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ABSTRACT: The elucidation of conformations and relative
potential energies (rPEs) of small molecules has a long history
across a diverse range of fields. Periodically, it is helpful to
revisit what conformations have been investigated and to
provide a consistent theoretical framework for which clear
comparisons can be made. In this paper, we compute the
minima, first- and second-order saddle points, and torsion-
coupled surfaces for methanol, ethanol, propan-2-ol, and
propanol using consistent high-level MP2 and CCSD(T)
methods. While for certain molecules more rigorous methods
were employed, the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-
pV5Z theory level was used throughout to provide relative
energies of all minima and first-order saddle points. The rPE
surfaces were uniformly computed at the CCSD(T)/aug-cc-
pVTZ//MP2/aug-cc-pVTZ level. To the best of our knowledge, this represents the most extensive study for alcohols of this
kind, revealing some new aspects. Especially for propanol, we report several new conformations that were previously not
investigated. Moreover, two metrics are included in our analysis that quantify how the selected surfaces are similar to one another
and hence improve our understanding of the relationship between these alcohols.

■ INTRODUCTION
Understanding the conformational space of molecules and their
underlying relative potential energy (rPE) surfaces are important
goals in scientific disciplines whose experimental observables can
be explained at a molecular level. Sophisticated quantum
mechanics theories have proven to be a powerful tool in
providing the structures and relative energies of minima that are
as accurate as those provided by experimental spectroscopy.1−4

An advantage that quantum mechanics has over experimental
methods is its relative ease in characterizing first- and second-
order saddle points and to elucidate the three-dimensional rPE
surfaces generated by coupling two internal coordinates (e.g.,
two torsion angles). This is especially important if energy barriers
are comparably low between minima. However, due to their
computational cost, studies that employ theory levels capable of
reproducing experimental data generally limit themselves to
small molecules and to their stationary points. Nevertheless, the
information drawn from small molecules can be very helpful and
generalized in some respects.
In this paper we present the minima, first- and second-order

saddle points, and torsion-coupled rPE surfaces of the four
smallest alcohol moleculesmethanol, ethanol, propan-2-ol,
and propanolcomputed at the CCSD(T)/aug-cc-pVTZ//
MP2/aug-cc-pVnZ (n = T or 5) theory level. Our motivation for

this study is to (1) provide a comprehensive comparison of the
minima and first-order saddle points using a single rigorous
theory level, (2) better understand the qualitative and
quantitative nature of the rPE surfaces formed by the coupling
between two torsion angles, and (3) determine the degree of
similarity between comparable surfaces. The results presented
herein, and in particular those associated with propanol, could be
used by experimentalists in their data interpretation. Theoret-
icians developing force fields could use the results as target
benchmark data in parameter optimization or in the develop-
ment of new functional forms.

■ RESULTS

The MP2/aV5Z structures for all minima and first-order saddle
points are presented in Figures 1, 2, and Supporting Information
Figure 1, as well as in xyz-formatted files in the Supporting
Information material. The values of the selected internal
coordinates are given in Supporting Information Tables 1−4,
as optimized at HF/6-31G(d), MP2/VTZ, MP2/aVTZ, MP2/
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VQZ, MP2/aVQZ, and MP2/aV5Z theory levels and include
experimental values when available. Table 1 provides the
rotational constants determined using MP2/aVTZ (i.e., the
theory at which vibrational analyses were performed), coupled
cluster, and experimental microwave geometries. The corre-
sponding root-mean-square deviations (RMSDs) for each fully
optimized conformation with respect to MP2/aV5Z geometries
are given in Supporting Information Table 5 and are summarized
in Table 2.
The rPE of each fully optimized stationary point with respect

to a molecule’s global minimum are given in Tables 3−6. These
energies were computed at HF, MP2, MP2.5, and CCSD(T)
theory levels and include notable theoretical and experimental
values from literature. The average absolute error of each rPE
with respect to the most rigorous theory employed for a given
molecule is also provided for ease of comparison in Table 7.
Supporting Information Table 6 provides additional rPEs for
propanol computed at MP2.5/aVTZ//MP2/aVTZ and CCSD-
(T)/aVTZ//MP2/aVTZ theory levels.
The CCSD(T) rPE surfaces formed by the coupling of two

torsion angles within ethanol, propanol, and propan-2-ol are
shown in Figures 3−5, and Supporting Information Figure 2.
The corresponding rPEs that generated these figures are given in
Supporting Information Tables 7−13. For ethanol, the rPEs
along the motion of single torsion angles, relative to their local
minimum, are given in Supporting Information Figures 3 and 4,
with corresponding values in Supporting Information Tables 14
and 15. For propanol’s surfaces, all of the rPEs were determined
by identifying the lowest energy across all surfaces generated.
That is opposed to the rPEs using the minima within each
surface, which would disallow direct quantitative comparisons to
be made between them.
To quantify the overall “repulsiveness” of an rPE surface

involving methyl rotation, an average of the rPEs for each surface
was computed. The average CCSD(T) rPE of the surfaces that
are defined by the coupling of the methyl and hydroxyl rotations
(i.e., Figures 3, 5, and Supporting Information Figure 2) is given
in Table 8. Differences between the resulting averaged rPE are
also provided as a metric for evaluating if one surface is generally

more repulsive or stable than another surface. Table 8 also gives
the similarity between two surfaces as determined by computing
their similarity index using the following equation15,16
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where ui
a and ui

b are the values of the rPE on surfaces a and b, i
specifies a specific point defined by the internal coordinates [i.e.,
(ϕ,ψ)], and m is the total number of rPEs on each surface. The
closer the index is to +1, the more similar are the two rPE surfaces
being compared.

■ DISCUSSION
Choosing the Theory Level for Computing Surfaces.

Because of the number of calculations needed to compute the
rPE surfaces herein, the first task was to identify the theory to be
used in the two-torsion constraint optimizations. To this end, full

Figure 1. MP2/aV5Z fully optimized structures and conformational
nomenclature (see Methodology) for propan-2-ol’s minima and first-
order saddle points. The black labels are for the structures shown,
whereas the isomer labels are given in blue.

Figure 2. MP2/aV5Z fully optimized structures and nomenclature for
propanol’s minima and first-order saddle points. See Figure 1 for the
explanation of the labels’ colors.
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optimizations were performed using the following theory levels:
HF/6-31G(d), MP2/VTZ, MP2/aVTZ, MP2/VQZ, MP2/
aVQZ, and MP2/aV5Z. For target values, experimental geo-
metries are only available for methanol (t)20,32−37 and ethanol

(t),8,24,38 whereas coupled cluster geometries are available for
methanol (t), ethanol (t), propan-2-ol (g−), and propanol (Tt)
(see Supporting Information Tables 1 and 2).5,39 First, let us
consider the performance of MP2/aV5Z.
On average, MP2/aV5Z underestimates the experimental

bond lengths and angleswith respect to experimental data
averagesof methanol and ethanol by 0.006 Å and 0.15°. In
comparison to the best coupled cluster data, MP2/aV5Z on
average overestimates bond lengths by 0.002 Å, underestimates
angles by 0.15°, and underestimates torsions by 0.8°. In addition
to internal coordinates, one can also compare rotational
constants for gauging accuracy. Because MP2/aVTZ was the
most rigorous theory level used for frequency analyses, its
resulting rotational constants can be compared to experimental
microwave values. As seen in Table 1, the theoretical rotational
constants agree very well with experimental values, with an
average percent error of 0.75%. In fact, this theory level
outperforms values determined using coupled cluster theory with
large basis sets, which resulted on average in twice as much error
(i.e., 1.50%). Unfortunately, computing rotational constants
through an MP2/aV5Z vibrational analysis was impossible using
our available resources. Consequently, we make the assumption
that increasing the basis size to aV5Z will not significantly alter
the resulting optimized geometries, which is supported by the
below paragraph. Because MP2/aV5Z is also the most robust
(i.e., the best representation of orbital space) theory used for fully
optimized conformations investigated herein, we subsequently
used its structures as our benchmark targets.
Although tempting because of its low computational cost, HF/

6-31G(d) clearly performs the worst at reproducing MP2/aV5Z
geometries with an overall average RMSD of 0.019 Å (Table 2).
The MP2 optimizations using the Dunning-style basis sets
increasingly showed convergence toward the MP2/aV5Z
geometries, as expected. Ultimately, the MP2/aVTZ theory
was chosen for generating the rPE surfaces since it consistently
gave RMSD values close to 0.004 Å. MP2/VTZ was not chosen,
even though it had favorable average RMSDs of 0.004−0.006 Å
across all molecules because individual stationary points had
RMSD values up to 0.015 Å (e.g., propanol’s G+g+ (‡:−CH3) in
Supporting Information Table 5). The VQZ, aVQZ, and aV5Z
basis sets were deemed too expensive for the slight improve-
ments made in their RMSD values. The choice ofMP2/aVTZ for
constraint optimizations is further supported by the fact that
propanol’s CCSD(T)/aVTZ//MP2/aVTZ and CCSD(T)/
aVTZ//MP2/aV5Z rPEs are equivalent to within 0.002 kcal·
mol−1 (see Supporting Information Table 6).

MP2.5 Performance. In our previous study of octane and
smaller unbranched hydrocarbons,30 dispersion forces were a

Table 1. Rotational Constants (cm−1) Computed UsingMP2/
aVTZ and Coupled Cluster Geometries, with Average
Experimental Values Also Provideda

methanol MP2/aVTZ CCSD(T)/aVQZb experimental average

A 4.290 (+0.033) 4.305 (+0.048) 4.25732c

B 0.826 (+0.002) 0.831 (+0.007) 0.82351c

C 0.797 (+0.004) 0.802 (+0.009) 0.79260c

ethanol MP2/aVTZ CCSD/aVTZb experimental average

t
A 1.170 (+0.006) 1.185 (+0.021) 1.16386d

B 0.315 (+0.003) 0.316 (+0.004) 0.31190d

C 0.274 (+0.002) 0.275 (+0.004) 0.27136d

g
A 1.149 (+0.002) 1.14723d

B 0.308 (+0.000) 0.30819d

C 0.272 (+0.001) 0.27063d

propan-2-ol MP2/aVTZ CCSD/aVTZb experimental average

t
A 0.284 (+0.001) 0.292 (+0.009) 0.28316e

B 0.271 (+0.003) 0.273 (+0.005) 0.26824e

C 0.160 (+0.001) 0.161 (+0.002) 0.15895e

g
A 0.290 (+0.002) 0.28770e

B 0.272 (+0.003) 0.26848e

C 0.160 (+0.002) 0.15869e

propanol MP2/aVTZ CCSD/aVTZb experimental average

t
A 0.889 (+0.008) 0.897 (+0.016) 0.88066f

B 0.128 (+0.001) 0.128 (+0.001) 0.12683f

C 0.119 (+0.001) 0.120 (+0.002) 0.11840f

g
A 0.479 (+0.001) 0.47802f

B 0.174 (+0.003) 0.17077f

C 0.146 (+0.002) 0.14424f

avg % error 0.75 1.50
aThe error of the theoretical to experimental values are given in
parentheses. The average percent error is also provided as a summary
statistic. bAll coupled cluster calculations were performed with full
electron correlations, whose values were obtained from ref 5. These
calculations represent the most rigorous theory that rotational
constants were determined in the literature. cReferences 6 and 7.
dReferences 8 and 9. eReferences 10−12. fReferences 13 and 14.

Table 2. Average All-Atom RMSD (Å) Computed Using All Minima and First-Order Saddle Points Investigated, Whose
Geometries Were Fully Optimized at the Indicated Theory Levelsa

over all molecules

methanol ethanol propan-2-ol propanol max. min. average

HF/6-31G(d) 0.009 0.013 0.019 0.022 0.040 0.008 0.019
MP2/VTZ 0.005 0.004 0.005 0.006 0.015 0.003 0.005
MP2/aVTZ 0.003 0.003 0.004 0.004 0.004 0.003 0.004
MP2/VQZ 0.002 0.002 0.001 0.002 0.004 0.001 0.002
MP2/aVQZ 0.001 0.001 0.001 0.001 0.001 0.001 0.001
# of conformations 2 6 7 20 35

aThe MP2/aV5Z geometries were used as reference structures. The overall maximum, minimum, and average RMSD for each theory level are also
given.
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significant component to conformational rPEs. In that study, we
found that MP2.5/aVTZ provided an rPE comparable to the
more expensive CCSD(T)/aVTZ and outperforms MP2 (see
Table 7). Extending that comparison, the performance of MP2.5
was evaluated for small alcohols, whose conformational stability
is dependent upon forces greater than dispersion. On average,
the MP2.5/aVTZ rPEs are very close to those determined by
CCSD(T) theory that employs triple zeta or larger basis sets on
well-optimized geometries (Table 7). Computing the average
absolute error over all fully optimized conformations listed in
Tables 3−6 (i.e., 31 conformations, excluding the global minima)
with respect to the best CCSD(T) theory computed, yields a
value of 0.080 kcal·mol−1 for MP2.5/aVTZ. Interestingly,
computing the MP2.5/VTZ rPE results in an average absolute
error of 0.134 kcal·mol−1. This shows the importance of
including augmented basis functions into the energy calculations.
For comparison to MP2, the average absolute error for MP2/

aV5Z is 0.164 kcal·mol−1. Thus, for small alcohols on average,
MP2.5/aVTZ provides rPEs that are closer to CCSD(T) values
than MP2 calculations alone. However, the performance of
MP2.5 is dependent upon the individual conformations, as seen
for a wide variety of propanol’s conformations (Table 6). For
example, the rPE for the Cg+ (‡: CCCO) conformation
becomes significantly worse when computed using aVTZ (i.e.,
0.236 kcal·mol−1) versus the smaller VTZ (i.e., 0.040 kcal·mol−1)
basis set.

Specific Aspects for the Examined Molecules. Meth-
anol. Being overall one of the smallest molecules, methanol has
been well-studied by theoretical approaches. The hydroxyl
rotation barrier has been established to be between 0.999 and
1.099 kcal·mol−1 using CCSD(T) and focal point calculations
(Table 3),17−19 which compares well with the experimental value
of 1.07 kcal·mol−1.20 To the existing computational data, we
contribute MP2.5 and CCSD(T)/CBS energies (Table 3). The
best CCSD(T)/CBS barrier height was extrapolated using the
data obtained from the aVTZ and aVQZ basis setsresulting in
a barrier of 1.021 kcal·mol−1, which agrees well with the
experimental value. With respect to the CCSD(T)/CBS[aVTZ,
aVQZ] results, the MP2.5 barrier heights that were computed
using nonaugmented basis sets (i.e., VTZ and VQZ) were
consistently overestimated (i.e., rPE range of 1.039−1.115 kcal·
mol−1), whereas those computed using augmented basis sets
(i.e., aVTZ, aVQZ, and aV5Z) underestimated the barrier (i.e.,
rPE range of 0.983−1.011 kcal·mol−1).

Ethanol. Ethanol also has a long history of being investigated
by both experimental and theoretical means. It has three minima
[i.e., (+/−)-gauche, trans] and three first-order saddle points
[i.e., (+/−)-eclipse, cis] about the CCOH torsion rotation
(Supporting Information Figure 3). Previously, the most
accurate results for ethanol’s stationary points were computed
by CCSD(T)/aVTZ//MP2/aVTZ,21 and involved four of the
possible six stationary points. The trans conformation was
predicted to be 0.124 kcal·mol−1 more stable than the
(+/−)-gauche conformations, slightly overestimating the
experimental values that range from 0.118 to 0.120 kcal·
mol−1.8,23 Concerning the hydroxyl rotational barrier, the
(+/−)-eclipse and cis conformations were predicted to be
0.939 and 1.211 kcal·mol−1 relative to the trans conformation,
which are comparable to the experimental values of 1.15 and 1.26
kcal·mol−1.23 Note that the value of 1.26 kcal·mol−1 was
computed using experimental data (see Table 4 footnote g).
Increasing the theory level to CCSD(T)/aVQZ//MP2/aV5Z, as
reported herein, did not significantly alter the stability of theseT
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stationary points (i.e., 0.128, 1.095, and 1.209 kcal·mol−1, Table
4).
In addition to the above six stationary points, there are three

more energetically unique first-order saddle points that arise
from the methyl rotation [i.e., t (‡: −CH3) and (+/−)-gauche
(‡: −CH3)], whose relative barrier heights are experimentally
known. To compare these values, we make the assumption that
the spectroscopic values are always relative to the local minimum
[i.e., to the trans or (+/−)-gauche conformation] and not only to
the global minimum. Therefore, the methyl rotational barriers
given in Table 4 should be adjusted by the minimum along the
CCOH torsion coordinate, yielding rPE barriers of 3.114 kcal·
mol−1 for trans (‡: −CH3) and 3.400 kcal·mol−1 (i.e., 3.528−
0.128 kcal·mol−1) for (+/−)-gauche (‡: −CH3). These barriers
agree well with the experimental values of 3.31−3.55 kcal·mol−1
for trans (‡: −CH3)

8,23−26 and 3.58−3.805 kcal·mol−1 for
(+/−)-gauche (‡: −CH3).

8,23,26

Ethanol is the smallest alcohol that possesses a coupling
between two distinct torsions (i.e., HCCO and CCOH).
Previous experimental studies showed that the first-order saddle
point barrier heights are dependent upon the hydroxyl group
adopting a trans or gauche minimum, with trans providing the
lower barrier.8,23,25,26 We extend this observation by investigat-
ing the dependency of the second-order saddle point barriers on
the hydroxyl conformation. As seen in Figure 3 and Supporting
Information Table 7, the relative barriers of the second-order
saddle points (i.e., for when HCCO = 0°) are also dependent
upon the conformations adopted by the CCOH torsion. Thus,
the conformations that display the lowest to highest methyl
rotation barrier, relative to the global trans minimum are

‡ −
< + − ‐ ‡‡ −
< + − ‐ ‡ −
< ‡‡ − · −

trans ( : CH ): 3.134
( / ) eclipse ( : CCOH and CH ): 3.531
( / ) gauche ( : CH ): 4.370
cis ( : CCOH and CH ): 4.925 kcal mol

3

3

3

3
1

Propan-2-ol. In terms of the spatial arrangement of atoms and
intramolecular coordinates, propan-2-ol is very similar to
ethanol, but differs by the presence of a symmetrically equivalent
methyl group. Consequently, the hydroxyl rotation is a function
of two CCOH torsions and a single HCCO, and can be
influenced by the rotation of both methyl groups. The most
comprehensive conformational study to date, by Dobrowolski
and co-workers, identified two minima, four first-order saddle
points, two second-order saddle points, and one third-order
saddle point via MP2/VTZ optimizations.40 Kahn and Kahn
focal point calculations on both minima and three first-order
saddle points represent the most rigorous rPE calculations to
date.22 Collectively, both studies identified all of the minima and
first-order saddle points on propan-2-ol’s potential energy
surface. Adding to this data, we compute all of the minima and
first-order saddle points using a single theory level [i.e.,
CCSD(T)], compute the rPE surface that is formed by the
coupling of HCCO and CCOH torsions, and subsequently
identify second-order saddle points.
Propan-2-ol has three minima [i.e., (+/−)-gauche and trans]

that are defined by its hydroxyl orientation (Figure 1).10,22,28,41,42

The best focal point calculation predicted the (+/−)-gauche to
be 0.268 kcal·mol−1 more stable than the trans conformation,22

for which CCSD(T) is in close agreement (0.257 kcal·mol−1,
Table 5). These computed values lie in the middle of the
experimental range of 0.025−0.450 kcal·mol−1.12,41,43
Along the CCOH internal coordinate pathway, there exist

three first-order saddle points [i.e. e(+/−), (‡: CCOH), and c

Table 7. Average Absolute Error in the rPE with Respect to CCSD(T) Values for the Alcohols Investigated Herein and Four
Hydrocarbons Reported in Ref 30

molecule number of conformationsa MP2/aVTZb MP2/aV5Zc MP2.5/VTZc MP2.5/aVTZ target rPE

methanol 1 0.026 0.005 0.091 0.036c CCSD(T)/CBS[aVTZ,aVQZ]c

ethanol 5 0.131 0.120 0.071 0.012c CCSD(T)/aVQZc

propan-2-ol 6 0.137 0.151 0.119 0.071c CCSD(T)/aVTZc

propanol 19 0.184 0.186 0.145 0.088c CCSD(T)/aVTZc

butane 1 0.069 0.018b CCSD(T)/aVTZb

pentane 3 0.145 0.028b CCSD(T)/aVTZb

hexane 11 0.183 0.012b CCSD(T)/VTZd

octane 3 0.175 0.057b CCSD(T)/aVTZb

aThe difference in the rPE between the theories for each of the molecule’s global minimum was not included in the analysis because it has a value of
0.000 kcal·mol−1 in all cases. bGeometries were fully optimized at the MP2/aVTZ theory level. cGeometries were fully optimized using at the MP2/
aV5Z theory level. dReference 31. Geometries were optimized at the MP2/VTZ theory level.

Figure 3. The rPE surface for the rotation of ethanol’s HCCO and
CCOH torsion angles computed at the CCSD(T)/aVTZ//MP2/aVTZ
theory level. The relative energy scale is shown in 0.25 kcal·mol−1 bins.
The corresponding relative energy values are given in Supporting
Information Table 7.
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(‡: CCOH)] (Figure 1). The cis saddle point, connecting the
two gauche conformations, has a barrier of 1.318 and 1.274 kcal·
mol−1 according to focal point22 and CCSD(T) calculations.
Similarly, the (+/−)-eclipse saddle points, connecting the
(+/−)-gauche and trans conformations, have a focal point and
CCSD(T) barrier of 1.14322 and 1.142 kcal·mol−1, which are
notably lower than the experimental value of 1.68 kcal·mol−1.10

Note that the focal point papers reference experimental values of
1.54 and 1.24 kcal·mol−1 for the two hydroxyl rotation
barriers,22,28 citing microwave spectroscopy studies.44,45 How-
ever, we were unable to verify these two values from the original
source.
The remaining three energetically unique saddle points

correspond to the rotation of one methyl group with respect to
the three possible hydroxyl minima [i.e., g+ (‡: −CH3 a), g− (‡:
−CH3 a), and t (‡:−CH3 a)]. These saddle points also have their
own isomers that occur when the second methyl group (i.e.,
−CH3 b) rotates instead. Note that the (+)-gauche and
(−)-gauche conformations are not equivalent because they
have different orientations with respect to the rotating methyl
group (see Figure 1). As seen in ethanol and based on the rPE
that references the global minimum (Table 5), the methyl
rotation barrier is dependent upon the orientation of the
hydroxyl group. The conformations that display the lowest to
highest methyl rotation barrier, relative to the global
(+/−)-gauche minima are

+ ‐ ‡ −
< − ‐ ‡ −
< ‡ − · −

( ) gauche ( : CH a): 3.148
( ) gauche ( : CH a): 3.482
trans ( : CH ): 3.728 kcal mol

3

3

3
1

Adjusting the methyl rotational barriers that are given in Table
5 by the rPE of their respective local minimum results in
CCSD(T) energies of 3.148, 3.482, and 3.471 kcal·mol−1 when
the molecule adopts (+)-gauche, (−)-gauche, and trans
conformations, respectively. There remains a clear differentiation
between the methyl rotation for the (+)-gauche and (−)-gauche
conformations as well as for the (+)-gauche and trans
conformations. However, the methyl rotation barriers for
(−)-gauche and trans become nearly equivalent (i.e., a 0.011
kcal·mol−1 difference). For comparison to previous work, only
one of the gauche barriers was computed using focal point
calculationsyielding a value of 3.189 kcal·mol−1.22 On the basis

of its magnitude, it is assumed that this value is for the (+)-gauche
conformation [i.e., g+ (‡ −CH3 a)].
Qualitatively, the ethanol’s (Figure 3) and propan-2-ol’s

(Supporting Information Figure 2) surfaces formed by the
HCCO and CCOH couplings are nearly identical. In an attempt
to quantify the overall repulsiveness of surfaces involving the
methyl rotation by a single metric, an average rPE for each
surface was computed to be 2.262 and 2.309 kcal·mol−1 (Table
8). A difference between the resulting averaged rPEs provides a
relative scale for identifying if one surface is more or less repulsive
than another. This difference shows that the rPE of the propan-2-
ol and ethanol surfaces are, on average, within 0.047 kcal·mol−1

of each other. Furthermore, a similarity index was computed
between the two surfaces (Table 8), resulting in a value of 0.98.
Both of these approaches confirm that propan-2-ol’s and
ethanol’s methyl rotation surfaces are essentially identical.

Propanol. Propanol, because of its additional carbene group
(i.e., −CH2−), has five potential energy surfaces (Figures 4 and
5) that can be described by the coupling of

(a) the CCCO and CCOH torsions,
(b) the methyl rotation and CCCO, with CCOH adopting a

trans conformation,
(c) the methyl rotation and CCCO, with CCOH adopting a

(+/−)-gauche conformation,
(d) the methyl rotation and CCOH, with CCCO adopting a

trans conformation and
(e) the methyl rotation and CCOH, with CCCO adopting a

(+/−)-gauche conformation.
The first three surfaces are formed by rotating around adjacent

torsion angles, whereas the last two are defined by torsions that
are separated by one bond. Through the overall generation of
these surfaces, all of propanol’s minima, first-order, and second-
order saddle points could be characterized at the CCSD(T)
theory level. Note that these surfaces overlap to some extent
because certain conformations or their isomers are represented
multiple times (e.g., Tg+ and G+t/G−t).
The most complex and varied surface is formed by the CCCO

and CCOH torsions (Figure 4). Apart from the stationary points
sampled during methyl rotation, this surface displays all of
propanol’s minima, first-order, and second-order saddle points.
The surface is symmetric about CCCO’s 180°considering the
whole surface (i.e., CCCO = 0−330°), a total of nine minima,

Table 8. Average CCSD(T)/aVTZ rPE of Each Surface Determined by the Coupling of the Terminal Methyl (i.e., HCCx, x = C,O)
and Hydroxyl (i.e. CCOH) Rotations within Ethanol, Propan-2-ol, (+/−)-Gauche Propanol, and Trans Propanol, as well as Their
Differencesa

difference

average rPE ethanol propan-2-ol (+/−)-gauche propanol trans propanol

ethanolb 2.262 0.000
propan-2-olc 2.309 0.047 0.000
(+/−)-gauche propanold 1.913 −0.349 −0.396 0.000
trans propanole 1.889 −0.373 −0.420 −0.024 0.000

similarity index

ethanol propan-2-ol (+/−)-gauche propanol trans propanol

ethanolb 1.00
propan-2-olc 0.98 1.00
(+/−)-gauche propanold 0.82 0.83 1.00
trans propanole 0.80 0.80 0.98 1.00

aThe similarity index computed between each surface is also provided. bThe data used are plotted in Figure 3 and given in Supporting Information
Table 7. cThe data used are plotted in Supporting Information Figure 1 and in Supporting Information Table 8. dThe data used are plotted in Figure
5b and given in Supporting Information Table 11. eThe data used are plotted in Figure 5a and given in Supporting Information Table 10.
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eighteen first-order and nine second-order saddle points exist
Out of the nine minima, eight exist as enantiomeric pairs and one
(i.e., Tt) is an energetically unique minima (Table 6). The
experimental information regarding the relative stability of
propanol’s minima is unclear because of vague identifications and
contradictions within the literature.13,14,46,47 However, focal
point calculations clearly predicted the rPE ordering of the
minima, with the G+t and G−t enantiomeric pair being the
global minima.27,28 According to the focal point and CCSD(T)

calculations, the remaining minima (i.e., G+g+, G−g−, G+g−,
G−g+, Tg+, Tg−, and Tt) are within a small energetic range of
0.11−0.13 kcal·mol−1 of the global minima (Table 6).
Previously, the most comprehensive study of the minima and

first-order saddle points was performed using the MP2/aVTZ//
MP2/VDZ theory level by Kahn and Bruice,27 but excluded six
first-order saddle points (see Table 6). The first-order saddle
points with the largest rotational barrier, relative to the global
minima, have the CCCO torsion adopting a cis conformation
(i.e., Cg+, Cg−, and Ct) with essentially equivalent barriers of
5.004 and 5.034 kcal·mol−1 (Table 6). These barriers connect the
(+)-gauche and (−)-gauche CCCO conformational minima (i.e.,
G+g+, G−g−, G+g−, G−g+, G+t, and G−t). The next largest
barrier occurs when the CCCO torsion adopts a (+/−)-eclipse
conformation (i.e., E+g+, E−g−, E+t, E−t, E+g−, and E−g+),
with energies that range from 3.353 to 3.806 kcal·mol−1 that
connect the (+/−)-gauche (i.e., G+g+, G−g−, G+g−, G−g+, G
+t, and G−t) and trans conformational minima (i.e., Tg+, Tg−,
and Tt).
Along the CCOH coordinate, the first-order saddle points that

have the lowest rotational barriers are when the CCOH torsion
adopts a (+/−)-eclipse (i.e., G+e−, G−e+, G+e+, and G−e−)
conformation, with energies ranging from 0.830 to 1.065 kcal·
mol−1. Occurring at slightly higher barriers are the CCOH
torsions that adopt a cis conformation (i.e., G+c, G−c, and Tc),
with energies of 1.211 and 1.556 kcal·mol−1. All of the second-
order saddle points that are defined by the CCCO and CCOH
torsions (i.e., Ce+, Ce−, Cc, E+c, E+e+, E+e−, E−e+, E−e−, and
E−c) have relative energies that range between 4.555 and 6.467
kcal·mol−1 (Supporting Information Table 9), with the least
stable conformation having both torsion angles adopt a cis
conformation (i.e., Cc). Given a limited amount of absorbed
energy, the CCCO conversion from (+/−)-gauche to trans
would preferentially go through the eclipsed first-order saddle
points rather than the cis saddle point.

Figure 4. The rPE surface for the rotation of propanol’s CCCO and
CCOH torsion angles computed at the CCSD(T)/aVTZ//MP2/aVTZ
theory level. The rPE scale is shown in 0.25 kcal·mol−1 bins, which
ranges from the global minimum to the global maximum for all propanol
surfaces computed (see also Figure 5). The CCSD(T)/aVTZ energies
are given in Supporting Information Table 9.

Figure 5.CCSD(T)/aVTZ//MP2/aVTZ rPE surface for the rotational coupling of propanol’s terminal methyl group with the CCOH (a,b) and CCCO
(c,d) torsion angles. The relative energy scale is shown in 0.25 kcal·mol−1 bins, which ranges from the global minimum to the global maximum for all
propanol surfaces computed. The CCSD(T) energies are given in Supporting Information Tables 10−13.
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Regarding the methyl rotation, the surfaces formed by the
coupling between the adjacent HCCC and CCCO torsions
display little dependency upon the conformations that the
hydroxyl group adopts (Figure 5c,d, and Supporting Information
Tables 12 and 13). The average CCSD(T)/aVTZ rPE of each of
these surfaces is 3.450 and 3.510 kcal·mol−1, a 0.189 kcal·mol−1

difference between them; computing the similarity between
these two surfaces results in a value of 0.95. Both of these metrics
support the observation that the two surfaces are similar.
Ordering the conformations such that they display the lowest

to highest methyl rotational barriers (Table 6), relative to the
global minimum, leads to

+ − ‡ −
< + − + + − − ‡ −
< ‡ −
< + − − + ‡ − · −

G t, G T ( : CH ): 2.694
Tg , Tg , G g , G g ( : CH ): 2.725(1)
Tt ( : CH ): 2.738
G G , G g ( : CH ): 2.889 kcal mol

3

3

3

3
1

Notice that all of these barriers are lower than those seen in
ethanol and propan-2-ol, whose lowest barrier was 3.134 kcal·
mol−1. Adjusting these barriers by their local minimum (i.e., G+t,
G−t, G+g+, G−g+, Tt, and Tg+) results in energies that range
from 2.597 to 2.769 kcal·mol−1. Thus, all nine methyl rotor
barrier heights occur within a narrow 0.172 kcal·mol−1 window of
one another. Consequently, their individual identification might
be difficult to achieve spectroscopically. This also further
supports the observation that the hydroxyl orientation has only
a small effect on the methyl rotation. Experimentally, the methyl
barrier dependency upon the CCCO and CCOH torsions has
been investigated, but the literature is unclear with regard to the
specific conformations studied.13,46 What can be definitively
stated is that the experimental work finds that the methyl barrier
ranges from 2.620 ± 0.050 to 3.080 ± 0.050 kcal·mol−1,13,14,46

with the lower values agreeing well with the CCSD(T) values.
A comparison of the methyl rotational surfaces, as defined

between the CCOH andHCCn (where n =C orO) torsions, can
be made for ethanol, propan-2-ol, (+/−)-gauche propanol, and
trans propanol (Figures 3, 5a,b and Supporting Information
Figure 2). The (+/−)-gauche and trans propanol rPE surfaces
are less repulsive than those for ethanol and propan-2-ol, with
average surface rPEs of 1.913 and 1.889 kcal·mol−1 (Table 8).
This reduced repulsion can be attributed to the longer distance
between the terminal methyl and hydroxyl groups because of the
additional carbene group that is present. The differences between
the propanol surfaces and those of ethanol and propan-2-ol are
further exemplified by their low similarity indexes, with values
that range from 0.80 to 0.83. However, note that the
(+/−)-gauche and trans propanol surfaces are themselves
similar, with a difference in their average surface rPEs of 0.024
kcal·mol−1 and a similarity index of 0.98.

■ CONCLUSIONS
In this paper, we present an extensive investigation of the minima
and first-order saddle points for methanol, ethanol, propan-2-ol,
and propanol. All geometries were fully optimized at the MP2/
aV5Z theory level, whereas the rPEs were computed using
CCSD(T). For the first time, we identify all minima and first-
order saddle points for ethanol, propan-2-ol, and propanol within
a consistent theoretical framework. Frequency analyses were
performed at theMP2/aVTZ//MP2/aVTZ theory level to verify
the fully optimized stationary point positions on their potential
energy surfaces. A comparison of rotational constants to
experimentally known values showed that geometries optimized

usingMP2/aVTZ were reliable. Furthermore, seven rPE surfaces
were computed at the CCSD(T)/aVTZ//MP2/aVTZ theory
level. These surfaces subsequently allowed us to identify second-
order saddle points.
Building on previous results for linear-saturated hydro-

carbons,30 we investigated how well MP2.5 performs at
reproducing CCSD(T) relative energies for small alcohols. In
general, MP2.5 provides rPEs that are close to the best CCSD(T)
values computed using reliable small alcohol geometries.
Specifically, MP2.5/aVTZ//MP2/aV5Z had an average error
of 0.081 kcal·mol−1 with respect to CCSD(T)/aVTZ//MP2/
aV5Z rPEs. However, MP2.5 rPEs can deviate significantly from
the CCSD(T) values, as seen for several individual propanol
conformationsthis being especially true when used in
conjunction with the smaller VTZ basis set.
Several general observations can be made from the data

presented herein. As anticipated, methyl rotation is most affected
by the conformations that are adopted by adjacent torsion angles.
This was demonstrated by the comparison of the rPE surfaces
formed by the coupling between HCCn (where n = O or C) and
the CCOH torsion in ethane and propane.
The first-order saddle points for methyl rotation in ethanol

and propan-2-ol show a clear energetic dependency and
separation upon the hydroxyl orientation when the rPEs are
computed in reference to each of the molecules’ global
minimum. However, if the rPEs are adjusted by their local
minimum, the methyl barriers for propan-2-ol’s (−)-gauche and
trans conformations become equivalent.
The rPE surfaces of ethanol and propan-2-ol formed by the

coupling of HCCO and CCOH torsions are nearly identical,
displaying average rPEs of 2.262 and 2.309 kcal·mol−1 (Δ = 0.047
kcal·mol−1) and a similarity index of 0.98. These surfaces are
significantly different from propanol’s two comparable surfaces
that are formed by HCCC and CCOH, exemplified by similarity
indexes that range from 0.80 to 0.83. Note that these two
propanol surfaces are themselves highly similar, with average
rPEs of 1.913 and 1.889 kcal·mol−1 and a similarity index of 0.98.
Likewise, the two propanol surfaces formed by the coupling of

HCCC and CCCO are also highly similar, with a similarity index
of 0.95. The average rPEs of the two surfaces are larger than those
mentioned above, with values of 3.450 and 3.510 kcal·mol−1.
Furthermore, all of propanol’s methyl rotational barriers are
energetically lower than those found in ethanol and propan-2-ol,
whereas methanol possesses the lowest barrier of all those
studied. Finally, because of its additional carbene group,
propanol possesses the largest number of minima and first-
order saddle points of the molecules studied. A total of thirty-six
stationary points were fully optimized and characterized.
It would also be possible to alternatively use Jensen basis

sets48−50 in the calculations, which might reduce the calculation
cost. These basis sets were originally designed for use in
Hartree−Fock and density functional theories. There have been
two studies that discuss their usage in MP2 and CCSD(T)
calculations,51,52 showing a somewhat mixed result that depends
on the system being investigated (i.e., isolated molecules vs
weakly bound clusters). We intend to investigate this further in
the near future.

■ METHODOLOGY
Fully relaxed density-fitted (DF)53−55 HF/6-31G(d) and MP256

optimizations were performed on all minima and first-order
saddle points until a maximum force of 1.5 × 10−5, RMS force of
1.0 × 10−5, maximum displacement of 6.0 × 10−5, and RMS
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displacement of 4.0 × 10−5 (i.e., a tight convergence) were
achieved. The DF-MP2 optimization employed 6-31G(d), cc-
pVTZ (VTZ), aug-cc-pVTZ (aVTZ), cc-pVQZ (VQZ), aug-cc-
pVQZ (aVQZ), and aug-cc-pV5Z (aV5Z) basis sets.57−60 As part
of the DF-MP2 calculations, the self-consistent field reference
energies were also computed using the DF approximation with
the appropriate corresponding auxiliary basis sets.61−63 All
optimizations were performed using C1 molecular symmetry,
whereas the symmetry groups reported in the tables were
obtained through an analysis of the fully optimized geometries
using the Symmetrizer program.64 A frequency analysis was
performed at theMP2/aVTZ//MP2/aVTZ theory level for each
minimum and first-order saddle point. Second-order saddle
points were identified based on their position on the computed
rPE surfaces.
The rPEs were computed at MP2.565,66 and CCSD(T)67−69

theory levels by performing a single self-consistent field
evaluation upon the fully optimized geometries. Extrapolations
to the complete-basis-set (CBS) limit were done using the two-
point scheme of Helgaker and co-workers;70 the two basis sets
used in the extrapolation are presented within square brackets.
For the generation of the rPE surfaces, all geometry
optimizations were done using traditional MP2 calculations
(i.e., without DF approximation). Because of its prevalent use
and discussion, the CCSD(T)/aVTZ//MP2/aVTZ theory level
will be abbreviated simply as CCSD(T). In all correlated
calculations, the core orbitals were frozen. All constraint
optimizations associated with rPE surfaces were computed
using the Gamess program (v. 1 MAY 2013 (R1)).71,72 All other
calculations were performed using the Psi4 program (v.
1.1a2.dev170).73,74

For unique identification of each conformation, we make use
of the previously established nomenclature.47,75 Table 9 provides

the full nomenclature, including associated angle ranges used to
classify the conformations. The conformations adopted by the
hydroxyl rotation are abbreviated using a lower case letter,
whereas those adopted by propanol’s CCCO torsion are
abbreviated using an upper case letter.47 The direction of torsion
rotation is indicated by + and− symbols.75 The first-order saddle
points are indicated using a ‡ symbol and accompanied by the
torsion’s atomic sequence that characterizes the transition state
(e.g., ‡: CCOH).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsomega.7b01367.

1. CCSD(T)/aVTZ//MP2/aVTZ (fully optimized struc-
tures and surfaces) and CCSD(T)/aVTZ//MP2/aV5Z
(fully optimized structures) energies (Hartree):
raw_data_energies (XLSX)
2. All fully optimized minima and first-order saddle point
geometries, with tight convergence criteria, computed at
density-fitted MP2/aV5Z//MP2/aV5Z provided in the
following xyz-formated files:
(a) methanol_archive_structures (XYZ)
(b) ethanol_archive_structures (XYZ)
(c) propan-2-ol_archive_structures (XYZ)
(d) propanol_archive_structures (XYZ)
3. Additional data and figures:
(a) Fully optimized structures and nomenclature for
methanol and ethanol minima and first-order saddle
points as computed by MP2/aV5Z
(b) Selected internal coordinate values for all studied
conformations and first-order transition states
(c) RMSD for all minima and first-order saddle point
structures studied
(d) CCSD(T)/aVTZ//MP2/aVTZ rPE surface for the
rotational coupling of one of the propan-2-ol’s terminal
methyl group with the CCOH torsion angle
(e) Additional rPE for the fully optimized minima and
first-order saddle points for the rotation about CCCO and
CCOH torsions in propanol
(f) CCSD(T)/aVTZ//MP2/aVTZ rPE used in generat-
ing the surface and curve figures (PDF)
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L. M. The microwave spectrum of n-propanol. The gauche-gauche
conformer. J. Struct. Chem. 1981, 22, 28−33.
(47) Lotta, T.; Murto, J.; Ras̈an̈en, M.; Aspiala, A. IR-induced
rotamerization of 1-propanol in low-temperature matrices, and ab initio
calculations. Chem. Phys. 1984, 86, 105−114.
(48) Jensen, F. Polarization consistent basis sets: Principles. J. Chem.
Phys. 2001, 115, 9113−9125.
(49) Jensen, F. Erratum: “Polarization consistent basis sets: Principles”
[J. Chem. Phys. 115, 9113 (2001)]. J. Chem. Phys. 2002, 116, 3502.
(50) Jensen, F. Polarization consistent basis sets. IV. The basis set
convergence of equilibrium geometries, harmonic vibrational frequen-
cies, and intensities. J. Chem. Phys. 2003, 118, 2459−2463.
(51) Kupka, T.; Lim, C. Polarization-Consistent versus Correlation-
Consistent Basis Sets in Predicting Molecular and Spectroscopic
Properties. J. Phys. Chem. A 2007, 111, 1927−1932.
(52) ElSohly, A. M.; Tschumper, G. S. Comparison of polarization
consistent and correlation consistent basis sets for noncovalent
interactions. Int. J. Quantum Chem. 2009, 109, 91−96.
(53) Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Use of approximate
integrals in ab initio theory. An application in MP2 energy calculations.
Chem. Phys. Lett. 1993, 208, 359−363.

ACS Omega Article

DOI: 10.1021/acsomega.7b01367
ACS Omega 2018, 3, 419−432

431

http://dx.doi.org/10.1021/acsomega.7b01367
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