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A B S T R A C T

The application of Raman and infrared (IR) microspectroscopy is leading to hyperspectral data containing
complementary information concerning the molecular composition of a sample. The classification of hyper-
spectral data from the individual spectroscopic approaches is already state-of-the-art in several fields of research.
However, more complex structured samples and difficult measuring conditions might affect the accuracy of
classification results negatively and could make a successful classification of the sample components challenging.
This contribution presents a comprehensive comparison in supervised pixel classification of hyperspectral
microscopic images, proving that a combined approach of Raman and IR microspectroscopy has a high potential
to improve classification rates by a meaningful extension of the feature space. It shows that the complementary
information in spatially co-registered hyperspectral images of polymer samples can be accessed using different
feature extraction methods and, once fused on the feature-level, is in general more accurately classifiable in a
pattern recognition task than the corresponding classification results for data derived from the individual spec-
troscopic approaches.
1. Introduction

The comprehensive term vibrational spectroscopy summarizes a num-
ber of optical measuring concepts that are applied to analyze the mo-
lecular structure and composition of a sample [18]. They are widely used
in several fields of research such as analytical chemistry [13], pharma-
ceutical analysis [8], food sciences [27], biomedical applications and
diagnostics [7,20], as well as in material sciences [10]. The most
important of the applied methods are Raman and IR spectroscopy. Both
concepts are based on the interaction between electromagnetic radiation
and molecular vibrations resp. rotations. From this interaction,
material-specific spectral fingerprints can be derived, providing informa-
tion that enables the identification and the qualitative or quantitative
analysis of samples [18,19]. Although both methods share an underlying
principle, they differ in terms of the demands concerning their physical
processes, leading to the rule of mutual exclusion [26], which defines that
vibrations and rotations that are active for Raman spectroscopy are
non-active for IR spectroscopy, and vice versa. Hence, both concepts can
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generally be considered as complementary methods [18,19]. Conse-
quently, a combined consideration of Raman and IR spectroscopic mea-
surements should lead to an improved potential for solving challenging
analytical problems in vibrational spectroscopic analysis.

The application of vibrational spectroscopic measurements on a
microscopic level is realized by combining Raman and IR spectroscopy
with conventional brightfield microscopic systems. In vibrational micro-
spectroscopy, point-wise measurements are usually performed in a grid-
pattern on a sample, leading to microscopic hyperspectral images. In
comparison to standard RGB images, these complex data structures
provide hundreds or even thousands of channels often denoted as spec-
tral bands. The concept of creating maps that provide both, spectral in-
formation and its spatial distribution, is termed chemical imaging (CI)
[22]. In many cases, dimensionality reduction (DR) methods are applied
to introduce a class-representative visualization of the chemical image,
derived from unsupervised or supervised classification in a pattern
recognition task. Hence, supervised and unsupervised classification of
hyperspectral images is of major interest in the field of applied
vember 2018
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microspectroscopy.
But even though the complementary nature of Raman and IR methods

is well known and combined approaches are explicitly demanded [12],
most of the publications deal with comparative studies [12,14–16]. Prior
work and publications that deal with fused data from both spectroscopic
approaches are rare. In Ref. [5], F. Clark et al. used a device-based
registration concept and univariate visualization methods to provide
co-registered chemical images of pharmaceutical components. Their
approach of chemical image fusion based on color composition, improves
the available spectral information, resulting in a complete visualization
of the chemical composition of pharmaceutical blends. D. Perez-Guaita
et al. [24] applied multivariate analysis on co-registered images of
cells, achieving valuable information concerning the cell composition. In
Ref. [9], A. Gowen and R. M. Dorrepal investigated the potential of
multivariate data fusion in vibrational spectroscopy for supervised single
pixel classification, using a polymer sample. Here, especially the data
fusion on the feature level led to improved classification rates. However,
methods of feature extraction were limited to PCA, and supervised
classification only considered partial least square discriminant analysis
(PLS-DA). Furthermore, the polymer sample only contains 2 different
components, leading to a 3-class classification problem of pure material
targets.

In this contribution, we build on the results from Gowen and Dorrepal
in Ref. [9] by a more extensive comparison between supervised classi-
fication results of single and fused data sets generated by Raman and IR
microspectroscopic measurements. Co-registered hyperspectral images
were generated via rasters of point measurements for two polymer
samples, leading to hyperspectral data that is assignable to 7 different
classes of pure and mixed material distributions. The purpose of this
contribution is to support the hypothesis, that the fusion of comple-
mentary data from both measurement concepts leads to a more accurate
classification of the complex hyperspectral signatures of two polymer
samples, in comparison to data generated by the individual spectroscopic
approaches. Since results of supervised classification depend signifi-
cantly on the choice of the classifier, the selected features and their
dimensionality, and on the used training data, a high number of indi-
vidual classification setups that differ in the composition of these com-
ponents was investigated in independent classification processes. This
research shows that the use of spectral features fused on the feature level
improves classification rates of supervised classifiers for a clear majority
of the considered classification setups.

The rest of this contribution is organized as follows: In Section 2, the
experimental background of this investigation is presented and the terms
multimodal and monomodal, as they are used within the scope of this
contribution, are defined. We furthermore present the mathematical
concept of the used dimensionality reduction techniques and supervised
classifiers in Section 3. Results and discussion in Section 4 are followed
by the conclusion in Section 5. Detailed results of individual classification
setups are given in Table 1 and Table 2.

2. Experimental design

2.1. Classification of monomodal and multimodal data

The objective of this investigation was to support the hypothesis that
hyperspectral images derived from Raman and IR microspectroscopy
contain complementary information that improves the classification of
complex material-specific spectral signatures and that is accessible by
statistic-based dimensionality reduction techniques, which are estab-
lished in the field of hyperspectral data processing. To verify the as-
sumptions, supervised classification of multimodal and monomodal data
was implemented. With monomodal data, we denote data that was
generate from one of the individual microspectroscopic approaches and
that has not been further fused with other data. Thus, monomodal data
contains spectral information that is subject to the selection rules of the
individual microspectroscopic concept. In accordance with this
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definition, approaches, images and feature vectors that consider or
contain data derived from a single spectroscopic method are also denoted
as monomodal. By multimodal data, we mean data that was computed by
the fusion of monomodal data. Thus, multimodal data contains spectral
information from both microspectroscopic approaches. In accordance
with this definition that refers to [17], approaches, images and feature
vectors that consider or contain multimodal data are denoted as multi-
modal as well, like it was already done in Ref. [24]. According to the
general procedure presented in Fig. 1, hyperspectral images of micro-
scopic polymer samples were acquired using IR and Raman micro-
spectroscopic devices. The hyperspectral images can be segmented into
areas of seven different classes, providing spectral signatures of pure and
mixed material distributions. To ensure that pixel vectors in both images
are generated at points with spatial correspondence, a device-based
registration was implemented. After preprocessing, to separate relevant
and redundant spectral information, different dimensionality reduction
techniques were individually applied on the co-registered images ac-
cording to the considered classification setup. For each spectroscopic
method, a variety of monomodal feature vectors was computed. Multi-
modal feature vectors were generated by a concatenation of monomodal
feature vectors and can therefore be considered as fused on the feature
level. The evaluation was focused on a comparison of the classification
rates for the classification of monomodal and multimodal data.

We expected the advantage of a multimodal approach to be reflected
in improved classification rates for a high number of different classifi-
cation setups, in comparison to the corresponding setups in monomodal
approaches. We therefore considered two different supervised classifi-
cation scenarios. In the first scenario, the original data sets were split into
training and test data sets by sub-sampling. Thus, training and test data
can be considered as data sets from two different measurements of the
same sample. Features derived by dimensionality reduction methods
from the training data sets were used to train the classification models in
a 5-fold cross validation training procedure. Subsequently, the test data
sets were projected into the feature space derived from the training data
sets and were used for further validation. In the second scenario, the data
sets were considered as sets of single measurements that can be sub-
divided into few spectral signatures of known class affiliation and a
majority of unknown class membership. Here, the original data set was
transformed to the feature spaces by dimensionality reduction methods.
Training data sets were created by randomly selecting feature vectors of
each class from the transformed data. It was further ensured that the
training data sets have the same number of feature vectors for each class.
To create the test data sets, each feature vector used within the training
procedure was removed from the transformed original data. Thus, a
separation of training and test data sets was ensured while their mutual
influence was restricted to the common dimensionality reduction trans-
form. The training data sets were used to train the considered classifi-
cation models in a 5-fold cross validation training procedure. Further
validation was performed using the generated test data sets. Since the
results of the trained model depend on the chosen training vectors, in
particular for small training data sets, this scenario was performed over
100 runs for each classification setup. The results are presented as
averaged classification rates.

The use of microscopic polymer samples that show classes of pure and
mixed material distributions meant that the complexity of the spectral
data and the difficulty of its classification was increased in relation to [9].
The increase in complexity should emphasize the potential of a multi-
modal microspectroscopic approach, especially in the context of chal-
lenging pattern recognition tasks. The high variety concerning the choice
of features and classifiers, as well as the varying dimensionality of the
feature space and the composition of the training data that were
considered in the individual classification procedures, should further
underline the general benefit of this concept and its independence from
specific classification setup. Therefore, classification rates and their dis-
tribution concerning the degree of improvement were evaluated for all
setups. To make more specific statements regarding the results of single



Fig. 1. General procedure of the individual comparison of classification results for multimodal and monomodal data derived from co-registered hyperspectral images
generated by Raman and IR microspectroscopy.
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sample components, a class-dependent evaluation of the results was also
performed. Furthermore, the plausibility of the extension of the feature
space was examined exemplarily.

2.2. Sample preparation

A prerequisite for preparing a microscopic sample used in a multi-
modal approach is the activity of its components with respect to both
microspectroscopic approaches. Furthermore, it should be possible to
distribute the chosen substances on a microscopic scale, so that suffi-
ciently strong measuring signals can be obtained. The complex molecular
structure of polymers has proven to be sufficiently active for both ap-
proaches [12]. Additionally, their use in a dissolved state allows a proper
sample preparation. For a comprehensive comparison of classification
rates, two microscopic samples consisting of different transparent poly-
mers and a synthetic colorant were prepared on a gold mirror. The first
polymer sample (PS1) consisted of polymethylmethacrylat (PMMA),
styrene-acrylonitrile (SAN) and the black colorant of a flow pen. For the
second polymer sample (PS2), polystyrene (PS), PMMA and poly-
etherimide (PEI) were used. All polymers were placed in a dissolved state
and dried under a fume hood. Both samples provided areas of pure ma-
terial distributions, as well as regions of mixed material distributions.
Consequently, the test items consisted of multi, pure and mixed material
targets that were classified.

2.3. Image acquisition

Hyperspectral data sets were generated using the Raman system
Senterra and the IR microscopic system Hyperion 3000 in combination
with the Vertex 70 spectrometer, all developed by the Bruker Cooperation.
To ensure a co-registration of the generated data, a device-based regis-
tration procedure in analogy to [5] was implemented. Here,
concentric-ring fiducial markers were manufactured on a microscope
slide via electron beam lithography and located by a computer
vision-based approach as reference positions. A rigid transformation
derived from the reference positions, located for each system, was
applied to adjust the measuring position grid for the different spectro-
scopic approaches. Before measurements were initiated, the determined
measuring grids were reviewed and manually adjusted, if necessary. In
both systems, 70� 70 raster measurements were applied on both sam-
ples, leading to hyperspectral images with an equivalent pixel resolution.
For the Raman measurements, PS1 was excited by a 785 nm wavelength
laser of 10 mW power. The data was acquired over an integration time of
2 s over 2 accumulations per point measurement. Signal amounts were
collected in a spectral range of 410–1790 cm�1 with a spectral resolution
of 0.5 cm�1. PS2 was excited by a 785 nm wavelength laser of 100 mW
power. An integration time of 2 s over 2 accumulations was used per
point measurement. Here, signal amounts were collected in a spectral
range of 50–1520 cm�1 with a spectral resolution of 0.5 cm�1. The cor-
responding IR measurements were carried out in reflectance mode, in a
spectral range of 600–4000 cm�1 and a spectral resolution of 2 cm�1 for
both samples. Here, five scans per point measurement were used for PS1.
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For PS2, the number of scans was further reduced to a single one.

2.4. Preprocessing

The 4900 raw spectra of each hyperspectral image were preprocessed
according to state-of-the-art procedures for hyperspectral data in vibra-
tional microspectroscopy [25]. The preprocessing pipeline includes
outlier control, vector normalization, baseline correction and data
smoothing. Furthermore, all preprocessed spectra were sub-sampled and
cropped to a relevant wavenumber range. More precisely, Raman spectra
of PS1 were cropped to a wavenumber range of 410–1490 cm�1. The
corresponding IR spectra were cropped to a spectral range of 600–3230
cm�1. For PS2, the wavenumber range of the Raman dataset was con-
strained to 150–1520 cm�1 and to 600–3300 cm�1 for the IR data. All
spectra were normalized to a range of 0–1 by min-max normalization.
Baseline correction was performed using an asymmetric least square
(asLS) approach [23], where regularization parameters were chosen to
be λ ¼ 106 and p ¼ 10�3, with a maximum of 50 iterations and a
termination criterion of ε ¼ 10�6. All spectra were additionally
smoothed by local kernel regression using locally weighted scatter-plot
smoothing (LOESS) [6]. All preprocessing methods were performed in
MATLAB. We used the MATLAB Curve Fitting Toolbox for spectral
smoothing by local kernel regression. A baseline correction code based
on asLS was provided by Peng et al. in Ref. [23].

3. Dimensionality reduction and supervised classification

Established component analysis transformations based on second-
order statistics and a feature extraction transformation have been used.
Namely, variance-based principal component analysis (PCA) [4] and
signal-to-noise ratio (SNR)-based maximum noise fraction (MNF) [4]
have been applied. Furthermore, Fisher's linear discriminant analysis
(FLDA) [2], which can be seen as a feature extraction transformation and
supervised classifier, was considered. Additionally, further supervised
classification approaches based on statistical learning theory were spec-
ified: Support Vector Machine (SVM) and Naive Bayes Classifier (NBC).
We refer to the notation and mathematical description of C.–I. Chang
[4], C. Aggarwal [1] and C. Bishop [2].

3.1. Principal component analysis

PCA purposes a dimensionality reduction of a high-dimensional data
set, while retaining as much as possible of its variation. It determines a set
of uncorrelated linear functions of the elements of the data set having
maximum variance [11]. Defining X as the data sample matrix with X ¼
½r1r2…rN � and μ as the mean of all L-dimensional hyperspectral pixel
vectors, the covariance matrix K of the mean-centered original data
matrix X

0
can be determined by

K ¼ 1
N

�
X

0
X

0 T� ¼ 1
N

"XN
i¼1

ðri � μÞðri � μÞT
#
: (1)
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Using an eigendecomposition, the eigenvalues of K and a matrix Λ ¼
½v1; v2…vL� of the corresponding eigenvectors can be determined.
Defining a linear transformation ξΛðrÞ ¼ ΛTr denoted as principal
component transform, the data sample matrix can be transformed into a
new de-correlated matrix ~X. The l-th component of ~X is obtained by
ξvl ðX

0 Þ ¼ vTl X
0
and is called the l-th principal component. By applying the

transform ξΛ to each sample of X
0
, a set of all principal components is

determined. However, for dimensionality reduction, only those eigen-
vectors are considered that correspond to the largest eigenvalues, and
thus provide the principal components with highest variance [4,11].
3.2. Maximum noise fraction

MNF purposes to determine a set of new components that are ordered
in terms of the image quality of the hyperspectral band images. For that,
the l-th hyperspectral band image of sizeN ¼ nrnc can be represented as a
column observation vector of dimensionality N with bl ¼ ðrl1;rl2;…;rlNÞ.
Let sl and nl be the corresponding signal and uncorrelated noise vector,
the observation model is given by bl ¼ sl þ nl. Assuming the noise
variance to be σ2nl and the observation variance to be σ2bl, the noise frac-
tion (NF) of the l-th hyperspectral band image vector can be defined by
NFl ¼ σ2nl=σ

2
bl . MNF finds the transformation wMNF

l that maximizes NFl:

maxwl
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The transformed band images are then ordered descendingly ac-
cording to their MNF.
3.3. Fisher's linear discriminant analysis

FLDA can be used for supervised dimensionality reduction or super-
vised classification. Its main purpose is to find a linear combination of the
labeled input data, such that the within-class variance is minimized and
the between-class variance is maximized [2]. From a training vector set,
the within-class scatter matrix SW and the between-class scatter matrix SB
can be determined, considering all given classes. The generalized Fisher's
ratio [2] is

JðWÞ ¼ Tr
n
ðWTSWWÞ�1WTSBW

o
: (3)

The purpose of FLDA is to successively find a set of orthogonal feature
vectors represented in the matrix W that maximizes Fisher's ration
defined in 3 and that specifies the classification boundaries among the p
classes. If the p class specific centroids of our L-dimensional input space
are considered, it is noticeable that they lie in an affine subspace of
dimensionality � ðp� 1Þ [2]. If now the dimensionality L of the input
data is much larger than the number of different classes p, which is
normally the case with hyperspectral data, a significant DR can be ach-
ieved by projecting it to this subspace. Consequently, FLDA can also be
applied as a technique for DR.
3.4. Support Vector Machine

Even though an SVM is normally considered as a binary classifier, its
concept can be extended for an application in multiclass classification
problems, e.g. using a set of binary classifiers in a one-vs.-one strategy.
However, for presenting the general concept of the SVM principle, the
mathematical background for a binary SVM is considered. We assume a
linear discriminant function y ¼ gðrÞ ¼ wTrþ b. Let w be a weighting
vector, r the sample data vector and b a constant bias. Assuming a set of
training data fðri; diÞgni¼1, containing the training vectors ri and the cor-
responding binary decisions di, then an SVM finds a weighting vector w
and bias b such that
115
di ¼ 1; if yi ¼ gðriÞ ¼ wTri þ b � 0Þ
�1; if yi ¼ gðriÞ ¼ wTri þ b < 0Þ (4)
�

and such that a margin, defined as distance ρ between the discrimination
function and the closest training vectors of both classes, is maximized. It
can be shown that this distance is defined by ρ ¼ 2=kwk with w being a
normal vector of the hyperplane. This maximization is equivalent to
finding a weight vector w� that minimizes

ΦðwÞ ¼ ð1=2ÞwTw ¼ ð1=2Þkwk2 (5)

subjected to 4 [4]. Those vectors ri of the training data that satisfy the
equality part of 4, are denoted as support vectors.

3.5. Naive Bayes Classifier

An NBC is a probabilistic classifier based on the well-known Bayes'
theorem while considering a ”naive” independence assumption of the
sample data [1]. Defining a set of training vectors fðri; diÞgni¼1, where ri
are the L-dimensional training vectors and di the corresponding decision
labels, and assuming two random variables X and Y, where Y is a discrete
class variable from the set of possible classes fCigpi¼1 and X is feature
variable with its components X1;…;XL from a training sample vector ri,
one is interested in the posteriori probability pðYjXÞ, given by Bayes’
theorem as

pðY jXÞ ¼ pðXjYÞpðYÞ
pðXÞ (6)

pðCijX1;X2;…XLÞ ¼ pðX1;X2;…XLjCiÞpðCiÞ
pðX1;X2;…XLÞ (7)

The dimensionality of X and the variability of Y significantly increase
the sample complexity for the training process and make an exact
learning of the classifier impractical. Thus, an independence assumption
is made, assuming that, for a given Y, all considered features X1;X2;…XL

are conditionally independent of each other. Hence,

pðX1;X2;…XLjCiÞ ¼
YL

j¼1
p
�
Xj

��Ci� (8)

which significantly decreases the number of parameters that have to be
estimated. By using 8 in 7 one obtains

pðCijX1;X2;…XLÞ ¼
QL

j¼1p
�
Xj

��Ci�pðCiÞ
pðX1;X2;…XLÞ : (9)

Looking now for the most probable value of Y leads to the Naive Bayes
classification rule

Y ← arg max
Ci

pðCiÞ
YL

j¼1
p
�
Xj

��Ci� (10)

4. Results and discussion

4.1. Image acquisition and reference image estimation

Co-registered hyperspectral image data sets of PS1 and PS2 were
acquired using the available microspectroscopic devices. Thereby, rasters
of 70 � 70 point measurements were applied according to the afore-
mentioned parameters, leading to hyperspectral images of the regions of
interest presented in Fig. 2a and e, with a corresponding pixel resolution.
To ensure an accurate co-registration of the images, a device-based
registration procedure as described in Section 2.3 was employed be-
tween the individual microspectroscopic measurements. As presented in
Fig. 2b and f, the application of different preprocessing steps, including
outlier removal, normalization, baseline removal and smoothing, resul-
ted in two accurately co-registered image data sets providing sufficiently



Fig. 2. Microscopic brightfield images of regions of interest for PS1 (a) and PS2 (e) and corresponding difference images (b) and (f) from univariate visualizations
representing the Raman image (green) and the IR image (magenta), showing a sufficient registration accuracy of approx. � 1.5 pixel. (c) Additive multimodal RGB-
image from univariate visualization of PS1, consisting of PMMA (blue), SAN (green) and a black colorant (red). (d) 7-class reference image derived by manual color
segmentation of (c) in the HSI color space. Class assignments: 1 (purple - SAN), 2 (dark blue - colorant/SAN), 3 (bright blue - colorant), 4 (cyan - colorant/PMMA), 5
(green - PMMA), 6 (orange - PMMA/SAN), 7 (yellow - background). (g) Additive multimodal RGB image from univariate visualization of PS2, consisting of PEI (blue),
PMMA (red) and PS (green). (h) 7-class reference image derived by a manual color segmentation of (g) in the HSI color space. Class assignments: 1 (purple - PMMA), 2
(dark blue - PMMA/PS), 3 (bright blue - PS), 4 (cyan - PS/PEI), 5 (green - PEI), 6 (orange - PEI/PMMA), 7 (yellow - background). Note that all images have been scaled
for better visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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strong signal amounts for each sample component. In these composite
false-color images, signal amounts shown in magenta represent a uni-
variate visualization derived from the Raman data while signal amounts
shown in green denote the visualization derived from the IR data. Due to
the different spatial resolution of both microspectroscopic concepts, a
registration accuracy of approximately up to �1:5 pixel was achieved,
determined manually at four prominent points of the polymer samples.

A material specific visualization of PS1 and PS2 could be realized by
univariate visualization methods. For that, signal amounts were deter-
mined by a spectral intensity integration of material specific peaks. The
three different signal amounts were assigned to the channels of RGB-
images, leading to color-encoded visualizations of the different sample
components. To ensure the consideration of data from both spectroscopic
approaches in a common visualization, we generated additive multi-
modal RGB-images. As shown in Fig. 2c and g, these images enable suf-
ficient discrimination between pure and mixed material distributions.
This visualization was used to create labeled reference images of 7 classes
for both data sets, applying a manual color segmentation in the HSI color
space and considering spatial information from the corresponding
brightfield images. Considering Fig. 2a and e, segments of different
surface texture and topologies are noticeable, which usually affect the
microspectroscopic measurements. In combination with the complex
spectral signatures of the mixed material distributions, the classification
of the sample components as labeled according to the reference image in
Fig. 2d and h, is considered as a challenging classification task.
4.2. Classification study

The use of complementary information from microspectroscopic data
was investigated in classification tasks by comparing classification rates
for monomodal and multimodal data of PS1 and PS2. DR and feature
extraction transformation were applied to the preprocessed data. For the
multimodal approach, data fusion was performed on the feature level by
concatenating the individual extracted monomodal feature vectors to a
new feature vector of higher dimensionality. A variety of different setups
of supervised classifiers and features were considered. Since supervised
classification is influenced by the composition of the training data, the
training vector sets applied in the learning procedure were further
varied.
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Assuming that the relevant spectral information contained in a
hyperspectral data cube with spectral dimension M is contained in the
first N ≪ M dimensions of its computed feature representation, we
limited the number of selected features and thereby the dimension of the
feature space considered within the individual classification approaches.
More specifically, the monomodal feature vectors used consisted of the
first N¼ 3 (PCA3), N¼ 5 (PCA5) and N¼ 10 (PCA10) principal compo-
nents, the first N¼ 10 (MNF10), N¼ 20 (MNF20) and N¼ 30 (MNF30)
bands of minimum noise fraction as well as the first N¼ 2 (LDA2), N¼ 4
(LDA4) and N¼ 6 (LDA6) features derived by LDA. The generation of the
training data sets was either implemented by sub-sampling the data
matrix with sub-sampling factors of 2 (Sub2) and 5 (Sub5) or by
randomly selecting sets of 5 (Rand5), 15 (Rand15), 25 (Rand25), 35
(Rand35) and 45 (Rand45) feature vectors per class. In the latter case, an
equal class distribution was ensured, and results were presented as
averaged values derived from 100 classification runs per set.

Overall, 189 different setups that combined classifier, features and
training vector sets were investigated. DR by MNF and LDA were carried
out using the MATLAB code provided in Refs. [3,21]. Principal compo-
nents analysis and supervised classification were realized using methods
from MATLAB Statistics and the Machine Learning Toolbox. The training
accuracy of the supervised classifiers was evaluated using 5-fold cross
validation. For classification via SVM, a multiclass model was generated
using a one-versus-one training procedure. In Fig. 3a, the results of the
evaluation of all individual classification setups are shown as a distri-
bution of the highest classification rate that was found concerning a
comparison of classification rates for multimodal and monomodal data.

For PS1, the multimodal approach showed that a clear majority of
97.4% and 96.8% among all classification setups resulted in a numerical
improvement in classification rates and training accuracies, respectively.
In those cases, the mean percentage improvement compared to the IR
method was about 7.4 � 0.7% for classification rates and 7.0 � 0.6% for
training accuracies, with a 95% confidence interval, as presented in
Fig. 3b. In comparison to the Raman method, the classification rate
increased by 8.4 � 1% and training accuracy by 6.9 � 0.8%, on average.
Only in a few cases were higher classification accuracies found for
monomodal IR (0.5%) or Raman (2.1%) data. Comparable results were
found for PS2. Here, 90.5% and 94.2%, of all classification setups led to a
numerical improvement in classification rates and training accuracies,



Fig. 3. (a) Distribution of highest classification rate and training accuracy for PS1 and PS2 considering all classification setups. Percentage of improved classification
rates by multimodal approach (green), percentage of highest classification rate for monomodal IR approach (orange), percentage of highest classification rate for
monomodal Raman approach (blue) and percentage of equal classification rates (yellow). (b) Corresponding averaged improvement of classification rates for
multimodal data compared to monomodal IR data (orange) and compared to monomodal Raman data (blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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respectively. Compared to the Raman method, classification rates
increased by 7.6� 0.7% and training accuracy by 7.8� 0.8% on average.
In comparison to the IR method, the mean percentage improvement in
classification rate was 2.1 � 0.3% and that of training accuracy 3.0 �
0.4%. 9.5% of the classification setups resulted in a higher accuracy for
117
the classification of monomodal IR data. A detailed representation of all
classification rates is shown in Table 1 and Table 2.

We furthermore subdivided the results of improved classification
rates into different classes according to their degree of improvement and
evaluated the corresponding distribution. We differentiated between



Table 1
Classification results for the considered classification setups of PS1. The highest classification rate for the considered setup is colored according to its approach:
Multimodal (MM - green), IR ( IR - orange) and Raman (Ra - blue).

Table 2
Classification results for the considered classification setups of PS2. The highest classification rate for the considered setup is colored according to its approach:
Multimodal (MM - green), IR (IR - orange)and Raman (Ra - blue).
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cases of noticeable improvement (0%–5%), significant improvement (5%–

15%) and remarkable improvement (>15%). As presented in Fig. 4a and b,
184 of 189 individual classification setups led to improved classification
rates with regard to PS1. In comparison to the classification of mono-
modal IR data, 63 setups resulted in a noticeable improvement in classifi-
cation rates. The majority of 105 setups led to a significant improvement
and 16 setups even led to a remarkable improvement. In comparison to the
classification results of monomodal Raman data, 66 classification setups
resulted in a noticeable improvement and 95 in a significant improvement. A
remarkable improvement could be determined in 23 cases. For PS2, 171 of
189 classification setups led to improved classification rates. Fig. 4c and
d shows that the results in comparison to the classification of monomodal
IR data could be subdivided into 159 setups that resulted in a noticeable
improvement and 12 setups that resulted in a significant improvement. In
comparison to the Raman method, the classification of multimodal data
resulted in a noticeable improvement for 67 cases and for 82 cases in a
118
significant improvements. For 22 classification setups, a remarkable
improvement could be achieved.

The results can be supported by taking the classification rates of PS1
as presented in Table 1 into account. In addition to the improvements in
classification rates that have generally been achieved for the multimodal
approach, the sensitivity of the results towards the composition of the
classification setups is of interest. Here, the degree of classification
improvement realized by consideration of multimodal data varies be-
tween less than 1% and more than 30%. For randomly chosen training
data sets consisting of few feature vectors (Rand5 and Rand15), a high
variation in classification results and thus a high sensitivity towards the
chosen features could further be recognized. Exceptional cases exists
where classification of monomodal data even resulted in a higher accu-
racy on average. Nevertheless, the clear majority of the considered
classification setups led to numerical improvements after using concat-
enated features from both spectroscopic methods, emphasizing the



Fig. 4. Partitions of classification setups according to their degree of improvement (a) Partition for PS1 in comparison to the IR method (b) Partition for PS1 in
comparison to the Raman method (c) Partition for S2 in comparison to the IR method. (d) Partition for PS2 in comparison to the Raman method.
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potential of a multimodal approach. The results of PS2 presented in
Table 2 can be interpreted similarly and show comparable outcomes. But
even though the clear majority of setups resulted in a numerical
improvement for classification of multimodal data, a considerable
number of cases where only a marginal difference in classification rates
could be determined should be pointed out. Especially the IR method
shows good, in some cases even better results, compared to the
Fig. 5. Class dependent distribution of highest classification rates for all classification
PS1 (a) and PS2 (c). Percentage of improved classification rates by multimodal appro
(orange), percentage of highest classification rate for monomodal Raman approac
dependent improvement of classification rates for multimodal data compared to mono
and PS2 (d). (For interpretation of the references to color in this figure legend, the
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multimodal approach, without any recognizable dependency on the
training data sets or the dimensionality of the feature space.

A comparison of the class dependent results for classification of
monomodal andmultimodal data showed that all classes provided by PS1
generally have a higher sensitivity for the multimodal approach. As
presented in Fig. 5a, a clear majority of at least 60% of all classification
setups resulted in higher classification rates across the classes. Here, class
setups considering classification results for monomodal and multimodal data of
ach (green), percentage of highest classification rate for monomodal IR approach
h (blue) and percentage of equal classification rates (yellow). Averaged, class
modal IR data (orange) and compared to monomodal Raman data (blue) PS1 (b)
reader is referred to the Web version of this article.)
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membership assignments of the pixel vectors were done according to the
reference image in Fig. 2d, where Class 1 (SAN), Class 3 (colorant), Class 5
(PMMA) and Class 7 (background) correspond to spectral signatures of
pure material distributions, and Class 2 (colorant/SAN), Class 4
(colorant/PMMA) and Class 6 (PMMA/SAN) to spectral signatures of
mixed materials. Fig. 5b illustrates that Class 2 and Class 4 show a high
averaged reduction in error rates. It should be noted that these classes
represent mixed-material targets that are providing more complex
spectral signatures. Comparable results could be achieved for PS2 and are
presented in Fig. 5c and d, where class membership assignments of the
pixel vectors were done according to the reference image in Fig. 2h, with
Class 1 (PMMA), Class 3 (PS), Class 5 (PEI) and Class 7 (background)
representing spectral signatures of pure material distributions, and Class
2 (PMMA/PS), Class 4 (PS/PEI) and Class 6 (PEI/PMMA) representing
spectral signatures of mixed materials. Here, the multimodal approach
led to an improved classification rate for all processed sample compo-
nents. Only Class 7, which represents the gold mirror background of the
sample that does not provide a material specific spectral signature,
resulted in more accurate classification rates for the monomodal IR data.
Even here, the noticeable averaged reduction of the error rates con-
cerning Class 2, Class 4 and Class 6, representing mixed-material targets
for PS2, could be observed.

4.3. Complementarity of features

The spectral data presented in Fig. 6 show exemplary that the mon-
omodal feature vectors have the potential to complement each other
meaningfully in terms of material-specific information content. The
illustrated Raman and IR spectra show normalized spectral signatures of
the polymers of PS1. In this example, PCA was applied for dimensionality
reduction. Thus, a set of loading values has been obtained while deter-
mining each principal component, giving information about how the
different variables contribute to the corresponding principle component.
Since high loading values represent a high contribution of the
Fig. 6. Exemplary spectral signatures of pure material distributions for components
PMMA, (d) Raman spectrum of PMMA, (e) IR spectrum of black colorant, (f) Raman s
value concerning the determination of the first 3 principal components and thus, repr
computation. (For interpretation of the references to color in this figure legend, the
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corresponding variable, we marked the variables that provide the highest
loading values for the determination of the first 3 principal components.
For the IR spectra, it can be shown that these variables are assignable to
material-specific peaks of only two different sample components.
Consequently two variables of material-specific information content are
of high influence in the corresponding classification approach. Here, an
accurate classification of the spectral signatures might be challenging in
the corresponding feature space, since three different components were
used to prepare the sample. A similar situation occurred for the Raman
spectra. Here, the variables are also assignable to material-specific peaks
of only 2 different sample components. Furthermore, the variables with
the greatest impact on the estimation of the first and the third principal
component are identical. Hence, a successful classification of all spectral
signatures on the basis of the first 3 principal components might become
difficult. By concatenating the monomodal feature vectors, the corre-
sponding feature space is extended in such a way that at least one
material-specific variable from the IR or the Raman data is of high in-
fluence concerning the classification potential provided by the first 3
principal components of both spectroscopic data sets. Consequently, the
extension of the feature space is considered to be meaningful in terms of
material-specific spectral information content and not to be dominated
by noisy or material-independent parts of the spectra. With regard to
Table 1, the results of classification setups for PS1, considering the first 3
principal components (PCA3), support these assertions as well. The
spectral data presented in Fig. 7 allow to discuss the difference between
the results of PS1 and PS2. Analogous to the spectral data of PS1,
normalized material-specific signatures of the sample components are
shown and the variables with the highest impact on the principal com-
ponents estimation are marked. With regard to the Raman spectra, two
variables represent material-specific peaks of two components. The third
variable can be assigned to a peak that is observable in the spectral sig-
natures of all materials, only varying in its intensity. Hence, the classi-
fication of the materials by considering the first 3 principal components
of the Raman spectra might be challenging. In contrast, the variables that
of PS1. (a) IR spectrum of SAN, (b) Raman spectrum of SAN, (c) IR spectrum of
pectrum of black colorant. The red stars mark the variables with highest loading
esent the variables with the highest influence on the first 3 principal components
reader is referred to the Web version of this article.)



Fig. 7. Exemplary spectral signatures of pure material distributions for components of PS2. (a) IR spectrum of PEI, (b) Raman spectrum of PEI, (c) IR spectrum of
PMMA, (d) Raman spectrum of PMMA, (e) IR spectrum of PS, (f) Raman spectrum of PS. The red stars mark the variables with highest loading value concerning the
determination of the first 3 principal components and thus, represent the variables with the highest influence on the first 3 principal components computation. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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were determined for the IR spectra can be assigned to different material-
specific peaks, each representing one of the sample components.
Consequently, the spectral signatures generated by the IR method pro-
vide a greater potential for a satisfying discrimination in the feature
space defined by the first 3 principal components. The constantly high
classification rates for PS2 with regard to the IR data support this
assumption. Nevertheless, an extension of the feature space by features
derived from the complementary spectroscopic approach led to improved
classification rates for PS2, emphasizing that considering additional
spectral information is beneficial in classification tasks, even for mono-
modal spectral signatures with high discrimination power.

5. Conclusions

The objective of the investigation presented in this contribution was
to show that multimodal data derived from Raman and IR micro-
spectroscopy contains complementary information that has the potential
to improve the classification rates of hyperspectral material signatures,
compared to the monomodal classification approaches. We have
furthermore assumed that the complementarity is especially helpful in
cases of challenging classification tasks, where a certain degree of data
complexity is given. Within the scope of this contribution, data
complexity was increased by rapid raster measurements of multiclass
polymer samples, providing classification targets of pure and mixed
materials. It could be shown that a feature-level fusion of information,
extracted by statistic-based DR techniques, led to a numerical improve-
ment for a clear majority of different classification setups, varying in
features, training data and classification models. The results indicate that
features derived from both spectroscopic approaches complement the
feature space for classification tasks in a meaningful way.

We conclude that the benefit of applying a multimodal approach in
vibrational microspectroscopy could successfully be demonstrated,
121
especially by exemplary emphasizing a meaningful extension of the
feature space. In addition, it could be demonstrated that the results
depend on the choice of features, classification models and training data
sets. Although the presented results give a promising indication of the
impact of a multimodal vibrational microspectroscopic approach, it has
to be stated that these conclusions are based on the analysis of artificially
generated samples. Thus, the components that have been used to prepare
the microscopic samples are of materials that provide a high activity and
good spectral discriminative properties for both measurement concepts.
For the different fields of research where vibrational microspectroscopy
is of importance, a multimodal concept of Raman and IR approaches still
has to prove itself. Nevertheless, in accordance with [9], the results
presented in this contribution strongly support the concept of a multi-
modal approach in vibrational microspectroscopy and its application as
an advanced method for challenging analytical and classification tasks.
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