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Abstract: The modern concept of the evolution of Mars assumes that life could potentially have
originated on the planet Mars, possibly during the end of the late heavy bombardment, and could then
be transferred to other planets. Since then, physical and chemical conditions on Mars changed and
now strongly limit the presence of terrestrial-like life forms. These adverse conditions include scarcity
of liquid water (although brine solutions may exist), low temperature and atmospheric pressure,
and cosmic radiation. Ionizing radiation is very important among these life-constraining factors
because it damages DNA and other cellular components, particularly in liquid conditions where
radiation-induced reactive oxidants diffuse freely. Here, we investigated the impact of high doses
(up to 2 kGy) of densely-ionizing (197.6 keV/µm), space-relevant iron ions (corresponding on the
irradiation that reach the uppermost layer of the Mars subsurface) on the survival of an extremophilic
terrestrial organism—Cryomyces antarcticus—in liquid medium and under atmospheric conditions,
through different techniques. Results showed that it survived in a metabolically active state when
subjected to high doses of Fe ions and was able to repair eventual DNA damages. It implies that
some terrestrial life forms can withstand prolonged exposure to space-relevant ion radiation.

Keywords: radiation; melanin; DNA; radioresistance; metabolically active cells

1. Introduction

Outer space and the surface of most celestial bodies are subjected to high fluxes of
ionizing radiation, which constitute the major damaging factor in space. The radiation en-
vironment consists of high-energy photons (such as gamma rays and X-rays) and particles.
Galactic cosmic rays (GCRs) are high-energy charged particles that originate beyond the
solar system. They consist of 98% nuclei and 2% electrons that markedly differ in their
relative abundance; a total of 85% of the nuclei component is represented by protons, 12%
by alpha particles, and 1.5% by heavier nuclei [1]. Although they represent only about
18 × 10−3% of the GCRs spectrum [2], Fe ions are the most significant components of
GCRs when the particle flux is weighted according to the energy deposition [3,4]. They are
harmful for any form of terrestrial life since they can interact either directly or indirectly
with all relevant biomolecules, causing dense ionization along the trajectory of the particles
and secondary ionizations of various energies that can diffuse in multiple directions and
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to varying distances from the particle trajectory. Shielding from this kind of radiation is
challenging and poses one of the principal difficulties in understanding its effects on any
(terrestrial) biological organisms.

Indeed, habitability in space and on the Martian surface is highly dependent on the
protection from UV and ionizing radiation, such as heavy ions [5–7]. Differently from
Earth, Mars does not have a magnetic field to deflect energetically charged particles,
including GCRs and solar energetic particles (SEP). These particles penetrate the thin
Martian atmosphere and react with the regolith, the dust deposit covering solid rocks,
creating an oxidizing environment on the Martian surface.

The highly radiative environment on Mars has implications for life-detection missions,
since hypothetical life-forms or their remains may be damaged by ionizing radiation
field [8]; this could be one of the possible explanations of the for the failure of the Curiosity
rover to detect any trace of life.

Indeed, the radiation dose received by Mars is quantified by theoretical calculation and
determined by the data from the Curiosity rover, which is about 0.05–0.06 or 0.076 Gy/year,
respectively [8–10].

While the UV photons are limited in the upper layer of Martian sub-surface, as they
are absorbed by rocks [9,11], GCRs have the capability to penetrate to 1–2 m in the sub-
surface in spite of chemical and physics features of rocks or ice content [9]. Besides, UV
flux depends on function of latitude and some molecular targets (e.g., amino acids) could
be easily destroyed when embedded in highly UV-penetrated materials [12].

In addition, it was demonstrated that 1–2 mm of Mars simulant regolith layer is able
to shield biological samples against UV flux [13].

On the contrary, damages provoked by ionizing irradiation are considered as one of
the most dangerous. As reported in [14], an increased reduction of amplicons in a 2000 bp
amplification occurs in fungal samples exposed to different doses of ionizing radiation.

At a depth of more than 2 m, it is more plausible that a hypothetical life form has
been able to adapt, since the environment is partially shielded from ionizing radiation.
Potentially microbial life on Mars could have persisted in protected niches in the Mar-
tian sub-surface in dried or in freezing conditions. The estimated survival duration for
cryoconserved microorganisms could be about 3.3 million years at 2 m depth [5].

However, the presence of hygroscopic salts on Mars’s surface creates a transient liquid
film that could be important for a putative life-form on Mars, since water is essential for life
as we know it [15]. In fact, perchlorates are helpful for the presence of liquid water, but the
biochemical adaptation of life in brine should be taken into account. A plausible hypothesis
could be represented by the idea that deliquescence provoked by salts concentration could
sustain hypothetical active microbial life under extremely radiative and dry conditions,
such as those that occur in hyper-arid Atacama Desert [16].

It has been demonstrated that deliquescence in specific Martian regions could be
provided by:

(i) the low thermal inertia and temperature, which allow the increment of humidity level
or by

(ii) movements on the Martian surface [17].

In the presence of transient liquid water, what effects does radiation have on microorganisms?
In this context, the study of the microbial survivability against radiation effects is

of importance to deepen the biological mechanisms that hypothetical life forms could
assume in an extraterrestrial habitat [7]. Previous studies demonstrated the survivability
of cyanobacteria, bacteria, lichens, and micro-fungi after exposure to simulated space and
Martian conditions [18–23].

Despite this recognizable role of radiation in life endurance, effects of space-relevant
radiation on metabolically active terrestrial organisms are still not well characterized due
to the difficulties of fully reproducing the space radiation environment. The capability of
the Antarctic cryptoendolithic black fungus C. antarcticus in resisting the space-relevant
radiation has already been demonstrated. Indeed, in desiccated conditions, the fungus
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was able to survive the radiation environment experimented in low Earth orbit (LEO),
outside the International Space Station (ISS) [20–22,24], and high doses of ionizing radiation
exposure (gamma rays up to 55 kGy, [25]). Here, for the first time, we investigated the
survival capability of the fungus under increasing doses of accelerated outer-space-relevant
Fe ions radiation in hydrated (metabolically active) conditions. Indeed, in the frame of
STARLIFE irradiation campaign [26], fungal colonies were irradiated in liquid medium
with accelerated Fe ions doses (up to 2 kGy) at the HIMAC (Heavy Ion Medical Accelerator
in Chiba) facility at the National Institute of Radiological Science (NIRS) in Chiba, Japan.
Survival, metabolic activity recovery, and DNA damages were investigated.

2. Materials and Methods
2.1. Test Organism

The test organism is the black fungus C. antarcticus MNA-CCFEE 515, isolated by
R. Ocampo-Friedmann from sandstone collected at Linnaeus Terrace in McMurdo Dry
Valleys (Southern Victoria Land, Antarctica) by H. Vishniac during the Antarctic expedi-
tion of 1980–1981 [27]. This fungus was isolated through a culture-dependent approach
on Malt Extract Agar (MEA) Petri dishes. This microcolonial fungus is widely used in
astrobiological-related studies due its tolerance to various stressors. It is a cryophilic organ-
ism, with a growth optimum below 15 ◦C, which lives dwelling inside the porous surface
of sandstone as refuge against the harsh Antarctica environment. A detailed description of
C. antarcticus morphology and adaptation is reported in [28].

2.2. Samples Preparation and Performed Analyses

The fungal samples were grown at 15 ◦C for 3 months and then transferred into 200 µl
of malt extract (ME) liquid medium for the irradiation (fungal concentration 1000 CFU/ml).
The irradiation was performed using accelerated Fe ions (Fe26+, Energy: 418.3 MeV/n, LET
in water: 197.6 keV/µm; range in water: 74.4 mm) doses (up to 2 kGy), as reported in
Table 1. The survival of C. antarticus was quantified by the CFU number on cultivation
test with 5 technical replicates. The integrity of cell membranes was investigated by Pro-
pidium MonoAzide (PMA) assay and followed by quantitative PCR (qPCR) according
to the protocol reported in [14]. The metabolic activity was evaluated using MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) through a spectrophotometric
assay. Detailed procedures are reported in Supplementary Materials. Lastly, the intact-
ness of DNA regions (ITS-LSU) was examined using single gene amplifications, RAPD
fingerprinting, and quantitative PCR. Conditions for DNA amplifications are reported in
Supplementary Materials.

Table 1. Accelerated Fe ion radiation doses applied for each sample.

Samples a Applied/ Received Dose (Gy)

Control 0

Irradiated colonies 100

Irradiated colonies 250

Irradiated colonies 500

Irradiated colonies 1000

Irradiated colonies 2000

Positive control b 0
a metabolically active fungal cells irradiated in liquid media. b metabolically active fungal cells maintained in
optimal growth conditions.

Based on surviving colony counts, mathematical modelling of cell survival dose
response was performed. To quantitatively model the radiation dose response for colony
survival, we used the standard linear quadratic (LQ) model of radiation-induced cell death.
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This formalism is commonly used in radiation biology and oncology, and here, we used a
variant that takes into account the inducibility of DNA repair [29,30].

The selected formalism describes the natural logarithm of the number of surviving
clonogens or colony forming units (lnS) after an exposure to an acute radiation dose d by
the following equation, where lnB is the number of colonies expected without radiation, α
is the linear dose response component, and β is the quadratic component that quantifies
the dose response “curvature”:

lnS = lnB − α × d - β × dˆ2 (1)

Importantly, DNA repair, which affects cell survival, potentially exhibits dose-
dependent inducibility. This phenomenon was not taken into consideration by the
classic LQ model but was investigated in models such as the one from [31]. Here, we
used a simple variant of an inducible repair model described by the following equation,
where the term q × dr with adjustable parameters q and r represents repair induction:

lnS = lnB − α/(1 + q × dˆr) × d − β/(1 + q × dˆr) × dˆ2 (2)

At low doses, this model (Equation (2)) exhibits behaviours similar to the classic LQ
model (Equation (1)). At high doses, however, the dose response slope (the derivative
dlnS/dd) is reduced and can approach zero if parameter r approaches 2. We fitted the
model (Equation (2)) to the data (ln-transformed colony counts per plate) using robust
nonlinear least squares methodology implemented by the nlrob function in R 3.6.2 software.
To minimize the chances of finding the global optimum best-fit solution rather than a local
optimum, we performed the fitting 1000 times with random initial conditions (drawn from
log-normal distributions) for the adjustable parameters (lnB, α, β, q, r) and retained the
best fit. All parameters (except lnB) were restricted to non-negative values, and parameter
r was restricted to 0 ≤ r ≤ 2 to maintain biological plausibility. The quality of the best fit
was assessed by coefficient of determination (R2), root mean squared error (RMSE), and
examination of residuals for consistency with the normal distribution (by Shapiro–Wilk
test and Q-Q-plot).

3. Results
3.1. Survival Assessment
Cultivation Test

As showed in Figure 1A, C. antarcticus retained the colony-forming ability after radia-
tion treatments. A gradual increase of mortality was recorded with increasing radiation
doses, but a considerable percentage of survivors were observed even after 1000 Gy and
2000 Gy irradiation (13% and 9%, respectively, Figure 1A). Survival counts were fitted
by a dose-response curve using robust regression, as shown in Figure 1B. Visual inspec-
tion suggests decent fit quality for the dose-response model of radiation-induced cell
death (described in Supplementary Materials), and this is supported by the high R2 (0.92)
and relatively low RMSE (0.29 on ln scale) values. The best-fit value of the linear dose-
response component (parameter α) was not significantly different from zero. The other
parameters had the following best-fit values and standard errors (SE): ln-transformed
background colony count (lnB) = 7.69, SE = 0.12; quadratic dose-response component
(β) = 6.42, SE = 3.23 kGy-2; repair induction parameter (q) = 2.19, SE = 1.66 kGy-2; repair
induction dose-dependence power (r) = 2.0, SE = 0.38. The minimum robustness weight in
the regression was 0.60, and model residuals were consistent with the normal distribution
(Shapiro–Wilk p-value = 0.65).
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Figure 1. (A) Survival of fungal colonies in liquid media exposed to accelerated Fe ions. (B) Mathematical model of cell
survival dose response. The same letters above bars indicate that the values are not statistically significant according to the t
test (p ≤ 0.05).

3.2. Metabolic Activity Assessment

No difference in the overall metabolic activity after 48 and 72 h-rehydration was
recorded in irradiated fungal colonies compared with related controls (Figure 2). The
fluorescent signal exhibited higher values with increasing irradiation doses. However,
there was an unexpected decrease of optical density (O.D.) value in the samples that were
treated with 500 Gy irradiation. Positive control samples that were kept on agar plates
with sufficient required nutrient and under optimal growth conditions have shown to have
higher metabolic activity than the control (Ctr, in dried conditions) sample. On the other
side, samples that received irradiation dose treatments displayed high O.D. value compared
to positive control samples. This phenomenon may indicate that the metabolic activity is
higher in irradiated cells due to the damage repair mechanism activated upon irradiation.
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Figure 2. Metabolic activity of fungal cells after 48 h and 72 h rehydration. Striped bars indicate 48 h
rehydration; grey bars indicate 72 h rehydration. Pos Ctr = DNA of C. antarcticus colony growth in
physiological conditions. The same letters above bars indicate that the values are not statistically
significant according to the t test (p ≤ 0.05).
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3.3. Cell Membranes Integrity

The integrity of cell-membrane in irradiated cells was assessed by using qPCR com-
bined with the pre-treatment of cells with the dye PMA. This molecule penetrates cells
with compromised cell-membranes and inhibits DNA amplification. Accordingly, this
analysis revealed a progressive damage with the increasing of treatments; an average of
39% damaged cells were recorded at the dosed of 100, 250, 500, and 1000 Gy (Figure 3).
No cells with intact cell membranes were reported at the dose of 2000 Gy, according to the
survival test.
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Figure 3. Percentage of intact (grey bars) and damaged cell-membranes (lined bars) measured with
PMA assay coupled with qPCR of C. antarcticus exposed to accelerated Fe ions. Pos Ctr = DNA of
C. antarcticus colony growth in physiological conditions. The same letters above bars indicate that the
values are not statistically significant according to the t test (p ≤ 0.05).

3.4. DNA Integrity

Amplicons were obtained both for ITS and LSU regions (fragments length of 700 bp,
1600 bp and 2000 bp) of C. antarcticus genome after irradiation treatments. DNA am-
plification revealed a good DNA integrity without any differences despite gene length
and treatments (Figure S1A–C). The overall RAPD profiles were shown to be preserved
(Figure S2). The quantification of LSU gene fragment amplification in Figure 4 shows that
an average of 15,000 DNA copies were obtained from the sample treated with doses up to
1000 Gy and approximately 1500 DNA copies from the sample treated with 2000 Gy dose.
The tests highlighted a common trend for all the samples. Surprisingly, a high number of
DNA copies were reported for 2000 Gy sample, although low survival rate was observed.
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4. Discussion

In space, microorganisms have to cope with an interplay of various adverse environ-
mental factors [32]. Besides high vacuum and extreme temperatures, they are exposed
to a complex radiation environment. Assuming no shielding, the flux of cosmic ray iron
(Z = 26) with energies between 100 and 1000 MeV/nucleon is approximately 4 nuclei/cm2

day. The ultimate limit for survival of spores in space (not on Martian surface, where the
limits of life are established through a multitude of factors) may be set by the heavy ions
from cosmic radiation. An approximate estimation for survival could be given on the basis
of known data on the radio-resistance of terrestrial organisms.

However, it must be considered that physical conditions can significantly change
the amount of radiation damage in cells at the same dose. It is known that, in aqueous
environments, most of radiation damages are caused by indirect effects, such as the for-
mation of highly reactive oxygen species like free radicals OH, O2H, etc. [33,34]. In the
present experiment, fungal cells were exposed to accelerated Fe ions within liquid medium.
However, given the linear energy transfer (LET) and range values of incident ions, no
significant shielding was made against radiation independently of the position of the
fungal cells during exposure.

In the optic of the search for life on Mars, such conditions allowed assessment of the
effects of part of the radiation environment occurring on the surface and in the upper-
most layer of Martian subsurface, where microorganisms would be directly exposed to
incident CRs.

The radiolysis of water molecules in the solution by high LET Fe ions may have led
to an increase of free radicals and molecular products in the environment surrounding
the cells [35]. A correlation between the LET and the radical and molecular yields in
water exists. In this respect, it was shown that desiccated microbial cells survive higher
irradiation doses than cells in suspensions [36]. Dormant cells can accumulate damage at
high levels, whereas metabolically active cells could be able to mitigate some damage [37].
However, even if cells in a desiccated state show a greater resistance to radiation exposure
and could protect against any residual radiation-induced formation of reactive oxygen
species (ROS) [38], the additional damaging consequences of dehydration [39] should be
taken into account. On the other hand, previous work demonstrated that radiation and
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desiccation resistance is due to the ability to regenerate intact chromosomes from scattered
fragments [40,41].

Here, in the framework of STARLIFE project, hydrated fungal samples were irradiated
with iron ions for which energy (~500 MeV) represent the flux of GCRs near the Martian
surface; thus, this could be considered as representative not only of Fe particles but also of
most of cosmic rays making up the space and Martian radiation environments.

For the first time, our experiment evaluated the effects of high LET particles expo-
sure on C. antarcticus cells in metabolically active conditions. Our results are consistent
with the previously observed high resistance of the fungus to different kinds of ionizing
radiation [25,42,43] and to other factors encountered in space aboard the ISS [22]. Even
if the number of alive cells decreased with the increase of radiation doses, robust fungal
survival was reported still at the higher doses (1000 and 2000 Gy, Figure 1A). A similar
decrease of survival was observed for Halobacterium salinarum NRC-1 when irradiated
with Fe ions up to 2 kGy [44]. The mathematical model (Figure 1B) used to describe the
dose-response behavior of fungal cells is characterized by an initially shallow inactiva-
tion response (shoulder) at low doses, where the majority of cells survive, followed by
a tail at higher doses. The tail, where most of the cells are dead but a few survive even
at high doses, can indicate a distinct subpopulation within the fungal population that is
able to survive, maybe due to the activation of DNA damage-repair mechanisms. Future
researches focusing on re-irradiation of this resistant subpopulation should be performed
for clarifying if fungal cells can evolve a mechanism of radio resistance. The activation
of some resistance mechanisms is confirmed by the results of metabolic activity assay.
Figure 2 shows an increased metabolic activity at the highest doses, probably due to the
activation of an intense cell-repair mechanism. Accordingly, to the survival and metabolic
activity results, the analysis on cell membrane integrity showed a reduction in the number
of cells with intact membranes (and therefore presumably alive) at the dose of 500 Gy
(around 60%, Figure 3); no relevant differences were detected in control samples. Moreover,
the fact that around 10% and 6% of cells have intact cell membranes at the dose of 1000
and 2000 Gy (Figure 3) confirmed the survival reported from the cultivation tests and
the hypothesis of the presence of radioresistant cell subpopulations. In addition, DNA
damages were tested through PCR and qPCR gene amplification. In general, PCR single
gene amplifications (Figure S1) were successful even at the highest dose and longest gene
sequences tested; in the same way, RAPD amplification results showed a good preservation
of the fingerprinting profiles (Figure S2). Based on the principle that certain DNA lesions
terminate the correct course of any polymerase on the template and any nucleic acids
damage may be measured as a decrease in amplification of the fragment of interest [45],
qPCR analyses were performed. Our results showed that DNA amplification was not
impaired by extreme radiation even at the dose of 2000 Gy (Figure 4), which reported more
than 3000 copies of amplified DNA. A good amplification was detected for control samples
(Figure 4). As previously reported in [44], the exposure of different bacteria strains to heavy
ions reported only a few lesions in DNA, if referring to iron ions up to 1 kGy compared
with the irradiation with Ar ions. This could be explained by the fact that DNA damage
induced by ionizing radiation is localized [46]. To conclude, the obtained results revealed
that C. antarcticus could be considered as a suitable candidate to search out planets beyond
Earth, especially Mars, that are characterized by the presence of transient liquid water
on the surface and a high-radiation environment, also with a metabolically active state.
However, the mechanisms involved in the fungal radiation resistance in the presence of a
thin water layer should be further investigated through -omics approaches. In addition, a
further investigation about the stability of fungal biomolecules (biomarkers) after irradia-
tion exposure could be required. The ongoing and future in situ life-detection missions on
planetary bodies of our solar system (e.g., Mars) should drill the surface [47,48] in order to
detect signs of past or present life. Assessing the biomarkers preservation under a highly
radiative environment is of outmost importance to support these missions and to estimate
the stability/degradation rates of biological molecules [49]. Besides, the investigation of
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the techniques could be used to evaluate the hypothetical biomolecules damages and is a
test bed for the future Mars samples return (MSR) on Earth [50].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7070495/s1, Material and methods; PCR and RAPD results; Figure S1 (PCR amplification),
Figure S2 (RAPD amplification).
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