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A B S T R A C T   

The analysis of used engine oils from industrial engines enables the study of engine wear and oil degradation in 
order to evaluate the necessity of oil changes. As the matrix composition of an engine oil strongly depends on its 
intended application, meaningful diagnostic oil analyses bear considerable challenges. Owing to the broad 
spectrum of available oil matrices, we have evaluated the applicability of using an internal standard and/or 
preceding sample digestion for elemental analysis of used engine oils via inductively coupled plasma optical 
emission spectroscopy (ICP OES). Elements originating from both wear particles and additives as well as particle 
size influence could be clearly recognized by their distinct digestion behaviour. While a precise determination of 
most wear elements can be achieved in oily matrix, the measurement of additives is performed preferably after 
sample digestion. Considering a dataset of physicochemical parameters and elemental composition for several 
hundred used engine oils, we have further investigated the feasibility of predicting the identity and overall 
condition of an unknown combustion engine using the machine learning system XGBoost. A maximum accuracy 
of 89.6% in predicting the engine type was achieved, a mean error of less than 10% of the observed timeframe in 
predicting the oil running time and even less than 4% for the total engine running time, based purely on common 
oil check data. Furthermore, obstacles and possibilities to improve the performance of the machine learning 
models were analysed and the factors that enabled the prediction were explored with SHapley Additive exPla-
nation (SHAP). Our results demonstrate that both the identification of an unknown engine as well as a lifetime 
assessment can be performed for a first estimation of the actual sample without requiring meticulous 
documentation.   

1. Introduction 

Lubricants constitute essential construction components for com-
bustion engines and hence contribute to the strict requirements 
regarding the emissions, performance and efficiency of modern engines. 
Their main tasks include reducing wear of the moving parts as well as 
transmitting thermal stresses while keeping their viscosity, thus 
contributing to a longer lifetime and reliable operation of the machine. 
However, they also need to protect the engine from corrosion [1] and 
ensure durability by avoiding degradation [2,3], even under immense 
loads and extreme working conditions in modern high-output engines. 
Consequently, engine oils need to be equally subject to continuous 
development and oversight processes as the more prominent metallic 

construction parts. 
Characteristically, engine oil can be taken as a universal indicator for 

the mechanical and thermal history of the machine it was used in [4,5], 
and thus provide valuable information about the condition of a usually 
sealed and inaccessible engine. Standard oil analytics include a wide 
range of parameters such as the viscosity, total base number, particle 
size of debris, soot content as well as its elemental composition [6,7]. As 
for the latter, there are three main groups of elements to be differenti-
ated (see Fig. 1): Additives (e.g. Ca, P, Zn) [8,9], wear elements (e.g. Al, 
Cu, Fe) and contaminants (e.g. K, Na, Si). While the amount of wear 
elements mainly characterizes the state of the moving and therefore 
rubbing parts, contaminants may indicate leaks in the air induction or 
engine cooling system. Additionally, additives are used to maintain and 
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control the physicochemical parameters of the engine oil [10,11] and 
improve anti-oxidative properties [12]. Furthermore, they can provide a 
characteristic ‘fingerprint’ that allows for distinguishing specific types of 
oil spectroscopically [13,14]. 

Regular laboratory analyses of engine oils can advert to engine 
malfunctions and enable to foresee and prevent severe damages. Thus, 
they may provide an early warning system for potential engine failures if 
the analytical results are interpreted properly [17]. In particular, this is 
relevant for industrial engines, as they often work stationary in the 
non-road sector and oil exchanges in these applications are directly 
linked to machine downtime and additional costs. For certain engine 
operations under low load, an extension of oil exchange intervals is 
desired but requires the manufacturer’s clearance which can only be 
obtained by thorough oil analysis [15]. 

Complexity arises from the fact that the composition of an engine oil 
is highly specific for its intended use, considering e.g. the type of engine, 
site of operation and available fuel [18,19]. A direct comparison and 
assessment of different oil types is therefore challenging. Particularly, 
difficulties arise from engines of varying age, resulting in the necessity to 
compare oils with partially degraded additives and differing levels of 
wear particles and contaminants. However, since many engine types are 
mechanically resemblant, it can be assumed that they exhibit a com-
parable, yet distinct ageing behaviour [20] that might be extractable 
from underlying spectroscopic information. 

For the elemental analysis of engine oils, different methods of sample 
preparation and analytical techniques have been discussed [21–23]. 
Presently, inductively coupled plasma optical emission spectroscopy 
(ICP OES) can be considered as the method of choice for elemental oil 
analysis (e.g. DIN 51399–1:2017–02, ASTM D 4951:2014, ASTM D 
5185:2018) due to its high precision and accuracy [24–26]. 

For a typical ICP OES measurement, the sampled engine oil is diluted 
with kerosene to obtain the desired viscosity before introducing it into 
the ICP torch. Alternatively, the oil sample can undergo a pre-treatment 
[27–29] and be analysed indirectly (see e.g. DIN 51460–1:2007–11), i.e. 
by incineration followed by an acid digestion and measurement in 
aqueous solution [30]. Additionally, for both cases, a suitable internal 
standard (IS) can be used to further compensate for losses during the 
sample pre-treatment or other influences which may lead to a lower 
accuracy. 

When dealing with complex matrices such as engine oil, chemo-
metrics and machine learning can be applied to find patterns or build 
classification and regression models. Unsupervised methods like prin-
cipal component analysis (PCA) and hierarchical cluster analysis have 

already been used on spectroscopic data to study degradation com-
pounds in engine oils [20,27,31] as well as to detect adulterated engine 
oils or classify oil service conditions [32,33]. Apart from that, supervised 
methods have previously been used to predict engine oil characteristics, 
e.g. contents of cheap engine oil in adulterated oils via partial least 
squares regression [32], thermophysical and physicochemical proper-
ties via support vector regression [34,35] or the total acid number of 
various engine oils using several machine learning algorithms [36,37]. 
Furthermore, artificial neural networks models have been employed to 
predict physicochemical properties and oil ageing from infrared spec-
troscopy [38]. 

Although different machine learning algorithms may be suitable for 
specific analytical questions, the best performance for big datasets can 
be achieved by model ensembles that combine many learner variations. 
One such powerful technique is boosting, which adds classifiers, each 
focussing on the mistakes the previous classifier made [39]. Extreme 
gradient boost (XGBoost) is a scalable boosting system that uses a 
gradient tree boosting algorithm [40], which employs tree ensembles 
and proved to give state-of-the-art results on various machine learning 
problems [41]. This ensemble has been recently used to predict engine 
oil pressure levels during normal operation [42]. 

Commonly, machine learning algorithms develop models that are 
difficult to interpret. For this reason, SHapley Additive exPlanation 
(SHAP) can be applied for a facilitated interpretation as this tool enables 
quantifying the relative importance of model features [43,44]. 

In this study, we provide a comprehensive comparison of four 
combinations for sample preparation (oily, oily with IS, aqueous, 
aqueous with IS) by examining the analytical performance with various 
used engine oil samples of different engine types. Our findings aim at 
both a higher validity of oil analyses in general by identifying influences 
of sample pre-treatment, as well as to evaluate the potentials of applying 
machine learning to facilitate individual case decisions for lifespan 
estimation based on common oil analysis data. Ultimately, the goal of 
this study is to examine the feasibility of identifying the engine type, 
predict both oil running time and total operation time of an engine by 
applying XGBoost to regular laboratory oil check data and using SHAP 
for a comprehensive assessment of the models. 

2. Materials and methods 

2.1. Spectroscopic analysis using IS and sample digestion 

For the comparison of the four different sample pre-treatment 
methods, oil samples originated from engine test stands. Test engines 
were all L4, L6 and V8 common rail diesel engines (L = in-line, V = V- 
shaped engine), intended for use in industrial engines, which were run 
for up to 1300 h of operation. 15 representative oil samples from the 
beginning, middle and end of a common oil exchange interval were 
used. Oil samples were acquired according to DIN 51574:2017–04. 

For oily measurements, the samples were shaken vigorously for 5 
min and diluted 1:10 (w/w) with kerosene (J.T. Baker, Deventer, 
Netherlands). If an internal standard was used, 1% (w/w) of a 1000 mg 
kg− 1 Yttrium standard solution of 20 mm2 s− 1 viscosity (Conostan®, SPS 
Science, Baie D’Urfé, Canada) was added. 

For the optional sample pre-treatment via incineration and wet acid 
digestion according to DIN 51460–2:2016–12, 10 g of used engine oil 
were heated on a rapid incinerator (Gestigkeit, Düsseldorf, Germany), 
ignited and allowed to burn down. After being kept in a muffle furnace 
(Nabertherm, Lilienthal, Germany) at 800 ◦C for residual soot removal, 
the cooled down ash samples were dissolved in boiling hydrochloric acid 
(VWR, Radnor, PA, USA). If an internal standard was used, 1% (w/w) of 
a 1000 mg kg− 1 Yttrium standard solution (Bernd Kraft, Duisburg, 
Germany) was added. 

ICP OES analyses were carried out according to DIN 51399–1 using a 
SpectroBlue (Spectro Ametek, Kleve, Germany) in radial plasma obser-
vation, equipped with a standard Scott spray chamber and cross-flow 

Fig. 1. Mean elemental composition by weight of used engine oils. Elements 
have been classified to additive, wear and contaminant elements according to 
Refs. [15,16]. Values were obtained by averaging over all engine oil data used 
within the study. 
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nebulizer. Separate sample introduction systems were used depending 
on the analysis of oily or digested samples. Operation conditions for 
elemental quantifications are listed in Table 1. 

For calibration, certified oil-dissolved standard solutions (Cono-
stan®, SPS Science, Baie D’Urfé, Canada) and aqueous standard solu-
tions (Bernd Kraft, Duisburg, Germany) were used for oily and digested 
samples, respectively. Stock solutions and calibration ranges were 
selected according to DIN 51399–1. 

2.2. Dataset pre-processing for engine type classification 

In order to identify variables which contain the most essential in-
formation about the engine type, state of wear and oil degradation, 
additional common physicochemical oil analyses were performed. Ki-
nematic viscosity at 40 ◦C and 100 ◦C (denoted “viscosity40” and “vis-
cosity100”) as well as the viscosity index (VI) have been determined 
according to DIN EN ISO 3104:2017–11 and DIN ISO 2909:2004–08 
using a HVU 490 viscometer (PAC GmbH, Lauda-Königshoven, Ger-
many). For the determination of the density according to DIN EN ISO 
12185:1997–11, a DMA 4500 density meter (Anton Paar, Graz, Austria) 
was used. 

An anonymized dataset was provided by DEUTZ AG (Cologne, Ger-
many) consisting of a broad variety of oil samples originating from both 
engine test stands as well as field trials. All engines were DEUTZ AG L3, 
L4 and L6 industrial engines which were run for up to approx. 9000 h of 
operation. Engine types vary in fuel (gas acc. DIN EN 589:2019–03, 
diesel acc. DIN EN 590:2017–10), displacement and forced induction. 
All oil samples have been acquired and analysed via ICP OES (oily 
without IS) as described in section 2.1. 

As the original dataset included a broad variety of samples with 
different origins and partially limited oil analysis data, pre-processing 
was deemed necessary. In order to enable machine learning, engine 
types with less than 30 samples were excluded from the original dataset. 
Additionally, variables which were not available for the majority of 
samples as well as samples with missing features were removed, leading 
to 713 remaining samples and 21 features. 180 additional samples were 
only missing information about the running time and were thusly 
included in the engine classification step but left out for the running time 
regression (see section 2.3.). All samples represent 8 different engine 
types, as can be seen in Table 2. 

All data analysis and machine learning was performed using R [45] 
with specialized packages [46–48]. Model interpretation within the 
SHAP framework was achieved using the Python SHAP package, 
accessed in R through the “reticulate” package [49]. 

The dataset was randomly divided into a training and a test dataset 
with 90% (803 samples) of the samples in the first and 10% (90 samples) 
in the latter. The training dataset was used for hyperparameter opti-
mization and the test dataset for a final validation. Hyperparameter 
optimization was achieved using a Bayesian optimization and a 10 times 
repeated 10-fold cross validation (CV), optimizing the multi-class log 
loss. For the final evaluation, a 100 times repeated 10-fold CV was 
performed for the training dataset and a 40 times repeated validation for 
the test dataset. All other calculations were based on a 10 times repeated 
10-fold CV. 

2.3. Lifetime regression with XGBoost 

For regression, the dataset used for classification was reduced to 
samples from test blocks where the running time of the engine was 
measured and both the total running time and the running time since the 
last oil exchange (here denoted “oil running time”) were available, 
leaving a total of 713 samples for the regression (Table 3). 

Regression models based on the oil analytics were built with XGBoost 
for both the total running time and the oil running time. Evaluation was 
performed using the identical procedure as for the engine type classifi-
cation. For a visual representation of the regression model, an additional 
10-fold CV was performed with the complete dataset plotting the 
observed against the predicted values as recommended [50]. 

3. Results and discussion 

3.1. Influence of sample preparation and IS usage on elemental 
determination 

In order to compare and assess each sample preparation technique, 
the analytical performance of all calibrations has been investigated. A 
reliable evaluation was obtained by characterizing the limits of detec-
tion (LOD) and quantification (LOQ), linearity and precision for both 
matrices and all elements of interest (see supplementary tables A.1 and 
A.2 in the appendix). 

For the majority of the observed elements, calibrations performed in 
oily matrix yield LOD values below 50 μg kg− 1, with minimal values of 
1.5 μg kg− 1 for Mg and 2.0 μg kg− 1 for Zn, respectively. Given that 
almost all major metallic components can be quantified to trace levels of 
less than 0.1 mg kg− 1, monitoring of successive wear and degradation of 
an operating engine is confidently possible. However, contaminants 
possess relatively high limits of detection and quantification, thus 
making these elements unsuitable for a precise determination at trace 
levels. 

In contrast, calibrations performed in aqueous solution mostly yield 
LOD values below 20 μg kg− 1, with minimal values of 1.3 μg kg− 1 for Si 
and 0.1 μg kg− 1 for both Mn and Mg, respectively. Noticeably, Sn proved 
to be a particularly difficult additive element to analyse in aqueous 
matrix since its regression function exhibits a low linearity and hence 
leads to low precision analyses. The obtained values for LOD and LOQ 
are in the same order of magnitude as reported in previous works 
[51–53], confirming that the chosen methodology is not limiting the 
analyses of the datasets. 

Apart from that, almost all calibrations for both matrices could be 
fitted to linear functions with coefficients of determination R2 > 0.999 
and precision coefficients of less than 3%. Therefore it can be concluded 
that despite the lower LOD values for aqueous matrices, oily measure-
ments still enable a sufficiently reliable quantification of all analytes 
which indicate a substantial ageing of the respective engine. 

To enable a comparison of the analytical results for different oil 
samples i and elements j from the four sample pre-treatment procedures 
k under investigation (oily, oily with IS, aqueous, aqueous with IS), 
standard scores zi,j,k have been calculated according to equation (1). 

zi,j,k =
ωi,j,k − μi,j

σi,j
(Eq. 1) 

Herein, ωi,j,k denotes the elemental content determined for a given 
configuration, expressed as a mass fraction, while μi,j and σi,j represent 
the mean value and standard deviation of all four methods for a given 
sample, respectively. 

In order to explore patterns of how the four methods compare to one 
another depending on the respective analyte, the standard scores of each 
sample are depicted for all configurations individually (Figs. 2 and 3 for 
the most prominent elements, Figs. A.1 and A.2 in the appendix for 
further elements under investigation). For each element the calculated 
values for all four methods were connected with lines to offer an 

Table 1 
Operation conditions for ICP OES measurements of oily and aqueous samples in 
radial configuration.  

Parameter Oily Aqueous 

Incident power/W 1500 1400 
Cooling gas flow rate/L min− 1 15.0 12.0 
Auxiliary gas flow rate/L min− 1 2.2 1.0 
Nebulizer gas flow rate/L min− 1 0.60 0.95 
Rinse time/s 350 120 
Integration time/s 24 24 
Number of replicates 3 3  
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intuitive visualization. The colour range displays the differing elemental 
contents of the measured oil samples. For a given sample, each line 
represents the mean value μi,j determined by all four configurations. 

When comparing the score plots in Fig. 2, it can be noted that in 
general, additive elements exhibit higher score values – and hence 
measured elemental contents – for aqueous determinations in contrast to 
oily measurements. This is most obvious for typical additive elements 
such as Ca or Zn, where standard score values amount to +1 for the 
aqueous method compared to − 1 for the oily method, nearly indepen-
dent of the real elemental content within the oil. For other additive el-
ements, this is especially true if they are present in higher concentrations 
in the used engine oil. As recovery rates for ashing methods range from 
55% to 102% [54,55], it implies that the direct measurement of oily 
samples entails even higher losses for additive elements. 

Characteristically, wear elements like iron are prone to be under-
determined in oily samples as they are typically present as solid particles 
in used engine oil, and thus cannot be quantified correctly with direct 
injection [56]. For additives however, this behaviour can be ascribed to 

the structural properties of the organometallic compounds, which allow 
them to adsorb to soot and wear particle surfaces. As those particles 
cannot be completely atomized, it subsequently leads to an under-
determination of the additives. To partially account for these losses, the 
internal standard yttrium can be used, since it possesses a comparable 
physicochemical behaviour as many major additives. 

Since Mg, B and Mo are part of additive compounds that are not used 
in every type of engine oil, the score plots distinguish two distinct pat-
terns, depending on the overall oil composition: Engine oils which 
contain these additives to a significant amount exhibit the aforemen-
tioned trend concerning the different determination techniques (dark 
blue lines) whereas oils that are clear of these elements show a differing 
behaviour due to higher deviations with the determination of trace 
amounts (bright yellow lines). 

Sulfur is an exceptional analyte in that it cannot be accurately 
quantified after incineration and acid digestion. This is because sulfur 
forms volatile SO2 gas during the pre-treatment process and thus leaks in 
a matter that yttrium as an internal standard cannot account for. This 

Table 2 
Number of samples for each engine type in the classification dataset.  

Engine Type 1 2 3 4 5 6 7 8 Total 

Number of samples 181 145 124 212 61 92 46 32 893 
Fuel type gas diesel diesel diesel diesel diesel diesel diesel   

Table 3 
Number of samples for each engine type in the regression dataset.  

Engine Type 1 2 3 4 5 6 7 8 Total 

Number of samples 141 116 101 159 53 71 40 32 713 
Fuel type gas diesel diesel diesel diesel diesel diesel diesel   

Fig. 2. Standard score plots for four representative additive elements under investigation. In general, oily determinations lead to lower values for additives due to 
their adsorption to soot and wear particles. Sulfur shows lower values with the aqueous methods due to drastic losses during the incineration and wet diges-
tion process. 
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property also becomes apparent in the standard score plot where both 
aqueous methods show significantly lower score values than the oily 
methods. 

Fig. 2 further shows that for Ca, Mg and Zn – additives with 
elemental contents exceeding 500 mg kg− 1 – the use of an internal 
standard with an aqueous determination leads to lower values than 
using a conventional external calibration. This is a consequence of cal-
ibrating with multi-element stock solutions, which are subject to sub-
stantial matrix effects. Due to the higher amount of energy consuming 
substance introduced to the plasma, both self-absorption phenomena 
and excitation interferences occur, decreasing the sensitivity for the 
determination of a single element [57]. 

The amount of wear elements present in used engine oils is much 
lower compared to additive elements, which can exceed values of 2000 
mg kg− 1. As becomes apparent in Fig. 3, elemental contents of less than 
20 mg kg− 1 are typically measured for wear elements, thus putting much 
higher requirements on the analytical method. 

Considering the score plots for typical wear elements such as Mn or 
V, it can be noted that the lowest score values are obtained with aqueous 
measurements due to losses during the pre-treatment process. However, 
adding an internal standard leads to significantly higher measured 
elemental contents, so that the score values match the results of oily 
methods or even surpass them. Furthermore, it can be observed that in 
general, oily determinations allow for a precise measurement of trace 
levels of wear elements, even if no internal standard was used. 

Iron, as the most prominent wear element, shows a differing 
behaviour for high and low concentrations in used engine oils: While 
low amounts of Fe result in low score values with the aqueous deter-
mination and high score values with the oily method, the exact opposite 
result is obtained for high amounts of iron. This appears to be a conse-
quence of differing particle sizes since chipped debris does not get suf-
ficiently atomized within the ICP torch, thus compromising the 
elemental quantification with oily methods [58,59]. As the lifetime of an 

engine oil progresses, an increasing amount of gradually larger Fe par-
ticles get abraded within the engine [60], causing an under-
determination of iron at higher weight concentrations. The opposite can 
be observed when aluminium is under investigation, leading to the 
inherent assumption that with increasing engine running time smaller 
aluminium debris is produced [61,62]. This could be due to differing 
mechanical properties of construction parts out of various friction 
resistant alloys and coatings, e.g. of the crank drive component 
materials. 

Nonetheless, an internal standard should be used for digestion 
procedures. 

As the selected technique for sample preparation strongly impacts on 
the obtained results, the operator must consider the goal of a respective 
oil analysis. If the precise determination of additive elements is 
considered of highest importance, sample digestion is strongly advised. 
If the determination of wear elements is to be carried out within the 
same analysis, the use of an internal standard is recommended. Although 
a sufficiently correct determination of most wear elements can be ob-
tained by a simple, quick and direct oily measurement, iron levels suffer 
from severe deviations. 

This specialty in wear metal determination could be considered a 
methodological disadvantage for a single used engine oil sample. 
Nevertheless, when oil analytics are carried out in order to determine oil 
exchange intervals or predict looming engine failures, only the consis-
tency of the results is important and minor errors of elemental content 
levels may be considered negligible. 

Furthermore, this effect may also be deemed a feature in a multi-
variate dataset which benefits from a much larger sample size. For this 
reason, the most common and facilitated type of elemental oil analysis 
(oily without IS) was chosen to access a large dataset of used engine oil 
analyses. Using this dataset and considering all method advantages and 
disadvantages, an intra-method evaluation of all engine oil samples can 
be obtained by a multivariate approach. This further enables to extract 

Fig. 3. Standard score plots for four representative wear elements under investigation. In general, oily measurements enable an accurate determination of trace level 
wear elements, while acid digestion processes require an internal standard. For iron, the effect of debris particle size within the used engine oil becomes particu-
larly apparent. 
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information concerning the engine type and condition by employing a 
time- and cost-efficient method. 

3.2. Engine type classification 

In this segment, we investigate the possibilities of predicting the 
engine type based on the measured properties of engine oil samples. To 
perform this study, XGBoost was selected as it allows for excellent 
achievable accuracies, provides a rather low computing time and comes 
with inherent mechanisms against overfitting [39,41]. 

With classification accuracies of 81.1% ± 1.5% in the test dataset 
and 83.7% ± 4.0% in the training dataset, the engine type classification 
proved to be applicable. As the mean accuracy of the test dataset is 
within the standard deviation of the training dataset, a successful pre-
vention of model overfitting is indicated. Since gas engines are under-
represented within the dataset, it was necessary to check the 
classification model for distortions. Evaluating the classification sensi-
tivity for gas engines, a value of 82.5% was obtained, which is close to 
the overall model accuracy. Moreover, with respect to the specificity of 
this class, 97.1% of samples from diesel engines were correctly rejected 
as engine type 1, which notably demonstrates the robustness of the 
classification model. 

Considering the overall performance, improvements are still desir-
able. It can be expected that a higher number of samples will increase 
the accuracy and lower the relatively high standard deviation of the 
accuracy of the cross validation. The former is a result of XGBoost being 
designed to work best with extremely large datasets of several hundreds 
of thousands of samples [63–65]. 

In a first approach, the model accuracy is examined for consistency 
over the entire oil running time range. Fig. 4(a) displays to what extent 
the accuracy of the classification model hinges on the oil running time of 
the engines included within the model dataset. Due to inhomogeneously 
spread sampling times, sample binning was carried out with a constant 
number of samples per bin for a facilitated interpretation. Apparently, 
engine classification accuracy strongly fluctuates with the oil running 
time. For engine oils of more than 20 operating hours, the mean accu-
racy improves dramatically to over 85%. The classification of samples 
with low oil running times however faces a problem: Engines using the 
same fresh engine oil should theoretically not be distinguishable at the 

beginning of an oil exchange interval. Yet, there is still a basal classifi-
cation capacity for samples with running times smaller than 1 h. This is 
due to the fact that within the first operating hour after an oil exchange, 
the refill oil mixes with residuals of the remaining used oil, enabling a 
minimum of discrimination. However, the classification performance for 
these distinct engines merely attained a mean accuracy of 65.2%. 

It is with increasing running time that wear and degradation 
behaviour get more apparent and distinguishable. Thus, the classifica-
tion performance should improve if oil datasets of engines with oil 
running times beneath a selected lower threshold are omitted from the 
model. To verify this effect, XGBoost classification models based on the 
entire dataset (including both the prior training and test dataset) with 
varying minimum oil running times were trained and evaluated, using 
the same hyperparameters as before. In contrast to the unmodified 
model, Fig. 4(b) therefore displays the obtained overall model accuracy 
values resulting from differing lower threshold levels with the given 
dataset. 

By removing oil samples with less than 1 h of operation, a jump in 
accuracy from 84.1% ± 0.1% to 85.8% ± 0.3% could already be ach-
ieved for the overall model, increasing steadily and plateauing at around 
20–40 h at 87.4% ± 0.2%. 

With more than 40 h as a lower threshold, the accuracy decreases as 
a result of too small class sizes. Since the highest accuracy is achieved for 
sample acquisition performed after 20 h of operation, this can be seen as 
a guide value for a lower threshold of oil running time if the goal of an oil 
analysis is the determination of the originating engine type. 

Another obstacle for classification is the inconsistency of the samples 
included in the dataset. Engines from field trials used a variety of engine 
oils which show tremendous differences in their composition and 
physicochemical properties, introducing additional variance. In addi-
tion, difficulties arise from the inhomogeneous spread of oil types within 
the dataset. While oil types A and B were found in 541 and 246 samples, 
respectively, the other 106 samples are spread over more than 10 
different oil types. The effect on the classification performance can be 
seen when removing all samples from the otherwise unrestricted dataset 
except for oil types A and B, achieving an increase in accuracy to 86.0% 
± 0.2%. 

At this point, the limits of the engine type classification are clearly 
shaped. With more classes and more engine oils, the classification 

Fig. 4. (a) Impact of the engine oil running time on the classification model. The classification accuracy was determined for bins of 30 engine oil samples with the 
bins moving incrementally by one sample (3-fold determination). The solid red line depicts a smoothed average for facilitated identification of general trends. Apart 
from samples with very low oil running times, mean classification accuracies greater than 85% are obtained for all other data points included in the model. (b) 
Accuracy of the XGBoost classification model as a function of the minimum oil running time used for the regression model. The grey area illustrates the fluctuation of 
mean values and standard deviation depending on the chosen threshold whereas the solid red line depicts a smoothed average. If engine oils with low running times 
are excluded from the model, a significant increase in accuracy is obtained. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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accuracy is doomed to decrease. Vice versa, the limitation to fewer 
different engine oils improves the identification reliability. When using 
the two most prominently represented oil classes and 20 h of minimum 
oil operating time, a maximum accuracy of 89.6% ± 3.8% can be 
achieved. 

So far, the classification model has not shed light on the general 
relationships between the features, which led to the generated pre-
dictions, and thus makes it impossible to assess the plausibility of the 
model. The SHAP framework provides a tool for understanding black- 
box machine learning models by calculating SHAP values for each 
sample and feature within the classification model. These SHAP values 
measure the relative importance of a feature with respect to the model 
output for each observation. 

To demonstrate exemplarily how the SHAP framework can be used 
for the interpretation of engine type classification based on common oil 
analysis data, SHAP values for the training dataset based on the opti-
mized XGBoost model were calculated. As we deal with a multi-class 
classification, matrices of SHAP values (n samples x m features) are 
generated for each of the 8 engine type classes. Fig. 5 depicts the 
cumulated means of absolute SHAP values for each feature. This 
parameter represents the overall importance of a feature for the classi-
fication of a certain engine type. 

Whilst the Si content is the most important feature overall, it can be 
noted that the class discrimination is highly specific for different engine 
type classes. For instance, considering the Cr content as the most 
important wear element feature, it is predominantly relevant for clas-
sification as engine type 1, followed by types 4 and 8, while it is of 
negligible importance for the identification of engine types 3, 5 and 6. 
This can be ascribed to the lower amount of chromium found in oil 
samples of the gas-operated engine type 1. 

Regarding oil additives, Mg is considered the most important 
element, especially for the classification of engine type 5. This might be 
due to the usage of a particularly Mg-free engine oil which is distinctive 
for this particular engine type. In contrast, common additive elements 

like Ca and S are only of minor importance. Notably for a contaminant, 
silicon stands out as the element with the highest impact on the engine 
type classification model. As for the physicochemical parameters, the oil 
density contributes less to the engine type classification than viscosity 
values. Especially engine type 6 can be identified by its distinct rheo-
logical behaviour. 

Overall, wear elements possess the highest SHAP values, indicating 
that the intrinsic ageing fingerprint of an engine caused by wear is of 
higher interest for the presented classification model than the use of oils 
with specific additives. With Si showing such a prominent yet undif-
ferentiating importance for the model, there might be an additional 
engine-specific silicon source. This is supported by the fact that for en-
gine type 6, both Al and Si are considered to be of increased importance, 
implying the use of materials qualified by the particular lack or presence 
of these two elements (i.e. AlSi pistons or Al-containing bearings). En-
gine type 1 on the other hand is primarily identified by distinct Fe and Cr 
contents, indicating a peculiarity in the ageing behaviour of stainless- 
steel components. 

The importance plot in Fig. 5 conceals the way the features 
contribute to the classification model. However, this information can be 
extracted from the calculated matrices of SHAP values and depicted as a 
summary plot (see Fig. 6(a)). Herein, each data point represents a 
sample with its SHAP value plotted for each feature. Since we performed 
a multi-class classification, this plot can only display the SHAP values for 
one class at a time, e.g. exemplarily shown here for engine type 1. A 
positive value refers to the corresponding feature classifying the sample 
as belonging to the selected engine type class. Vice versa, a negative 
SHAP value disqualifies the sample as a member of the considered class. 
With a SHAP value close to zero, the feature is not deemed important for 
the classification of the particular oil sample. The dot colour displays the 
relative value of the respective feature. 

Since elevated levels of Fe and Cr are related with negative SHAP 
values for the classification as engine type 1, it can be assumed that in 
this specific gas engine type, no stainless-steel components are exposed 

Fig. 5. SHAP importance plot of variables for XGBoost calculated based on the SHAP values. High values correspond with a high importance of the feature for the 
classification as the associated engine type. 
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to significant wear. This hints at a low abrasion level caused by low 
engine load, a generally reduced power level or the avoidance of this 
material. Furthermore, a high content of zinc qualifies the oil sample as 
belonging to engine type 1, whereas low values contribute to the con-
trary. This implies that engine type 1 uses an engine oil with Zn-based 
friction modifiers [66], indicating an engine constructed for durability. 

The SHAP dependence plot in Fig. 6(b) enables an even more 
differentiated insight into the influence of a feature on the prediction of 
the classification model. Each data point represents one sample with its 
SHAP value on the y-axis and the feature value (i.e. measured Cr con-
tent) on the x-axis. In contrast to the summary plot that only revealed a 
general correlation, this plot further examines the nature of this 
correlation. 

Again, on the example of chromium for engine type 1, it becomes 
obvious that a Cr content of close to around 0 mg kg− 1 is specific for the 
classification as engine type 1. All samples with higher Cr contents have 
negative SHAP values and hence contribute to disqualifying the samples 
for this class. However, low viscosity40 values reduce the effect caused 
by the elevated chromium content and lead to slightly less negative 
SHAP values (Fig. 6(b), green sphere). 

3.3. Oil running time regression 

In order to reasonably assess the constitution of an unknown engine 
oil, it is mandatory to gauge its previous duration of operation. For this 
reason, we discuss the feasibility of an oil running time regression from 
the dataset in the following section. 

Including all eight engine types in one model, we obtained a mean 
absolute error (MAE) of 121 h in the training dataset, which is 10% of 
the total running time range (1250 h), and 117 h for the test dataset. The 
coefficients of determination were 0.658 ± 0.131 and 0.772 ± 0.026, 
respectively. Overfitting of the model was refuted as the root-mean- 
square errors (RMSE) of (192 ± 35) h for the training dataset and 
(173 ± 9) h for the test dataset are consistent within their margins of 
error. Considering the underrepresented gas engine samples only, all 
regression performance values (MAE = 125 h, RMSE = 193 h, R2 =

0.660) lie within the error range of the overall model, indicating no 
distortion. Thusly, our findings show that predicting the engine oil 
running time based on engine oil parameters using XGBoost is generally 

possible. 
Nonetheless, a rather high spread of the data points can be noted in 

the scatter plots in Fig. 7. For both the training and test dataset, these 
graphs illustrate the observed values versus the predicted values for the 
oil running time regression model. 

As the scattering increases for higher oil running times, the predic-
tion accuracy consequently decreases. This is a result from major inco-
herencies within the dataset. Most notably, dealing with all eight 
different engine types and multiple different engine oils in the same 
model creates major difficulties for the oil running time prediction as 
each engine type exhibits different wear characteristics. Furthermore, 
including samples of several oil exchange intervals bears challenges as 
the engine wear and oil degradation behaviour also differs. This be-
comes most obvious in Fig. 7(a) (green sphere) for oil samples acquired 
immediately after an oil exchange, where the real oil running time is 0 h 
whilst the model predicts oil running times of 0 h–250 h. As afore-
mentioned, residual oil and wear particles from the previous oil ex-
change interval mix with the new engine oil and thus lead to a 
practically unused engine oil already containing signs of wear. While 
this circumstance has been considered a benefit during engine type 
classification, it now impairs the regression model. 

Taking those challenges into account, the prediction accuracy is 
deemed quite decent. To enable a better regression model, a larger and 
more consistent dataset would be necessary, as for the present study an 
engine-specific regression model with XGBoost would not be beneficial 
due to an insufficient amount of oil samples per engine type. While it 
may be possible to obtain practicable results with simpler chemometric 
algorithms when dealing with just one engine type, we considered to 
focus on the selected machine learner to obtain a more robust and ver-
satile model which can more easily deal with engine data not included 
within the original dataset. 

For the SHAP analysis, only one matrix of SHAP values (n samples x 
m features) results for the regression model in contrast to the previously 
performed multi-class classification. In this case, understanding the 
SHAP values is more intuitive: negative SHAP values contribute to a 
prediction of lower oil running times and vice versa. Fig. 8(a) gives the 
summary plot for each feature, with each dot representing one sample. 

It can be noted that the oil density is considered the most important 
feature for the regression model and correlates positively with the SHAP 

Fig. 6. (a) SHAP values of engine type 1 for each sample with the colour scale corresponding to the feature value, sorted by range in descending order. (b) 
Dependence plot of chromium for engine type 1 with SHAP values plotted against the measured Cr content. The colour scale displays the viscosity at 40 ◦C of the 
respective sample. Exclusively for Cr values around 0 mg kg− 1, positive SHAP values are obtained. The green sphere highlights certain oil samples with low viscosity 
that experience a decreased rejection as engine type 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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value for the oil running time prediction. For many additive elements (e. 
g. P, B, S), a decrease in elemental content contributes to an estimation 
as fresh oil, as do elevated levels of certain wear elements (e.g. Fe, Ni). 
Previously, Lara et al. considered additive elements to be of major 
importance for oil running time estimation [27], however, wear and 
abrasion elements are equally important. During long-term and 
high-load operation, volatile fractions of the oil can degrade or evapo-
rate and impair the physicochemical properties. This leads to lowered 
viscosity40 and increasing density feature values, correlating with high, 
positive SHAP values. 

The influence of a feature on the output of the regression model is 

mostly non-linear, as observed for the most prominent wear indicator 
iron in the dependence plot (Fig. 8(b)). There is a positive correlation 
between the iron content and the SHAP value for an iron content below 
30 mg kg− 1 and over 80 mg kg− 1, reflecting the anticipated increase of 
iron content with the running time due to wear. However, between 30 
and 80 mg kg− 1 (green sphere), the SHAP values remain relatively stable 
in the range between 0 and 50. This indicates that oil samples within this 
range cannot be distinguished substantially by their iron content, as 
there is no sufficient discrimination in oil running time. 

Furthermore, the oil running time regression model also needs to be 
sensitive to the total running time of the engine as the wear behaviour of 

Fig. 7. (a) Scatter plot of observed vs. predicted values for the oil running time based on the training dataset. A linear regression function is displayed as a blue solid 
line, its 95% confidence interval as a grey area and the 95% prediction interval with red dashed lines. The green sphere indicates a subset of samples predicted much 
older than observed. (b) Scatter plot of observed vs. predicted values for the oil running time based on both the training and test dataset. No visual sign of overfitting 
to the training dataset can be observed as indicated by a random distribution of test set data points among the entire dataset. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. (a) Summary plot of the SHAP values for the oil running time regression with the colour scale corresponding to the feature value, sorted by impact in 
descending order. (b) Dependence plot of iron with SHAP values plotted against the measured iron content. The colour scale displays the total running time of the 
engine to show interactions between the two features. The green sphere highlights a range in elemental content where no major changes in SHAP value can be 
observed. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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an engine changes during its lifespan. For instance, iron wear abates 
with total running time, thus while having a low iron content in the first 
oil exchange interval may correspond to a low oil running time, the same 
value will imply a higher oil running time in a later oil exchange in-
terval. The dependence plot in Fig. 8(b) reveals that the XGBoost model 
is able to adjust to his behaviour, as can be gathered from the different 
colours representing the total running time. When comparing samples 
with the same iron content, the SHAP values are generally higher for 
samples with a high total running time than for samples with a lower 
total running time. By doing so the model reacts to the gradually 
decreasing wear in an engine. 

3.4. Total running time regression 

Since engine oils are regularly exchanged after several hundred 
hours of operation, according to manufacturer’s guidelines or after an 
oil laboratory recommendation, regressing the total running time of an 
engine was presumed to be particularly challenging. Yet, the regression 
led to satisfying results, contrary to our expectations: We obtained a 
MAE of 348 h for the 90% training dataset and achieved 310 h for the 
10% test dataset. Coefficients of determination were 0.735 ± 0.143 and 
0.771 ± 0.028, respectively. The RMSE of (658 ± 170) h for the training 
dataset and (573 ± 29) h for the test dataset overlap within their mar-
gins of error, successfully demonstrating the avoidance of model over-
fitting. Considering the underrepresented gas engine samples only, all 
regression performance values (MAE = 353 h, RMSE = 655 h, R2 =

0.774) lie within the error range of the overall model, again indicating 
no distortion. To visually assess the regression model, Fig. 9 shows the 
observed versus predicted values of a 10-fold CV with highlighted oil 
running time (Fig. 9(a)), as well as for distinguishing training and test 
dataset (Fig. 9(b)). 

Both the engine oil and total engine running time regression show 
comparable coefficients of determination while the MAE of the total 
running time is around 3 times higher than the oil running time. This is a 
direct result of the oil exchanges impeding the total running time 
regression, since it virtually resets the physicochemical oil parameters 
and the level of additives while the model has to cope with more com-
plex interactions between all features for a precise running time 

estimation. Despite this major obstacle, the total running time of an 
engine oil can be estimated with a relative MAE of merely 4% within a 
range of 9000 h of operation. This order of magnitude is satisfactory to 
verify the operational history of an engine and potentially identify 
erroneous documentation of engine maintenance, no matter how often 
the oil has been exchanged. Therefore, the regression model still enables 
a sufficiently conclusive evaluation of an unknown engine with respect 
to its lifespan. 

The SHAP interpretation is of even increased importance when the 
total running time is considered since the relationship between the oil 
parameters and the total running time is not self-evident due to oil ex-
changes. In Fig. 10(a), the SHAP values for each feature are shown in a 
summary plot, while the dependence plot in Fig. 10(b) displays the 
SHAP values for copper as a function of the measured Cu content and the 
viscosity40 values for each sample. 

From the summary plot it becomes apparent that copper is the most 
important feature for the engine lifetime assessment in contrast to the oil 
running time regression. A low copper value is therefore more likely to 
be related to an older engine, whereas high copper abrasion is a notable 
indicator for a younger engine. Moreover, increasing levels of Zn in the 
engine oil appear to be a characteristic of older engines. Notably, Cr is 
considered of minor importance for the regression model while it was 
considered essential during engine type classification. 

Considering the dependence plot (Fig. 10(b)), one can note that 
while Cu values below 2 mg kg− 1 are related to engines with longer 
estimated running times, the opposite is true for higher contents. This is 
not uncommon as engines undergo a running-in procedure, therefore Cu 
abrasion originating from bearing material is decreasing over time. 
Thus, the Cu content in the engine oil gradually approaches 0 mg kg− 1 

with frequent oil exchanges. Such behaviour is the key to predicting the 
total running time of an engine even though the engine oil is replaced 
regularly. However, the copper content cannot be considered as a single, 
ideal estimator because of an increasing uncertainty with total running 
time. For higher total running times no significant changes in Cu levels 
are observed, therefore a sensitive regression cannot be achieved. 

The dependence plot further allows to distinguish between the two 
oil types A and B and indicates that the model adapts its prediction of the 
total running time considerably based on the influence of their 

Fig. 9. (a) Scatter plot of observed vs. predicted values for the total running time. A linear regression function is displayed as a blue solid line, its 95% confidence 
interval as a grey area and the 95% prediction interval with red dashed lines. The colour scale of the data points displays the oil running time and stresses that the 
total running time of samples at the beginning of a new oil exchange interval is fairly well predicted. (b) Scatter plot of observed vs. predicted values for the total 
running time based on both the training and test dataset. No visual sign of overfitting to the training dataset can be observed as indicated by a random distribution of 
test set data points among the entire dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

R. Grimmig et al.                                                                                                                                                                                                                                



Talanta 232 (2021) 122431

11

respective viscosities. When comparing two oil samples with the iden-
tical, very low Cu content, a higher viscous oil sample (dark blue/purple 
data points) is correlated with a much younger engine compared to a 
low viscous oil (bright yellow/orange data points). Thus, this differen-
tiation occurs by ascribing more extreme SHAP values to more viscous 
oil samples and therefore enables the model to adapt more sensitively to 
total running time estimation in spite of a similar copper content. 

4. Conclusion 

In the present work we demonstrated the influence of sample prep-
aration and the use of an internal standard on the determined elemental 
content. Measuring oily samples allows for a more precise determination 
of most wear elements, but leads to an inherent underdetermination of 
additives. In contrast, elements that can be present as larger wear par-
ticles in used engine oil yield substantially higher values when deter-
mined from an aqueous solution. Oily measurements do not benefit from 
the use of an internal standard to the same extent as aqueous samples, 
thus justifying its omission. The sufficient performance of the commonly 
used oily measurement ratifies its widespread use and raison d’être due 
to its unrivalled simplicity in everyday laboratory work. More compli-
mentary information could potentially be obtained for an automated 
implementation of sample digestion on a larger scale. 

However, using the simplest method for elemental analysis, accurate 
classification and regression models were built using XGBoost. Solely 
based on common oil check data, a maximum prediction accuracy of 
89.6% was achieved for classifying engines of eight different engine 
types, while both oil running time and total engine running time could 
be determined with a mean error of less than 10% and 4% of the 
observed timeframe, respectively. Although heavily deviating engine 
oils pose a difficulty for the classification, this may constitute a helpful 
first step during screening before further in-depth investigation is per-
formed. SHAP analyses have shown that in general, wear elements 
contribute the most to the classification model, although every engine 
type is characterized by a specific feature pattern. Regarding the running 
time, decreasing wear past oil exchange intervals was observed. Hence, 
the oil running time regression has to cope with this behaviour, ulti-
mately leading to the less afflicted oil density being the most important 

feature. In contrast, copper proved to be the analyte that is most 
important to assess the total running time of an unknown engine. Thus, 
by accounting for changes in wear behaviour, lifetime regression even 
beyond oil exchanges has been enabled. 

These machine learning models enable a differentiated engine life-
time assessment tool which can be useful in product portfolio develop-
ment. Knowing the wear behaviour for specific engine types, targeted 
construction part optimization and development can be pushed. Future 
studies could improve by a larger dataset and inclusion of more physi-
cochemical parameters to allow for an even more comprehensive insight 
into systematic oil ageing and prediction of looming engine failures. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.talanta.2021.122431. 

Appendix  

Table A.1 
Analytical parameters for ICP OES regression functions of all observed elements using an oily determination without an internal standard. For each element and 
analytical method, limits of detection (LOD) and quantification (LOD) as well as the coefficient of determination (R2) are given and show satisfactory values. 
Additionally, the method precision is given as the coefficient of variation of the procedure (Vx0).   

Wear elements IS 

Element Al Cr Cu Fe Mn Ni Pb V Y 

λ/nm 167.08 205.55 327.39 259.94 257.61 221.65 220.35 311.07 371.03 
LOD/μg kg− 1 6.7 18.2 4.2 22.1 5.7 48.6 64.9 3.8  
LOQ/μg kg− 1 22.5 60.6 14.1 73.6 19.1 161.9 216.2 12.7  
R2 0.9998 1.0000 0.9999 1.0000 0.9997 1.0000 0.9999 0.9999  
Vx0/% 1.9 0.8 1.2 0.6 2.4 0.3 1.1 1.1    

Additives Contaminants 

Element B Ca Mg Mo P S Sn Zn K Na Si 

λ/nm 249.68 315.89 285.21 202.03 213.62 180.73 189.99 213.86 766.49 589.59 288.16 
LOD/μg kg− 1 13.5 8.5 1.5 4.3 34.5 81.2 19.9 2.0 534.2 92.4 36.1 
LOQ/μg kg− 1 45.0 28.2 15.1 14.4 115.0 270.7 66.5 6.6 1780 307.8 120.3 
R2 0.9996 0.9994 0.9988 1.0000 0.9999 1.0000 1.0000 0.9981 0.9997 0.9999 0.9999 
Vx0/% 2.8 2.9 4.1 0.8 1.3 0.7 0.6 5.3 2.4 1.3 1.1   

Table A.2 
Analytical parameters for ICP OES regression functions of all observed elements using an aqueous determination without an internal standard. For each element and 
analytical method, limits of detection (LOD) and quantification (LOD) as well as the coefficient of determination (R2) are given and show satisfactory values. 
Additionally, the method precision is given as the coefficient of variation of the procedure (Vx0).   

Wear elements IS 

Element Al Cr Cu Fe Mn Ni Pb V Y 
λ/nm 396.15 267.72 327.39 259.94 257.61 231.60 220.35 292.40 371.03 
LOD/μg kg− 1 19.9 16.8 33.4 3.2 0.1 12.1 53.9 7.1  
LOQ/μg kg-1 66.4 55.9 111.3 10.6 0.4 40.4 179.8 23.6  
R2 0.9999 0.9998 0.9999 0.9998 0.9998 0.9998 0.9999 0.9999  
Vx0/% 1.1 1.9 1.4 1.7 1.7 2.0 1.5 0.7    

Additives Contaminants 

Element B Ca Mg Mo P S Sn Zn K Na Si 

λ/nm 249.77 317.93 279.55 202.03 213.62 180.73 189.99 213.86 766.49 589.59 288.16 
LOD/μg kg-1 2.8 12.4 0.1 4.2 19.1 57.2 11.8 11.4 71.0 11.5 1.3 
LOQ/μg kg-1 9.2 41.4 0.2 13.9 63.6 190.7 39.4 38.0 236.5 38.3 4.4 
R2 1.0000 0.9999 0.9989 0.9999 1.0000 0.9999 0.9270 0.9995 0.9999 1.0000 0.9970 
Vx0/% 0.4 1.2 4.3 1.5 0.7 0.9 36.4 2.8 1.5 0.8 7.1   
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Fig. A.1. Standard score plots for further additive elements under investigation.  

Fig. A.2. Standard score plots for further wear elements under investigation.  
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