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Apple replant disease (ARD) is a soil-borne disease, which is of particular importance for
fruit tree nurseries and fruit growers. The disease manifests by a poor vegetative
development, stunted growth, and reduced yield in terms of quantity and quality, if
apple plants (usually rootstocks) are replanted several times at the same site. Genotype-
specific differences in the reaction of apple plants to ARD are documented, but less is
known about the genetic mechanisms behind this symptomatology. Recent
transcriptome analyses resulted in a number of candidate genes possibly involved in
the plant response. In the present study, the expression of 108 selected candidate genes
was investigated in root and leaf tissue of four different apple genotypes grown in
untreated ARD soil and ARD soil disinfected by g-irradiation originating from two
different sites in Germany. Thirty-nine out of the 108 candidate genes were differentially
expressed in roots by taking a p-value of < 0.05 and a fold change of > 1.5 as cutoff.
Sixteen genes were more than 4.5-fold upregulated in roots of plants grown in ARD soil.
The four genesMNL2 (putative mannosidase); ALF5 (multi antimicrobial extrusion protein);
UGT73B4 (uridine diphosphate (UDP)-glycosyltransferase 73B4), and ECHI (chitin-
binding) were significantly upregulated in roots. These genes seem to be related to the
host plant response to ARD, although they have never been described in this context
before. Six of the highly upregulated genes belong to the phytoalexin biosynthesis
pathway. Their genotype-specific gene expression pattern was consistent with the
phytoalexin content measured in roots. The biphenyl synthase (BIS) genes were found
to be useful as early biomarkers for ARD, because their expression pattern correlated well
with the phenotypic reaction of the Malus genotypes investigated.

Keywords: apple replant disease (ARD), gene expression, BioMark HD microfluidic system, high-throughput qRT-
PCR, phytoalexins, greenhouse bio-test, soil properties, Malus genotypes
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INTRODUCTION

Replanting apple trees at a sitepreviouslyoccupiedbyanappleplant
leads to stunted shoot growth with shortened internodes, root
damage, root tip necrosis, and reduction of functional root hairs
(Caruso et al., 1989;Mazzola, 1998;Mazzola andManici, 2012; Yim
et al., 2013; Grunewaldt-Stöcker et al., 2019). These symptoms are
referred toas apple replantdisease (ARD).ARDrepresents a serious
economic risk for treenurseries andorchards as it leads todecreased
and delayed fruit yields and reduced fruit and tree quality (Mazzola,
1998; Mazzola and Manici, 2012). At worst, a site strongly affected
by ARD may become unprofitable for further apple cultivation
(Geldart, 1994; Peterson and Hinman, 1994; Utkhede and Smith,
1994; Isutsa and Merwin, 2000).

Biotic agents represent the main causes of ARD as
demonstrated by various disinfection experiments (Mazzola,
1998; Yim et al., 2013; Spath et al., 2015). Winkelmann et al.
(2019) defined ARD as “a harmfully disturbed physiological and
morphological reaction of apple plants to soils that faced
alterations in their (micro)biome due to previous apple
cultures.” There is substantial evidence that the changes in the
soil biota trace back to root exudates and material from
decomposing apple roots (Börner, 1959; Wittenmayer and
Szabó, 2000; Hofmann et al., 2009; Winkelmann et al., 2019).
Up to now, no practicable counteraction against ARD is
available. The most employed countermeasures, crop rotation
and soil disinfection, are unfeasible due to either environmental
hazards or high costs (Winkelmann et al., 2019). In order to
develop novel strategies against ARD, both the reactions of the
apple plant and the etiology of the disease should be understood
in more detail (Weiß et al., 2017b; Winkelmann et al., 2019).

Recent transcriptomic analyses revealed the induction of
genes associated with biotic stress response in roots of apple
plants grown in ARD soil (Weiß et al., 2017a; Weiß et al., 2017b).
This corresponds well with the findings, that parasitic fungi and
oomycetes of the genera Cylindrocarpon (Tewoldemedhin et al.,
2011b; Mazzola and Manici, 2012; Franke-Whittle et al., 2015;
Manici et al., 2015), Phytophthora (Tewoldemedhin et al., 2011a;
Mazzola and Manici, 2012), Pythium (Tewoldemedhin et al.,
2011a; Mazzola and Manici, 2012; Manici et al., 2013), and
Rhizoctonia (Tewoldemedhin et al., 2011a; Mazzola and Manici,
2012; Manici et al., 2013) are enriched in ARD soil in comparison
to healthy or disinfected soil. In particular, genes of the biphenyl
biosynthetic pathway were rapidly activated in the roots of apple
plants grown in ARD soil (Zhu et al., 2014; Zhu et al., 2016; Weiß
et al., 2017a; Weiß et al., 2017b). Phytoalexins like biphenyls and
dibenzofurans are known to act in an induced defense
mechanism against biotic stressors, such as fungi and bacteria
(Ahuja et al., 2012; Chizzali et al., 2012b; Chizzali and Beerhues,
2012; Chizzali et al., 2013). Interestingly, the activation of
phytoalexin biosynthesis genes was also found when the plants
were inoculated with Pythium ultimum, one component of the
ARD complex (Shin et al., 2016b; Zhu et al., 2016). Along with
the elevated gene expression, individual phytoalexin compounds
were found in higher abundances in roots growing in ARD soils
(Weiß et al., 2017b).
Frontiers in Plant Science | www.frontiersin.org 2
Additional phenolic compounds play a role in the ARD
response, which were shown to accumulate in response to
infected soil and may indicate the occurrence of oxidative
stress (Henfrey et al., 2015). Especially the dihydrochalcones
phloridzin and phloretin have been found highly abundant in
apple root exudates and root debris (Hofmann et al., 2009;
Emmett et al., 2014; Nicola et al., 2016; Leisso et al., 2018).
They act against pathogens and as scavengers of reactive oxygen
species (Börner, 1959; Emmett et al., 2014; Henfrey et al., 2015).
An upregulation of flavonol metabolism genes was also found in
apple roots under replant conditions (Weiß et al., 2017a; Weiß
et al., 2017b) and upon infection with P. ultimum (Shin et al.,
2014; Zhu et al., 2014; Shin et al., 2016b; Zhu et al., 2019).

Further genes upregulated under ARD conditions are
involved in auxin, ethylene, jasmonate, and cytokinin
biosyntheses and signaling (Shin et al., 2014; Shin et al., 2016b;
Weiß et al., 2017a; Zhu et al., 2019). Salicylic acid, ethylene, and
jasmonic acid are important signaling compounds in the biotic
stress defense response (Glazebrook, 2005; Broekaert et al., 2006).
Moreover, ethylene can induce the biosynthesis of phytoalexins
derived from the phenylpropanoid pathway (Kamo et al., 2000;
Chung et al., 2001; Ishigaki et al., 2004). Biotic stress signaling
involves the activation of signal transduction pathways and the
activation of a number of transcription factors. As plant shoot
and root growth are strongly altered by ARD, changes in auxin,
cytokinin, abscisic acid, and gibberellin homeostasis and
signaling are expected to occur.

In this study, we compared the expression of 108 candidate
genes (CGs) that were supposed to be involved in the reaction of
apple to ARD soil. The majority of these CGs were selected from
the transcriptomic data available fromWeiß et al. (2017a 2017b))
andWeiß andWinkelmann (2017). These CGs were shown to be
differentially expressed in roots and leaves of the ARD-sensitive
apple rootstock M26 grown in untreated ARD soil and
disinfected ARD soil. Further CGs were chosen based on the
literature with a focus on the following functional categories:
flavonoid biosynthesis, oxidation–reduction processes, jasmonic
acid–mediated signaling and responses to wounding, defense,
and auxin metabolism (Dal Cin et al., 2009; Milcevicova et al.,
2010; Devoghalaere et al., 2012; Dugé De Bernonville et al., 2012;
Shin et al., 2014; Qian et al., 2016; Shin et al., 2016a). CG
expression was compared between four apple genotypes with
different genetic background and different susceptibility/
tolerance towards ARD. The apple genotypes were grown in a
bio-test using ARD soil from two different ARD sites.

The objectives of the present study were: (I) to evaluate the
expression of 108 CGs in response to ARD in roots and leaves of
plants tested in a greenhouse bio-test using a high-throughput
microfluidic approach, (II) to determine the influence of the
Malus genotype on the quantitative expression of the CGs, and
(III) to correlate the gene expression data to both the ARD
severity measured in the bio-test employing two different ARD
soils and the phytoalexin contents detected in roots. The results
provide new insights into genotypic differences in the complex
reaction to ARD and give new hints to mechanisms contributing
to ARD sensitivity or tolerance.
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MATERIAL AND METHODS

Soil Origin and g-Irradiation
ARD soil from the two sites Heidgraben (53°41'57.5"N, 9°
40'59.6"E) and Meckenheim (50°37'8.5"N, 6°59'25.4"E) was
sampled at a depth of 0–20 cm. The soil from Heidgraben is
an entic podzol, and that from Meckenheim was classified as a
haplic luvisol developed from loess (Mahnkopp et al., 2018).
The detailed soil properties are described in Table 1. On the
sampled Heidgraben plots, ARD had been induced by four times
replanting of Malus domestica Borkh. cv. ‘Bittenfelder’ as
described in detail by Mahnkopp et al. (2018). The
Meckenheim site has been in use for apple variety tests
grafted on the rootstock M9 since 2006. Replanting took place
in the years 2010 and 2017 (G. Baab and L. von Schoenebeck,
personal communication).

Both soils were sieved through an 8 mm mesh. Half of each
soil volume was filled into autoclavable bags in portions of 10–
15 L. The soil was g-irradiated with a minimum dose of 10 kGy
(recorded dosages: minimum 10.87 kGy, maximum 31.96 kGy,
BGS Beta-Gamma-Service, Wiehl, Germany) by which most
fungi, bacteria, and invertebrates are killed (McNamara et al.,
2003). Hereafter, the untreated ARD soil will be denoted as ARD
soil and the ARD soil disinfected by g-irradiation as gARD soil.

The effect of the g-irradiation was confirmed by plating
diluted soil solutions on growth media selective for bacterial or
fungal growth (Balbín-Suárez et al., personal communication).
Bacterial colony-forming units (CFUs) were counted after 2 days
and fungal CFUs after 7 days. Briefly, 9 mL of 0.85% NaCl
solution (saline) were added to 1 g of soil under sterile conditions
and vortexed for 2 min. After settling of the soil particles, serial
dilutions (factor 10) of the supernatant were made by mixing
100 µL soil solution with 900 µL saline. For each of the four soil
variants, two samples were taken for plating. For the g-irradiated
soil samples, 100 µL of the 1:10 and 1:100 dilution were plated;
for the untreated soil variants, dilutions 1:100, 1:1,000, and
1:10,000 were plated. Each plating was carried out in
triplicates. The culture media used were Reasoner's 2A agar
(R2A agar, Carl Roth, Karlsruhe, Germany) supplemented with
100 mg L−1 cycloheximide for bacteria and Potato Dextrose Agar
(PDA, Merck, Darmstadt, Germany) supplemented with 100 mg
L−1 penicillin, 10 mg L−1 tetracycline, and 50 mg L−1

streptomycin for fungi. The plating was carried out twice,
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before and after storage of the g-irradiated and untreated soils,
to evaluate an effect of the storage (Table S3).

Plant Material and Experimental Setup
Plants of the apple genotypes M26, M9, B63, and the Malus ×
robusta accession MAL0595 were used. B63 is an offspring of the
cross (M. purpurea ‘Eleyi’ × M. sieboldii) × M9 and was derived
from a breeding program for resistance to apple proliferation
disease (W. Jarausch, personal communication). The accession
MAL0595 was derived from the Malus gene bank collection of
the Julius Kühn-Institut (Dresden-Pillnitz, Germany). All
genotypes were propagated in vitro via axillary shoots on a
modified MS medium (Murashige and Skoog, 1962) containing
3% sucrose, 0.5 µM indole-3-butyric acid (IBA), and 4.4 µM 6-
benzylaminopurine (BAP). For M9, 2 mL L−1 Plant Preservative
Mixture (PPM, Plant Cell Technology, Washington DC, USA)
was added to the culture medium in order to control growth of
endophytic bacteria. MAL0595 subculture was carried out once
with MS medium containing 3% sucrose, 0.5 µM IBA, and
4.54 µM Thidiazuron (TDZ) to increase the number of shoots
obtained. All in vitro cultures were incubated at 24°C with a 16 h
photoperiod provided by Philips MASTER TL-D 58W/865
fluorescence tubes at a PPFD (Photosynthetic Photon Flux
Density) of 35–40 µmol m−2 s−1.

In vitro rooting was induced by transferring the 5-week-old
shoots to ½ MS medium supplemented with 2% sucrose and
4.92 µM IBA (Weiß et al., 2017a). The rooting percentages
determined 2 weeks after transfer to rooting medium were 95.8%
for M26 (n = 168), 8.9% for M9 (n = 168), 64.8% for B63 (n = 168),
and 31.4% for MAL0595 (n = 242) respectively. All plants were
transferred to peat substrate (Steckmedium, Klasmann-Deilmann
GmbH, Geeste, Germany). For acclimatization, the shoots were
cultivated under covers to ensure high humidity. During
acclimatization, the plants were adapted to greenhouse conditions
by gradually reducing the air humidity. After about 4 weeks, the
plants were introduced to the bio-test. ARD and gARD soils from
Heidgraben andMeckenheimwere supplementedwith 2 g L−1 of the
slow-release fertilizer Osmocote Exact 3-4M (16-9-12+2MgO+trace
elements, https://icl-sf.com) and filled into fifteen 0.4 L pots for gene
expression samples and ten 1 L pots per soil variant and genotype for
growth parameters. TheM9 rootstock was tested with only 12 plants
due to poor rooting and acclimatization, 6 in Heidgraben ARD soil
and 6 in gARD soil in 0.4 L pots for gene expression analysis.

The greenhouse experiment took place from August 9, 2017,
to September 7, 2017, at the campus Herrenhausen (Gottfried
Wilhelm Leibniz University Hannover, Hanover, Germany).
All 312 plants were randomly arranged and cultivated at
22.4 ± 2.8°C and a relative air humidity of 68.2 ± 8.2%.
Additional light was provided whenever solar irradiation fell
below 25 klx to provide 16 h of daylight. Plant protection against
thrips was carried out according to horticultural practice. Shoot
length was measured on a weekly basis.

After 7 days, all plants for gene expression analysis were
harvested and carefully removed from the soil. Whole root
systems were washed gently in tap water and dried with paper
towels, and the three youngest fully developed leaves were
sampled. Root and leaf samples were transferred to 2 mL
TABLE 1 | Major properties of soils from the two apple replant disease (ARD)
sites Heidgraben and Meckenheim at 0–20 cm depth.

Site Particle size
distribution

SOC
[g kg−1]

Ntotal

[g kg−1]
pH

(CaCl2)
CaCO3

[g kg−1]

Sand
[%]

Silt
[%]

Clay
[%]

Heidgraben 92.9 2.8 3.1 25.4 1.54 5.3 <0.1
Meckenheim 6.9 72.0 21.1 12.3 1.5 6.7 <0.1
Particle size distribution, total carbon and nitrogen (Ntotal) are displayed. Soil organic
carbon (SOC) represents total carbon due to the absence of carbonate (CaCO3).
February 2020 | Volume 10 | Article 1724
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reagent tubes, immediately frozen in liquid nitrogen, and stored
at −80°C until RNA isolation.

Ten plants per variant representing 10 biological replicates
(except of M9) were harvested after 4 weeks for determining
growth parameters. Single plants died off (resulting in only nine
biological replicates) from the following variants (Table S1):
MAL0595 in Heidgraben ARD, B63 in Meckenheim ARD, and
MAL0509 in Meckenheim gARD. Plant quality was assessed
visually by inspection of root color and habitus. Plant growth was
determined by measuring shoot length as well as shoot and root
fresh masses. Roots of four to five plants per variant were
lyophilized for 3 days and used for dry mass evaluation and
phytoalexin analysis after freeze-drying for 3 days.

RNA Isolation and First Strand
cDNA Synthesis
From 15 plants of each of the genotypes M26, B63, and
MAL0595, five pools containing 3 single plants each, i.e. five
biological replicates, were established for each of the four soil
variants. For M9, only 12 plants were available. These plants were
grown in Heidgraben soil, six in gARD soil and six in ARD soil,
respectively. For M9, two pooled samples containing three plants
each were created for each of the two soil variants. Selection of
the plants for each pool was carried out with regard to shoot
length to achieve a similar mean shoot length among the pools.

The pooled samples were homogenized in a Mixer Mill at 27 Hz
for 1 min (Mixer Mill MM400, Retsch, Haan, Germany) cooled
with liquid nitrogen. Total RNA was extracted from 100 mg of
frozen ground plant material with RP lysis buffer using the InviTrap
Spin Plant RNA Mini Kit (Stratec, Birkenfeld, Germany) according
to the manufacturer's instructions. Genomic DNA was removed
with DNase I (Thermo Scientific, Waltham, MA, USA) following
themanufacturer's instructions. RNA concentration and quality was
determined spectrophotometrically (NanoDrop 2000c, Peqlab,
Erlangen, Germany). The integrity was checked on a 1% agarose
gel. The isolated RNA was stored at −80°C until first strand cDNA
synthesis using the RevertAid First Strand cDNA Synthesis Kit
(Thermo Scientific, Waltham, MA, USA) together with oligo dT
primers and 1 µg RNA as template. The resulting cDNAwas diluted
10-fold in nuclease-free water and stored at −20°C until use. The
success of cDNA synthesis and the exclusion of genomic DNA
contaminations was verified in a standard PCR with the primer pair
EF1-for/-rev (EF1-for ATTGTGGTCATTGGYCAYGT; EF1-rev
CCAATCTTGTAVACATCCTG) using 1 µl of the diluted
cDNA as well as 1 µl of the RNA preparation (Boudichevskaia
et al. (2009). PCR products resulting from genomic DNA and
cDNA differ in fragment size (905bp/707bp), whereas no product
should be generated using RNA.

Primer Selection and RT-qPCR Validation
The CG primer set was compiled on the basis of genes differentially
expressed in root and leafmaterial ofMalus rootstockM26 grown in
ARD soil compared to gARD soil (Weiß et al. 2017a; Weiß et al.
2017b; Weiß and Winkelmann, 2017). Additionally, known
pathogen and stress-related genes focusing on plant hormone
signaling of Malus and Arabidopsis thaliana described in the
Frontiers in Plant Science | www.frontiersin.org 4
literature were selected (Dal Cin et al., 2009; Milcevicova et al.,
2010; Devoghalaere et al., 2012; Dugé De Bernonville et al., 2012;
Shin et al., 2014;Qianet al., 2016; Shin et al., 2016a;Weiß et al., 2017a;
Weißet al., 2017b).A full list of all primers isprovided inTableS2.All
primers were validated in silico using the software program FastPCR
v6.6 (PrimerDigital Ltd, Helsinki, Finland) (Kalendar et al., 2017) by
calculating theoretical PCR results using theMalus × domestica.v1.0.
consensus_CDS database obtained from http://www.rosaceae.org.
The program predicted possible PCR products with a length of 50–
3,000 bp, with one mismatch allowed at the 3'-end.

New primers were designed using the Primer3 web tool with the
followingparameters: primer length18–24bp, amplificationproduct
100–200 bp, TM = 59–61°C, CG content 40–60%. The specificity of
the new primers was also tested in silico as described. Primer
sequences with proven specificity to the target gene sequence were
checked for sufficient amplification efficiency with RT-qPCR. The
Elongation factor 1-a [MDP0000304140], Elongation factor 1b-like
[MDP0000903484], Tubulin beta chain [MDP00009551799],
Ubiquitin-conjugating enzyme E2 10-like [MDP0000140755], and
Actin-7 [MDP0000774288] were used as reference genes according
to Weiß et al. (2017a). Each primer combination (75 nM each
primer) was analyzed with three technical replicates using the
Maxima SYBR Green master mix (Thermo Fisher Scientific,
Schwerte, Germany). All primers were tested at an annealing
temperature of 60°C and cDNA of the apple rootstocks M9, M26,
CG41 and the wild apple genotypeMalus × robusta 5 (accession no.
MAL0991) grown in untreatedARD soil, since no cDNAof B63 and
MAL0595was available at this time. RT-qPCRwas performed on an
iCycler iQRealTimePCRDetectionSystem(Bio-Rad)withan initial
denaturation of 3min at 94°C followed by 40 cycles of 1min at 94°C,
1 min at 60°C, and 1 min at 72°C. The PCR products were analyzed
bymelt-curve analysis of 55°C to 80°Cwith an increment of 0.5°C for
10 s each step. Data were recorded with the software package Genex
(Bio-Rad, München, Germany). PCR efficiencies were calculated
using the software program LinRegPCR (Ramakers et al., 2003;
Ruijter et al., 2009). The PCR efficiencies presented in Table S2 are
mean values of all samples per primer combination, where expected
amplicons (based on melting temperature) were detectable. Primer
pairs producing more than one distinct peak in the melt-curve
analysis were assigned as not specific. These primers were rejected
from further RT-qPCR analysis.

To test the specificity of the primers used to amplify the genes
B4Ha and B4Hb (Table S2), an amplicon deep sequencing was
conducted. The sequence analysis proved the B4Hb primers to be
highly specific. The sequencing results also showed that the B4Ha
amplicon is present in both B4Ha and B4Hb. This means that the
primers for B4Ha are not gene-specific. This limited specificity
should be considered for the interpretation of the respective data.

Expression Analysis Using
Quantitative PCR
RT-qPCR was performed using the BioMark HD high-throughput
system (Fluidigm, South San Francisco, California, USA) by
analyzing 128 individual samples, consisting of 64 root and leaf
samples respectively, with 116 primer pairs (including 5 primer pairs
for reference genes) using six Dynamic Array™ integrated fluidic
February 2020 | Volume 10 | Article 1724
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circuits (96.96 IFCs, Fluidigm, South San Francisco, California,
USA). The sample design included five biological replicates for
each genotype (B63, M26 and MAL0595), soil treatment, and soil
origin. For M9, only samples of the Heidgraben soil were analyzed
with only two replicates of each soil treatment (ARD/gARD). The
entire analysis included two technical repetitions for each biological
replicate. Default space on these IFCs allowed the analysis of 96
samples with 96 primers in one run.

For specific target amplification, 1.25µLcDNAwaspre-amplified
in a mixture with 0.5 µL of pooled primers (final concentration, 500
nM), 2.5 µL of 2× PreAmp Master Mix (Applied Biosystems,
Carlsbad, CA, USA), and 0.75 µL of water. The cycling program
was as follows: 95°C for 10min, followed by 14 cycles of 95°C for 15 s
and60°C for 4min.Afterwards, thePCRreactionswere purifiedwith
exonuclease (20 U µL−1) and diluted 1:5 with Teknova-DNA
suspension buffer (VWR, Darmstadt, Germany). The qPCR was
performed in 96.96 Dynamic Array™ IFCs (Fluidigm, South San
Francisco, CA,USA) following themanufacturer's instructions. Each
assay inlet contained5µLof anassaymixconsistingof 0.5mMprimer
mix, 2.5 µL assay loading reagent (Fluidigm), and 2.25 µL 1× TE
buffer assay reagent. The Fluidigm sample premix contained 2.25 µL
of the pre-amplified sample, 2.5 µL of 2× SsoFast EvaGreen supermix
with low ROX (Bio-Rad, München, Germany), and 0.25 µL of 20×
Binding Dye Sample Loading Reagent (Fluidigm). The cycling
program was: 1 min at 95°C, followed by 30 cycles of 96°C for 5 s
and 20 s at 60°C plus melting curve analysis.

Extraction and Analysis of Phytoalexins
At the final evaluation of the experiment (4 weeks after potting), the
root systems of the genotypes M26, B63 and MAL0595 were
combined to obtain two pools (i.e. two biological replicates
composed of roots of four to five plants) per soil variant. The roots
were lyophilized for 3 days (alpha 1-2 LDplus, Christ, Osterode,
Germany). The dry roots were homogenized in a mixer mill (Mixer
Mill MM400, Retsch, Haan, Germany) with steel beads. Before
phytoalexin extraction, 4-hydroxybiphenyl (50 µg) was added to
each sample (around 100 mg DW each) as internal standard for
quantification in gas chromatography–mass spectrometry (GC-MS)
measurement. The samples were extracted with 1 mL methanol by
shaking in a Vortex Genie 2 (Scientific Industries, Bohemia, NY,
USA) for 20min. The extracts were centrifuged at room temperature
at 13,000 rpm for 10min. An aliquot of the supernatant (200 µL)was
transferred to a new 1.5 mL Eppendorf tube and dried under a
constant air stream. The residue was re-suspended in 200 µL ethyl
acetate and centrifuged at 13,000 rpm for 10min. The resulting clear
supernatant was transferred to a GC-MS vial with a glass inlet. After
removal of the ethyl acetate by air stream, 50 µL N-trimethylsilyl-N-
methyl trifluoroacetamide (MSTFA) was added to the inlets for
derivatization at 60°C for 30 min. The samples were then measured
by GC-MS, as described previously (Hüttner et al., 2010).

Data Analysis and Statistical Evaluation
A mean PCR efficiency (quality score) was calculated using the
Fluidigm Real-Time PCR Analysis Software v4.3.1 (Fluidigm,
South San Francisco, CA, USA). Therefore, each individual
amplification curve was compared to an ideal exponential
curve. The closer the amplification curve is to the ideal, the
Frontiers in Plant Science | www.frontiersin.org 5
quality score approaches 1. The further the curve is from ideal,
the quality score approaches 0. Only quality score values above
0.65 (an arbitrary threshold set by Fluidigm) passed the quality
check. Curves that fail the quality threshold were excluded from
further calculations. Considering the quality threshold and the
quantification cycle (Cq), separate DCq values for sample and
control were calculated. This was done on basis of the following
formulas:

Sample  DCq = DCq Candidate gene   ARD soilð Þ
− DCq reference gene   ARD soilð Þ

Control  DCq = DCq Candidate gene   gARD soilð Þ
− DCq reference gene   gARD soilð Þ

The reference genes were validated according to their stability
using NormFinder (Andersen et al., 2004). All reference genes
with stability values below 0.25 were included in the DCq value
calculation, so that depending on the IFC, three to five reference
genes were considered in the control DCq calculation. The DDCq
value was calculated by subtracting the control DCq value from
the sample DCq value, which resulted in the relative gene
expression (fold change, 2−DDCq) (Livak and Schmittgen, 2001).
Throughout this paper, gene expression is presented as relative
expression level in ARD soil compared to the expression in
gARD soil, which was set to be one.

The test for normal distribution was carried out with the
Shapiro–Wilk test using SAS version 9.4 (SAS, NC, USA). The
effect on gene expression of different soil treatments (ARD soil and
gARD soil) was tested with the analysis of variance (ANOVA) also
using SAS version 9.4. Furthermore, the effect of genotype and soil
origin (type) on gene expression was tested using the ANOVA
procedure MIXED in SAS version 9.4. The STRING database
(Szklarczyk et al., 2017) was used to predict the interaction of the
detected differentially expressed genes (DEGs).

Data on shoot length, fresh and dry masses, and phytoalexin
content were evaluated using R version 3.5.1 (R Development
Core Team, 2011) in R Studio version 1.1.45. The data were
checked for a Gaussian distribution and log transformed, if
necessary. A linear model was fitted for each parameter, and
an ANOVA was calculated. Multiple comparisons of means
(Tukey test) were carried out using the R package “multcomp”
version 1.4-8 (Hothorn et al., 2008).

Using the software program SAS version 9.4. Pearson's
correlation was analyzed between the phenotypic data (shoot
length and fresh biomass) and the fold change values of selected
phytoalexins as well as CGs.
RESULTS

Phenotyping of the Genotypes After
4 Weeks
Plating of the soil solution proved the success of the soil
disinfection with the significant reduction in bacterial and
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fungal colony-forming units (CFUs) (Table S3). Plant growth of
the genotypesM26, B63, andMAL0595 was negatively affected by
ARD.After 4weeks of cultivation inARD soil, shoots were smaller
with lower biomasses for B63 and M26, but not for MAL0595
(Tables 2 and S2). The reduction in shoot length was stronger in
Meckenheim soil than in Heidgraben soil (Table 2).

As depicted in Figure 1, the roots of all three genotypes
showed a darker coloration when grown in ARD soil from both
sites. In addition, less fine roots were visible in the ARD variants.
The rootstock M9 was not included in this final evaluation, as
only a few plants were available.

Shoot and root fresh biomass of B63 and M26, were
significantly reduced on ARD soil from both sites. For
MAL0595, the change in fresh biomass was not significant. In
Meckenheim soil, M26, and B63 showed a stronger reduction in
shoot and root biomass compared to Heidgraben soil (Table 2).
Generally, a higher shoot fresh biomass was achieved by plants
grown in Meckenheim soil as seen by the control plants grown in
gARD soil from this site. A similar pattern was found for the
fresh root biomasses. A significant reduction was observed for
M26, with a stronger effect in Meckenheim soil. MAL0595 root
biomass did not differ significantly between the treatments, and
in Meckenheim soil, the reduction was approximately halved
compared to B63 and M26, (Table 2). For B63, root biomass was
not significantly reduced when grown in Meckenheim ARD soil.

Although MAL0595 showed comparable reduction in shoot
and root biomass with B63 and M26 (except root biomass in
Meckenheim soil), this reduction was statistically not significant.
One explanation for that is the high variation between individual
plants from the same genotype.

Establishment of Gene-Specific Primers
Primer pairs for 122 genes (117 CGs and 5 reference genes) were
tested in silico against the Malus × domestica.v1.0.consensus_
Frontiers in Plant Science | www.frontiersin.org 6
CDS database (Table S2). Thirty-nine combinations showed
unspecific amplification. Redesign of new primer combinations
was successful for 33 out of these genes. For six genes, no gene-
specific primers were found. These genes were excluded from
subsequent analyses (Table S4). In total, 111 primer pairs (CGs
only) were tested for their amplification efficiency by RT-qPCR
(Table S2). The PCR efficiencies varied between 1.77 and 2.10 (a
value of 2 is equal to an amplification efficiency of 100%). After
melt-curve analysis, 108 primer combinations were confirmed as
highly specific, whereas the specificity of three combinations
(IPT, Mal d1.06, and FGT) was insufficient. For four primer
combinations (NTL9, PDF2.2, ABCB11b, and Bax_inh) the
melting temperature varied slightly. These ranges were
detectable between individual samples of the same tissue of the
same genotype. On this account, the amplicons were most likely
derived from the same gene and not from different
orthologous sequences.

Genes Differentially Expressed in
Response to ARD
Gene expression of 108 CGs was analyzed in leaf and root tissue
of B63, M26, M9, and MAL0595. For this, plant material was
collected after 7 days of cultivation in four different soil
variants. The relative gene expression (ARD soil vs. gARD
soil) ranged from 0.5-fold to 31.9-fold (Table S5). Fourteen
CGs were slightly downregulated in plants grown in ARD soil
compared to those grown in gARD soil (10 genes in roots, 3 in
leaves, and 1 in leaves and roots). Out of the 108 CGs, 42 DEGs
were identified by taking a p-value of < 0.05 and a fold change
of greater than 1.5 as cutoff (Table S6). Thirty-nine genes were
differentially expressed in roots. Thirty-one of them were only
differentially expressed in roots, whereas eight genes were
upregulated in both tissues. The remaining four genes were
differentially expressed in leaves only.
TABLE 2 | Shoot length and fresh mass of shoot and root of M26, B63, and MAL0595 4 weeks after transplanting to gARD soil and ARD soil from Heidgraben and
Meckenheim.

Genotype Shoot length Heidgraben Meckenheim

gARD soil ARD soil % red gARD soil ARD soil % red

B63 [cm] 4.1 b 2.8 a −32.4 ** 7.4 c 3.0 a −60.2 ***
M26 3.5 b 2.5 a −30.0 * 5.9 c 3.6 b −39.8 ***
MAL0595 5.1 a 4.5 a −11.6 n.s. 6.2 a 4.4 a −28.0 n.s.

Genotype Fresh biomass
shoot

Heidgraben Meckenheim

gARD soil ARD soil % red gARD soil ARD soil % red
B63 [g] 0.95 b 0.54 a −42.8 ** 1.40 c 0.71 ab −49.3 ***
M26 1.00 b 0.60 a −39.8 * 1.57 c 0.81 ab −48.1 ***
MAL0595 0.81 ab 0.48 b −41.2 n.s. 1.47 a 0.88 ab −39.9 n.s.

Genotype Fresh biomass
root

Heidgraben Meckenheim

gARD soil ARD soil % red gARD soil ARD soil % red
B63 [g] 0.42 b 0.24 a −41.3 * 0.35 ab 0.21 a −37.8 n.s.
M26 0.27 c 0.16 ab −40.2 ** 0.23 bc 0.12 a −48.2 ***
MAL0595 0.36 a 0.20 a −42.7 n.s. 0.31 a 0.36 a 19.5 n.s.
Febr
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given in bold. Asterisks indicate a significant reduction regarding the Tukey test [p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***); n.s. = not significant].
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Highly Regulated CGs with a Significant
Fold Change > 4.5
Sixteen CGs were highly, i.e. more than 4.5-fold, upregulated in
roots of plants growing in ARD soil compared to those growing
in gARD soils. Fourteen of them were significantly upregulated
in root tissue in all four apple genotypes (Figure 2). Six of them
(BIS1, BIS2, BIS3, BIS4, B4Ha, and B4Hb) belong to the
phytoalexin biosynthetic pathway, whereas one gene (ERF1B)
is a transcription factor binding to a pathogenesis-related
element and an additional gene belongs to the endochitinase
family (CHIB). The six remaining genes are associated with six
gene families of different biological functions (Figure 3). The
highest upregulation of gene expression in roots grown in ARD
Frontiers in Plant Science | www.frontiersin.org 7
soils was detected for the phytoalexin biosynthesis genes. The
average fold changes were 31.9 for BIS4, 27.8 for BIS1, and 24.0
for BIS2. In contrast, BIS3 was only 8.8 times more highly
expressed in ARD soil than in gARD soil, but this gene showed
the overall highest expression level (Figure 2 and Table S5). The
two further genes of this pathway, B4Ha and B4Hb, were
upregulated after cultivation in ARD soil with fold changes of
5.3 and 6.1, respectively.

Three genes upregulated in roots of all four genotypes after
cultivation in ARD soils seem to be involved in regulating the
molecular response to pathogen attack and/or plant defense. The
chitinase B gene CHIB showed a significant fold change value of
14.6 in all root samples of plants grown in ARD soils. The gene
FIGURE 1 | Apple plants of M26, B63 and MAL0595 4 weeks after planting to g-irradiated apple replant disease (gARD) soil and ARD soil from the sites Heidgraben
and Meckenheim.
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TL1 encoding the thaumatin-like protein was also upregulated in
root samples with a significant fold change value of 19.4. The
putative mannosidase gene MNL2 being involved in
cyanogenesis and defense response was upregulated with an
average fold change of 11.3. For the ethylene-responsive
transcription factor 1B-like (ERF1B), a fold change value of 8.5
was detected.

Within the multi antimicrobial extrusion protein family, an
average fold change of 7.5 was detected in root samples for the
gene ALF5. A significant upregulation (fold change 5.0, p < 0.05)
was also detected for the chitin-binding type 1 gene (ECHI),
which belongs to the endochitinase-like superfamily. Within the
multigene family of plant glycosyltransferases, the uridine
diphosphate (UDP)-glycosyltransferase (UGT) 73B4 encoding
gene UGT73B4 showed a 5.2-times higher expression in root
tissue in ARD soils. The geneMal d1 encoding the major allergen
Mal d1 showed an increased expression in root tissue with a
significant fold change of 4.7.

The genes for jasmonate O-methyltransferase-like (JMT)
and phenylalanine ammonia-lyase (PAL) were more strongly
upregulated in leaves than in roots. For PAL, a fold change of
5.0 was detected in leaf tissue, whereas a fold change of 2.1 was
found in roots (Figure 3). Fold changes for JMT were 4.8 in leaf
tissue and 3.6 in roots. However, the difference in the
expression level between samples from ARD soil and gARD
Frontiers in Plant Science | www.frontiersin.org 8
soil was not significant for roots (p = 0.21) due to
higher variability.

Expression of CGs in Response to
Different Soil Origins
The 14 CGs with a significantly increased expression in roots
were compared in plants grown in Meckenheim soil and in
Heidgraben soil. As no data for M9 were available for
Meckenheim soil, only B63, M26, and MAL0595 were
considered for this comparison. Although differences in gene
expression between the two soil types were found for all genes
with a stronger upregulation in the soil from Meckenheim, the
overall differences (including data of all genotypes) were mostly
not statistically significant. The only exception is MNL2. This
gene was expressed at a significantly higher level (3.2 times) in
Meckenheim soil (18.4-fold to 5.7-fold, p < 0.05) (Figure 4).

Genotypic Differences in CG Expression
Genotypic differences in the expression of the 14 CGs were
studied for all four genotypes after cultivation of plants in
Heidgraben soil (Figure 5). BIS1, BIS2, BIS3, and BIS4 were
upregulated in all genotypes, except BIS3 in MAL0595. The
highest increase was found in B63, the lowest in MAL0595.
The differences between these two genotypes were statistically
significant. For BIS2 and BIS4, significant differences were found
FIGURE 2 | Normalized gene expression values in leaf or root tissue of 16 highly upregulated candidate genes (CGs) in four different apple genotypes (B63, M26,
M9 and MAL0595) grown in ARD and gARD soil, respectively. The normalized gene expression values are average values for the both soil origins (Meckenheim and
Heidgraben). Non-significant values are indicated as n.s.; significant values (p < 0.05) are indicated with *. BIS1, biphenyl synthase 1; BIS2, biphenyl synthase 2,
BIS3, biphenyl synthase 3; BIS4, biphenyl synthase 4; B4Ha, biphenyl 4-hydroxylase isoform a; B4Hb, biphenyl 4-hydroxylase isoform b; ERF1b, ethylene-
responsive transcription factor 1B-like; CHIB, endochitinase EP3-like; TL1, thaumatin-like protein 1a; MNL2, putative mannosidase; ALF5, multi antimicrobial
extrusion protein; UGT73B4, uridine diphosphate (UDP)-glycosyltransferase 73B4; ECHI, chitin-binding type 1; Mal d1, major allergen Mal d1-like; JMT, jasmonate
O-methyltransferase-like; PAL, phenylalanine ammonia-lyase.
February 2020 | Volume 10 | Article 1724
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between B63 and the three genotypes M26, M9, and MAL0595.
The upregulation of BIS1 and BIS3 was comparable for B63, M9,
and M26, but significantly lower in MAL0595. The least
differences were found for B4Ha and B4Hb. Significant
differences were detected only between B63 and M26, for B4Ha.

MNL2 showed the highest upregulation in B63 and the lowest
in MAL0595. Statistically significant differences were also
detected between B63/M9 and M26,/MAL0595. Genotypic
differences were also found for CHIB, ERF1B, and TL1. For
ERF1B, the fold changes were highest in M9 and lowest in M26,.
For CHIB and TL1, the fold changes were highest in M9 and
lowest in MAL0595. Differences were statistically significant
between M9 and the other genotypes (Figure 5).

For ECHI, statistically significant differences were found
between M26, (lowest regulation) and M9 (highest regulation).
Mal d1 showed highest upregulation in B63 with statistically
significant differences to M26, M9, and MAL0595. The fold
change of UGT73B4 was less pronounced. Nevertheless, the
detected differences were statistically significant between M26,
and MAL0595 and between M26, and M9. No genotype-specific
differences were found for AFL5.
FIGURE 3 | Highly upregulated CGs in apple grown in ARD soils with an average DDCq-fold change value > 4.5 in either root or leaf tissue after cultivation in ARD
soil and their assignment to molecular function. The fold change values (ARD soils/gARD soils) are average values for the four genotypes, including five (M26, B63
and MAL0595) or two replicates (“M9”), respectively and the two soils (Meckenheim and Heidgraben). Non-significant fold change values are indicated in italics. The
whiskers were not drawn to the minimum or maximum values, if they were longer than 1.5 times the interquartile range (IQR). Data points outside of this range of
1.5 × IQR were indicated as outliers (dots).
FIGURE 4 | Regulation of CG expression in roots of plants grown in the ARD
soils Heidgraben and Meckenheim including mean gene expression data of
the genotypes B63, M26, and MAL0595, with five replicates for each
genotype. The heat map indicates the fold change values (ARD soil/gARD soil)
with the rows displaying the selected 14 CGs with an average significant fold
change value > 4.5 in root tissue. The columns display the soil sites
Heidgraben and Meckenheim. The intensity of the red color corresponds with
the detected fold change value. p < 0.01 (**) and n.s., not significant.
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Phytoalexin Biosynthesis in Roots
A total of 12 biphenyl anddibenzofuranphytoalexinswere detected
and quantified in the roots of theMalus rootstock genotypes M26,
B63, andMAL0595, which were grown in the two different soils for
4 weeks (Figure 6A). Significant differences in phytoalexin
production were observed among the genotypes. M26, roots
contained the highest phytoalexin amount and MAL0595 had the
lowest, while B63 had an intermediate level of phytoalexins (Figure
6B). Furthermore, MAL0595 formed only three biphenyls and two
dibenzofurans, whereasM26 and B63 produced themajority of the
four biphenyls and eight dibenzofurans analyzed (Table S1).
Notably, phytoalexin biosynthesis was significantly induced by
ARD soils from both sites, whereas the difference in total
phytoalexin content between the two soil sites was not significant
(Figure 6C). Among the five main phytoalexins detected, the
amount of 2-hydroxy-4-methoxydibenzofuran with a retention
index (RI) of 2,131 was the highest. It was the only compound
that was observed in all the samples including those from gARD
soils. The content of 2-hydroxy-4-methoxydibenzofuran was
upregulated by the ARD soils in all genotypes. The same held true
for the other four major phytoalexins (RI 2,090; 2,121; 2,228, and
2259, respectively), except for aucuparin (RI 2,090), which was
downregulated inMAL0595 in both soil types (Table S1). Another
phytoalexin, 2'-hydroxyaucuparin (RI 2,193), also showed an
interesting soil-dependent regulation pattern. In Heidgraben
ARD soil, its content was upregulated in all genotypes; however,
in Meckenheim ARD soil its content was downregulated (Table
S1). However, differences between the three genotypes in their
responses to the two soil sites were also observed. In MAL0595
roots, the formation of new phytoalexin compounds was not
induced by ARD soil from both sites, while the formation of five
Frontiers in Plant Science | www.frontiersin.org 10
and eight new phytoalexins was induced by ARD soil in M26, and
B63 roots, respectively. Furthermore, M26 and B63 formed only
two and four phytoalexin compounds, respectively, when grown in
Heidgraben gARDsoil, but producedeight phytoalexin compounds
each in Meckenheim gARD soil (Figure S1).

Correlation Between Phenotypic Data,
Gene Expression Data, and Phytoalexin
Contents
A Pearson's correlation was calculated between gene expression
(fold changes of the 14 CGs expressed in root tissue) and changes
in biomass and shoot length. The highest correlation was found
between CHIB expression and shoot length (r = 0.96; p < 0.01).
Highly significant correlations were also found between B4Ha,
BIS1, BIS3, and BIS4 expression and shoot length (Table 3). A
statistically significant correlation between the biomass and the
expression of any of the CGs was not observed.

Statistically significant correlations were also found between
some phytoalexin compounds and the changes in expression of
the six CGs belonging to the biphenyl biosynthesis pathway. The
amount of noraucuparin was most strongly correlated with the
expression of B4Ha, BIS1, BIS3, and BIS4 (r = 0.70 to 0.73; p =
0.01, Table 4). B4Ha expression was correlated with the amount
of 2-hydroxy-4-methoxydibenzofuran and the isomer of
noraucuparin. A significant correlation was found between the
total amount of phytoalexins and the changes in expression of
B4Ha (r = 0.60; p = 0.04).

Protein–Protein Interaction Analysis
Accession numbers of 17 DEGs with a significant fold change >
1.5 in roots were integrated into a protein interaction network
FIGURE 5 | Genotypic differences in the regulation of the 14 CGs. This box plot presents only CGs with an upregulation (fold change ARD soil/gARD soil > 4.5) in
root tissue. The root-specific average fold change values of all genotypes including five (B63, M26, MAL0595) or two replicates (M9), respectively, of 14 genes after
cultivation in Heidgraben ARD soil are shown. The letters denote the significant differences between the genotypes for one gene. Significant differences are indicated
by different letters. The whiskers were not drawn to the minimum or maximum values, if they were longer than 1.5 times the IQR. Data points outside of this range of
1.5 × IQR were indicated as outliers (dots).
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FIGURE 6 | Analysis of phytoalexins in roots of the three genotypes M26, B63, and MAL0595, which were grown for 4 weeks on ARD and gARD soils from the two
sites Heidgraben and Meckenheim. (A) Levels of individual phytoalexins identified by gas chromatography–mass spectrometry (GC-MS). Compound retention index
(RI) 2,070, isomer of noraucuparin; 2,090, aucuparin; 2,121, noraucuparin; 2,131, 2-hydroxy-4-methoxydibenzofuran; 2,179, isomer of eribofuran; 2,193, 2'-
hydroxyaucuparin; 2,228, eribofuran; 2,259, noreriobofuran; 2,284, isomer of hydroxyeribofuran; 2,289, isomer of noreriobofuran; 2,399, methoxyeribofuran; 2,479,
3,9-dimethoxy-2,4-dihydroxydibenzofuran. (B, C) Total phytoalexin content as a function of genotype and soil, respectively. Different letters indicate significant
differences revealed by Tukey test (n = 8 for B and n = 6 for C) applied to the total phytoalexins.
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using TAIR (The Arabidopsis Information Resource, 6). These
proteins included the highly expressed BIS (fold change > 20.0),
CHIB and MNL2 (fold change > 10.0), as well as ERF1B, B4H,
and PAL (fold change > 4.5). For the remaining 22 DEGs, no
interaction was found.

The highest confidence of a protein–protein association was
found in the first network cluster (Figure 7). This cluster
consisted of BIS, CHIA, O-methyltransferase 1 (OMT1),
polyphenol oxidase (PPO), PAL, anthocyanidin reductase
(ANR), and anthocyanidin synthase (ANS). Two further
proteins within this cluster are involved in the signal
transduction process (CHIB) and the oxidation–reduction
process (flavanone 3-hydroxylase, FLS). BIS showed the highest
confidence of interaction with ANR, ANS, and FLS. The
confidence of interaction of BIS with other proteins within this
cluster was medium to high.

The second cluster was comprised of four proteins with a
medium to high confidence of interaction. Three proteins
(ERF1B, transcription factor MYC2, pathogenesis-related
protein PR-4) were involved in the signaling pathway, whereas
one seems to be involved in abscisic acid biosynthesis (nine-cis-
epoxycarotenoid dioxygenase 3, NCED3).
Frontiers in Plant Science | www.frontiersin.org 12
The third cluster contained four proteins of different
functions. These proteins were grouped with a low to medium
confidence of interaction. B4H is involved in phytoalexin
biosynthesis, whereas tetracetide alpha-pyrone reductase 1
(TKPR1) belongs to the brassinosteroid biosynthesis pathway.
Indole-3-acetic acid-amido synthetase (GH3.1) belongs to the
auxin biosynthesis pathway. The function of MNL2 is unknown,
but it is associated to the oxidoreductase family.
DISCUSSION

Phytoalexin Biosynthesis Is Strongly
Increased in Response to ARD
It is generally accepted that ARD is strongly associated with an
unbalanced complex of soil biota, including bacteria, fungi,
oomycetes, and nematodes (Rumberger et al., 2007; Kanfra et al.,
2018). In the present study, the expression changes of 108 ARD
CGs were evaluated in roots of three different Malus rootstocks
and one wild apple genotype grown in ARD soils from two
different sites in Germany. The most highly upregulated CGs in
ARD soil were genes related to the phytoalexin biosynthesis,
including the four biphenyl synthase genes BIS1, BIS2, BIS3, and
BIS4 and the two biphenyl 4-hydroxylase genes B4Ha and B4Hb
(Figure 4). BIS and B4H genes encode for enzymes involved in the
biosynthesis of biphenyl and dibenzofuran phytoalexins (Figure
S2). These phytoalexins are only formed by plants belonging to the
subtribe Malinae of the family Rosaceae, such as members of the
genera Malus and Pyrus (Liu et al., 2007; Beerhues and Liu, 2009;
Liu et al., 2011; Chizzali and Beerhues, 2012; Sircar et al., 2015).
The results of CG expression correlated well with the total
phytoalexin content, which was also significantly increased in
the roots of plants grown in ARD soils (Table 4, Figure 5C). It
has to be mentioned here, that the roots were sampled 3 weeks
earlier for gene expression analyses than for phytoalexin detection,
because after 1 week of culture, the amount of root fresh mass was
not sufficient to enable both kinds of analyses. Moreover, the
culturing period of 4 weeks was necessary to record the biomass
data that allowed a clear classification of the soils as ARD soils
based on the observed growth depression.

Comparable results for the expression of these CGs genes
were also obtained in other studies on apple, either in response to
the necrotrophic pathogen P. ultinum or in response to ARD soil
TABLE 3 | Pearson’s correlation between the differences in the expression of
the 14 candidate genes (CGs, expressed in fold changes) and the differences in
fresh biomass and shoot length of plants grown in ARD soil compared to those
grown in gARD soil (biomass/ shoot length in ARD soil - biomass/ shoot length in
gARD soil), significant correlations are given in bold with p < 0.05 (*), p < 0.01 (**),
and p < 0.001 (***).

CG Biomass1 Shoot length1

BIS1 −0.57 −0.92**
BIS2 −0.26 −0.65
BIS3 −0.46 −0.86*
BIS4 −0.57 −0.91**
B4Ha −0.41 −0.82*
B4Hb −0.31 −0.77
ERF1B −0.38 −0.49
CHIB −0.67 −0.96***
TL1 −0.23 −0.15
MNL2 −0.11 −0.49
AFL5 0.21 0.39
UGT73B4 −0.44 −0.21
ECHI 0.01 0.11
Mal d1 −0.44 −0.69
1Measured after 28 days of cultivation in the greenhouse.
TABLE 4 | Pearson's correlation between changes in the expression of the six CGs of the phytoalexin biosynthesis pathway (expressed as fold changes) and the
amounts of individual phytoalexins, p < 0.05 (*) and p < 0.01 (**). Intensity of red shading visualizes strength of correlation. Significant correlations are given in bold.

Phytoalexins Candidate gene

BIS1 BIS2 BIS3 BIS4 B4Ha B4Hb

2-hydroxy-4-methoxydibenzofuran 0.52 0.45 0.54 0.51 0.65 * 0.58

Aucuparin 0.40 0.20 0.41 0.33 0.56 0.47

Isomer of noraucuparin 0.57 0.41 0.57 0.54 0.64 * 0.54

Noraucuparin 0.73 ** 0.55 0.71 ** 0.70 ** 0.73 ** 0.67

Noreriobofuran 0.49 0.40 0.51 0.49 0.52 0.49

Phytoalexins total 0.44 0.29 0.46 0.38 0.60 * 0.53
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(Zhu et al., 2014; Weiß et al., 2017a; Weiß et al., 2017b; Zhu et al.,
2017). Phytoalexins are part of the complex defense system of
plants against pests and pathogens (Jeandet et al., 2014). The
induction of phytoalexin biosynthesis seems to be one of the
induced defense responses ofMalus rootstocks to stresses caused
by the biota in ARD soils. The antifungal and antibacterial
activities of biphenyls and dibenzofurans was clearly shown
although their precise mechanisms of action are still unknown
(Chizzali and Beerhues, 2012). Loss-of-function experiments on
other plant–pathogen interactions have demonstrated that
reduced levels of phytoalexins lead to increased disease
susceptibility (Jeandet et al., 2014). Examples are known from
pea (Wu and VanEtten, 2004), soybean (Graham et al., 2007),
sorghum (Ibraheem et al., 2010), pear (Chizzali et al., 2016), and
Arabidopsis (Jeandet et al., 2013). However, there are also reports
that high phytoalexin concentrations may be toxic to plant cells
(Dixon et al., 1994; Rogers et al., 1996), which was also
hypothesized by Weiß et al. (2017b) for apple rootstocks. The
accumulation of high concentrations of phytoalexins in ARD-
susceptible rootstocks like M26 and B63 may cause root damage
Frontiers in Plant Science | www.frontiersin.org 13
and even death. It was assumed that the exudation mechanism or
the detoxification system do not work properly in these
genotypes. This hypothesis is supported by the results obtained
with the less susceptible genotype MAL0595. This genotype
accumulated significantly less phytoalexins in roots compared
to M26 and B63. Consistently, the reduction in shoot length of
MAL0595 plants grown in ARD soils was not statistically
significant (Figure 6C, Table 2).

Among the four BIS genes, the highest upregulation in ARD
soils was observed for BIS1, followed by BIS2 and BIS4. However,
BIS3 transcript level exceeded the transcript levels of the other
BIS genes in the roots by far (Table S5). As previously reported
by Chizzali et al. (2012a) and other authors, the regulation of the
individual BIS genes can differ depending on the pathogen and
the type of the infected tissue. In a transcriptome analysis
conducted with M26 grown in ARD soil, the expression of
BIS2, BIS3, and BIS4 was induced, with BIS3 showing the
highest increase in roots (Weiß et al., 2017a). In the present
study, BIS3 expressional levels also were the highest (Table S5)
but with the lowest fold change among the BIS genes investigated
FIGURE 7 | Protein–protein interaction matrix using The Arabidopsis Information Resource (TAIR) accession number of differentially expressed genes (DEGs) in
Malus. The circles represent the proteins, and the lines between circles represent the interaction between individual proteins. The thickness of the lines defines the
confidence of the interaction. The intensity of the red color indicates the fold change expression value (ARD soil/gARD soil). ANR, anthocyanidin reductase; ANS,
anthocyanidin synthase; B4H, biphenyl 4-hydroxylase; BIS, biphenyl synthase; CHIA, acidic endochitinase-like; CHIB, endochitinase EP3-like; ERF1, ethylene-
responsive transcription factor 1; FLS, flavanone 3-hydroxylase; GH3.1, indole-3-acetic acid-amido synthetase; MNL2, putative mannosidase; NCED3, nine-cis-
epoxycarotenoid dioxygenase 3; TKPR1, tetraketide alpha-pyrone reductase 1; MYC2, transcription factor MYC2; OMT1, O-methyltransferase 1; PAL, phenylalanine
ammonia-lyase; PPO, polyphenol oxidase; PR-4, pathogenesis-related protein PR-4.
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in the roots. Due to its exceedingly high expression level, BIS3
seems to play a pronounced role in phytoalexin biosynthesis.
BIS4 showed the highest differences between the two soil types.
After fire blight infection, BIS1 and BIS2 were upregulated in leaf
tissue. In contrast, BIS3 was strongly expressed in the stem,
where it was spatially limited to the transition zone between
healthy and necrotic tissue (Chizzali et al., 2016). In the present
study, expression of BIS genes was also focused on the region
affected by the biotic stress, the roots.

Further CGs Involved in Biotic Stress
Responses Are Upregulated
Primer efficiencies were calculated in a different experiment with
a different PCR system for validation. In the Fluidigm system, the
software calculates a quality score for each individual
amplification curve by comparing the amplification curve to an
ideal exponential curve. If the curve is close to the ideal one, the
quality score approaches 1. The software sets a cutoff for the
quality score of > 0.65 to exclude primers with poor efficiencies.
Nevertheless, all data used were still without any PCR efficiency
correction. Therefore, we decided not to consider smaller
differences in gene expression, but focused on the CGs with
fold changes above 4.5.

Among these, TL1 andMal d1 were upregulated in roots after
cultivation of plants in ARD soil. Similar results were obtained by
Weiß et al. (2017a). The TL1 product belongs to a highly
complex protein family with antimicrobial and antifungal
activities (Liu et al., 2010; Singh et al., 2013). Overexpression
of TLs in transgenic wheat plants mediated enhanced resistance
and protection against different fungal pathogens (Mackintosh
et al., 2007). Mal d1 is a defense protein, which belongs to group
10 of pathogenesis-related proteins. It is expressed by plants in
response to different stress conditions, such as pathogen
infection, exposure to certain chemicals, wounding, and
stressful environmental conditions (Puehringer, 2003). In apple
fruits, Mal d1 is known as a birch pollen–related food allergen.
Previous studies by our research group have shown that the
synthesis is strongly related to exogenous stress factors (Schmitz-
Eiberger and Matthes, 2011; Kiewning and Schmitz-Eiberger,
2013). However, its function in response to ARD remains to
be elucidated.

ERF1B, CHIB, and ECHI also showed a notable fold change in
root samples. ERF1B encodes a transcription factor that is
involved in ethylene signaling. An ERF1B-mediated ARD
defense response in apple roots was also observed in other
studies (Shin et al., 2014; Weiß et al., 2017a). Ethylene is an
essential mediator of biotic and abiotic stress responses (Müller
and Munné-Bosch, 2015), and ethylene-responsive transcription
factors (ERF) regulate the molecular response to pathogen attack
(Ito et al., 2014; Müller and Munné-Bosch, 2015; Huang et al.,
2016). Within the ethylene-mediated transcriptional response,
the promoter region of CHIB may be a target of ERF
transcription factors. Based on the results obtained, it could be
assumed that the changes in ERF expression have led to a
subsequent activation of CHIB (Shin et al., 2014). For other
genes like ACS and ACO, which encode key enzymes of the
Frontiers in Plant Science | www.frontiersin.org 14
ethylene biosynthesis, no upregulation was observed. It is
common knowledge that different isoforms within a gene
family can carry out specific functions in different plant
processes (Shin et al., 2014). An involvement of other isoforms
of ACS and ACO, which were not investigated in this study,
cannot be excluded. The endochitinase EP3-like gene CHIB
belongs to a large family of plant chitinase genes and is
generally induced by pathogen attack and other biotic stresses
(Hamid et al., 2013; Nagpure et al., 2014). Chitinases play a role
in the biocontrol of fungal phytopathogens and plant defense
systems especially against chitin-containing pathogens (Hamid
et al., 2013).

The genes MNL2, ALF5, ECHI, and UGT73B4 were also
significantly upregulated in roots. These genes appear to be
related to ARD, but have not been described in this context
before. The putative mannosidase gene MNL2 belongs to the
glucose–methanol–choline oxidoreductase family. Genes of this
family are involved in adaptive processes in plant–insect
interactions during host-dependent chemical defense (Rahfeld
et al., 2014). However, the detailed function of theMNL2 gene in
plants is still unknown. The ALF5 gene belonging to the MATE
gene family is expressed in root epidermis cells and is necessary
for protecting roots from toxic compounds in the soil (Diener
et al., 2001). Some genes within the MATE gene family are
supposedly involved in transporting toxic compounds to infected
parts of the plant in order to attenuate pathogen attack (Santos
et al., 2017). Within the multigene family of plant UGTs, an
up r egu l a t i on wa s ob s e r v ed fo r UGT73B4 . P l an t
glycosyltransferases usually use UDP-glucose in the transfer
reactions catalyzed. Furthermore, it is assumed that UGTs are
part of stress responses (Li et al., 2001; Langlois-Meurinne et al.,
2005). Analysis of A. thaliana defense-signaling mutants
indicated that expression of the corresponding UGT genes is
necessary during the hypersensitive response (Dare et al., 2017).
These results emphasize the importance of UGTs in plant–
pathogen interactions (Dare et al., 2017). It is tempting to
speculate that UGTs may be involved in the detoxification of
biphenyl and dibenzofuran phytoalexins via glycosylation and
deposition in the central vacuole. However, no glycosylated
derivatives of the defense compounds have so far been detected
in infected plants and elicitor-treated cell cultures of the Malinae,
except for two glucosides (aucuparin and eriobofuran
derivatives), which were isolated from cell cultures of the scab-
resistant apple cultivar ‘Liberty’ (Borejsza-Wysocki et al., 1999).
Because of their general function in pathogen defense, ALF5,
ECHI, and UGT73B4 appear to also be activated by pathogens of
the ARD complex. However, further investigations will be
necessary to elucidate their precise function.

Two CGs Showed Upregulation in
Leaf Tissues
PAL and JMT showed a stronger upregulation in leaf tissue than
in roots. The PAL gene encodes for the enzyme phenylalanine
ammonia-lyase, which is the key enzyme of the phenylpropanoid
pathway. Repression of this pathway in apple via a reduction in
key transcript levels (e.g. for PAL), and enzyme activities (e.g.
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PAL and chalcone synthase) resulted in severe dwarfing and
internode length reduction (Dare et al., 2017). The occurrence of
stunted shoots because of ARD infection seems therefore to be
independent of the PAL gene expression level. Whether shoot
stunting is connected to the occurrence or the amount of
individual phenolic compounds or not remains to be
investigated. The JMT gene encodes for the enzyme S-adenosyl-
l-methionine:jasmonic acid carboxyl methyltransferase (JMT),
which catalyzes the formation of methyl jasmonate from
jasmonic acid. Plants produce jasmonic acid and methyl
jasmonate in response to many biotic and abiotic stresses, in
particular, herbivory and wounding (Seo et al., 2001; Wasternack,
2007). Both genes (PAL and JMT) are associated with pathogen
defense reactions and stress response. The upregulation of their
expression in leaf tissue could be an indication for biotic stress
because of ARD infection. However, their precise role in
connection with ARD has to be further investigated.
The Soil Origin Influences Plant Growth,
CG Expression and Phytoalexin
Production
The expression of CGs was compared between plants grown in
Meckenheim soil and Heidgraben soil. The genes MNL2, BIS1,
BIS2, BIS4, and TL1 showed a strong upregulation in roots of all
genotypes if plants were grown in ARD soil. This was the case for
both soil types, although the upregulation was more pronounced
in plants grown in Meckenheim soil (Figure 4). Even though a
stronger increase in gene expression was observed, the total
phytoalexin amount was not increased in plants of Meckenheim
soil. The differences found between the two soils were not
statistically significant (Figure 6C). It is assumed that each
genotype seems to produce phytoalexins up to a certain level,
once the biosynthesis is stimulated by ARD soil. So far, the rate-
limiting steps of biphenyl and dibenzofuran biosynthesis remain
unknown. Compared to the BIS genes, the fold changes in the
expression of B4Ha and B4Hb were markedly lower, and genes for
O-methyltransferases (Khalil et al., 2015) were not among the
upregulated genes. Due to the incomplete examination of the
phytoalexin biosynthetic pathway, some genes remain to be
identified, including the gene coding for the enzyme that
converts aucuparin to 2'-hydroxyaucuparin (Figure S2). This
gene should be highly expressed in ARD soil from Heidgraben,
because the 2'-hydroxyaucuparin content of roots grown in this
soil was greatly increased compared to that of roots from gARD
soil. In roots of plants grown in ARD soil from Meckenheim, the
reaction of this gene might be different; the expression of this gene
does not seem not to be induced or even inhibited because of the
decrease of the 2'-hydroxyaucuparin content in samples of these
roots (Figure S1). Thus, different ARD soils may differently affect
individual phytoalexin biosynthetic steps, leading to qualitative
and/or quantitative changes in the phytoalexin patterns.
Previously, varying phytoalexin patterns were observed in cell
cultures of Sorbus aucuparia upon treatment with different
elicitors, which, for example, stimulated the accumulation of
aucuparin or eriobofuran as the major components (Hüttner
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et al., 2010). In the present study and a previous one (Weiß
et al. 2017b), relatively high levels of 2-hydroxy-4-
methoxydibenzofuran were even detected in roots from gARD
soils. This indicates that the formation of this compound does not
necessarily need the ARD biome stimulus although ARD soils lead
to a further strong increase in the accumulation.

Soil properties can influence the extent of ARD directly or
indirectly (von Bronsart, 1949; Franke-Whittle et al., 2018;
Mahnkopp et al., 2018). The soil pH value is one of these
properties, which has been discussed several times in this
context. However, the results published about the effect of the
soil pH value onto ARD severity were contrasting. In some cases,
it was shown that a low soil pH seemed to be associated with a
high degree of ARD (Willett et al., 1994; Mahnkopp et al., 2018).
In other studies, it was found that ARD symptoms were less
pronounced in soils with a low pH value (Jonkers et al., 1980;
Utkhede et al., 1992). We found a higher overall fold change of
CG expression on the silty soil of Meckenheim with a high pH
(6.7) compared to the sandy soil (Heidgraben) with a lower pH
value of 5.3. However, the effect of soil pH on ARD should not be
overestimated. Changes in pH are not induced by apple
replanting and are generally an unstable parameter
(Mahnkopp et al., 2018). Different rootstocks seem to have a
different growth optimum regarding the soil pH value. Some
rootstocks achieve optimal growth at a low pH (e.g. CG.6589),
whereas other rootstocks are well adapted to more calceous soils
(e.g. CG41) (Fazio et al., 2012).

Soil organic matter (SOM) seems also to reduce the induction
of ARD (Franke-Whittle et al., 2018). In our study, a remarkably
lower SOC (soil organic carbon = total carbon due to absence of
carbonate) of 12.3 g kg−1 in Meckenheim soil compared to a SOC
of 25.4 g kg−1 in Heidgraben soil (Table 1), corresponded to a
higher CG regulation. Plant growth in terms of shoot and root
fresh biomass was significantly reduced on both soils for the
sensitive genotypes M26, and B63 (Table 2). The only exception
was root fresh mass of B63, which was not significantly reduced
when grown on Meckenheim soil. These observations are
interesting as they stress the limits of growth-based bio-tests to
determine ARD severity. Factors like the high available water
capacity of the loamyMeckenheim soil in comparison to the sandy
Heidgraben soil may explain differences in plant growth besides
ARD severity.

Soil biota like nematodes, which are part of the ARD complex,
are also influenced by soil texture (Hbirkou et al., 2011). Is has
been described that sandy soils are often more prone to ARD
than loamy soils (Mahnkopp et al., 2018; Winkelmann et al.,
2019). In this study, the upregulation of the CGs was less
pronounced in the sandy Heidgraben soil compared to the silty
Meckenheim soil, which is not in agreement with the findings
mentioned above. Similar observations were made by Fazio et al.
(2012) in a study investigating the influence of soil pH value and
soil texture on ARD. Based on plant growth, some rootstocks
appeared to be less sensitive to ARD in clay soil than in sandy
soil, but also the opposite relationship was observed because
other rootstock cultivars appeared to be more sensitive to ARD
in the clay soil compared to the sandy soil (Fazio et al., 2012).
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Reim et al. Validation of ARD Candidate Genes
These results indicate that soil properties cannot be judged
without knowledge of the soil biome composition. Likewise,
Mazzola and Manici (2012) concluded that abiotic factors may
reduce or intensify ARD, but up to now, a causal relationship of a
single abiotic factor and ARD is not evident.

Many soil characteristics influence plant growth. Therefore,
growth-based bio-tests are limited in their information value
regarding ARD severity. Additional methods for a more reliable
diagnosis and possible quantification of ARD are of interest. Our
data suggest that the expression of certain CGs may be a starting
point for the identification of early indicators as an addition to
growth data. To evaluate their usefulness in different ARD
situations, especially under field conditions, further studies are
necessary. These studies should also include the comparison to
virgin soils on which no Rosaceae plants had been grown before
and which are collected close to the replant sites.

Genotypic Differences are Found for Gene
Expression in Response to ARD
The fourMalus genotypes M9, M26, B63, and MAL0595 used in
our gene expression study possess susceptibility to ARD to
different extents. M9 and M26, were previously classified as
susceptible genotypes (Isutsa and Merwin, 2000; Leinfelder and
Merwin, 2006; St Laurent et al., 2010). MAL0595 was grouped as
a less sensitive genotype (Cummins and Aldwinckle, 1983; Reim
et al., 2019). By contrast, no information regarding its ARD
reaction was available for the rootstock genotype B63 at the
beginning of our experiment. Recently, root microscopic and
bio-test data proved this genotype to react similarly to M26, in
response to ARD (Grunewaldt-Stöcker et al., 2019). Our present
results on plant growth and CG expression support the
observation that B63 has to be considered as ARD-sensitive.

In the present study, the genotype-specific gene expression
data (Figure 5) are consistent with the phytoalexin detection
results (Figure 6B). Relatively low gene expression levels yield a
relatively low total phytoalexin content in MAL0595, whereas
high gene expression levels lead to high phytoalexin contents in
M26, and B63 (Figures 4 and 5C). Besides the quantitative
differences, there was also qualitative variation in the phytoalexin
patterns. In gARD soils, roots of MAL0595 formed few
phytoalexins at low levels, which increased partly upon growth
in ARD soils from the two sites. While the 2-hydroxy-4-
methoxydibenzofuran content was strongly enhanced, the
noraucuparin content decreased (Figure S1). No new
phytoalexins were formed. In M26, and B63, the aucuparin,
noraucuparin, and noreriobofuran levels increased greatly in
both ARD soils. Therefore, these three phytoalexins may be the
major compounds that cause cytotoxicity to apple roots. For the
growth data, the results for MAL0595 were opposite to those for
M26, and B63. Thus, the low fold changes of most CGs in
response to ARD (Figure 6), the low phytoalexin content
compared to the other genotypes (Figures 5 and S1), and the
low growth depression (Table 2) match the classification by
phenotypic data of MAL0595 as less susceptible to ARD. The
assessment of these parameters may similarly provide
information about the degree of ARD susceptibility of other
Frontiers in Plant Science | www.frontiersin.org 16
genotypes. Further studies should clarify if the BIS genes can be
used as possible biomarkers for ARD susceptibility, as their
expression correlated well with the observed susceptibility as
classified on phenotypic data. BIS3 seems to play a key role in
phytoalexin biosynthesis under replant conditions, because BIS3
transcript levels exceeded the other BIS genes by far, but overall
they were regulated less strongly.
CONCLUSIONS

The expression of 108 CGs was studied in leaf and root tissue of
four different Malus genotypes grown in ARD soil and gARD soil
from two different sites in Germany. For most of these genes, it is
the first time that their tissue specific expression pattern was
investigated in different genotypes and in response to ARD. The
data obtained allow conclusions about general (genotype-
independent) and genotype-dependent effects of ARD on the
expression of these genes. Changes in CG expression were more
frequent and more pronounced in root tissue compared to leaf
tissue. This result suggests that the response of Malus plants to
ARD is local. The defense reaction seems to be spatially restricted
to the site of infection. A systemically acquired stress response
could not be detected. Sixteen CGs were strongly upregulated in
roots of plants grown in ARD soil. Six of them belong to the
phytoalexin biosynthesis pathway. Their expression patterns were
consistent with the phytoalexin content. It can be assumed that
phytoalexins may play a role in the reaction of Malus plants to
ARD. However, their function in the disease etiology remains to be
clarified. The expression patterns of the biphenyl synthase genes
BIS1, BIS2 BIS3, and BIS4 correlated well with the phenotypic
reaction of the Malus genotypes investigated with BIS3 showing
the strikingly highest normalized expression. These genes are
useful as biomarkers to identify the presence of ARD inducing
microbiota in unknown soil samples. They may also give clear
indications for the defense reaction of plants growing at a site,
whose state with regard to ARD is unknown.
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