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A B S T R A C T   

Surface-enhanced Raman spectroscopy (SERS) with subsequent chemometric evaluation was performed for the 
rapid and non-destructive differentiation of seven important meat-associated microorganisms, namely Brocho
thrix thermosphacta DSM 20171T, Pseudomonas fluorescens DSM 4358, Salmonella enterica subsp. enterica sv. 
Enteritidis DSM 14221, Listeria monocytogenes DSM 19094, Micrococcus luteus DSM 20030T, Escherichia coli 
HB101 and Bacillus thuringiensis sv. israelensis DSM 5724. A simple method for collecting spectra from com
mercial paper-based SERS substrates without any laborious pre-treatments was used. In order to prepare the 
spectroscopic data for classification at genera level with a subsequent chemometric evaluation consisting of 
principal component analysis and discriminant analysis, a data pre-processing method with spike correction and 
sum normalisation was performed. Because of the spike correction rather than exclusion, and therefore the use of 
a balanced data set, the multivariate analysis of the data is significantly resilient and meaningful. The analysis 
showed that the differentiation of meat-associated microorganisms and thereby the detection of important meat- 
related pathogenic bacteria was successful on genera level and a cross-validation as well as a classification of 
ungrouped data showed promising results, with 99.5% and 97.5%, respectively.   

1. Introduction 

Food safety is the major priority and challenge for food producers in 
order to prepare food that is safe for human consumption. Every year, 
around 600 million people become sick, resulting in 420,000 deaths due 
to foodborne diseases. Especially in highly perishable foods like meat, 
poultry and fish or ready-to-eat products, the pathogenic bacteria e.g. 
Salmonella spp., Campylobacter spp. or Listeria monocytogenes are often 
responsible for the majority of foodborne illnesses [1]. 

Salmonella spp. belong to the most common pathogenic bacteria that 
affect millions of people every year. Salmonella spp. are present in eggs, 
poultry and other products of animal origin. Infections with Listeria spp. 
can lead to unplanned abortions in pregnant women or the death of 
newborn children. Although the incidence of the disease is relatively 

low, Listeria spp. infections are one of the most serious food-borne in
fections due to their severe and sometimes fatal health consequences, 
especially in infants, children and elderly. Listeria spp. can occur in 
unpasteurised dairy products and various ready-to-eat foods and can 
grow at refrigeration temperatures [1,2]. 

Aside from the health aspect of food safety, the detection of patho
genic bacteria is also one factor in reducing food waste and food losses. 
The concern about becoming ill by consuming food not appearing fresh 
is one reason why customers, despite the wish to reduce food waste, 
often decide otherwise [3,4]. 

Besides the culture-based detection method, other common alter
native detection methods are already described in literature like real- 
time polymerase chain reaction [5] or immunoassays [6]. Despite 
many advances in these research fields, it is still a challenge to find new 
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approaches to improve the simplicity, selectivity, stability and sensi
tivity of these methods. Consequentially, there is a great demand on fast, 
non-destructive and cost-effective analysis methods to analyse the mi
crobial load especially on meat products. 

Raman spectroscopy has the potential to become one of the tech
nologies that overcome this deficiency as a fast, robust and non- 
destructive detection method for pathogenic bacteria. For the discrim
ination and detection of spoilage and environmentally associated bac
teria, Raman approaches have already been tested for example with 
complex multistage principal component analysis (PCA) and support 
vector machines [7]. Instrumentally complex Raman microscopic 
studies with spoilage and environmental bacteria have already been 
used to discriminate on strain level [8]. 

SERS-based detection methods for bacteria like methicillin-resistant 
Staphylococcus aureus (MRSA) [9] or Salmonella enterica [10] in fruit 
juice have also already been developed. Most of the SERS approaches 
use complex synthesised SERS-active components, like gold (Au) 
nanopopcorns at graphene oxide [9] or SERS sandwich assays as a 
combination of silver nanoparticles (AgNP) with capture molecules like 
3-mercaptophenylboronic acid [11], and they focus on detection limits 
for a singular strain [9,11] or on the biochemical origins of the surface 
enhanced Raman spectra of bacteria [12]. 

For the detection of certain pathogenic bacterial species for example 
on meat products, besides a low detection limit for these bacteria, the 
ability to discriminate between the different bacterial genera is also 
essential. 

The microbial flora of fresh and chilled meat during the spoilage 
process is mostly dominated by Pseudomonas spp., especially Pseudo
monas fluorescens, as well as Brochothrix thermosphacta and Enterobac
teriaceae like Escherichia coli [13–16]. 

Furthermore, Micrococcus luteus and Bacillus thuringiensis israelensis 
are environmentally associated bacteria, which can also be found on 
spoiled meat or other food products [17,18]. 

For that reason, the objective of this study was to develop a time- 
efficient and suitable sample preparation method for microbiological 
sampling onto SERS substrates as well as to define measurement pa
rameters and establish a reasonable chemometric data processing 
method for a rapid and non-destructive analysis of food safety and meat 
spoilage relevant bacteria. For this purpose, a robust data pre-processing 
method combined with a suitable chemometric evaluation to classify 
and distinguish between the measured bacteria was developed. 

2. Materials and methods 

2.1. Bacterial cultures and sample preparation 

Seven important spoilage-related bacteria, namely Brochothrix ther
mosphacta (B. thermosphacta) DSM 20171T, Escherichia coli HB101 
(E. coli), Micrococcus luteus (M. luteus) DSM 20030T, Pseudomonas fluo
rescens (P. fluorescens) DSM 4358, Salmonella enterica subsp. enterica sv. 
Enteritidis (S. Enteritidis) DSM 14221, Listeria monocytogenes 
(L. monocytogenes) DSM 19094 and Bacillus thuringiensis sv. israelensis 
(B. thuringiensis) DSM 5724 (Leibniz Institut DSMZ – German Collection 
of Microorganisms and Cell Cultures, Braunschweig, Germany) were 
cultivated and separately grown according to the DSMZ guidelines [19]. 
The nutrient agar consisted of 10 g/L meat peptone, 10 g/L meat extract, 
5 g/L sodium chloride and 18 g/L agar-agar (Merck KGaA, Darmstadt, 
Germany) and only agar from the same batch were used. 

For each SERS substrate, multiple colonies were then harvested 
during their stationary growth phase with a 1 μL-loop and dispersed in 
100 μL distilled water. A concentration of 3 � 108 cfu/mL was estimated 
by a comparison with a McFarland standard. After homogenising, 2 μL of 
the suspension were spread homogeneously on a commercial SERS 
substrate (Ocean Insight). For each strain, measurements were per
formed in triplicate on three independent SERS substrates immediately 
after the sample preparation. 

2.2. SERS substrate and data acquisition 

The RAM-SERS-AU-5 substrates (Ocean Insight) are paper-based 
SERS substrates covered with gold nanoparticles (AuNPs) with a 
SERS-active area of approximately 23.7 mm2. This type SERS substrates 
have been used before in publications, like Sourdaine et al. [20]. The 
AuNPs on the SERS substrates were manufactured by chemical reduction 
and the substrates were used before their expiration date. In this study, a 
fibre-coupled Raman spectrometer QE-Pro (Ocean Insight) with a 
charge-coupled device (CCD) detector was used. The SERS-substrate 
samples were placed on a motorised XY-stage LTS 150 (Thorlabs) and 
focused with a fibre-coupled probe (InPhotonics) with a spot size of 
approximately 160 μm in diameter. The measurements were performed 
with a 638 nm laser (InPhotonics). A LabVIEW software (National In
struments) carried out the controlling of the spectrometer and XY-stage 
as well as the data acquisition. 

All measurements were collected with an initial laser power of 35 
mW and an integration time of 1 s. At each substrate, three different 
mappings were collected. Each mapping consisted of a 3 � 3 raster with 
0.3 mm distance between each point and at each measurement position 
25 spectra were collected, which led to 14,175 spectra in total. 

2.3. Data processing 

After data acquisition, the data was split into training and test data 
sets. The spectra of the first two substrates for each strain were used as a 
training data set and the spectra from the third substrate were treated as 
an independent test data set. 

2.3.1. Pre-processing 
A problem often related with CCD detectors and Raman spectroscopy 

is the vulnerability to cosmic rays, which leads to cosmic spikes. These 
spikes could alter the Raman data and the information within [21]. For 
that reason, both sets were searched and corrected for cosmic spikes. 
Based on the work of Mozharov et al. [22], every intensity value of each 
wavenumber in every spectrum at each measuring position was 
compared with the averaged spectra at a threshold of the five-fold 
standard deviation for each wavenumber of the remaining 24 spectra 
for each measurement position. If a spike occurred and was located, the 
corresponding intensities were corrected by interpolating between the 
averaged intensity of the five wavenumbers before and after the located 
spike. 

All 25 spectra of each measurement position were subsequently 
averaged, cut to the range of 150–3150 cm 1 and normalised by the 
total sum of the averaged spectrum. 

2.3.2. Principal component analysis 
The subsequent chemometric analysis consisting of a PCA based on 

the covariance matrix was used to simplify the complex multivariate 
Raman data. PCA is an unsupervised chemometric technique, which 
transforms the given n-dimensional data in a projected space where the 
given variance of the data set is maximised and sorted in descending 
order in less than n-dimensions. 

The training data set was used to perform the PCA; afterwards the 
descriptive statistics of the trainings data set and the loading vector of 
the performed PCA were used to transform the test data set into scores. 

2.3.3. Canonical discriminant analysis 
After data reduction by PCA a canonical discriminant analysis (CDA) 

was used for classification by determination of a linear combination of 
the principal components which maximises the relation of inter-group 
and intra-group variations [23,24]. 

A schematic overview of the data processing, including the pre- 
processing steps for test and training data set, is shown in Fig. 1. 

The normalisation, PCA and discriminant analyses were performed 
using Origin Pro 2019b (OriginLab Corporation). LabVIEW (National 
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Instruments) was used for spike correction, cutting, normalisation and 
transforming the test data set into principal components. 

3. Results and discussion 

The sampling and data acquisition was designed in such a way that it 
was as fast and straightforward as possible. 

3.1. Pre-processing 

In order to reduce the influence of cosmic spikes in the spectra of the 
data set, the data acquisition was done in such a way that at each 
measurement position 25 spectra with an integration time of 1 s were 
collected. By comparisons between these 25 spectra, spikes could be 
detected and interpolated, so that the cosmic spikes did not affect the 
average spectrum of these measurement positions. 

In Fig. 2 the raw data of a measurement position of B. thermosphacta 
is displayed as an example. In one of the 25 spectra a cosmic spike 
occurred. 

Without the spike removal, the averaged spectra would show a spike 
at 2145 cm 1 (inserted diagram), which can be corrected by interpola
tion to reduce the influence of spikes for the classification. 

To illustrate the variations within the spectra of one genus of bac
teria, the mean spectra of the training data set with standard deviations 
of each wavenumber of the 54 spectra are shown (Fig. 3). In total 378 

spectra are presented with 54 spectra each of B. thermosphacta, E. coli, 
M. luteus, P. fluorescens, S. Enteritidis, L. monocytogenes and 
B. thuringiensis. 

The spectral profiles of the different microorganisms show only small 
differences, in relative peak intensity or different standard deviations. 
These variations result from the composition differences of the microbial 
cell, for example the variation of proteins and lipids in the cell. An 
obvious difference is the upcoming fluorescence in the spectra of 
B. thuringiensis and P. fluorescens, which could be correlated to the pig
ments from P. fluorescens [25] and possibly to the protein crystals within 
the spores of Bacillus thuringiensis israelensis [26]. 

3.2. Principal component analysis 

These spectra are further reduced in dimensionality by PCA; the first 
two principal components are displayed in Fig. 4. The loading vectors of 
this PCA are also displayed in the lower part of Fig. 3 and show, aside 
from a fluorescence background in the loading of PC 1, several peaks, 
which are comparable with the peaks in the Raman spectra above. 

The descriptive statistics and loading vectors of the training data set 
were used to convert the pre-processed test data set into the principal 
components, which are also visible in Fig. 4. 

For these multivariate statistical methods it is essential to operate 
with equal-sized data sets within the classes, because not only PCA is 
sensitive to imbalanced data sets, but the performance of the discrimi
nant analysis is also considerably affected [27–29]. Therefore, it was 
essential in the former step to correct the spike-affected spectra, because 
an elimination of the spectra would lead to an unbalanced data set. 

Even in the two-dimensional space of the first two principal com
ponents, the bacteria gather in clusters mostly apart from each other. 
B. thuringiensis and P. fluorescens are close to each other, which might be 
due to the upcoming fluorescence. However, the scores of the patho
genic bacteria S. Enteritidis and L. monocytogenes are located in small 
clusters separately from most of the other bacteria. Furthermore, the 
diagram shows that the variances in the training data set are very similar 
to the variances in the test data set since the converted test data are close 
to the correct clusters. 

3.3. Canonical discriminant analysis 

For further analysis, the first six principal components of the training 
data set were used in the CDA, which represent 99.5% of the variances in 
the training data set. The test of equality of the covariance matrices of 
each bacterium shows that the covariance matrices of the bacteria were 
not equal and therefore a quadratic discriminate function was used in 
the following discriminant analysis. 

As one result of the CDA, the first two canonical variables (CV) are 
displayed in Fig. 5. It shows that even in the first two CV all bacterial 
clusters are distinguishable by sight from each other. The result of the 
training data set shows a 0% classification error and by a leave-one-out 
cross-validation, an error of 0.54% occurs. 

As in Fig. 4, the results of the CDA show that the bacteria cluster 
apart from each other and in comparison to the PCA the clusters are 
smaller and the distance between the clusters is enlarged. This way the 
scores of pathogenic bacteria are also separated from the scores of the 
other bacteria. 

For independent testing of the developed model, the test data as 
described was processed independently of the training data set, but with 
the same steps until the test data were converted into the space of the 
principal components of the training data set. By applying the CDA 
model to the test data, a correct classification of up to 97.5% could be 
achieved, see Table 1. 

The classification results show that S. Enteritidis as well as 
P. fluorescens and E. coli were well detected with an accuracy of 100%. 
Moreover, even the L. monocytogenes with the lowest classification rate 
of the independent data set still have a 93% correct classification. In 

Fig. 1. Schematic overview of the amount of data and the data treatment for 
test and training data set. 
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addition, the false classification of the two L. monocytogenes spectra were 
assigned to B. thermosphacta, which both belong to the same family of 
Listeriaceae. The presented SERS method with the suitable chemometric 
evaluation is able to discriminate between different meat-associated 
microorganisms on a genera level in a fast and robust way and by 

doing so, to detect pathogenic bacteria like S. Enteritidis and L. mono
cytogenes in a sufficient way. Accordingly, the next step would be to 
transfer the results of an indirect sampling method with a dispersing step 
to a direct sampling step like a SERS swab or a SERS stamp for the direct 
sampling on meat. 

Fig. 2. Raw data from a measurement point of B. thermosphacta with a cosmic spike (upper diagram); differences in averaging with and without spike correction 
(lower diagram). 

Fig. 3. Upper diagram: Mean Raman spectra after spike correction, sum normalisation and cutting of the training data set for M. luteus (a), E. coli (b), B. fluorescens 
(c), B. thermosphacta (d), P. fluorescens (e), L. monocytogenes (f) and S. Enteritidis (g) with standard deviation. Lower diagram: The first six loading-vectors of the 
training data PCA. 
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4. Conclusion 

A SERS method was developed for the detection of S. Enteritidis and 
L. monocytogenes with paper-based SERS substrates. The method was 
based on a balanced training data set and tested by an independent data 

set. Therefore, a pre-processing method with a correction of cosmic 
spikes and a normalisation by sum was performed. A data reduction was 
carried out on the training data set by PCA and the results were then 
used to reduce the dimensionality of the independent data set. Subse
quently, the information of the first six principal components was used 

Fig. 4. Displayed is the score-diagram of the first two principal components from the principal component analysis of the training data set together with the 
converted independent test data set (coloured according to true class origin). 

Fig. 5. The score diagram of the first two canonical variables from the CDA of the training data set together with the independent test data set (coloured according to 
true class origin). 
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by CDA. The evaluation showed that the seven meat-associated bacteria 
could be distinguished in a robust and fast way with an independent test 
error of 2.5%. The results of this study show that the potential of this 
technology for a rapid determination of microbial contamination and 
the detection of pathogenic bacteria like Salmonella spp. and Listeria spp. 
is suitable and time-efficient in comparison to classical microbiological 
methods. Therefore, an application of the technology in the food sector 
would lead to a huge benefit due to the rapid detection of spoilage 
bacteria as well as foodborne pathogens. 
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Predicted groups 

M. luteus E. coli B. thurin-giensis B. thermos-phacta P. fluores-cens L. mono-cytogenes S. Enteri-tidis 

M. luteus 26(96%) 
54 (100%) 

0 
0 

0 
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0 
0 

1 
0 

0 
0 

0 
0 

E. coli 0 
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27(100%) 
54 (100%) 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

B. thurin-giensis 1 
0 

0 
0 

26(96%) 
54 (100%) 

0 
0 

0 
0 

0 
0 

0 
0 

B. thermos-phacta 1 
0 

0 
0 

0 
0 

26(96%) 
54 (100%) 

0 
0 

0 
0 

0 
0 

P. fluorescens 0 
0 

0 
0 

0 
0 

0 
0 

27(100%) 
54 (100%) 

0 
0 

0 
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L. mono-cytogenes 0 
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0 
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0 
0 

2 
0 

0 
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25(93%) 
54 (100%) 

0 
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S. Enteritidis 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

27(100%) 
54 (100%) 

Total classification rate 97.5% 
100%        
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