of the algorithm is that utilization of the available network bandwidth decreases and 
processing capacity increases with the use of more cameras or cameras with a higher resolution. 
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Figure 4.2: Performance charts: On average the intelligent camera with on-board CPU (blue) requires 50% more time than the 
algorithm running on a standard PC (red). 

On average, the camera can run the algorithms close to 26 ms when tracking up to 450 points created by 
several infrared LEDs. This is done at a speed of about 38 frames per second. The same algorithms 
running on a PC is close to 20 ms running at a speed of 50 frames per second. 

Due to the relatively large delay in the detection of the intelligent camera, this approach wasn’t continued 
within this project. Instead, a shift of the focus towards an FPGA based approach was made (see Section 
4.2, 4.8, and 4.9). More detailed information on the embedded approach can be found in [24]. 

4.2 Acceleration of BLOB Detection using an External FPGA 

This subproject presents the implementation and evaluation of point detection algorithms on a Field 
Programmable Gate Array (FPGA). The task of detecting laser points or Binary Large OBjects (BLOBs) in a 
continuous video stream was addressed.  

4.2.1 System Design 

The FPGA hardware design has been developed for the “Altera DE2 development and education” board 
to detect BLOBs in continuous video streams. This board uses a Cyclone II FPGA that contains 33,215 logic 
elements (LE). It is equipped with several communication technologies and I/O interfaces. The different 
modules of the hardware design have been implemented in Verilog. For the module which controls the 
AD-converter and receives the digitized video signal, a demonstration project from Altera has been reused 
and modified for the application purpose. The input video stream had to be provided in NTSC format and 
was converted into RGB format with a resolution of 640x480. The connection and process flow between 
the different modules are shown in Figure 4.3. 

The “Pixel detection" module performs the threshold check with the received data for identifying relevant 
image data. In the “Adjacency proof" module, the pixels are sorted into data containers. The hardware 
design uses a structure of registers, allocated in the FPGA, to keep the attribute data for each BLOB. 
Because of the usage of internal registers, the amount of containers to store BLOB data for the current 
frame had to be fixed. 
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Figure 4.3: System design for a BLOB detection approach on an FPGA. 

The developed hardware design can detect up to five BLOBs in a single frame. To increase the system 
reliability the module “Merging of BLOBs" performs an additional adjacency check for all detected BLOBs 
after the end of the frame is reached. This late merging eliminates data for a single BLOB that has been 
labelled different and stores it into one container. The module “Computation of Centre Point" uses the 
BLOB attributes, stored in the container structure, and computes the centre points. The results are shown 
on the seven-segment display. In addition, the video stream that is feed into the system on the AV-input is 
displayed on the VGA output of the board. The transition from an analog-video input to a digital RGB 
output signal is part of the reused demonstration program from Altera. 

4.2.2 Evaluation and Results 

For the validation of the BLOB detection approach the design has been tested by simulation and by 
execution on the target platform. The employed development environment supports functional and 
timing simulation for the hardware design using Waveform files. The functionality from the pixel detection 
to the centre point computation has been simulated. The Waveform file contained data for six frame lines 
with a line size of ten pixels. The simulation of the design showed correct results. It was planned, for the 
platform evaluation of the BLOB detection approach, to compare the computed results with 
predetermined ground truth values. This would have allowed an automated precision evaluation. Since 
the serial communication module could not be realized, the validation of precision has been made for 
static images only. The results during the first evaluation period showed a systematic error. All computed 
centre points from the FPGA design showed a constant offset of minus three pixels on the X-axis and plus 
four pixels on the Y-axis (Figure 4.4). This error showed up for all applied image material. 

 

Figure 4.4: Detection of a centre point of a round-shaped BLOB showed a systematic error in the X and the Y axes. 

The green/top coordinate values belong to the green dot in the BLOB, while the red/bottom coordinates 
describe the position of the red dot. The green dots are the so called “ground truth" values and are 
expected as the correct result. The red results are the outcome of the BLOB detection system that shows 
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the offset error. For the estimation of the ground-truth values a bounding box approach on a standard PC 
architecture has been applied. The correctness of those results has been validated by hand. 

For providing the image material on the AV-input a standard DVD player has been allied for evaluation 
purposes. This DVD player provided the video signal in NTSC format, which means the input image, was 
scaled down. The AD-converter of the FPGA design transformed the video stream into RGB format with 
640x480 pixels. This scaling back and forth was one part of the reason for the offset error. All images had 
a different resolution between 640x480 and 800x600. This was the main problem for the offset in the 
centre point results. By using input images in the final RGB resolution of 640x480, the offset error could 
be reduced to one pixel. That was the best precision that could have been reached, applying the two 
scaling processes of the image material. 

For the evaluation of the system's performance, the number of processed frames per second has been 
counted. The maximum performance of the BLOB detection system was restricted by the processing speed 
of the analog-digital-converter that pre-processes the video stream from the AV input interface. In this 
design the observed performance reached 64 frames per second. The hardware design required 
approximately 25 % of the FGPA resources with the functionality of processing a single video stream. The 
modular design of this approach allows the configuration to process three video streams in parallel, which 
requires 66 % of the FPGA resources. More detailed information about this subproject can be found in 
[23]. 

4.3 Acceleration of BLOB Detection using a CCD Camera and an External FPGA 

As the FPGA development continued, a considerable improvement of previous implementation [23] in 
processing performance and precision has been achieved. Different algorithms for detecting points more 
precisely have been implemented. In addition, the set of input devices for acquiring image data has been 
extended by a digital CCD camera.  

The development of a BLOB detection system was conducted on an Altera DE2 development and 
education board with a Cyclone II FPGA. It detects binary spatially extended objects in image sequences 
and computes their centre points. Two different sources have been applied to provide image sequences 
for the processing. First, an analog composite video input, which can be attached to any compatible video 
device. Second, a live stream, generated by a five-megapixel CCD camera attached to the DE2 board. The 
results are transmitted via serial interface of the DE2 board to a PC for evaluation and further processing. 
Major limitations in this approach are the number of points that can be detected simultaneously and the 
serial interface to the PC. The application developed during the project is able to detect up to five points 
simultaneously. 

Figure 4.5 shows the schematic design of the FPGA-based platform. The image sequences can be 
acquired on two different devices. The analog video input allows connection to any device with a video 
output, like a DVD player. The analog video input is used for evaluation with known and annotated image 
material. The CCD camera has been applied for performance evaluation purposes with real-time data, 
since the camera allows running the system with higher frame rates. Each input device provides image 
that requires pre-processing. The BLOB detection has been designed to work with image sequences in the 
RGB format. 
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Figure 4.5: Schematic design of the FPGA-based detection system architecture. 

The input image sequence from the analog video input is in YCbCr format with a resolution of 640x480 
pixels. The input image sequence from the CCD camera is in RGB format. According to the Bayer pattern 
of the sensor, the frame rows need to be merged. A frame from a sensor with a resolution of 1280x960 
results in an image of 640x480 pixels. In the system, every frame is processed only once. 

4.3.1 Serial Interface 

To observe the system process and evaluate its results, a communication module using the serial interface 
of the target FPGA board has been developed. The serial interface allows the minimum design effort with 
respect to protocol overhead and resource allocation on the FPGA. The serial module reads the 
information about the BLOB result from the FIFO and transmits it to the RS232 controller. The result has 
to be split into four one byte blocks to be processed by the RS232 controller. The serial interface module 
operates independently from the other system modules and sends results as long as the FIFO with BLOB 
results is not empty. 

4.3.2 CCD Camera 

The performance evaluation of the first BLOB detection approach developed in previous work [23] was 
restricted to the performance of the Analog-/Digital-Converter on the DE2 board. The video input signal 
could not be converted as fast as the BLOB detection module would have been able to process it. In the 
current approach the CCD camera D5M (Figure 4.6) from Terasic Technologies has been attached to the 
DE2 development board in order to provide a faster image acquisition. 

The system design uses the input data from the camera for two different processing tasks. Based on the 
demonstration design the acquired image data is displayed on the VGA output of the DE2 board. To allow 
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the additional use of the image data in the BLOB detection module the RGB pixel values have been stored 
into a dual-clocked FIFO. The BLOB detection module reads the FIFO and searches for BLOBs in the image 
data. 

 

Figure 4.6: Five megapixel CCD camera D5M from Terasic Technologies. 

The result of the BLOB detection computation is the computed centre point, which is stored in another 
dual-clocked FIFO. The modular architecture allows switching between the two designed BLOB detection 
approaches: “bounding box” and “centre-of-mass”. 

4.3.3 BLOBs Detection 

For the detection of the BLOBs the first problem to be solved is the identification of relevant pixels. A pixel 
is considered to be relevant if its colour or brightness value exceeds a specified threshold value. This 
threshold value can be a static parameter or a computed average value, based on the pixel values of 
previous frames. The adjacency condition is the second important step in BLOB detection. The two most 
common definitions for adjacency are known as four pixel neighbourhood and eight pixels 
neighbourhood. Figure 4.7 is showing the two ways of labelling pixels to describe adjacency. On the left 
image the four pixel neighbourhood is applied and four BLOBs are detected. The detection applies the 
adjacency check only on the horizontal and vertical axis. On the right image it is demonstrated that the 
same pixels are labelled as only two BLOBs. For the eight pixel neighbourhood the diagonal axis is taken 
into account as well [23], [26]. 

 

Figure 4.7: Variation in BLOB labelling in case of four (left) and eight (right) pixel neighbourhood. 

The objective of the BLOB detection approach is to determine the centre point of the BLOBs in the current 
frame. With respect to the application area, this subproject describes BLOBs as a set of white and light 
grey pixels while the background pixels are black. This comes from the setup for the image acquisition 
where infrared cameras will be applied to track laser dots on a plain projection surface. The application of 
infrared cameras can help to avoid unwanted features of the immersive visualization environment in the 
image. The image material acquired by the camera expected to be similar to the synthesised examples in 
Figure 4.8. 
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Figure 4.8: Examples of an ideal BLOBs shape (left) and motion blurred one in case of acceleration/deceleration during exposure time 
(right). 

For the computation of the centre point the bounding box approach provides not enough information 
about the BLOB to reach precise enough results. The centre coordinates are strongly affected by the pixels 
at the BLOB's edge. This effect becomes even stronger for BLOBs in motion. With reference to the light 
emitting device for the Immersion Square environment, the angle between the light beams and the 
projection surface changes the shape of the BLOBs and increases the amount of pixels with less intensity. 
In addition, the movement of the device by the user will cause some motion blur. These effects will 
increase the flickering of the pixels at the BLOB's edge and might cause shifts of the computed centre 
point. In Figure 4.9 some examples are given for inaccurate results based on the bounding box approach. 

 

Figure 4.9: Examples of results based on the bounding box approach. Results of BLOBs centre point detection can vary significantly 
depending on the approach and shutter integration time with respect to different motion patterns. 

The estimation of the BLOB's centre-point is sufficiently accurate if the BLOB does not show a blurring 
effect. As shown in the Figure 4.9 (right column, middle image), the bounding  box computation shows a 
higher error than the centre-of-mass approach (Figure 4.9, right column, bottom image) for BLOBs in 
motion. With the centre-of-mass approach the coordinates of all pixels of the detected BLOB are taken 
into account for the computation of the centre point. The algorithm combines the coordinate values of 
the detected pixels as a weighted sum and calculates an averaged centre coordinate.  

 

Figure 4.10: Example of BLOB shape requires additional adjacency check. 

As described in [23] the sequential processing of a frame requires an additional post-processing check for 
adjacency of the BLOBs itself. Dependent on the BLOB's shape or orientation the detection might separate 
pixels of one BLOB into two different BLOBs. As demonstrated in Figure 4.10 the pixels of the same BLOB 
have been identified as two individual BLOBs in the first two examples or, like shown in the third example, 
pixels are labelled twice. 
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4.3.4 Evaluation and Results  

For the computation of the BLOBs centre point the bounding box and the centre-of-mass based methods 
showed the comparable results for the clear BLOBs with ideal circular shape. If a BLOB is not showing any 
blur effect, the applied method for computing the centre point has no major influence on the precision. 
This applies for all selected threshold values. The bounding box and centre-of-mass computations showed 
different results for images showing BLOBs with blur effects. The centre-of-mass results turned out to be 
closer to the expected BLOB's centre point. Results for one particular example are shown in Figure 4.11.  

 

Figure 4.11: Computation of centre points for the BLOBs with motion blur using different threshold values. The centre-of-mass 
approach is shown in blue colour; the bounding box approach is shown in red colour.  

Centre point computation with the centre-of-mass shows higher precision for BLOBs with blur effects, 
compared to the bounding box method. With the applied visualization on the VGA output the frame rate 
of the BLOB detection was restricted to 12 frames per second. Without visualisation the computation 
reached 46 frames per second. The threshold values were adapted to the applied image sequences. 
Therefore, the estimation of the value range is a configuration requirement prior to BLOB computations. 
For any threshold values above or below the specified range, the system is not able to accurately detect 
BLOBs. 

The system performance has been evaluated on a fixed environment setup. Reported values about 
performance and resource allocation are given in Table 4.1. 

Table 4.1: Resource allocation and benchmark results 

 With monitor output Without monitor output 

 Bounding box Centre-of-mass Bounding box Centre-of-mass 

Speed (fps.) 12 12 46 46 

Camera clock (MHz) 25 25 96 96 

System clock (MHz) 40 50 125 125 

Max. system clock (MHz) 72 65 140 189 

Allocated resources on the FPGA 

Logic elements 7 850 14 430 5 884 13 311 

Memory Bits 147 664 27 3616 113 364 239 316 

Registers 2 260 2 871 1 510 2 078 

 

The “clock” performance results refer to the obtained frame rate during the benchmarking. The "Camera 
clock" is the particular clock rate that is used to read out the CCD sensor. The "System clock" is the clock 
rate for the BLOB detection module during the performance evaluation and the "Max. System clock" 
describes the maximum possible clock rate for the implemented design. 
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For the evaluation with monitor output a faster frame rate would have been possible in theory. But it 
would have required time consuming configuration of the camera settings and the VGA controller 
module. For monitoring the image data while performing the BLOB detection the VGA module has to run 
synchronized with the image capturing module. 

The applied CCD camera has been used for the evaluation of faster frame rates. It will not be used in the 
target application for the active tracking device of the 6-MIG project, because of its missing ability to 
record infrared light. For this reason it was reasonable not to put more effort into the integration of the 
CCD camera than was required for the performance evaluations. 

The CCD camera itself has an average clock rate of 48 frames per second for the applied configuration 
parameters. While both BLOB detection approaches would have been able to perform on faster frame 
rates, the estimation of the maximum performance was again restricted by the input source. The same 
problem about slow input sources existed in [23] as well, and did not allow evaluation the system for 
maximum performance. The resource allocation shows that centre-of-mass requires about twice as many 
logic elements and memory bits than bounding box approach. For more technical details please refer to 
[26]. 

4.4 Pattern Emitter using a Hand-held Micro-Projector 

An earlier prototype of a laser emitter (Section 2.2 and 2.3.1) consisting of five laser modules. 
Unfortunately, multiple issues with this design were discovered during further project development: 

• difficult adjustment of the laser’s common intersection point; 

• insufficient structural rigidity, leading to a quick self-de-adjustment; 

• unacceptable size for a hand-held mobile unit; 

• limited (in our case to only 5) number of laser point projections. 

While unable to find an acceptable solution for this problem, an alternative temporary prototype was a 
necessity for the continuation of the project. At this stage a hand-held micro-projector was investigated as 
an alternative to a desired pattern emitter. Being a digitally controlled projector, it is able to generate any 
image up to 30 times per second within its maximum resolution. That mean, generating an image similar 
to the laser dots can be realized with little effort. The only difference would be a miniature scale of the 
entire setup (see Section 2.2) due to output power restrictions of the projector. 

The working principle of the micro projector based on the DLP technology was selected, as it allows the 
light source inside the projector be replaced from visible to infrared. According to the maximum allowed 
power dissipation of the DLP unit, the illumination power of this projector would not be sufficient for the 
final full-scale design even after modification. 

Therefore, a decision to leave it in the visual domain was supported by the findings, that during a testing 
phase it is much easier to work in the visible range. 

In fact, shortly after we implemented our hand-held projector, another research group published their 
project [3] where they used the same model of micro-projector for a development of their collaborative 
entertainment system. They modified the light source of the projector from visible to infrared and 
combined the projector with an inertia measurement unit and a camera. 
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4.5 Visual 3D Emulator of a 3-Wall CAVE with a Laser-based Pattern Emitter 

For the evaluation of the developed algorithms it is necessary to have reliable ground truth data (e.g. 
position and orientation of the device at every moment of a test sequence) for comparison with 
reconstructed data and to determine the latency (the delay between input and output) of the system. 
Such ground truth data is rather difficult to obtain in real world experiments, because its precision has to 
be considerably higher than that of the system itself to generate trustworthy results. 

 

Figure 4.12: A 3D view of the simulator software. As shown in this figure, a virtual pattern projector generates a projected pattern 
on the centre and the right virtual screens of the simulator. Real-time pose controls of the projector provided via 6DoF desktop 
mouse controller (Logitech 3D-Connexion). 

For that reason a simulation program has been developed within the scope of a student project [25]. The 
program allows modifications of the position and orientation of a virtual input device, which projects a 
custom pattern of laser beams on freely configurable virtual screens (see Figure 4.12, Figure 4.13) using a 
6-DoF-mouse. The pattern is manually configurable. For example, the shape of the individual laser beams 
can be changed (e.g. to represent squares or triangles instead of dots) or some of them can be completely 
skipped to create gaps in the pattern. In addition, the projected point of the laser beam will be distorted 
towards ellipse, based on the angle between the ray and the screen surface, making the simulation more 
realistic. Subsequently a video stream for each screen is computed. Each stream contains typical camera-
related effects like pixel noise, motion blur, radial distortion and others.  
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Figure 4.13: Three parallel output video streams include user-adjustable noise levels and perspectively-correct distorted projections of 
the simulated laser beams on the left, centre and right virtual screens respectively) 

With the help of this simulator it is possible to evaluate developed algorithms efficient and fully 
automated. Every change in position and orientation of the virtual device can be recorded and later 
replayed for additional tests, so every experiment can be executed again under the reconstructed 
conditions. At every time of the experiment the position and orientation is known and can be compared 
to the reconstructed data of the tested algorithm. More details about this simulator can be found in [25]. 

4.6 Development of a Method for Calculating Position and Orientation of an 
Input Device 

At this point of the project all developed solutions for sub-problems (points detection, points 
correspondence problem, pose calculations, correction using gyroscopes and accelerometers) are 
combined. As a result, software for calculating position and orientation of the device has been developed. 
It is capable of use different sources of the input data, such as live stream from camera, output of the 
developed 3D simulator [25] or a pre-recorded video file. 

4.6.1 Algorithm Overview 

The proposed algorithm can be divided into a calibration part and a runtime part. Calibration has to be 
performed only after repositioning the cameras, screens or changing the laser ray configuration. 

During the run-time part, the laser spots have to be detected in the input images and camera distortions 
have to be accounted for. Then, for each laser spot, a 3D position in the global coordinate system is 
computed, using information about the position and orientation of the projection screens and their 
geometric relation to the cameras. The correspondence solving step then establishes a mapping from the 
set of observed laser spots to the input device’s rays. After that, the device’s position and orientation are 
determined using Levenberg-Marquardt iterative minimization [4]. Finally, this information is combined 
with the relative motion data delivered by the inertial measurement unit. Figure 4.14 shows an overview 
of the run-time part of the algorithm. 

The algorithm presented here relies on a proper calibration of the cameras, the screens and the emitter 
device. In the following sections, we describe those calibration procedures. Calibration has to be 
recomputed again only after a change in the geometric configuration. 
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Figure 4.14: Overview of the algorithm. Image acquisition, spot detection and correspondence solving are performed for each screen 
individually (in parallel). The results are then combined for pose estimation. 

In the current state of development, we operate on simulated or recorded video data (see Figure 4.14) 
only. A real-time simulation program generates simulated camera images. It allows moving a virtual input 
device with a configurable laser ray pattern. The advantage of this approach is that ground-truth data on 
the device’s position and orientation is available, which facilitates evaluation of precision. 

The device’s position and orientation can be determined in real-time (roughly 150 frames per second with 
512×512 images, using an Intel Core i7 860 processor). Solving the correspondence problem using p2-
invariants has proven to be reliable due to the voting table and fast due to the use of a kd-tree. Even with 
artificial noise introduced to the detected laser spot positions, most of the spots can be correctly mapped 
to the reference pattern. Wrong correspondences have been observed rarely. In most ambiguous cases, 
the algorithm labels the laser spots in question as “Unknown”. 

However, detailed evaluations on the precision of the laser spot detection and the pose reconstruction 
using the Levenberg-Marquardt algorithm have yet to be carried out. 

The merging of optical and inertial data has been evaluated using an optical tracking system. First results 
indicate that combining both sources leads to more robust and reliable rotational data. However, 
determining the device’s position, as opposed to orientation, using only inertial data is still imprecise due 
to noisy sensor readings and uncertainty in gravity vector separation procedure. Therefore, for position 
estimation, we rely on the detectability of a sufficient number of laser spots. 

4.6.2 Camera Calibration 

Every real (non-ideal) camera introduces some geometric distortions to the images it delivers, such as 
barrel distortion or pincushion distortion. This effect becomes apparent especially with wide-angle lenses. 
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Figure 4.15: Radial distortion correction 

In applications requiring high precision, such as the one presented here, those distortions have to be 
accounted for (see Figure 4.15). We determine the distortion properties of each camera by applying a 
standard procedure. This involves taking images of a grid pattern of retro-reflective markers with known 
physical dimensions from several perspectives. Then the parameters of a distortion model can be found. 
After the calibration procedure, the distortion parameters are stored and later used at runtime to 
determine the “undistorted” position of every detected laser spot in the image, that is, the position at 
which it would be seen by an ideal camera. This calibration procedure has to be repeated only after 
changes in the optical system of the camera. 

4.6.3 Screen Calibration 

Each camera observes one projection screen, which has to be entirely covered by its field of view. 
However, the cameras cannot be installed at an optimal position, being faced perpendicularly towards the 
centre of the screen, because they would interfere with the image projection system in case of a back 
projection, or with the user’s working space in case of a front projection. 

Therefore, in real-world environment, the cameras have to be installed observing the projection screens in 
a perspectively distorted way (Figure 4.16). In order to map 2D image pixel coordinates to global 3D 
coordinates on the screen surface, a homography transformation has to be computed. In our system 
prototype, this is achieved by using permanently installed retro-reflective markers in all corners of the 
projection screens (outside of the projection area) illuminated by coaxial infrared lighting sources mounted 
on the cameras (see [22] for detailed information about the light sources). 

 

Figure 4.16: Perspective distortion correction (Homography transformation) 

Determining these corner points’ 2D image coordinates (using the same laser spot detection procedure as 
described in Section 4.6.2) and relating them to the points’ real-world positions, the homography 
transformation parameters can be determined. This procedure has to be applied only after repositioning 
the cameras relative to the projection screens. 

4.6.4  Proposed Input Device Calibration 

In order to determine the relative orientation of each laser beam, a special calibration procedure has to be 
performed once (assuming that their relative configuration will remain fixed). The input device calibration 
procedure can be described as follows: 

The device is fixed to a one-axis linear positioning system with rail-mounted movable carriage. Its axis is 
oriented perpendicularly to the projection screen. 
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Figure 4.17: Virtual planes intersecting rays during the calibration of the input device (left). Early stage prototype of a linear motion 
platform allowing fixed steps only (right). 

The device should be fixed to the carriage with the rays facing the projection screen in such a way that all 
laser beams’ projections are visible on the screen. Then the device is moved stepwise towards the screen 
with a known offset, and images of the projection patterns are taken. The data obtained this way can be 
thought of as moving a plane through the laser rays of a stationary emitter and recording their 
intersection points, see Figure 4.17. Fitting lines through each individual laser spot using a least-squares 
technique allows the measurement of the ray directions and reconstruction of the 3D shape of the ray 
bundle. 

4.6.5 Run-Time Laser Spot Detection 

In each frame taken by a camera, the laser spots have to be detected. Their positions have to be 
determined as precisely as possible, as this data serves as the most important input to all following steps 
in the algorithm. The laser spot detection is implemented as follows: we sample the camera image 
according to a grid at every nth pixel horizontally and vertically (assuming that a laser spot always has a 
certain minimum size, not every pixel has to be checked). If the pixel’s intensity exceeds a certain 
threshold t0, it is assumed to be part of a laser spot. Starting from this pixel, we collect all connected 
pixels whose intensities exceed a threshold t1 (which could be lower than t0) using a flood-fill search. In 
the next step, the connected region of pixels is checked against several criteria in order to decide if it is 
safe enough to assume that it represents a laser spot. Such criteria are its geometric shape and its size. In 
order to compute the centre point of the spot, we use a weighted average (each pixel contributes 
according to its intensity). This allows determining the positions of the laser spots with sub-pixel precision. 

After the detection process, the image-space positions of all points are known. Those positions have to be 
transformed to the global reference frame. First, the distortion introduced by the camera lenses has to be 
corrected using the camera calibration data. The transformation to 3D coordinates follows using the 
screen calibration data. 

The laser spot detection and transformation process is independent for each screen/camera. It is, 
therefore, designed and implemented to be executed in parallel on a multi-core processor. Additionally, 
we investigated the possibility of performing this process on dedicated FPGA hardware in order to 
improve scalability of the system by reducing the amount of data transfer between cameras and the PC 
and reduce the CPU workload [17]. 

4.6.6 Correspondence Solving 

After the laser spots have been detected in the camera images and have been transformed to the global 
coordinate system, a mapping from the detected spots to the rays in the reference model has to be 
established. That is, for as many detected spots as possible, we need to find the corresponding ray that 
projected it from the emitter device. 



31 

 

Mathematically, there exist n! mappings from a set of n objects (detected laser spots) to another set of n 
objects (emitted rays). Even for only n = 10 laser beams, there are already more than three million 
mappings, which means that a brute-force approach of trying all possible mappings would be 
prohibitively slow. 

 

 

 

 

 

 

Figure 4.18: An example of a cross-ratio as a projective invariant. 

In order to keep the amount of computation within a feasible limit, we make use of the mathematical 
concept of p2-invariants (perspective- and permutation-invariant) [5]. In n-dimensional projective space, a 
function taking n + 3 points as its input is called p2-invariant if its result values remain constant regardless 
of any permutation of the input points (change of order) and regardless of applying any perspective 
transformation to all of them. In our particular case, since we operate in two-dimensional projective 
space, a p2-invariant function can be defined for five two-dimensional points. It computes a five-
dimensional vector of real values (the invariant vector). In the following, we describe the idea of solving 
the correspondence problem using p2-invariants. 

As a pre-processing step, we project the rays from the reference pattern onto any arbitrary plane, giving 
us 2D reference point coordinates. We then compute and store the invariant vectors for all possible five-
point sets. For n points, there are n! / (5! × (n – 5)!) different five-point sets. With n = 20 points, this 
equals to 15504. 

At runtime, for every screen we also compute and store the invariant vectors for all possible five-point sets 
of the respective detected points in image space. The underlying idea is that the screen position of the 
laser spots is just a perspectively transformed version of the corresponding 2D reference point set. For 
each five-point set on the screen, we find the five-point set in the reference pattern that has the most 
similar invariant vector. If the vectors are similar enough, we can assume that the five points from the 
screen correspond to the five points from the reference pattern. Due to another property of the p2-
invariant function, it is even possible to determine which point within the one five-point set corresponds 
to which point in the other five-point set. 

In theory, there would always be a matching five-point set with the exact same invariant vector. However, 
in practice, the p2-invariant function is very sensitive to small deviations in the point positions, which are 
inevitable due to camera noise, non-perfect calibration and floating point computations. As a result, we 
have to allow a certain amount of deviation. This means that for some five-point sets, we will obtain more 
than one five-point set from the reference pattern with almost the same spatial configuration. Only 
selecting the single best five-point set would mean ignoring all the others, although their chance of being 
the correct match is only slightly lower. Therefore, we follow the recommendations in [5] by using a 
voting table. Every potential match casts a vote into that table. By analysing the table after iterating over 
all five-point sets, we can determine for each laser spot the reference ray that it most likely corresponds 
to. In cases where this decision is very close, that is if one correspondence received only slightly more 
votes than another one, we output “unknown” as the result for that point’s correspondence. 

|𝐴𝐴|/|𝐵𝐵|
|𝐴𝐴|/|𝐵𝐵| =

|𝐴′𝐶′|/|𝐵′𝐶′|
|𝐴′𝐷′|/|𝐵′𝐷′|
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This conservative approach has shown to deliver more stable results than always selecting the best match, 
since errors in this stage can lead to errors in the pose estimation stage later. However, we try to keep 
these ambiguous situations to a minimum by using specially optimized laser patterns (see Section 4.6.8). 

In order to achieve real-time results, the implementation of the described correspondence solving 
algorithm has to be optimized for speed. First, each five-point set can be processed in parallel (computing 
the p2-invariant vector and searching for potential matches), since these tasks are independent from each 
other. However, the most critical part is finding potential matches from the reference pattern for a given 
five-point set from the screen. If the precomputed invariant vectors from the reference pattern are simply 
stored in a list or an array, the entire array has to be searched each time. This means that the time 
complexity is O(m2), where m is the number of five-point sets. Instead of using a list or an array, we store 
the precomputed invariant vectors in a kd-tree [6]. This is a spatial data structure that hierarchically 
organizes its items in such a way that a range search (searching for items in a neighbourhood around 
given coordinates) can be performed in time O(log n), n being the number of items in the kd-tree. With a 
range search, we can thus determine potential matches quickly and reduce the overall time complexity to 
O(m × log m). 

4.6.7 Pose Reconstruction 

Given the 3D positions of the laser spots on the screen surfaces and their correspondences to the 
reference pattern, an estimation of the global rotation and translation of the emitter device in 3D space 
can be computed. For this, the Levenberg-Marquardt algorithm is used to minimize back-projection errors. 
For an estimated pose of the emitter device, we compute these errors by virtually shooting laser rays from 
that pose, according to the laser ray pattern, and determining where they intersect with one of the screen 
surfaces. We use the distances between each simulated intersection point and the respective observed 
intersection point as the error values to be minimized by the Levenberg-Marquardt algorithm, see Figure 
4.19. 

 

Figure 4.19: 3D-pose reconstruction of a hand-held laser emitter using Levenberg-Marquardt minimization algorithm 
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Any error in the correspondence mapping leads to an incorrect pose estimation result. However, a 
wrongly mapped point will typically show the biggest remaining error values after the Levenberg-
Marquardt minimization. Hence, we iteratively remove points with errors above a certain threshold and 
apply the minimization again, until either all remaining errors are within the acceptable range or the 
minimum number of points is reached. In the latter case, we cannot safely determine the device’s pose 
from the optical data alone and have to rely on the other sensor sources to deal with missing data. As 
such a complementary sensor system, an inertial measurement unit (IMU) has been integrated into the 
input device. 

4.6.8 Generating Optimized Laser Patterns 

As previously mentioned in Section 4.6.6, there are often ambiguous situations during the 
correspondence solving stage. This happens when for one five-point set of laser spots on one screen, 
there are several potential five-point sets from the reference pattern with very similar invariant vectors. 

 

Figure 4.20: Detecting 20 points in a simulated camera image (including artificial sensor noise), solving for correspondences and 
reconstructing the device pose. 

The frequency of this occurring can be reduced by designing the laser pattern in such a way that the 
number of five-point set pairs with almost identical p2-invariant vectors is minimized. Also, no two laser 
beams should be spatially too close to each other, since this may result in “merging” laser spots. An 
additional criterion is that no three points should be collinear. Collinear points lead to numerical stability 
problems in the p2-invariant vectors computation. The simulated annealing algorithm [7] was applied to 
create optimized patterns. Essentially, this is a method of “guided” random pattern creation. A set of 
optimized patterns were successfully created, one of them being shown in Figure 4.20. More information 
on the method can be found in [19]. 
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4.7 Combining Optical and Inertial Measurement Data 

The vision-based system cannot handle pose estimation when too many laser rays are projected outside 
the camera-monitored area, or when the pattern emitter is moving too fast. These cases of temporal 
incapability of a vision-based system to provide position and orientation of the device can be supported by 
an additional subsystem with gyroscopes and accelerometers (or inertial measurement unit, IMU) that can 
improve the output signal of the system to some extent. The inertial sensor is an attractive alternative for 
updating the motion information in situations when too many laser spots cannot be reliably detected or 
identified due to off-screen situations, extreme angles to the screen’s surface or a very high rotational 
velocity, which leads to blur problems in the optical system. 

The inertial sensors used are light and small with a high output data rate. They require significantly less 
computational power compared to the optical system. Some of the drawbacks of inertial sensors are a 
relatively low signal to noise ratio and only relative as opposed to absolute position estimation, which 
leads to “drifting” problems and error accumulation over time. In general, it is efficient to use the IMU as 
a short-term relative dead-reckoning system with a periodic update from the absolute optical system. 

Therefore, a complementary subsystem based on an inertial measurement unit (IMU) providing an 
additional source of orientation data has been developed. This subsystem provides 3DoF of rotational data 
(2DoF of absolute, 1DoF of dead-reckoning) and is able to successfully cope with temporary outages from 
vision-based optical system and provides a short term tracking solution on its own. 

The developed prototype provides inertial sensor data integration into the 6-MIG visual system output. It 
provides data acquisition from a gyroscope and an accelerometer, sensor fusion algorithms, and a 
graphical representation of the results in the 6-MIG simulator developed in [25]. The IMU data has been 
integrated into the simulator to graphically demonstrate measurement of rotations. 

 

Figure 4.21: Hardware overview of an IMU-based complementary pose estimation subsystem. 

The hardware configuration of the subsystem is shown in the Figure 4.21. In the prototype system, the 
IMU module “6DOF v4” from SparkFun Electronics with Bluetooth communication is used. It contains a 3-
axis accelerometer MMA7260Q from Freescale Semiconductor and a 3-axis gyroscope IDG-500 from 
InvenSense Inc., see Figure 4.21 (left). For more detailed information on the realization of communication 
channels please refer to [28]. 

In the current implementation, the data is retrieved from the sensors over Bluetooth at 200 Hz. After 
applying an additional fault detection procedure (Figure 4.22, left) the low frequency component of 
signals in the data is filtered using the 4th order Runge-Kutta method (Figure 4.22, right). 
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Figure 4.22: Faulty IMU data rejection (left) and IMU data low frequency filtering (right) 

Two independent approaches for sensor fusion have been developed and evaluated. The first one is a 
classical sensor fusion approach using Kalman filters [8]. Kalman filters are known to be able to handle 
noisy measurements and combine the data delivered by gyroscopes and accelerometers. Additionally, they 
have been used to combine data between the vision-based optical system and the inertial subsystem. Our 
implementation partially compensates for the gyroscope drifting error and can successfully cope with 
motion acceleration. 

The second approach, a quaternion-based sensor fusion algorithm, has been developed using spherical 
linear interpolation (SLERP) to support the laser-based system. As showed in Figure 4.23, as long as there 
is no motion, SLERP is used to combine gyroscope and accelerometer. In order to detect motion, the 
actual length of the accelerometer vector is checked to be close to one, representing gravity alone 
without any motion component. In addition, SLERP is used to integrate rotation detected by the optical 
system into others, whenever available. The interpolation coefficients were empirically set after a set of 
conducted experiments. 

 

Figure 4.23: Sensor fusion algorithm based on quaternions and SLERP (spherical linear interpolation). Qa – data from an 
accelerometer, Qr – data from a gyroscope, Qo – data from the optical system, |a| – motion indicator. 

This approach enables inertial sensor data integration into the 6-MIG optical system output to improve the 
robustness and precision when measuring rotations. It allows combining angular rate and acceleration to 
enhance the tracking of the 3D orientation of the device (see Figure 4.24). 



36 

 

 

Figure 4.24: Graphical representation of sensor fusion of an IMU and a camera-based subsystem. Qa – data from an accelerometer, 
Qg – data from a gyroscope, Qo – data from the optical system. 

Due to the unavailability of the laser-based optical system at the moment of the implementation of the 
IMU subsystem, the external optical tracking system (OptiTrack from Natural Point) has been used to 
substitute the missing tracking data. The current prototype tracks orientation continuously with or 
without the optical tracking system.  

 

Figure 4.25: An example of the gyroscope drift correction algorithm in action. Series of strong input pulses generate an undesired 
drift which is successfully corrected by the algorithm towards the end of the graph. 

In conclusion, combining acceleration and angular rate yields an improved performance. Evaluations 
showed that acceleration data is noisier than the others and drifting is reduced significantly when the unit 
is stationary. Figure 4.25 shows the effect of motion acceleration on the rotational data output. More 
detailed information about combining optical and IMU data can be found in [28]. 

4.8 Further Development of an FPGA Solution 

The development and validation of a detection and tracking system for BLOBs on an Altera Cyclone II 
FPGA has been implemented. This subsystem supports different input devices for the image acquisition 
and can perform detection and tracking up to eight BLOBs in parallel. Additional modules for compressing 
the image data based on run-length encoding and sub-pixel precision for the computed BLOB centre 
points have been designed. For the comparison of the FPGA approach for BLOB tracking, a similar 
implementation in software using a multi-threaded approach has been realized. The subsystem can 
transmit the detection or tracking results on two available communication interfaces, USB and RS232. The 
analysis of the hardware solution showed a similar precision for the BLOB detection and tracking as the 
software approach. One major problem is the large increase of the allocated resources when extending 
the system to process more BLOBs. With one of the target platforms, the Altera DE2-70 board, the BLOB 
detection could be extended to process up to thirty BLOBs. 
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4.8.1 System Design 

The general design of this subsystem is based upon the approach described in Section 4.3. It supports 
input devices as a composite analog video signal and a CCD camera connected directly into extension 
slots of the board. In addition, the design has been extended to use a customized industrial Gigabit 
Ethernet camera with a CMOS sensor. 

 

Figure 4.26: An FPGA development board with a specially-build GigE-Vision camera attached. 

A special camera prototype for a direct connection to an FPGA board has been built2, see Figure 4.26. It is 
based on the mvBlueCOUGAR-X 100, a camera with a CMOS sensor that delivers 10-bit greyscale images 
with a resolution of 752x480 pixels and allows frame rates of 117 frames per second. It is configurable 
over an Ethernet connection. It is connected to the DE2-70 board over one of the two GPIO expansion 
headers provided by the board. Based on the GigE Vision protocol this camera features an additional data 
output enabling image acquisition directly from the development FPGA-board. This configuration has 
been used for several other research subtasks as well [20], [21], [27], [31]. This prototype was used in the 
final, completely functional implementation of the 6-MIG prototype. 

 

Figure 4.27: Schematic overview of the FPGA subsystem architecture, including the tracking approach. 

                                                      
2 In cooperation with Matrix Vision GmbH. The fruitful cooperation and support by Matrix Vision need to be particularly 
acknowledged. 
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Figure 4.27 gives an overview of the modular design that has been extended by the additional processing 
parts of this subproject. For more accuracy in the estimated BLOB centre points, the system has been 
extended by a four digit sub-pixel precision module. In order to increase the flexibility of the system, an 
additional USB communication module for the transmission of the detection and tracking results has been 
designed. 

4.8.2 Tracking in Hardware 

The design approach for the tracking task in hardware uses the Euclidean distance between the BLOBs 
centre points of two consecutive frames to compute the tracking parameters. The capabilities of an FPGA 
enabled the parallel computation of the Euclidean distance between one new BLOB and the set of old 
BLOBs. Other steps, such as the identification of the closest new BLOB, have to be done in a sequence to 
avoid multiple assignments of the same BLOB ID. For the control of the process flow, the algorithm has 
been divided into smaller steps that have no data dependencies. The processing of those different steps is 
driven by a state machine design. Figure 4.28 gives a simplified representation of the state machine. Some 
states, such as “write results to output FIFO” consist of several sub-steps. 

The additional tracking procedure to match new BLOBs by a list of expected neighbour BLOBs if they 
could not be matched by Euclidean distance has not been designed within the scope of this project. 

 

Figure 4.28: Tracking task in hardware module. State machine design. 

The tracking has been designed in Verilog using IP cores and block-design files to realize sub-modules. 
The several steps for computing the Euclidean distance have been pipelined in a module, shown in Figure 
4.29. Each block represents an IP core that performs a mathematical operation, such as multiplication, 
addition or square root. With respect to the detection module the tracking works for six to eight BLOBs. 

 

Figure 4.29: Pipelined computation of Euclidean distance. 
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For the visualization of the tracking results the BLOB data is transmitted via RS232 to a connected 
computer. The received data is written into a log file and visualized in an OpenCV based C++ program for 
evaluation purposes. 

4.8.3 Variable Threshold Adjustment 

An identification of the pixels that might belong to a BLOB in a processed frame works based on a 
threshold value check. In the hardware design of the previous approach [23] and [26] (Section 4.2 
and 4.3) the configuration of this value was done by the user using the I/O interface of the target 
platform. In the current approach the brightness of the spots from the light emitting device can vary. 
Several factors will have an impact on the BLOBs appearance, such as the angle between the light source 
and the projection surface, the distance between the light source and the projection surface or the speed 
with which a user moves a light source in the environment. This might cause changes in the BLOB's shape 
or brightness. 

For a continuous update of the threshold value, the module will receive an updated averaged BLOB size of 
the last frame processed. The automatic adjustment of the reference values shall be performed once the 
user has finished the calibration of the system after start-up. 

The module for the automatic threshold adjustment has two processing modes, “setup” and “running”. 
Using the switches of the DE2 board, the user can switch between both modes during run-time. The 
reference values for the size of the X-/Y-axis, the threshold value for the BLOB detection as well as 
minimum and maximum values for the threshold are initialized with fixed values at start-up. The module 
receives the averaged values for the BLOB's size from the BLOB detection module after each frame. If the 
size of the BLOB is not within the tolerance level, the threshold value is changed accordingly. The 
automatic adjustment of the threshold value only works in “running” mode. For setting a new initial 
threshold value, the user has to activate the “setup” mode. The computed threshold value is transmitted 
to the BLOB detection module and updated every clock cycle. 

4.8.4 Pre-Processing Run Length Encoding 

For the application of the Run-Length-Encoding (RLE) as a pre-processing task in the BLOB detection 
system, an analysis of the algorithm has been performed. It was analysed for data dependencies to 
parallelize parts of the process. The analysis identified five conditions that had to be checked for every 
pixel to be processed to achieve a reliable RLE of the image data. 

                

Figure 4.30: Decision tree for RLE conditions and processing steps. 
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Based on these five conditions a decision tree has been created, to identify patterns and dependencies in 
the processing flow (Figure 4.30). Different combinations of the conditions could be grouped together, 
since they require the same processing steps for a correct RLE encoding of the pixel data. This allowed an 
optimization of the processing steps for the implementation in hardware. The RLE processing has been 
separated into five steps that are executed in different order, dependent on the condition check results. 

The implementation of the Run-Length-Encoding was done according to the optimized decision tree for 
conditional checks and processing steps (Figure 4.30). The conditional checks are performed in a single 
step in parallel. Based on the outcome the matching RLE processing step is executed in the following step. 
Each combination of results for the conditional check is mutually exclusive. This allows the implementation 
of all processing steps in parallel. 

 

Figure 4.31: Simplified representation of the functional process in the RLE module. 

Once a complete run is detected, the run's data is sent to the output FIFO before processing the next pixel 
data. Figure 4.31 gives an idea of the functional steps inside the module for RLE encoding of the BLOB 
data. 

4.8.5 Sub-Pixel Precision 

The previous BLOB detection approach (see Section 4.3.3) was based on integer values for all kind of data 
values in the system. With the applied computation methods for estimating the BLOBs centre points, the 
results usually showed a rounding error. To solve this problem the design has been extended with sub-
pixel precision computations for all values that are in relation to the BLOB detection results. 

The declaration for the register sizes and the data channels between the modules in the BLOB detection 
approach are hard coded. In addition, all values are defined as integers. This caused a rounding error for 
the computation of the average brightness of the BLOBs and for the centre point coordinates as well. A 
declaration of floating point or fixed point values is not supported in HDLs right away. The handling has to 
be realized by developer or by applying IP cores from the Altera IP core library. 

The extension of the system with sub-pixel precision has been combined with the centralized 
configuration of the hardware design. This allowed a variable adjustment for the different hardware 
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modules in a single settings file. The sub-pixel precision algorithms use a fixed-point arithmetic. For this 
approach the implementation has been extended for fixed-point configuration with four decimal places. 

4.8.6 USB Communication Module 

In the previous approach the BLOB detection results had been transmitted via a serial interface (see 
Section 4.2.1). The bandwidth was sufficient for the existing approach, since the results did not contain 
very comprehensive information. Larger amount of data, resulted from sub-pixel precision computations 
and a system with a more common interface for higher flexibility, motivated the design of a 
communication module using an USB interface of the DE2 board. This also supports the extension of the 
BLOB detection and tracking results, which are transmitted from the target platform to the connected 
host PC. 

A module for the USB communication was implemented to work with the same input data as the serial 
communication module. For a shorter development cycle it was decided to build the module based upon 
an existing example module out of the DE2 demonstration sources from Altera. In the modified version 
the BLOB detection and tracking results are transmitted to the connected host-PC with one byte per 
message. The communication requires driver software on the host-PC to receive the system results. It was 
integrated into the software for receiving and visualizing the BLOB detection results on the host-PC. 

4.8.7 Verification and Validation of the System 

Pre-Processing Run-Length-Encoding: Written test bench files for a functional simulation of the RLE based 
pre-processing contained several different cases to cover the described conditions (see Section 4.8.4). 
Figure 4.33 shows the representation of the test case data that has been used for the verification. For the 
verification of correctness, the output was compared to manually determined results. The results of the 
functional simulation matched with the expected values. This did show the logical correctness of the 
design. 

In the next step the execution of the hardware design on the target platform has been evaluated. For the 
verification of correctness of the RLE pre-processing steps on the DE2 development board, the previously 
applied test data has been reused. By integrating the test data into a separate module of the hardware 
design, this module provided data which allowed the evaluation of the overall system's output. 

It could be verified that the resulting data matched the expected values for the integrated test data. For 
the RLE pre-processing module a maximum clock rate of 145 MHz has been measured. This allows the 
system to process an input image of 640x480 pixels with up to 117 frames per second. 

For a second test procedure with real-time image data, a D5M camera has been used as an input device. 
The DE2 board has been placed in the test model that is shown in Figure 4.32. 

 

Figure 4.32: Test setup for threshold adjustment validation. Camera and the FPGA development board (left). Test pattern mask 
applied to the back side of the box, view from outside (middle) and view from inside (right). 
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Figure 4.33: Test cases for verification of RLE pre-processing module 

Evaluation of the Variable Threshold Adjustment: An execution of the module has been evaluated on the 
hardware platform without using specialized test bench modules to create input data. The input data has 
been acquired with the D5M camera which is attached to the target board.  

Figure 4.34 depicts how the input data is used to set the reference values for the BLOB's size. The 
diameter of all BLOB's on the X- and Y-axis is used to estimate an average size for all BLOBs. This 
reference value will remain fixed once the system is set to “running” mode. The threshold value for the 
BLOB detection will be incremented or decremented by one according to the change of the BLOB size. 

 

Figure 4.34: BLOB size averaging process for threshold adjustment. 

For validation, the system is configured during runtime while the camera remained in a fixed distance to 
the model. Figure 4.32 gives an idea of the setup which has been used. Once the configuration was 
complete, the system was set into “running” mode to observe the threshold adjustment. Moving the 
model, that is showing the white BLOBs on black background, back and forth did change the BLOB size. 
This did allow observing the change of the threshold value until the average diameter for the BLOBs of the 
current image matched the reference value of the configuration procedure.  

The validation of the threshold adjustment has been performed with different initial configurations. It 
could be verified that the threshold value changed accordingly to the change of the BLOB size. The 
threshold value remained in the defined minimum and maximum values. 
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4.8.8 Evaluation of Tracking in Hardware 

The analysis of the resource requirements gives an idea of the applicability of the detection (Figure 4.35, 
left) and tracking (Figure 4.35, right) on the FPGA board. However, with an increasing number of BLOBs 
the maximum performance of the tracking module decreases much faster than the detection module. 
Figure 4.35 shows the relation between the amount of BLOBs that can be processed by the system 
(horizontal axis) and the maximum performance in MHz (vertical axis). It also shows the impact of the sub-
pixel precision on the system. 

 

Figure 4.35: Performance for BLOB detection algorithm (left) and BLOB tracking algorithm (right) with (blue) and without (red) sub-
pixel precision. 

The difference in the maximum performance for the BLOB detection with and without sub-pixel precision 
is relatively small compared to the difference with and without tracking module. However, in both cases 
the clock rate is still high enough to process the frames at the rates provided by the input devices. 

One problem of the hardware design is the evolution of the resource requirements for the detection and 
tracking modules with an increasing number of BLOBs. In Figure 4.36 left it can be seen that the resource 
requirements for the BLOB detection, using the centre-of-mass approach for the centre point estimation is 
already too high for the available target platform DE2-70 for the module implemented for fourteen 
BLOBs. Even with the bounding box based approach the maximum number of BLOBs which can be 
computed in parallel on the DE2-70 board would be approximately thirty. 

For the tracking module, the shortage of resources becomes even more prominent, since the tracking 
module cannot be used without having the detection module included. The tracking module has to 
support as many BLOBs as the detection module. In Figure 4.36 right, it can be seen that the design is 
running out of space for DE2-70 target platform with eight BLOBs for the centre-of-mass method and 
twelve for the bounding box approach even without a sub-pixel precision. 

Because of the resource requirements for the test bench files in hardware, the number of test samples 
had been kept minimal. Additional experiments that are implemented in hardware will affect the design 
and the performance values. Therefore, the test bench files have not been used for comprehensive 
performance evaluations. 

Number of BLOBs Number of BLOBs 
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Figure 4.36: Resource Allocation for BLOB detection algorithm (left) and BLOB tracking algorithm (right) with increasing number of 
BLOBs. 

For a better validation of this approach, it would be useful to have the ability to feed synthetic test data 
into the system. This would allow the computation of test data with ground truth values that can be used 
for a more precise evaluation. Having such an interface would solve a problem of changing validation 
results and resource requirements that are caused by integrating test benches into the hardware design. 
Another design implemented at a later stage of the project (see Section 4.10) is dealing with this problem 
by utilizing a secondary FPGA system that functions solely as a test-bench module. This allows execution 
of comprehensive evaluations strategies without any impact on the target design. 

Additional and more detailed information on the FPGA-based approach described in this Section 4.8, can 
be found in [27]. 

4.9 Data Traffic Reduction using FPGA-based Image Pre-processing for BLOBs 
Detection 

The FPGA-based approach for BLOB detection that has been developed during early phases of the project 
has limitations in number of points being tracked and a low tolerance to noisy data input (see [27], [20]). 
With increasing number of detected points the previously developed communication method via serial 
port has shown to become a bottleneck. A faster interface such as Ethernet communication level was 
considered to be implemented. Therefore a new approach in BLOB detection on FPGA and faster 
communication techniques has been developed. There were two ways developed to pre-process and 
transfer image data to a host PC. 

The first method splits the task of BLOB detection between FPGA and PC. The FPGA separates foreground 
pixels from the background pixels and sends them to the computer, while the computer calculates the 
centres of the light spots. 

The second method performs single pass BLOB detection on FPGA and sends the centres of the light spots 
to a host PC. A custom protocol has been developed for communication over Ethernet between the FPGA 
and the PC. Evaluation results show that, depending on the image, both methods contain a trade-off 
between frame rate, precision and flexibility. A co-design solution is more flexible, but suffers from a low 
frame rate when the amount of foreground pixels is high. A pure FPGA solution allows high frame rates, 
but is less flexible and less precise than the co-design solution. 
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4.9.1 Shared BLOB Detection on FPGA and PC 

One drawback of BLOB detection performed purely on an FPGA is the lack of flexibility in a way how 
features of the objects are extracted. A fundamental insight of this approach is that instead of processing 
images on the FPGA, it is possible to perform only coarse-grained processing on the FPGA and to send 
important parts of the images to the computer for further processing.  

Figure 4.37 shows a high level view of the approach. Camera images arrive in a sequential scan order on 
the FPGA. A small part of the image is stored in a frame buffer for a later look up. First, foreground pixels 
are separated from the background pixels by using simple thresholding. Pixels whose intensities exceed 
the threshold are forwarded to a run length encoder that packs neighbouring foreground pixels into 
intervals. The intervals are inserted into the interval table, where each line corresponds to a line of the 
camera image. After receiving a complete line, the interval table is used to look up the intensities of each 
foreground pixel in the interval. Subsequently, the intensities are sent to the computer according to a 
custom data transfer protocol. The PC performs BLOB detection on the received foreground pixels and 
extracts features from every detected BLOB. 

 

Figure 4.37: Identification of regions of interest – a high-level design overview. The camera image is partially stored in a frame buffer 
that is realized in the block RAM. The interval table is stored in the registers. 

A straightforward approach to BLOB detection on the computer has been realized. Its underlying idea is to 
examine every pixel that exceeds a threshold and determine whether any of its 8 neighbours also exceed 
the threshold. Such pixels are grouped together. After all thresholded data of the frame are received, the 
centres of mass are calculated by computing the average coordinate weighted by their corresponding 
intensity values. This is calculated for each group of neighbouring pixels. The resulting centres of mass are 
visualized on the screen, which allowed evaluation of the data received from the FPGA. This approach is 
not optimized to take advantage of the structure of incoming data and was only used for visualization 
and evaluation purposes. However, such optimizations are planned as future works. 

4.9.2 Extended Pixel Thresholding with Spatial Margin 

Regions of interest are identified by applying a variant of thresholding. In classical thresholding, all pixels 
whose intensities exceed a predefined threshold are retained, and all other pixels discarded. However, in 
some applications, simple thresholding can result in a cut-off of important pixels on the edge of a BLOB, 
which might compromise the precision of subsequent feature extraction. Figure 4.38 (top left) shows a 
typical light spot produced by a laser on a wall (top). The lower part of Figure 4.38 plots the intensities of 
pixels obtained from the middle of the light spot. 
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Figure 4.38: Two variants of thresholding used for identification of regions of interest. On the left is the original image. In the centre, 
simple thresholding (intensity value 50) is applied. On the right image the border (generated by the application of simple 
thresholding) is extended by a particular margin. The border is marked in green. Pixels inside the border comprise the foreground. 
The upper subfigures show the original image and overlaid borders. The lower subfigures show intensities of pixels obtained from 
the line that cuts through the centre of the light spot along the X-axis. 

Simple thresholding, as shown in the middle of Figure 4.38, with a threshold of 50, corresponds to 
drawing a line parallel to the X-axis and discarding all pixels that are below the line. If the threshold is set 
too high, pixels that are important for subsequent feature extraction will be cut off. However, if the 
threshold is set to a lower value, too many unimportant pixels might be marked as foreground and 
negatively impact subsequent feature extraction. To overcome this problem, an additional margin extends 
the border obtained from applying simple thresholding. While the threshold dissects the image along the 
intensity axis, adding a margin extends the border along the X and Y-axes. The lower right part of Figure 
4.38 shows the result of applying thresholding and margining on the intensities along the X axis. More 
detailed information about this technique can be found in [21]. 

4.9.3 Development of an Interval Table to Obtain Region Extension with Fixed 
Margins 

To implement thresholding with a fixed margin on an FPGA, an auxiliary abstraction called interval table 
has been developed. An interval table consists of several rows, each containing a fixed number of 
intervals. An interval is defined by its left and right coordinates (inclusively). Adjacent foreground pixels in 
a single line are grouped together into intervals. Rows of an interval table correspond to lines in an image. 
All rows are sorted by their left coordinates. If a line contains no foreground pixels, no entries will be 
written into the interval table. The size of the interval table is defined by the margin of M pixels and the 
number of intervals N. The margin defines the depth of the table, whereas the number of intervals defines 
its width. The table must be maintained in a way that no intervals overlap, which can be done by merging 
overlapping intervals.  

When the end of the line is reached, the whole table is shifted up, and the most upper interval list is ready 
to be sent. Since the information about the foreground pixels in a line becomes apparent only M lines 
after their encounter, at least M lines of the image have to be stored in the frame buffer. Pixel values of all 
the intervals in the most upper list can be extracted by knowing left and right and the current Y-
coordinate. This information is enough to calculate an address in the frame buffer, where the 
corresponding pixel values can be found. 
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4.9.4 Single Pass Connected Component Labelling 

In the beginning of this subproject, the objective was to perform BLOB identification on an FPGA and to 
send the dimensions of the bounding boxes and the pixel values enclosed by the bounding boxes. The 
approach has been developed until it was noted that no external memory controller was available for 
storing the whole image in an external memory of the DE2-70 board. At that moment the focus of the 
development was shifted to a method that does not require an external memory, which resulted in the 
implementation presented in the Section 4.9.1 - 4.9.3. A more elegant and concise approach is presented 
here, that was put on hold in the course of this project due to discovered hardware limitations. This 
approach is similar to the single-pass connected component labelling presented in [9]. The basic idea is to 
label each pixel in the frame with a number based 8-connectivity principle. The labels are only used to 
extract features of objects on the fly and are discarded as soon as the end of the frame is reached. 

Figure 4.39 illustrates the approach to single-pass connected component labelling that was developed in 
this subproject. At the core of the approach is a finite state machine that checks a long list of conditions 
in order to decide how to label foreground pixels. 

Foreground pixels are determined by comparing their pixel values with a predefined threshold. If the pixel 
value exceeds the threshold, then it is a foreground pixel, otherwise, it is a background pixel. The source 
of labels is provided by a stack that is filled with decreasing numbers before BLOB detection is started. 
Whenever the main FSM needs a fresh label, it obtains it from the stack and pops the label, and in this 
way makes the stack ready for the next read. 

Upon the assignment of a new label, two events take place at once: 1) the label is saved as active in the 
active labels array, which is done by using the label as address and writing a 1 under that address; 2) the 
label is provided to the run-length encoder FSM, that saves the run that just ended together with the 
provided label in a FIFO. The run (or interval) that is stored in the FIFO will be read in the next line when its 
boundaries are reached. This allows the labelling FSM to find out whether a foreground pixel is adjacent 
to the run in the previous line. The FSM compares the left coordinate of the interval with a currently active 
pixel, and sends request to de-queue the FIFO in case the coordinate is larger. 

 

Figure 4.39: Connected component labelling 

In some situations, it is necessary to merge two existing objects, because the current run connects them 
with each other. In such cases, a table that maps labels to other labels is used to store information about 
merges. It might happen that a run is a neighbour to several runs. In this case, all runs are merged, and 
for every merged run, an entry is noted in its corresponding merge table. When merging a BLOB that has 
been merged in the same line already, the merge table is looked up first, and the correct BLOB is read 
from the merger table. If both BLOBs have been merged, one of them will be chosen to contain the new 
merged BLOB. [10] Presented an approach where the merge table is kept in block RAM of the FPGA. 
Block RAM introduces a delay of one clock cycle for every read or write. Another constraint is that the 
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content of the memory cannot be accessed all at once, and must be accessed in sequential manner. 
Keeping the merger table in block RAM does not allow us to check two entries at once, which is resolved 
by processing all merges during the horizontal blanking interval of the camera. If the merge table is kept 
in the lookup tables of the FPGA, it is possible to randomly access the entries in the table without one 
clock cycle penalty, which is one of the differences of this approach to the approach developed in [10]. 

4.9.5 BLOBs Detection and BLOBs Analysis on an FPGA 

Connected component labelling labels every foreground pixel with the number of the object to which it 
belongs. After labelling every foreground pixel, the objects can be analysed and their features extracted. 
In order to find the camera pose, it is necessary to know the coordinates of the BLOBs’ centres. For this 
reason, the only feature that needs to be extracted is the centre of mass of each BLOB. It is possible to 
find the centre of gravity on the fly, while performing object labelling. This approach has the advantage 
that the image does not need to be stored in a memory for a second pass analysis. The centre of mass can 
be computed by summing up the coordinates of each pixel multiplied by their respective pixel values and 
normalized by the accumulated pixel values in the end. As discussed in [11], it is possible to compute 
additional features on the fly, however, in this project only the centres of mass are considered. 

The synthesis tools for FPGA do not support division other than by numbers that are a power of 2 because 
it is too complex to be placed on an FPGA. This means that the circuit for performing division has to be 
either developed manually or included into the design as an intellectual property (IP). Altera provides a 
division IP, where the user can set the bit-width of input and output signals. Only two such circuits are 
needed, since at any point in the X/Y coordinates, only one BLOB can be completed two lines before. The 
required bit-width of input and outputs of the circuit can be calculated by assuming the worst case. The 
division IP core provided by Altera allows the user to select the bit width of the input signals and the 
output latency. For 64 bits output (43 bits for representation of mantissa and 11 bits for the power) it 
introduces at least 10 clock cycles delay, however, the division can be pipelined. For more detailed 
information see [31]. 

4.10 Camera Emulator Using an External (Additional) FPGA Board 

In order to obtain ground-truth data necessary for the evaluation of the designed system, an additional 
camera emulator has been developed. This approach allows overcoming additional impacts of the test-
related components. This problem occurred during different evaluation design mentioned in 4.8.8. It 

utilizes an additional external FPGA board, in our case an Altera DE2-70. It was planned to connect the 
original board with the MV camera to a second DE2-70 board. However, the design was changed 
and now the board with the camera is used to provide real and synthetic images to the second 
board, where the identification of regions of interest takes place. In the initial approach to emulate 
the camera, camera timings were captured with the Signal Tap Logic Analyser. Then, a controller was 
written to behave in the same way. However, this approach turned out to be inflexible when the 
evaluation was started. The problem is that there is no flexible way to change the frame rate to a 
desired value at run-time. Hence, the emulator has been redesigned to use the synchronization 
timings from the original camera. This allows the user to change the frame rate of the camera over 
the provided control panel, so that the synthetic images can be sent with the same timings as of the 
real camera. This approach is more flexible and allows for selecting any frame rate that the 
connected camera can provide. In addition, by flipping a switch, the user can choose between the 
original camera and synthetic images stored on the same board. 
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Figure 4.40: Camera emulation using an external FPGA board. 

In a real-world application, such a scenario introduces an additional delay between the camera and 
the FPGA on which the image processing takes place. This is due to taking an indirect route of the 
camera data to the second board by going first to the FPGA of the board 1, then over the GPIO cable 
and then from the GPIO pins to the FPGA on the board 2. However, the delay is insignificantly small 
and plays no direct role in the scalability evaluation of the approach developed in this project.  

4.10.1 Test Images Generator 

In order to evaluate the approaches developed in this subproject systematically, the amount of 
foreground pixels must be controllable. However, it is difficult to control this amount when using the 
camera, because it requires camera calibration and exact positioning. These problems can be avoided 
if we use synthetic images instead. Synthetic images enable control over the amount of foreground 
pixels. For this purpose, a test image generator has been developed to generate test images with 
varying BLOB numbers and sizes. 

 

Figure 4.41: Sample images of the test images generator. All images are 8-bit greyscale with a resolution of 640x480. 
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The generator is written as a command line tool that accepts two arguments: size of BLOBs and the 
number of BLOBs. It tries to generate an image with these parameters and, upon successful 
generation, saves the image in PNG format under a unique name on the hard disk. In addition, it 
copies the name of generated image into the clipboard. In the next step, the main program 
compresses the image by using run-length encoding and sends the image to the DE2-70 board over 
the serial port. Figure 4.41 shows some sample test images generated for evaluation. 

For more detailed information about the FPGA-based data traffic reduction approach described in 
Section 4.9 and the evaluation system based on camera emulator using an external FPGA board 
described in Section 4.10 please refer to [31]. 
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5 Inside-Out Approach 

In contrast to the previous chapter, this chapter presents the results of the project developments based on 
an inside-out approach with a fiducial marker system.  

As it was discovered during early stages of the project an outside-in approach is limited by a number of 
hardware and software issues. Some of these problems were discussed in Section 2.2. In the outside-in 
configuration (according to the original project plan) of the system, the hand-held device consists of a 
laser beam emitter with splitter, 3DoF IMU and a power supply. This setup implies a set of cameras 
statically fixed behind the projection screens, one camera per projection surface (see Figure 5.1). 

 

Figure 5.1: Outside-in configuration. Cameras are stationary and placed next to each projector (left, projector is not shown). The 
hand-held input device consists of a laser pointing device and an IMU with radio communication channel (left). Setup model of the 
virtual environment with 3 projection screens (right). 

Taking into consideration all drawbacks of this setup, another approach was developed and investigated 
during the costs-neutral project extension. It relies on the so-called “inside-out” system configuration. This 
setup implies a hand-held device consisting of a camera (with or without on-board processing 
capabilities), a radio data transceiver for video data or pose coordinates transmission, an IMU and a power 
supply. The fixed part of the system consists of powerful pattern-projection modules (no limitations in 
power consumption due to stationary setup). Each projector projects an invisible (infrared) pattern to each 
of the visualization screens (see Figure 5.2). 

 

Figure 5.2: Inside-out configuration. Infrared pattern emitters are stationary and placed next to each projector (left, projector is not 
shown). The hand-held input device consists of a camera, an IMU and a radio communication channel (left). Setup model of a virtual 
environment with 3 projection screens (right). 
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Results from the early project designs (Section 4.6) showed problems with the identification of each 
individual marker inside the pattern. Since this information is required for the 3D pose reconstruction, the 
proper identification of the markers is a crucial step in the pose determination. 

 

Figure 5.3: Fiducial markers used by different tracking systems. 

Based on the evaluation of test implementations the decision to use one of the well-developed fiducial 
marker systems was made. Among many available systems (see Figure 5.3), the one, called “ArUco” [12], 
was selected. It is similar to the discontinued “ArTag” system with robust error correction capabilities. For 
more detailed information, please refer to [13], [14]. 

This new approach has its own limitations. In particular, the amount of video data that has to be 
transmitted over radio channels is considerably high. As the number of simultaneously operated input 
devices increases, the radio transmission bandwidth might become a limiting factor. Therefore, a smart 
approach in data traffic reduction using an on-board FPGA similar to the one described in Section 4.9 
should be investigated. 

5.1 Realization of the Selected Hardware Design for the Pattern Emitter 

As discussed in Section 2.3, the pattern emitter based on the micro-mask projection principle was selected 
from a number of known designs as the one that fulfils the requirements of the project (see Section 
2.3.5). A working prototype of a special version with an infrared light source using a static micro-mask 
approach has been built (see Figure 5.4). With its spectral output peaking at 850 nm, the projected 
pattern is not visible to the human eye and, therefore, doesn’t produce any interference with virtual reality 
visualization. The projector has the following specifications: 

• Wavelength: 850 nm 

• Luminance: 1,45 mW/cm2 

• Electrical power consumption: 10 W 

• Mask dimensions: 10.5 x 10.5 mm 

• Mask resolution: 2200 x 2200 pixels 
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Figure 5.4: Left: Final design of the infrared pattern emitter based on the micro-mask approach. A large cooling heat-sink for the 
power LED and a C-mount lens are attached. Right: Fixed infrared pattern used in the emitter.  

Designed to be fixed behind the projection screens, static focal distance, size and power consumption of 
the module do not pose any significant limitations for the project. The large heat-sink provides effective 
air cooling for continuous maintenance-free operation. 

5.2 Acceleration of the Fiducial Marker Detection using an FPGA 

5.2.1 System design 

This section presents an approach for computing camera pose with the processing shared between FPGA 
and PC from the images of fiducial markers being projected with the developed static near-infrared 
projector (see Section 5.1). The task is divided between two systems as follows: the FPGA converts 
greyscale camera images into binary format and transfers them to a PC that computes the camera pose. 
The approach is evaluated in terms of processing time and camera pose error. A 3D simulator is used to 
generate a large number of test images in order to evaluate the proposed system. Synthetic images 
generated in the simulator undergo a set of transformations in order to make the evaluation closer to 
images obtained from a real camera. Several environmental conditions are simulated, e.g., blur with a 
Gaussian kernel of different sizes, and two types of noise. The results of evaluation show that the system 
can process camera images in real time. 

 

Figure 5.5: System design of the shared approach. 
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The system design is illustrated in Figure 5.5. On the FPGA, greyscale images captured by the on-board 
camera are converted into binary images by using a threshold. The resulting binary image is divided into a 
fixed number of packets, which are transferred to a PC one by one. The PC captures the data and 
converts back into a binary image. In the next step, the camera pose estimation methods are applied onto 
the binary image, and the camera pose estimated. 

Thresholding is performed by comparing the intensities of all pixels in the camera image to a fixed 
threshold. Thresholding can be done on the fly without the need of a frame buffer. 

5.2.2 Data Packing and Transfer 

The amount of data to be sent to PC is known beforehand, so that it can be divided into a fixed number 
of parts. A 640 x 480 binary camera consists of 640 x 480 = 307200 bits and is divided into 75 equal 
intervals of 4096 bits each. The intervals are numbered from 0 to 74, and this number is sent together 
with the image bits to the PC. Numbering the packets in this way has the advantage that if the PC stops 
capturing data for a while, and the packets are not numbered, then there is no way to reconstruct the 
binary image once the capturing process has been started again. The number is converted into image 
coordinates, so that the place of every received bit is identified uniquely. 

The bits of the binary image are grouped together into words of 16 bits and written into a FIFO that is 
used for data transfer by the Ethernet controller. Before packing 4096 bits of an interval together, the 
interval number is written into the data transfer FIFO. 16 bits are allocated for sending the interval 
number. 

Data is transferred from FPGA to PC by using the Ethernet protocol. First, the 6 x 8 bits of the destination 
MAC address is written, then the MAC address of the receiver. Subsequently, image data and the interval 
numbers are transferred. Thus each Ethernet packet consists of 2 x 6 x 8 bits allocated for the MAC 
addresses, 16 bits for sending the interval number, and 4096 bits for sending the binary image data. 
Some additional data is added by the hardware, such as the 8 bytes preamble, and 4 bytes of checksum 
to detect errors in the Ethernet frame. Altogether, each packet is: 

2 x 6 x 8 + 16 + 4096 + 8 x 8 + 4 x 8 = 4304 bits or 538 bytes. 

Assuming that the camera captures images at 100 frames per second, the expected traffic of this 
approach is: 

4304 x 75 x 100 = 32‘280‘000 bits per second, or ~32 Mbits/s. 

5.2.3 Data Capture and Camera Pose Estimation on PC 

On the PC side, the images are captured by using the Berkeley packet filter, which allows low-level access 
to the network interface. To detect packets sent from the FPGA, the sender and receiver MAC addresses 
of all packets are inspected. Packets with the right addresses are considered for further processing. The 
data is unpacked by extracting the interval number and the 4096 image data bits. 

To allow the utilization of multicore processors, data capture process and the camera pose estimation run 
in different POSIX threads. To communicate between the threads, shared data guarded by a mutex is 
used. Upon reception of a complete binary image, a shared status variable is set to high, so that the 
camera pose estimation thread can copy the binary image into its own memory space and start the 
process of camera pose estimation. The image processing pipeline for detection ArUco markers on the PC 
is provided by the ArUco library that is written in C++ on top of the OpenCV library. More information 
about fiducial marker detection using an FPGA can be found in [32]. 
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5.3 Ground Truth Evaluation of a Vision-based 6DoF Input Device Using a 
Robotic Arm 

A framework for ground truth based evaluation of a vision-based 6DoF input device using a robotic arm 
was developed and realized.  

The system consists of a wired CCD camera as the only sensor and multiple unique markers. The markers 
are placed into a video image and projected within a scene using a projector. All testing procedures were 
conducted in the visible spectrum (as opposed to near-infrared one) using available projectors inside the 
Immersion Square visualization system [2]. That allowed rapid prototype development with a fast error 
correction cycle. A visible marker system is easy to inspect for possible errors. Nevertheless, the system still 
needs to be tested with a new infrared pattern emitter. 

The framework for evaluation of our camera-based tracking system utilizes a visualization system as well 
as 5DoF computer-controlled robotic arm and an industrial optical tracking system. The robot was used 
for systematic camera displacements and rotations, while the optical tracking system was tracking the 
pose of the robot base. Both contributed to provide ground truth data of the 3D pose of the device to be 
evaluated. 

The framework is capable of collecting static image sequences at pre-programmed 3D positions. The data 
analysis part is done manually afterwards, which is one of the limitations of the system so far. Due to the 
robotic arm that cannot be controlled dynamically (only point-to-point motion control is available), the 
motion pattern is limited and collected images are static. Besides evaluation of our implemented marker-
based tracking system, the professional optical tracking system (“OptiTrack”) has been partially evaluated 
as well. 

 

Figure 5.6: System evaluation using the robotic arm “Katana” and the optical motion tracking system “OptiTrack”. The red small 
camera in the right part of the image is one of the eight “OptiTrack” cameras. The bright spots in the image are retro-reflective 
markers used as a reference and tracking bodies for “OptiTrack”. The fiducial marker system “ArUco” is visible in the background 
being projected onto the visualization surfaces. The blue rectangle in the top part of the image is an “mvBlueCOUGAR” camera 
from Matrix Vision used as an input device being evaluated. 

The evaluation framework consists of three major systems: an optical tracking system, a robotic arm and a 
camera system (visual tracking system under test) mounted on a robotic arm's gripper, see Figure 5.6. 

The approach used in this subproject is that the robotic arm's gripper will carry the camera system 
attached with markers. The optical tracking system will track these markers to calculate the pose of the 
inside-out camera system. The inside-out camera system will use the projected images on the three 
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screens with patterns on them to estimate the camera pose. Movement of the robotic arm will provide 
the necessary ground truth data. 

The robotic arm will move the camera attached to its gripper in point-to-point trajectories in the arm's 
workspace. Pose information will be available from three sources: the optical tracking system, the camera 
system and from the robotic arm’s internal encoders. Differential errors between the two pose estimates 
reported by the robotic arm will be used to calculate accuracy, since absolute pose values are difficult to 
obtain without introducing large (inacceptable) errors. 

The robotic arm’s workspace is limited because of limited degrees of freedom and its overall small size 
relative to the visualization environment. The position of the base of the arm, taken from the optical 
tracking system is used for visualization purposes and does not participate in error calculations. This 
measurement is only done to get a rough idea about the position and orientation of the base of the arm 
relative to the visualization system and it is also used for error comparison between several 3D point 
clouds. 

 

Figure 5.7: Evaluation system's overview. 

All testing and evaluation experiments were conducted within the full scale CAVE-type visualization 
environment “Immersion Square”. The system was equipped with a PC, OptiTrack cameras and 
projectors. The configuration of the hardware is shown in Figure 5.7. 

5.3.1 Software and Overall System Architecture 

This section describes the software and system architecture of the framework based on a component-
based software design model. The architecture of the framework has been designed to reduce the 
complexity and provide systematic and synchronized data acquisition from the hardware. The system 
consists of the components shown in Figure 5.8.  
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Figure 5.8: Evaluation framework architecture. 

The components are categorized into three levels: hardware level, application level and communication 
level. Hardware level components are provided by the manufacturers. The components in the application 
and communication level are implemented using the C++ programming language under Visual Studio. 
The C# programming language is used for marker visualization system. 

An overview of the coordinate systems used in the project, sequences of transformation steps necessary 
to obtain final transformation matrices from the camera‘s local coordinate frame to the global one and 
transformations from the tool’s local coordinate frame to the global one are shown in the Figure 5.9. 

     

Figure 5.9: An overview of the system’s coordinate frames (left). Transformations from the camera‘s local coordinate frame to global 
coordinate frame (centre). Transformations from tool‘s local coordinate frame to global coordinate frame (right). 

5.3.2 Robot Motion Control and Sampling Strategy 

The manipulator's workspace was relatively small compared to the available space in the Immersion 
Square Environment (Figure 5.10), and it was necessary to locate the robot at different locations in the 
Immersion Square in order to execute the motion pattern (Figure 5.11, Figure 5.12). The optical tracking 
system was useful to relate the movements made by the robot. 
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Figure 5.10: The robot's working volume configuration. 

        

Figure 5.11: Sample scan within the XZ-plane, step: 10mm. 

 

 

Figure 5.12: Sample scan, steps: 10 mm, 10 deg. Angle change is colour-coded (right). 
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5.3.3 Experimental Results of the Visual Tracking System Evaluation 

The objective of the experimental environment described above is to evaluate implemented inside-out 
visual tracking system with respect to angle and distance. For this purpose, a single screen is enough to 
simplify the evaluation process. Camera position and orientation relative to the gripper were required in 
order to relate static images taken from the camera with the motion pattern made by the computer-
controlled robotic arm. The existing “camera-hand-eye” calibration methods were not useful for the 
implemented setup due to the constraints of the robotic arm. It was observed that the results were worse 
than human hand precision, having ±15 mm under good conditions. Therefore, differential data analysis 
is preferred rather than absolute data analysis. Considering the uncertainty of the hand-eye-calibration 
and the physical constraints of the robotic-arm, two motion patters have been used to acquire ground 
truth. 

Differential positional error estimation: The robotic arm makes 1 mm incremental sequences of movement 
of the camera in a single line nearly perpendicular to the screen. In each increment, the differential error is 
calculated and analysed. This procedure is repeated for 13 locations in the Immersion Square. Figure 5.13 
(left) shows the datasets from 1 to 13 for different locations of the camera in the virtual environment. The 
error distribution is shown in Figure 5.13 (right) for a combination of the datasets. Execution time is 
around 60ms and distribution of it is given in the Figure 5.14 (right). It is observed that the execution time 
is independent of camera distance from the screen. 

     

Figure 5.13: Differential position error position/error in mm (colour coded, left). Differential error distribution, samples / mm (right). 

 

Figure 5.14: Rate of samples with no position detection results in % (colour-coded, left). Execution time distribution in ms (right). 
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Figure 5.15: Differential rotational error position/error in degrees (colour coded, left). Differential error distribution, samples / degree 
(right). 

  

Figure 5.16: Rate of samples with no result in orientation or “missed” samples in % (colour coded). 

Differential orientation error estimation: The robotic arm makes rotational sequences of the movement 
with the camera along multiple axes forming a plane parallel to the ground. The rotational resolution was 
chosen at 1°. The robotic arm is scanned from -60° to +60° and similar data were analysed. 

The overall error distribution is shown in Figure 5.15 (right) having mean error of 0.05° and variance of 
0.72°. Figure 5.15 right, shows the probability of non-detection rate which increases as the camera moves 
away from the screen. 

The implemented setup provides several advantages: The manipulator is affordable compared to the 
coordinate measurement machines. Displaying textures is rather easy using the projector systems. The 
robot and the marker visualization system can be automated for dataset design while displaying the 
textures continuously. Nevertheless, the robotic arm is not capable of following a trajectory linearly. 
Moving speed and acceleration of the motion cannot be controlled properly. Therefore, this framework 
should not be applied for the evaluation of tracking systems based on inertial sensors. However, it is 
useful for the evaluation of tracking systems based on fiducial markers. More detailed information about 
this subproject can be found in [30]. 
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6 Conclusions and Future Work 

It has been shown that a number of methodological non-trivial sub-problems related to the general 
objective of the project could be solved on a scientific level during the course of the project [16] - [21], 
[22] - [32]. The developed tracking approaches [16], [18], [22], [27] are of general use as well as the blob 
detection methods applying highly parallel FPGA technology [17], [20], [23], [24], [26], [31]. The 
application of a parallel processing architecture for the blob detection ensured a high throughput of data, 
which is needed for real-time processing of multiple video streams without causing latencies higher than 
acceptable for dynamic interactions (few milliseconds). 

A sensor data fusion approach has been developed and realized for a reliable 3D rotation estimation using 
an IMU and optical system data. Moreover, a quaternion-based sensor fusion algorithm has been 
developed using spherical linear interpolation [28] which has shown promising results. 

The outside-in approach led to a numerous scientific results, but was rejected as the final solution for the 
project due to multiple limitations (see Section 5). The most significant limitation of this approach was an 
increase in computational load (and as result decrease in the system’s performance) with an increase in 
image noise level and increase in undesired deviations of the dots in the pattern (Section 4.6.8). Despite 
being very efficient and stable in the simulated environment, in real-world scenarios, these shortcomings 
led to a degraded performance of the correspondence matching sub-system (Section 4.6.6). This caused 
latency, which rendered the entire system too slow and unresponsive, since end-to-end latencies of the 
entire interaction device were not kept within necessary ranges to ensure intuitive usability of the system 
and flawless interaction process. 

These problems combined with difficulties in building an efficient and convenient pattern projector (see 
Section 2.3) led to a new, creative solution: an inside-out approach. As a result an inside-out 
configuration of the system (see Section 5) was implemented and evaluated. 

A completely functional prototype fulfilling the initial projects’ requirements was developed and evaluated 
shortly after the project’s end [32]. This final and working solution utilizes the inside-out approach with 
fiducial markers (Section 5), a back-projected infra-red pattern using IR static projector (Section 2.3.5, 
Section 5.1). On the user-side, a camera integrated into the FPGA board (Section 4.8.1) was used. A 
system was able to acquire a complete 6 DoF pose of the input device under control of the hybrid 
software/hardware design located on the FPGA board and on the standard PC (Section 5.2). 

In order to evaluate the system’s precision and accuracy a framework for the ground truth evaluation of 
vision-based 6-DoF input devices using a robotic arm has been established [30]. Further developments in 
this area are still in progress and show the sustainability of the project [21], [32]. 
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