o ‘ Hochschule -
Bonn-Rhein-Sieg - I't Bonn-Aachen

. . . . International Center for
University of Applied Sciences Information Technology

Z Fraunhofer

SCAI

R&D Project

Generative Models for the Analysis of
Dynamical Systems with Applications

Alan Preciado Grijalva

Submitted to Hochschule Bonn-Rhein-Sieg,
Department of Computer Science
in partial fullfilment of the requirements for the degree

of Master of Science in Autonomous Systems

Supervised by

Prof. Dr. Paul G. Ploeger
Dr. Rodrigo Iza-Teran

August 2020

https://doi.org/10.18418/opus-6041

https://doi.org/10.18418/opus-6041

ii

(© 2020 Alan Preciado Grijalva. All Rights Reserved

iii

iv

I, the undersigned below, declare that this work has not previously been submitted to this or any other

university and that it is, unless otherwise stated, entirely my own work.

Date Alan Preciado Grijalva

vi

Abstract

High-dimensional and multi-variate data from dynamical systems such as turbulent flows and wind
turbines can be analyzed with deep learning due to its capacity to learn representations in lower-dimensional
manifolds. Two challenges of interest arise from data generated from these systems, namely, how to
anticipate wind turbine failures and how to better understand air flow through car ventilation systems.

There are deep neural network architectures that can project data into a lower-dimensional space
with the goal of identifying and understanding patterns that are not distinguishable in the original
dimensional space. Learning data representations in lower dimensions via non-linear mappings allows one
to perform data compression, data clustering (for anomaly detection), data reconstruction and synthetic
data generation.

In this work, we explore the potential that variational autoencoders (VAE) have to learn low-dimensional
data representations in order to tackle the problems posed by the two dynamical systems mentioned above.
A VAE is a neural network architecture that combines the mechanisms of the standard autoencoder and
variational bayes. The goal here is to train a neural network to minimize a loss function defined by a
reconstruction term together with a variational term defined as a Kulback-Leibler (KL) divergence.

The report discusses the results obtained for the two different data domains: wind turbine time series
and turbulence data from computational fluid dynamics (CFD) simulations.

We report on the reconstruction, clustering and unsupervised anomaly detection of wind turbine
multi-variate time series data using a variant of a VAE called Variational Recurrent Autoencoder (VRAE).
We trained a VRAE to cluster normal and abnormal wind turbine series (two class problem) as well
as normal and multiple abnormal series (multi-class problem). We found that the model is capable of
distinguishing between normal and abnormal cases by reducing the dimensionality of the input data
and projecting it to two dimensions using techniques such as Principal Component Analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE). A set of anomaly scoring methods is applied on top
of these latent vectors in order to compute unsupervised clustering. We have achieved an accuracy of up
to 96% with the K Means + + algorithm.

We also report the data reconstruction and generation results of two dimensional turbulence slices
corresponding to CFD simulation of a HVAC air duct. For this, we have trained a Convolutional
Variational Autoencoder (CVAE). We have found that the model is capable of reconstructing laminar
flows up to a certain degree of resolution as well generating synthetic turbulence data from the learned

latent distribution.

vii

viii

Acknowledgements

I want to thank Prof. Dr. Jochen Garcke for accepting me to work in his group at Fraunhofer SCAI.
I thank Dr. Victor Rodrigo Iza Teran for his technical guidance on the wind turbines project. Special
thanks to Dr. Ivan Lecei for providing the wind turbine data that was used in this project. Thanks
to M. Sc. Christian for his technical guidance on the turbulence project and providing the first data
preprocessing steps. I also want to thank Prof. Dr. Paul Ploger for providing useful observations that
made this work better. Lastly, thanks to Fraunhofer SCAI for providing the necessary equipment to

perform the computations.

ix

Contents

2.3 Unsupervised Representation Learning of Time Series with Deep Neural Networks|

2.4 Turbulent Flow Compression, Reconstruction and Generation using Machine Learning| . .

2.5 Limitations of previous work|

13 Methodology|

3.2 Wind turbine time series data pre-processing]

3.3 Wind turbine time series proposed model for anomaly detection|.

3.4 Turbulence dataset, data pre-processing and proposed model|

4 Experiments and Results|

4.1 Unsupervised time series clustering and anomaly scoring: two classes|

4.2 Unsupervised time series clustering and anomaly scoring: multiple classes|

4.3 Turbulence reconstruction and generation: two dimensions|.

|Appendix A Design Details and Parameters|

IA.0.1 Wind turbine dataset simulation parameters|

[References]

xi

S O Ut U

19
19
20
21
22

25
25
32
36

39
39
39
40

41
41

43

xii

List of Figures

2.1 Standard autoencoder neural network architecturel 8
2.2 Multi-layered autencoder architecture using Restricted Boltzmann Machines. Image ob- |
| tained from Hinton et. al, 2006 |13, p. 505].o Lo 8
2.3 Variational autoencoder standard architecture. Image obtained from Sergios Karagiannakos- |
[AT Summer [I7].] 10
[2.4 Reparametrization trick used when training VAEs. Image obtained from [16]| 10
2.5 Effect of loss terms in latent space regularization of the MNIST VAE. Image obtained from |
1 11
2.6 Variational Recurrent Autoencoder architecture. Image obtained from Python Awesome |
[website [Bl. 12

[2.7 Learned representations of song fragments (see labels) using a VRAE. The latent vectors |

| are projected in two dimensions to evaluate clustering. Image obtained from Fabius et. al |

| (2015) Bl p. 3l . . o 13
2.8 Convolutional Variational Autoencoder architecture 14
2.9 2D projection of the compressed ECGH00 time series using a VRAE. PCA and t-SNE are |

| compared. Image reproduced from Pereira et. al, 2018 125, p. 5| 15

|2.10 Super-resolution machine learning pipeline to reconstruct DNS flow data. The output com- |

| pares the machine learning reconstruction versus bicubic interpolation. Image reproduced |
| from Fukami et. al, 2019 |6, p. 3].| 16
12.11 2D reconstructed tlow data using a VAE. The top row are the samples and the bottom row |

| are corresponding reconstructions. Image reproduced from Xing et. al, 2018 |30, p. 17].| . 16
8.1 Wind turbine normalized time series sample.| Lo oL 20
3.2 Two dimensional slice extracted from a HVAC duct simulation) 22
3.3 Grid of two dimensional turbulence slices after pre-processing.|. 23
4.1 PCA applied to raw time series data without neural network processing.|. 26

4.2 PCA projection of the learned 20-dimensional representations using a VRAE. The figures |

| compare the relationship between the first three principal components of the projection.| . 27
I(a) First component versus second component.| L. 27
|(b) First component versus third component.| 00000 27
|(c) Second component versus third component.|o oo 27

xiii

4.3 2D t-SNE projections of the latent vectors.| oL 28
4.4 2D Sk projections of the latent vectors.| oo 28
4.5 Latent vectors plotted as lines. Red lines correspond to normal classes and blue lines |
correspond to abnormal classes .| o oo 29
4.6 2D PCA projection of latent vectors when training VRAE with only 3 features. Left figure: |
x-componentes of blaeds accelerations. Right figure: y-components of blades accelerations.| 30
4.7 Class prediction of three different clustering algorithms operating on top of the projected |
latent vectors learned by the VRAE| o oo oo oo 31
[4.8 PCA projections of learned representations in the case of multiple classes. (a) Projection in |
2D using first and second components. (b) Projection in 2D using first and third component. |
(c) Plots of normal and abnormal 5-dimensional latent vectors as a line.| 33
[(a) Multiclass first component vs second component.| L. 33
[(b) Multiclass first component vs third component.| 33
[(c) Multiclass projections: Sampled latent vectors plotted as lines.| 33
4.9 Lett figure: 2D t-SNE projections of the latent vectors in multiclass case. Right figure: 2D |
Sk projections of the latent vectors in multiclass case.| 34
4.10 VRAE time series reconstruction results for a time series of 200 timesteps and 6 features. |
Upper left: reconstruction at 0-th epoch. Upper right: reconstruction at 200-th epoch. |
Lower left: reconstruction at 400-th epoch. Lower right: reconstruction at 600-th epoch.| . 35
4.11 CVAE turbulent flow reconstruction results. Upper row: original turbulence data. Lower |
row. reconstructed datal Lo 37
[(a) CVAE reconstruction results at 200-th epoch.| 37
[(b) CVAE reconstruction results at 400-th epoch.| 37
[(c) CVAE reconstruction results at 600-th epoch.|. 37
4.12 Latent representations of turbulence slices encoded by the CVAE[. 37
4.13 Synthetic turbulence data generated from the CVAE learned latent distribution.| 38

Xiv

List of Tables

4.1 Anomaly scoring classification results using 3 unsupervised clustering algorithms.|

XV

32

xXvi

Introduction

Dynamical systems theory studies the state evolution of a system in time. A state at time ¢ corresponds
to the instantaneous description of the system in terms of its physical variables. In this theory, such a
description is sufficient to predict the future states of the system without having to look at prior ones.

Examples of dynamical systems are the Lorentz oscillator and Atwood’s machine. Turbulence phe-
nomena can also be analyzed from the dynamical systems perspective [28]. A principal characteristic
of most dynamical systems is that they can not easily be predicted or diagnosed. The nature of most
phenomena is chaotic, this means that the state evolution of a system is driven by factors that are difficult
to quantify and put into equations. To some degree, equations that govern the behavior of these systems
can be written, but very often these equations are too complex and depend on specific state observations,
causing the accuracy of long-term predictions to become untractable.

In the case of turbulence, Computational Fluid Dynamics (CFD) is the field that mathematically
models such phenomena. Here, turbulence is defined as fluid motion characterized by chaotic changes in
pressure and velocity. The most common turbulence models in CFD are Large Eddy Simulation (LES)
and Direct Numerical Simulation (DNS).

Progress in computational capacities has allowed the resolution of the data generated by CFD models to
increase. Higher resolution resolved fluids means that the volumes of data generated are bigger. Therefore,
the post-processing (e.g. storage) and analysis of this data with novel data-driven techniques is of general
interest.

Another type of dynamical system that produces vast amounts of data are wind turbines [I0]. Here,
sensors monitor different physical variables that give a precise diagnosis of the system, for example, the
acceleration of the turbine blades as a function of time. It is of particular interest in engineering to study
the freezing of the blades, this because harsh weather conditions can affect the optimal performance of the
turbines. Similarly to CFD data, it is of great interest to analyze the data collected from these systems in
the form of high-dimensional, multi-variate time series.

To analyze and gain meaningful insights from the data generated by systems such as turbulent flows
and wind turbines, certain data processing tasks are crucial, these include data compression, clustering,
reconstruction and generation.

Data compression, for example, consists of reducing the dimensionality of input data in order to

represent it in a lower-dimensional space by encoding information using less bits compared to the original

representation. The main objective of compression is to be able to reconstruct original data with a high
degree of resolution. There have been encoding-decoding frameworks that have shown that it is possible to
reconstruct a high-resolution flow field from a massively under-resolved turbulent flow field using machine
learning techniques [6].

Data clustering, in contrast, makes use of this encoded representation in order to visually identify
patterns/grouping in two or three dimensions. This is very important since numerous physical spatio-
temporal insights can be derived from this; structure (clustering) in low-dimensional spaces means that
high-dimensional data has (un)correlated attributes. From this, one can perform anomaly detection of
time series as reported in [25].

With data and novel machine learning models at hand, it is reasonable to explore its potential to
tackle the problem domains mentioned above (i.e. turbulent flow and wind turbine data). In this work we
focus in particular deep learning implementations.

Deep learning methods have been improving the benchmarks in fields like computer vision, robotic
control and natural language processing. The main reasons behind this, are improvements in neural
networks architectures, greater computational power and data availability [21].

In the case of data compression, deep neural networks have proven to be efficient methods for non-linear
dimensionality reduction. Hinton et al. (2006) [L3] propose an architecture based on Restricted Boltzmann
Machines (RBM) capable of encoding and decoding data. Such autoencoding procedure allowed the
authors to learn structures in lower-dimensions more effectively than the classical Principal Component
Analysis (PCA).

In more detail, the architecture that Hinton et al. (2006) introduced is known as autoencoder. The
autoencoder is a multi-layered bottleneck neural network that encodes data into lower dimensions in a
self-supervised way. The loss penalty is a reconstruction term that compares the input to the reconstructed
output. An autoencoder can be defined either as a Convolutional Neural Network (CNN) or Recurrent
Neural Network (RNN) architecture, this depends on the task at hand (e.g. image processing or time
series analysis).

The capabilities of autoencoders were expanded further by Kingma et al. (2013) [19] by introducing
variational inference into the architecture. These changes allowed autoencoders to learn not only single
point mappings but complete latent data distributions making them generative models. The proposed
autoencoder architecture is called Variational Autoencoder (VAE) and it has the capacity to learn
disentangled latent data distributions that provide a precise statistical representation of the data.

VAEs have achieved state-of-the-art results in benchmark datasets in semi-supervised learning in image
generation [I5], clustering and anomaly detection [25] [26] [34], and data reconstruction [32]. The main
reason for this is that the latent space learned here is continuous (probability distributions), thereby
allowing straightforward random sampling and interpolation. The next chapter contains a more in-depth
discussion of the state of the art using this model.

Based on these recent success achieved by VAEs, we have taken them as the core model for the research
presented in this report. This report is an exploration of several VAE architectures applied to our two

data domains: CFD turbulence data and wind turbine time series data. Next we describe them more in

Chapter 1. Introduction

detail and the problems trying to be solved.

For the case of wind turbines, the general goal is to build an adaptive controller using predictive
maintenance. Such scheme should ideally be an intelligent and integrated one. The scheme is an
iterative cycle that consists of three modules: 1) data collection sensor module, 2) predictive maintenance
module and 3) a controller module. In this work, we will focus in module two: predictive maintenance by

performing anomaly detection of wind turbine multi-variate time series.

Wind Turbine Visualization

Figure 1.1: 3D rendered diagram of a wind turbine.

2 2
1k E 1E
0 1 » W\VmeWMWMWMW
I 1 IF]
a2 1 3]
Sk c1] 5t C1]
. . . . N N . 4 -4 b N N L
;] 2000 4000 6000 000 10000 12000 14000 o 2000 4000 6000 000 10000 12000 14000
]
g 2 2
3 C27 o E C27
K 1 4]
1 .-
3 k1
3 1 G]
] 2000 4000 6000 000 10000 12000 14000 o 2000 4000 6000 000 10000 12000 14000
2 2
Tk 1 Tk C3
s €34 I 1
it 1 F]
B 1 1
= T 5 o i o ity b A A g
b 1 3

0 2000 4000 000 000
Time-steps

10000 12000

14000

o 2000 4000 BON0 000 10000 12000 14000

Time-steps

Figure 1.2: Wind turbine sensor data collection.

Figure 1.2 shows an example of sensors monitoring the state of a wind turbine as a function of time.
FEach sensor monitors a particular physical variable, for example, the acceleration along the edge of a
blade. Under optimal conditions, wind turbines are capable of outputing the expected energy, however, it
is often the case that weather conditions such as ice accumulation on the blades cause malfunctions. An
early identification of this ice mass is a core problem indeed, and several anomaly detection and fault
analysis approaches have been explored [7] [34]. In this context, anomaly detection is framed as identifying
(predicting) when is it that a wind turbine is operating sub-optimally versus operating optimally.

Here, we report on the implementation of an unsupervised learning method for anomaly detection of

wind turbine simulation data. The pipeline consists of two main steps: (1) learning abstract time series
data representations using a Variational Recurrent Autoencoder (VRAE) and (2) perform anomaly scoring
(classification) using these learned representations. In the first module, a VRAE processes multi-variate
time series inputs to reduce their dimensionality. This abstract representation is projected into two
dimensions via PCA and t-SNE in order to visually evalute it. In the second module, we perform clustering
methods (k-means++, DBSCAN;, etc.) on top of the projected latent vectors to compute a classification
accuracy based on the predicted classes (1 for "normal operating condition” and 2 for "abnormal operating
condition”).

Great emphasis has been put in module one; unsupervised representation learning of time series, since
the core goal here is to cluster data adequately in lower dimensions by fine-tunning the neural network
architecture. This procedure is similar to the one reported by Pereira et al (2018) [25] [26], one of the
main differences is that we are using our own simulated data (no benchmark dataset).

For the case of turbulence data, we analyze the extracted slices from a heating, ventilation, and air
conditioning (HVAC) duct that are produced from numerical simulations by our research group. The
figure below shows a temporal evolution of a typical turbulent flow. As we can see, each turbulence slide
contains spatial and temporal information of the physics of the flow (such as velocity, velocity gradients
and pressure). The relevant part of the solution of the flow depends on boundary conditions and main

simulation parameters (viscosity, time step, total kinetic energy, Reynolds number, etc.).

CFD simulation data is vast due to the high resolution needed to model a flow reallistically. Our
specific goal in this domain is to perform compression and reconstruction on turbulent flow data. This
helps reducing resources for storage and handling of this data, moreover, this could also help understanding
airflow of HVAC systems to localize noise sources by decomposing it in more interpretable modes. Also,
we will explore the feasibility of our model to generate synthetic turbulent flow slices based on the learned
probability distribution of the data. For these tasks, we will be training a Convolutional Variational
Autoencoder (CVAE) on turbulent velocity fields in order to improve reconstruction and generation
performance. We are using convolutions given that the problem is being framed as 2D slices of nxm pixel

images.

0 5 D 15 2 2 2 33 4 o 5 D 1 20 2 0 o s 1 15 2 25 % » o s 1 15 2 2 % »

Figure 1.3: Temporal evolution of a turbulent flow (from left to right, upper to bottom rows).

Chapter 1. Introduction

The following subsections highlight as bullet lists the main points discussed above.

1.1 Motivation

Develop a module for robust predictive maintenance of wind turbines by implementing an anomaly
detection pipeline that implements a Variational Recurrent Autoencoder to do unsupervised repre-

sentation learning of multi-variate time series

Explore and understand the abstract learned representations of wind turbine time series by evaluating

their clustering behavior in lower dimensions
Study the reconstruction of time series and clustering of multiple time series classes

Evalute unsupervised clustering with simulation data (no benchmark datasets) using state of the art

neural network architectures

For CFD data, it is important to characterize turbulence through decomposition into more inter-

pretable modes by performing compression and reconstruction

Compression-reconstruction of high-resolution flow data can save storage space given the vast amount
of data generated by CFD methods

Explore the capacities of convolutional variational autoencoders to reconstruct with high-resolution

2D turbulence slides

Synthetic turbulence data generation by training a convolutional variational autoencoder is still a
novel challenge being researched and has the potential to be an alternative to other methods that

are computationally more expensive

Investigate the benefits of incorporating more physical knowledge into the loss function of con-
volutional variational autoencoders in order to frame the problem as physics-informed machine

learning

1.2 Challenges and Difficulties

Understanding at a conceptual and practical level how to train a VAE in order to learn unsupervised

representations of time series and turbulence data

Understand and overcome the challenges imposed in the pre-processing of time series data in order
to learn efficient representations such as: number of time steps per sample, number of features, data

normalization methods, defining what constitutes "normal” versus "abnormal” cases in time series

Fine-tune the hyperparameters of the model in order to cluster time series given two classes and

multiple-classes

Interpreting the latent space of our projected time series data and the model parameters that give

the best clsutering such the dimensionality of these latent vectors

1.3. Problem Statement

A wind turbine time series dataset must have an adequate of "anomalous” cases (abnormal) and

"non-anomalous” cases (normal), but this depends on the data available after simulations

e Training a VAE on turbulent data requires important data pre-processing steps similar to images, in
this case, the physical nature of the data must always be taken into account, therefore, cropping

might not make sense since we are loosing important information

e Improve the reconstruction performance of turbulence data at a high resolution is a challenge due to

the level of detail this data contains, also, a method to quantify reconstruction is desirable
e A physics informed machine learning approach would consist in creating a customized loss function
e There is not a lot work published on turbulence reconstruction-generation

e The chaotic nature of flow data: there is possibly no adequate or interpretable latent space

1.3 Problem Statement

In this project the problem of compression, reconstruction, clustering and generation of multi-variate
time series and turbulence data using variational autoencoders is explored. The systems under consideration
are wind turbine time series and turbulent flow sections across HVAC ducts.

For wind turbine systems, we will explore the capacities of variational recurrent autoencoders to learn
unsupervised representations of simulated time series. The goal is to cluster time series efficiently in order
to implement clustering methods on top of these learned representations. This procedure would ideally be
a robust time series anomaly detection by identifying normal versus abnormal cases in the context of ice
mass accumulation in the blades of the turbines.

In the case of turbulence data, we will implement a convolutional variational autoencoder to perform
compression and reconstruction of flows. We will also inquire in the capabilities of the model to cluster
flows in lower dimensions and also analyze the synthetic data generated by the model given the learned

latent probability distribution. The data derives from simulations of turbulent HVAC systems.

1.4 Sections outlook

This report is structure as follows: Chapter 2 contains a discussion about previous work in the
wind turbines and turbulence domains from a deep learning approach. It contains a description of the
neural network architectures studied in this report, namely, Variational Autoencoders. The chapter also
discusses the state of the art results on anomaly detection using Variational Autoencoders on time series
benchmark datasets as well as the most up-to-date generation and high-resolution reconstruction results
on 2D turbluence data. Chapter 3 contains a detailed description of the datasets we worked with and
also the main pre-processing data steps we implemented. Chapter 4 contains the results obtained on
time series compression, clustering and anomaly detection using Variational Autoencoders. Similarly, we
detailed the reconstruction and generation results obtained on a HVAC duct turbluence dataset. Chapter

5 summarizes with the contributions, lessons learned and future work.

State of the Art

This section covers related work in the field of high-resolution turbulent flows reconstruction using
machine learning techniques and previous work on unsupervised anomaly detection of time series via
clustering. First, we provide a discussion of the backbone model in our research; the variational autoencoder.
Secondly, we introduce the specific models used for wind turbines; variational recurrent autoencoder and
for tubulence data; convolutional variational autoencoder. Third, we describe work that has been done
using machine learning to reconstruct DNS turbulence data and proof-of-concept implementations of
models to generate synthetic turbulence data. Thereafter, we present a discussion on time series clustering

on a benchmark dataset using variational recurrent autoencoders.

2.1 Autoencoder

An autoencoder is a neural network that aims to reconstruct given input data in a self-supervised
way. It learns to encode and decode its inputs by using an encoder and a decoder neural network. The
encoder maps input data x € R% into a latent representation z € R% and the decoder reconstructs latent
representations into the input dimensions. This network is trained with a loss function that compares

inputs x vs reconstructions % and tries to make them as equal as possible.

Generally, autoencoders encode data in lower dimensions and have proven to be better dimensionality
reduction methods than several standard methods. The figure below shows a schematic diagram of a
standard multilayered autoencoder architecture. From left to right, the first layers takes in original data,
the second layer projects data into five dimensions, the third layer acts as a bottleneck layer projecting
into three dimensional latent representations. The next part corresponds to the decoder which performs

the inverse operations as the encoder in order to reconstruct the data.

7

2.1. Autoencoder

Input Layer € R Hidden Layer € Re Hidden Layer € R* Hidden Layer € Re Output Layer € Ri*

Figure 2.1: Standard autoencoder neural network architecture.

Introduced first by Hinton et. al (2006) [13], autoencoders proved to be better at compressing images
better than PCA. The architecture presented by Hinton et. al (2006) used Restricted Boltzmann Machines
(RBM) in its layers to encode-decode image data. The figure below shows the proposed architecture. The
first part consists of pre-training the RBMs separately. The unrolling part connects these trained parts to

form the autoencoder. Lastly, the autoencoder is fine-tuned using backpropagation.

L ! : Decoder |
R
e Top,
Lcsssomerrm . ABMI : ;
wi Witeq
| |

e ‘ H 2000 2000

RBM | Encoder

Pretraining Unrolling Fine-tuning

Figure 2.2: Multi-layered autencoder architecture using Restricted Boltzmann Machines. Image obtained
from Hinton et. al, 2006 [13, p. 505].

Chapter 2. State of the Art

2.2 Variational Autoencoder

Variational autoencoders (VAEs) [Kingma et. al (2013) [19]] are neural networks that make use of
Bayesian variational inference in order to learn low-dimensional latent and structured representations of
high-dimensional data. Variational Bayes methods are used to give an analytical approximation to the
posterior probability of unobserved variables, thus allowing statistical inference over such variables
to be performed. They are also used to provide lower bounds of the marginal likelihood of the observed
data, this helps in model selection. VAEs thus, are an extension of autoencoders, the added capability is
that they also learn distributions in the latent space (the bottleneck layer of autoencoders). It follows that
VAEs are generative models since the decoder can sample randomly from the learned latent distributions

and decode them.

More formally, let x € R% be the input data vector of a VAE. This vector is then mapped into a latent
vector z € R% (d, < d,) by the encoder network gy (z|x), then, the decoder network ps(x|z) takes this
latent vector to create a reconstruction X. When training VAEs, we attempt to make the reconstruction X
as close as the original input x plus the constraint that the learned latent distribution (whose vectors are
of dimensionality d.) must be appropriately regularized. The loss function introduced by Kingma et. al
(2013) used to train VAEs is the following one

L, 8) = Eonpiara(@) | — Eengy (ol [logpe(x]2)] + Drcr(ay (2]2)|p(2))] (2.1)

The first term in the above equation is the reconstruction term that aims to train the decoder network
Py (x|z) to match target versus reconstructions by maximizing the log-likelihood of the data. The second
term, on the other hand, is the Kullback-Leibler (KL) divergence (Dgr(p|lq)) defined as a measure of
distance between probability distributions. Dgr (pllq) = [plog(%) where ¢ is the encoder network gy (z|x)

and p(z) is a prior distribution.

The figure below shows a schematic diagram of a standard VAE that processes MNIST images. The
first part is the encoder network gy (z|x) which attempts to map input vectors into low-dimensional latent
vectors while at the same time learning a latent distribution capable of capturing the statistics of the
dataset. This latent distribution is parametrized by the mean p and standard deviation o of the bottleneck

layer. The second part is the decoder which reconstructs the inputs from the latent vectors.

2.2. Variational Autoencoder

encode > decode >
Inference Generative

Reconstructed

Distribution

Figure 2.3: Variational autoencoder standard architecture. Image obtained from Sergios Karagiannakos-Al

Summer [I7].

A main assumption when training VAEs is that the prior distribution p(z) that the encoder tries to
approximate is a standard normal distribution (N '(u, 02)). Note that the latent vectors z are random
variables distributed according to the prior p(z) [19]. Since a true posterior py(z|x) is intractable,
it has to be parametrized by the encoder ¢y (z|x) which is a Gaussian distribution whose mean and
standard deviation are computed in the bottleneck layer. In order to computer these parameters,
Kingma et. al (2013) [19] introduced the re-parametrization trick (see figure below). The idea of doing
this is to avoid differentiation through a stochastic node by rewriting the parametrized Gaussian as
N(p, 0?) = p+ oN(0,1). Modelling the latent variables in this way allows the KL divergence to be
integrated analytically.

decoder model decoder model

‘ Deterministic node I
~q(z|x) z=p+oQe
. Random node

e TN
66 So0-
I I
encoder model encoder model

Figure 2.4: Reparametrization trick used when training VAEs. Image obtained from [16].

The role of the KL divergence in the loss function is to prioritize latent distributions that match the
prior. The figure below shows the effect of both terms in the loss function when projecting MNIST data
in the two dimensional plane. The left-most figure shows the latent space trained only with reconstruction

loss, as we can see, it is capable of splitting data based on their digit class, however, there are spaces

10

Chapter 2. State of the Art

on the plane that have no meaning if we look at it from a probabilistic perspective. The middle image
shows the latent space only with the KL regularization term, note that the latent space has a normal-like
distribution but no distinction between digits. The right-most image is the combination of both loss
terms and shows that the model is indeed being able to disentangle digit classes while learning structured

normal distributions.

Only reconstruction loss Only KL divergence Combination

Figure 2.5: Effect of loss terms in latent space regularization of the MNIST VAE. Image obtained from

I16).

VAEs have had several improvements recently such is the case of 8-VAE [12], which is a model capable
of learning interpretable and disentangled representations of data. VAEs stand out against generative
adversarial networks (GANs) [8] in that they are easier to implement and more robust during training.
Moreover, VAEs have achieved several state of the art results in image processing and language processing

applications.

2.2.1 Variational Recurrent Autoencoder

Recurrent Neural Networks (RNNs) are models capable of capturing time dependencies in data like
time series [I4]. It is their gated mechanisms that allow them to learn long-term temporal relationships.
An example of the success of RNNs is in machine translation, where encoder-decoder architectures have
set the state of the art [2]. It has also been shown that the strengths of RNNs can be combined with
VAEs in order to create the Variational Recurrent Autoencoder [Fabius et. al (2015) [5]]. This model
allows to map time sequences to latent representations and enables optimized and large scale unsupervised
variational learning on time sequences. This model at its core is a VAE that implements RNNs in its
layers. It contains an encoder-decoder scheme where both are separate networks that have a set of
recurrent connections such that the state hyy; is calculated on the previous state h; and on the data ;41
of corresponding time step. The distribution over the latent random variable z is obtained from the last

state of the RNN, h.,q in the following manner

11

2.2. Variational Autoencoder

hit1 = tanh(W2 he + Whai 1 + bene)
frz =W, hena + by (2.2)
log(c,) = WX hena + by

Here, We,,. and W;,, are the weight matrices that correspond to the gates in the RNN architecture.

W, and W, are two fully connected layers that allow to compute the mean and standard deviation in the

bottleneck layer (variational layer).
Using the reparametrization trick described above, a latent vector z is sampled from this encoding and
is fed into the decoder RNN. Similarly, the states in the decoder are updated as in the encoder by doing:

ho = tanh(WXz +b.)
ht+1 = tanh(Wé’;Cht + ngt + bdec) (23)
x; = sigmoid(Wk hs + bout)

Finally, Wg;c and W correspond to the weight matrices that compose the autoencoder and x; is the

reconstructed term corresponding to the sampled latent vector z.

40 co(m

M —

x2

IEI
indino ol uapply

x3

» H
h_end x.t AD—,
2 ! T

decoder_inputs (T)

Re-
parameterization

(T) - trainable, initialized to zero

Figure 2.6: Variational Recurrent Autoencoder architecture. Image obtained from Python Awesome
website [3].

Figure 2.6 shows a standard diagram of a VRAE. On the left side, the encoder takes ¢ data time

12

Lower Bound

Chapter 2. State of the Art

steps and processes them through RNN cells computing hidden states h;. Then, the VRAE takes the last
hidden state h,q and computes its mean g and standard deviation o using two fully connected layers.
These two parameters are used to compute the latent vector z and finally this vector is the input to the
RNN decoder which outputs the reconstruction of the time series.

Fabius et. al (2015)[5] trained a VRAE on song fragments in order to learn a latent space capable
of generating synthetic music. The figure below (right image) shows the organized data points (songf
fragments) in the latent space. Each encoded datapoint is visualized at the location of the resulting
two-dimensional mean (x,y) of the encoding.

Darta in latent space
Lower Bound

[i} &-& spongobob

&9 pokemonsurf .. L
1 @ @ marinunderwaler . f

*® rario a 9

@ @ mariokarl ‘ o C ® ™ ®
-2 ®-8 mariounderworld S 2Te @ e o

@ @ pokemoncantar ®© ¢ ® .jip [] o
sl ®-@ tetis . L) [% ® N

o, oo r,“o.o . .
—ar ® ’ :“J. [] L ¢ @ .. ‘ e
o® %9 e @g @ ® L]
. > &} “
[Y @ -l. .. e @
-6 @ a9 ‘ * ®
® & o @
® o0 ‘ . .
% ® ® L
-8
0.0 .5 1.0 1.5 2.0 2.5
Epachs led

Figure 2.7: Learned representations of song fragments (see labels) using a VRAE. The latent vectors are
projected in two dimensions to evaluate clustering. Image obtained from Fabius et. al (2015) [B p. 3].

2.2.2 Convolutional Variational Autoencoder

Another type of neural network that has had vast success in tasks in areas related to computer vision
and image processing are convolutional neural networks (CNNs). The combination of machine learning
algorithms with the properties of convolutional filters (weight sharing and local invariance) make them
very suitable to perform multiple tasks of interest in image-like data. CNNs hold state of the art in
applications like image classification [20] and image segmentation [I1].

Similarly to RNNs, CNNs can be combined with a VAE in order to form a Convolutional Variational
Autoencoder (CVAE). This architecture is thus capable of learning image representations in low-dimensional
spaces and generating synthetic images.

In the case of turbulent flows, we have framed the problem of dealing with turbulence data as images.
In this manner, the channels of a turblence slice correspond to the temporal physical values that each slice
carries (pressure, velocity). The figure below shows a CVAE that handles 2D turbulence slices. Initially
(top row) the CNN encoder takes 2D slices as inputs and processes them through a series of convolutions

and downsampling operations. The dimensionality of the latent vectors is a main parameter that is tuned.

13

2.3. Unsupervised Representation Learning of Time Series with Deep Neural Networks

After that, variational layer (bottom row, right part) reshapes the latent vectors in order to feed them
through dense fully connected layers to compute the parameters of the latent distribution (mu and sigma).
Lastly (bottom row), the CNN decoder implements the same transposed convolutions and upsampling

operations and outputs the reconstructions.

P' - o
I‘ s s 128 CReLU 128 >'ReLU
‘ReLU + +
" Convd Bateh- Conv Batch-
Batch- norm2D norm2D
/ Vi Comz F norm2D Dense
5 norm2D
g +
Batch-
norm2D
"""" @ IicLU 64 RcLU 128 \ ¢
e 5, ReLU 32
4 GRe aqCont o TConve e Dense
ReLU 16 Bateh. TFCOnV8 norm2D norm2D ReLU Dc,,sc P (sigma)
+ 2D re- Dense
Batch. [FC0nv9 - norm: Batch- shape)
3 norm2D norm2D 7
\
Ez\tcl“cu nv10
norm2D Dense

(mu)

Figure 2.8: Convolutional Variational Autoencoder architecture.

2.3 Unsupervised Representation Learning of Time Series with Deep Neural
Networks

Data compression methods like PCA and kernel-PCA have been efficient in many use cases and also
straightforward to implement [23]. However, a numerous amount of datasets show non-linearities that can
not always be captured by these methods. This motivated the development of other techniques like t-SNE
by van Der Maaten et. al (2008) [29]. Just like PCA, t-SNE is also used for visualizing large datasets, it
uses a random walk on neighborhood graphs to reveal structure at different scales. These methods of

dimension-reduction are a key tool to gain insights into any clustering behavior that the data may present.

In the case of multi-variate high-dimensional time series VAEs, work has been conducted by Pereira et.
al (2019) [25] on anomaly detection using VRAEs. The authors demonstrated state-of-the-art accuracy
for the detection of anomalies in the ECG500 dataset. The high-dimensional data was first compressed
and then a clustering algorithm was applied to this transformed data. This unsupervised learning scheme

achieved an accuracy exceeding 90%.

14

Chapter 2. State of the Art

t-SNE

R-on-T
PVC
Class Labels

Normal PVC SPorEB UB

Figure 2.9: 2D projection of the compressed ECG500 time series using a VRAE. PCA and t-SNE are
compared. Image reproduced from Pereira et. al, 2018 [25], p. 5].

Moreover, Zhao et. al (2018) were able to extract the relationship between time series variables
obtained from the monitoring of wind turbine systems in [34]. This group worked with an autoencoder
network based on Restricted Boltzmann Machines as well. Their method successfully implemented an

early warning of faulty components and also deduced the physical location of such components.

2.4 Turbulent Flow Compression, Reconstruction and Generation using

Machine Learning

The most recent related work on reconstruction and generation of turbulent flows can be found in Xing
(2018) [30] and Fukami (2019) [6]. Fukami et al. (2019) [6] developed a deep learning method to generate
time-dependent turbulent inflow data, their neural network uses a combination of convolutions with a
multi-layered perceptron in an autoencoding manner to reconstruct the presented DNS data (see figure
below). One of the main results obtained here was that the machine learning turbulence generator was
capable of accumulating turbulence statistics at a much lower computational cost than the corresponding
driver simulation. A main drawback of this implementation is that it is very sensitive to changes in

network parameters (hidden layers, units) and a better network structure is needed to achieve robustness.

15

2.4. Turbulent Flow Compression, Reconstruction and Generation using Machine Learning

Reconstructed

Machine-learned T

Super-resolution
Max

DNS (u, Reference) |

Bicubic
interpolation

Figure 2.10: Super-resolution machine learning pipeline to reconstruct DNS flow data. The output
compares the machine learning reconstruction versus bicubic interpolation. Image reproduced from
Fukami et. al, 2019 [0, p. 3].

For generation of turbulent flows, Grogan (2017) gave a proof of concept for the viability of VAEs
to learn the characteristics of turbulent flows in [9]. In his report, Grogan used a 3D convolutional
VAE and trained it on a standard database of homogeneous isotropic turbulence. The author was able
to reconstruct a non-trivial turbulent vector field. The main deficit of his work is that his results are

under-fitted resulting in a low-quality reconstruction.

Xing (2018) presented an improvement on the reconstruction results of Grogan as reported in [30]. One
of the main modifications is that this author worked with 2D instead of 3D data to avoid overfitting. He
trained 800 2D velocity fields of size 1024x1024 and conducted a more extensive analysis of reconstruction,
generation and lossy compression. Potential improvements to his work are desirable as he trained with
data from a single simulation, only used small 32x32 velocity fields and restricted himself to 2D slices.

_
BNEMNEENSSS
BENMNEENISE

Figure 2.11: 2D reconstructed flow data using a VAE. The top row are the samples and the bottom row
are corresponding reconstructions. Image reproduced from Xing et. al, 2018 [30] p. 17].

16

Chapter 2. State of the Art

2.5 Limitations of previous work

One of the main motivations to make use of VAEs in both problem domains is that the related
literature has reported results only using benchmark datasets. In our case, we will use simulation data of
systems of our own interest.

For wind turbine anomaly detection, the potential of VRAEs for this data will be researched. Pereira
et. al (2019) [25] show that VRAEs can efficiently learn representations of uni-variate high-dimensional
and labelled data. In this case, multi-variate and non-labelled data together with more time steps than
the standard ECG500 datasets will be used. These technicalities suggest that data compression should be
performed in a more gradual way by introducing another hidden layer to the network initially.

In Zhao et.al (2018) [34], the team used SCADA data for learning. This data is different to the one
used in monitoring systems. The difference is that the analyzed quantity is either the time series or the
frequencies of multiple sensors. SCADA data contains operating parameters of the gear box, generator
speed and power. These quantities are rather meta-data. The aim here is a finer analysis using the time
series from tachometers, more in the sense of Gantsala et.al (2018) [7] but using the time series and not
the frequencies.

In addition, Zhao et.al (2018) analyze the data gathered from a 1.5 MW plant (also smaller than
the plants analyzed here). In this research there is a controlled data set as given by simulations where
parameters can be varied and the effects can be identified. Depending on the results from the simulations,
real data from the company Weidmueller could be analyzed later.

In the case of turbulent flows, more work is needed using VAEs for different types of flows. Xing
et. al (2018) [30] offer one of the most detailed reports as yet on turbulence using VAEs. However, it
focuses on a particular type of flow. This is not sufficient since the potential that VAEs can bring to the
analysis of the HVAC systems described here has not yet been explored. The HVAC system contains
several challenging flow features to investigate, such as the flow around an obstacle and pressure driven

flow separation.

17

2.5. Limitations of previous work

18

Methodology

This chapter contains a description of the wind turbine and turbulence datasets used in this project as
well as a section that describes several relevant data pre-processing steps. It also includes sections that
detail the proposed models for both wind turbines and turbulence data separately explaning the use of

VAEs for unsupervised representation learning.

3.1 Wind turbine time series dataset

This dataset is composed by time series generated from a simulation of a wind turbine system. It
contains simulations of the turbine operating with and without ice accumulated in the rotorblades.

In the setup of this simulation, we divide the rotorblades in three sections: one covers the first half of
the blade and the other two sections divide the second half into two extra halves again. We model different
masses at each region. The convention to refer to the region and amount of mass for each simulation is
x —y — z. x corresponds to mass increase in the first zone, y on the second zone and z on the third zone.

The dataset contains only simulations of time series with mass places in one region at a time (no

combination of masses in multiple regions) that have the following configuration:

zonel = XTyass —0—0
zone2 = 0 — Ymass — 0 (3.1)

zoned = 0 — 0 — Zmass

Considering that this dataset is used to train neural network models, we have balanced it to have
both "normal” and ”"abnormal” time series cases. A normal time series corresponds to the configuration
0 —0—0 (no ice accumulation) and the abnormal configuration corresponds to any of the three in eq. 3.1.

We have arranged the dataset so that it has approximately the same number of normal and abnormal
cases. It contains a total of 25 simulations (14 normal cases and 11 abnormal) cases. Each simulation
corresponds to a time series consisting of 47,000 time steps. These long sequences can, thus, be splitted
into smaller chunks of 200-1000 time steps to use them as input data to train a neural network model.

These simulations have been generated using a wind turbine simulation software called FAST| (v8). A

total of 27 variables have been taken into account and their description is found in appendiz A.0.1.

19

https://github.com/OpenFAST/openfast

3.2. Wind turbine time series data pre-processing

The figure below shows a normalized time series corresponding to one simulation. Here, we plot six

different variables out of the total of 27. This data corresponds to 1 sample with 6 features and 47,000
time steps.

Wind turbine time series sensor readings

01 b
|

1

AR A A)

‘i R T b b e bk bbb bty AR
!"‘\'\ T N qul......... ._ln.-.‘.l.l_n-
‘H‘.'l‘r ™ .\.A.‘anna.n-nannnnnn'nn'nnn'na'gah'af.q. I
i

—
—

MinMax Scaling (-1, 1)

0 5000 10000 15000 20000 25000 30000 35000 40000

Time steps

Figure 3.1: Wind turbine normalized time series sample.

3.2 Wind turbine time series data pre-processing

In this section we describe the main data pre-processing steps prior to input it into a neural network
model.

We read the data from individual h5 files and grab only up to 10,000 time steps (out of the 47,000).
In some of these time series wind speed is constant after some threshold and also they take some time
to reach a stable state, that is why most of the relevant information is contained in between the 2000 -
10,000 time steps. For this project, we are only reading the weight configurations shown in equation 3.1
and not any combination of weights in two or three zones.

As a next step we normalize our time series using MinMaxScaler to a given range (-1 to 1). This
is a crucial pre-processing step since there are sensor channels (features) that have higher amplitudes
than others, this can affect the learning performance of a neural network model. After this we filter the
features we work with and narrow them down to only six features, namely the accelerations in flapwise
and edgewise components for three blades (see table below).

We make sure that the data is in the format (samples, timesteps, features) which is the required input
for an RNN in Pytorch. Next we cut each time series into smaller samples, such that one time series

can actually be regarded as having more observations. As the simulations are set up such that we have

20

Chapter 3. Methodology

Table 3.1: Wind turbine time series filtered features from simulation.

Wind turbine simulation parameters

Parameter Description

SpnlALxbl Blade 1 local flapwise acceleration (absolute) of span station 1
SpnlALybl Blade 1 local edgewise acceleration (absolute) of span station 1
SpnlALxb2 Blade 2 local flapwise acceleration (absolute) of span station 1
SpnlALyb2 Blade 2 local edgewise acceleration (absolute) of span station 1
SpnlALxb3 Blade 3 local flapwise acceleration (absolute) of span station 1
Spnl1ALyb3 Blade 3 local edgewise acceleration (absolute) of span station 1

roughly 12 rotations per minute, we should see one rotation every 5 seconds, hence taking a length of 500
or 600 time steps could serve as a first initialization. This procedure generate approximately 1250 chunks
that are then split into training and validation sets.

After these steps the data is ready to be fed into a neural network. These pre-processing steps ensure

a robust and reliable procedure in order to learn efficient representations.

3.3 Wind turbine time series proposed model for anomaly detection

The proposed model for ice detection in the rotorblades consists of two fundamental steps: representa-
tion learning and anomaly detection. Both steps are merely unsupervised. We are basing this approach

based on the one proposed by [25] using the ECG500 time series benchmark dataset.

Representation Learning

The model that we use for this task is the VRAE (introduced in chapter 2). More formally, let
X = [x(”)]ﬁ[:1 be the time series dataset composed of N sequences, with each sequence having a length T,
() = [x§”), a:(gn), oy ngl)], and each datapoint :ci”) is a d, dimensional vector (number of features).

The encoder of the VRAE takes each time series (™ and it is parametrized by a long short-term
memory (LSTM) layer that at each time step computes a hidden state h{™. The last hidden state h5" is
thus an abstract representation that represents the whole given sequence x. Similarly to [25][26], the prior
distribution p(z) is a multi-variate normal distribution N(0, I). The parameters that approximate the
posterior distribution gy (z|x), 1. and X, are obtained by taking mean and standard deviation from this
last hidden state by using two fully connected layers with a SoftPlus activation. According to [25], using
a SoftPlus activation ensures that variance is non-negative . The latent variables z are sampled from the
parametrized posterior ¢y (z|x) via p, and ¥, by using the re-parametrization trick discussed already in

chapter 2 by doing

2=, +0,0¢€ (3.2)

Where € ~ N(0,1) is gaussian noise and ® corresponds to element-wise product.
The decoder of the VRAE is another LSTM network that takes as input the latent vector z from
the approximate posterior and outputs at each time step t the parameters that reconstruct the in-

put variable x. Similar to the encoding distribution, the decoding distribution py(z|z) is defined as a

21

3.4. Turbulence dataset, data pre-processing and proposed model

multi-variate Gaussian distribution. The loss function is the VAE loss function introduced in chapter

2 and the training procedure follows subsequently following gradient update and stochastic gradient descent.

Anomaly detection

We perform anomaly scoring using the learned low-dimensional time series representations provided
by the VRAE model. Following the procedure of [25], the model is mapping sequences x into a lower-
dimensional space and we then project them into two dimensions using PCA and t-SNE in order to
evaluate grouping in specific regions. This makes it more feasible for a clustering method to detect
normal vs anomalous (abnormal) cases. Anomaly detection consists, therefore, in detecting if a latent
representations is normal or abnormal. In this work, we have implemented this detection using clustering
algorithms.

Clustering algorithms give a numerical label to each latent representation, framing the problem as
a two-class or multiple-class classification problem. We are taking this approach based on the fact that
the model is capable of learning representations that tend to group in lower-dimensions given a balanced
normal and abnormal percentage of training data, also assuming there is statistical difference between cases.
We have applied three different clustering methods in the representations: k-means ++ [I], density-based
spatial clustering (DBSCAN) [4] and hierarchical clustering [27]. These methods are set to find two (or
more) clusters given the number of classes (normal and abnormal). The output is then matched to the
ground truth labels given corresponding to the actual class each representation belongs to. With this, we

can compute a classification accuracy.

3.4 Turbulence dataset, data pre-processing and proposed model

This dataset is composed of extracted slices/cubes from a HVAC duct CFD simulation. We store
the 2D slices as arrays of dimensions 41 x 41 x 2000 (coordinate,, coordinate,, timestep). Each slice
represents a two dimensional temporal snapshot of the turbulent flow carrying physical information at that
particular time. Similarly, the extracted 3D cubes are stored in arrays of dimensions 21 x 21 x 21 x 2000

(coordinate,, coordinate,, coordinate,, timestep).

Figure 3.2: Two dimensional slice extracted from a HVAC duct simulation.

The information extracted from the simulation is based on flow variable (velocity U, static pressure

22

Chapter 3. Methodology

p), the vector component (z,y, z) for U, the scalar component for p as well as the orientation of the flow
based on the normal direction of the slice. The figure above shows an example of an extracted 2D slice.
We visualize an individual slice in the form of a heatmap.

We frame the problem of feeding turbulent data into a neural network model as if they were images.
This is based on the parallelism that exists between both data types and the results obtained by [30]
[9] using a the John Hopkins Turbulence benchmark database. In contrast to images, we don’t perform
any operation like cropping or rotations for augmenation, we rather keep the original dimensionality of
the data in order to maintain all the physical information possible. The only operation performed is a
normalization step to fix a range in the values of the data. The figure below shows a pre-processed set of

turbulence slices. This data is the input into our neural network model.

—
=
i - -
-
—
=
i - -
-

Figure 3.3: Grid of two dimensional turbulence slices after pre-processing.

The proposed model is the Convolutional Variational Autoencoder (CVAE) introduced in chapter
2. We have taken as a baseline architecture the one proposed in [30]. The encoder and decoder of the
CVAE have 4 symmetrical convolutional hidden layers. Each layer of the encoder has twice the number of
convolutional filters as its predecesor, this is in order to learn more complex flow features. Encoder/decoder
are composed of 32, 64, 128 and 256 filters. The dense layer at the end of the encoder is used commonly to
combine all the feature maps from the last hidden layer. After that, there is a variational layer that similar
to VRAESs, computes the parameters of the posterior distribution and from here we compute latent vectors
using the re-parametrization trick, in this case it is 8 x 8 latent images. The decoder takes the latent
vectors and performs the same number of operations using transposed convolutions in an upsampling
manner in order to recover (reconstruct) into the original dimensions. The initial hyper-parameters of the
network were taken from the work by Higgins et al. (2017) [12] and Xing et al. (2018) [30]. After this, a

fine-tunning of the hyperparameters is done according to our train and validation losses.

23

http://turbulence.pha.jhu.edu

3.4. Turbulence dataset, data pre-processing and proposed model

24

Experiments and Results

In this section we present the results obtained in unsupervised representation learning and clustering
of time series for anomaly detection in wind turbines using a Variational Recurrent Autoencoder. We
cover the case of two classes: normal and abnormal case as well as multiple classes. This section also
contains the reconstruction and generation results of the two dimensional HVAC duct turbulence data
using a Convolutional Variational Autoencoder. All our neural network models are implemented using the
Pytorch framework [24] and a Tesla V100 GPU card with 32 GB of RAM.

4.1 Unsupervised time series clustering and anomaly scoring: two classes

Raw effect of PCA on time series

As an initial test, we projected the original given input data (N samples, 200 timesteps, 6 features)
directly in two dimensions using PCA. The figure below corresponds to the PCA projection of the data
(no furhter training). As noticed, pure raw PCA applied to the data is not good enought to cluster normal
and abnormal time series in distinctive regions. This is mainly because of the fact that such technique is

not always capable of capturing the non-linearities that exist in multi-variate time series, for example.

25

4.1. Unsupervised time series clustering and anomaly scoring: two classes

PCA on z raw

6
normal
+ abnormal
*
4 .
\d
‘o *
L4 .
.
o
‘E 2 '-... .
[‘e *w ”
g R * »
. » s
Q e ’o’o’
S LRSS '00-!'..4
S LRI L N X
o . YR TR
—_ * »> b &
s O MRt " .
2 S 2%%
S} . IR AT
£ VL X
= LRI § A .
o o» *» *
* ’0
-2 VIR
* . . . N ‘
. . * * *
*
-4 o
*

7.5 10.0 12.5 15.0 17.5 20.0 22.5
Principal Component 1

Figure 4.1: PCA applied to raw time series data without neural network processing.

VRAE unsupervised representation learning with two classes

Next, we trained a VRAE using a single hidden LSTM layer with 90 units (a single hidden layer
architecture gave better results than a multi-layered one). The bottleneck layer (variational layer) project
these 90 dimensional representations into latent vectors of 20 dimensions. We use the Adam optimizer
[18], gradient clipping (to avoid gradient explosion) and dropout in the hidden layer with rate of 0.2. The
learning rate is { = 0.0005 and momentum 0.9. The data is split in 70% training and 30% validations
sets with time series split into chunks of 200 time steps and the 6 features described in the previous
chapter. In this case, we are only comparing normal case versus abnormal cases corresponding to the
zone 1 of the turbine blade. We load batches of 64 into memory and perform training for 2000 epochs.
The reconstruction term in the loss objective is the MSEloss given that we assume that the parametrized

posterior probability p(x|z) is a normal distribution. The training time is approximately 30 minutes.

The figure below shows the results obtained with this model. The points correspond to a projection of
the 20-dimensional learned latent representations into 2-dimensional vectors using PCA. We note the data
is properly grouped according to normal and abnormal cases in different regions of the plane. Figures (a)
and (b) compare the first principal component versus the second and the third one, respectively. Figure
(¢) compares the second principal component versus the third one. Note how in (a) and (b) the separation
between classes is visually evident. In contrast, in (c¢) there is a considerable overlap between classes, this
can have to do with the fact that there is more correlation between the second and the third components

of this projection.

26

Chapter 4. Experiments and Results

PCA on z run

PCA on z run

5
« normal . . + normal
+ abnormal . ‘. + abnormal
4 .
6
: 3 .
o~ m . .
o 4 S . o .
5 @ N
c . IS c 2 % o
o o .o, . . .
a Q ”» ° M .
£ . £ ol . LR
5] o . s M Lt
S 21~ . S, SOEE AL
g N @ Lot e e S, e s .
£ g LEA T e UL
2 . £ CEING L esl S¥aee :
= = . . * o e
o a 0 q &3 g e & S -
0 . A . R “ L
-\:,x. . o3e, XS .
e PSR SR X
-1 3 trees .
\4 LR .
-2 ° . . .
. '. *
< -2 . R
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4
Principal Component 1 Principal Component 1
(a) First component versus second component. (b) First component versus third component.
PCA on z_run
5
. « normal
M + abnormal
.
4 .
3 .
m . .
o .
S N
c 2 .
o
Q
€ .
o
o .
©
E=3 °
v . .
£ ..
z 0 .
-1
-2
-2 0 2 4 6

Principal Component 2

(c) Second component versus third component.

Figure 4.2: PCA projection of the learned 20-dimensional representations using a VRAE. The figures
compare the relationship between the first three principal components of the projection.

Analysis of other dimension reduction methods and latent vectors as lines

Besides PCA, we have implemented two other methods for non-linear dimensionality reduction; t-SNE

27

4.1. Unsupervised time series clustering and anomaly scoring: two classes

and spectral embedding (SE) [31][22]. In general, t-SNE is a method capable of projecting data into
well defined clusters, note in the left figure below, that this is indeed the case with the time series latent
representations. t-SNE is capable of almost grouping all normal and abnormal cases perfectly. However,
in terms of interpretation of mapping and stochasticity of the final solution, we can not yet rely on t-SNE
other than pure visual evaluation since it is not a deterministic approach as PCA, refer to this [forum/ for
a detailed comparsion between these two methods. The right figure below corresponds to the spectral
embedding projection of the data, this algorithm is in close proximity to kernel PCA [22] and proved to
cluster the time series latent representations almost perfectly, this method is yet to be better explored
since it is easier to interpret and shows promising results.

Note that all the three methods for dimensionality reduction compared so far (PCA, t-SNE and SE)
take as input the latent representation outputed by the VRAE. The VRAE processes the 6 sensor features

and fuses them into one.

t-SNE on z run

Spectral Embedding on z_run

10.0 * normal normal
o . + abnormal b + abnormal
75 0.02 RN
..l [e o
“.- *
¢
5.0{ . R Do
. ° .
0.01 S — e 2
25 * . PO o e
'.. . A te o S
goe v’ Y
. d - * o P
.' L4 F B . o .
0.0 . - h " * [¢ . ." * . ‘0:00.
1 DS »
o L et 0.00 4 CRRPR
-2.5 . - PN e e
. * * . . - . .0 PN t 0‘:’
et et et . s .
“ ., R 3'" P
—-5.0 . ‘o'>:.f S, s .
: Tee MLEN Oy -0.01 i .
MRS SRS o .
o’ T 09{ RaAS ‘,"- ..
-7.5 R T "V
et » .
-10.0 ¢ —0.02
-75 -=5.0 =25 0.0 2.5 5.0 7.5 —-0.010 -0.005 0.000 0.005 0.010 0.015

Figure 4.3: 2D t-SNE projections of the latent vectors. Figure 4.4: 2D SE projections of the latent vectors.

In this experiment we also plotted the 20-dimensional latent vectors generated by the VRAE as
lines. We took 15 samples of normal and abnormal latent vectors and compared them in the plot below.
The x-axis corresponds to each entry of the 20-dimensional vectors and the y-axis are the normalized
amplitudes provided directly by the model. The red lines correspond to normal latent vectors and the
blue lines to abnormal ones. Remarkably, we can see that even in their 20-dimensional representation, red
lines tend to describe different maxima and minima compared to blue lines. Note for instance, that the

dimensions 1. 5. 7, 13 and 19 are the ones where normal and abnormal classes have the less correlation.

28

https://stats.stackexchange.com/questions/238538/are-there-cases-where-pca-is-more-suitable-than-t-sne

Chapter 4. Experiments and Results

Knowing what dimensions provide the highest contrast between our classes can in principle allow us to

further reduce the dimensions of the latent vectors from 20 to 5 or 6.

Latent vectors (z run) as lines

00 25 50 7.5 10.0 125 150 17.5

Figure 4.5: Latent vectors plotted as lines. Red lines correspond to normal classes and blue lines correspond
to abnormal classes .

Effect of features used for time series representation learning

Another characterization we did in this experiment is the exploration of the effect of the number of input
features when training a VRAE. The left figure below for example, corresponds to the PCA projections of
the latent vectors when the model is trained only with 3 features, namely the x-components corresponding
to the flapwise acceleration of span station 1: Spn1ALxb1, Spn1ALxb2, Spnl1ALxb3. Similarly, the right
figure below corresponds to training using only 3 features corresponding to the y-components of the local
edgewise acceleration of span station 1: Spn1ALybl, Spn1ALyb3, Spn1ALyb3. As we can see in both
cases, projecting the data with PCA is not helping the model to learn representations efficiently in order
to cluster time series in a significative way. This finding is relevant since the number of features fed into a

model is a crucial parameter. From this observation, we proceeded to train every other model using at

29

4.1. Unsupervised time series clustering and anomaly scoring: two classes

least six input features.

PCAon z_run PCA on z_run

e normal
& abnormal . °
4
.
. 6
.
. »
. % e . ¢
3 ° .
* *
4
L 4 ¢ *
. .
> . .
* . |" *
. KR
2 i * Kt
. ¢ -'lr) . $ee .
. o 3 .
o W . .); . * .
o *
T s %‘ . AR -,
.o . 1 R 5 Jaw 't . .
- M ‘ » -."l * S *
1 . o
. o . "_- KA ‘:h.‘.x';sA
. -,
. e ee e gces, §Teee -
. *e Ll ’
hd o o |0 Y, .
. .
.t 1 o . . R (P TR
® *
0 °. 2 v o . * _ AR SRR
. oo el & . * *?
. ¢ o0 .
* .‘: I. -- R
o ¢ A
. N . o
B L X -
* e MR .
Rl o _f 1-:-".---& '. A . *
O Gen. o ALl | ¢
*), .‘“ X {:" * *
> 98 *
Lot aid R AR .
*a. . .
= -6
.

e normal

o abormal
.
.
-
P
»
.
.
.3
-

Figure 4.6: 2D PCA projection of latent vectors when training VRAE with only 3 features. Left figure:

x-componentes of blaeds accelerations. Right figure: y-components of blades accelerations.

Unsupervised clustering methods and anomaly scoring

So far we described several experiments that characterized technical aspects of representation learning
using a VRAE regarding its capacity to cluster time series in lower dimensions. The next stage in the
anomaly detection pipeline, as discussed in the previous chapter, consists in applying clustering algorithms
on the latent representations.

In the figures below, we show a comparison of the three clustering methods mentioned in the previous
chapter; KMeans++, hierarchical clustering and DBSCAN. In the left upper figure, we show the projected
latent vector, we colored these projections based on their groundtruth class correspondence (labels). The
right upper figure and the two at the bottom correspond to the clustering/label predictions of each
algorithm algorithms. Note for instance, that KMeans++ and hierarchical clustering color the points in
the upper region of the plane with the same label (as belonging to cluster 1), this is not correct given
that we know the groundtruth labels. This speaks about the limitations of the models in their ability to
assign class labels. However, in general, we see that these two methods perform an efficient clustering

classification on top of the latent vectors when compared to the groundtruth. The other method is

30

Chapter 4. Experiments and Results

DBSCAN, note for example, that this method is not assigning class labels to all the points (that is why
the y-axis limits differ), this has to do with the choice of hyperparameters (the clustering results presented

here correspond to the best results obtained when running a hyperparameter search).

KMeans++ on latent 2D vectors

PCA on z run

<+ normal s . C:“Ste';
° Cluster
4
4 e .+ abnormal g A o % centroids
. s
3 L 3 o
2 2
o~
2 P
] 5
o 1 . 51 a
Qo Q -
13 . E
S 8
] s © |
© ‘ Q
<3 o}
] £ .
c . g —
£ - = :
-2 *- . S : :
. s
-3
-3 o
.
.
.
-4
-4 -2 -1 0 1 2 3
-2 -1 o 0 1 2 3 Principal component 1
Principal Component 1
Hierarchical clustering on latent 2D vectors DBSCAN clustering on latent 2D vectors
& o cluster1 & o cluster 1
ol = J o cluster2 10 ° o cluster 2
a EID =] ° L &
a o =
31) =
o .
s
05 -l L o
24 &)
~ ~ % ° 4l
= - ° L4 ° s g° o
c c ° ° a = &3
@ 9] oo misile e P
c 1} c ° ° o, o Y pe o
I3 ° g o0 et T
£ e £ s Hp s
o 151 ° g “ofg e o
S ol o 3 N % o o
= 4 © 5 “al 8o gf B™°
s s o, Bu By
g S . 259 &p b ofos 0%
= = B
-1 ® £-05 o % o Loe e
s B . s g
s
. . - € g o
-2 - a S °°° R & s . B
s
o -1.0 - me =
-3 N] o
o
” s e
_al
-2 -1 1 2 E] 20 -15 -10 -05 00 05 10 15 20

0
Principal component 1

Principal component 1

Figure 4.7: Class prediction of three different clustering algorithms operating on top of the projected
latent vectors learned by the VRAE.

In order to provide a more quantitative evaluation of the classification output from these models, we

31

4.2. Unsupervised time series clustering and anomaly scoring: multiple classes

have computed classification accuracy, area under the curve (AUC), precision, among other metrics. The

table below shows the results obtained:

Table 4.1: Anomaly scoring classification results using 3 unsupervised clustering algorithms.

Anomaly scoring results
Metric KMeans++ Hierarchical clustering || DBSCAN
Accuracy 0.9667 0.9639 0.6315
AUC 0.9619 0.9605 0.5507
Precision 0.9674 0.9641 0.9890
Recall 0.9667 0.9639 0.6315
F1-score 0.9666 0.9638 0.7616

The results from the table above indicate that DBSCAN had a low classification accuracy. This can
have to do mainly with the hyperparameters chosen and should not be discarded as a clustering method.
The other two methods on the contrary, achieved classification accuracies of up to 96%, which is 2% below
the state of the art using a benchmark dataset [25]. These classification results indicate that our anomaly
detection proposed framework is being able to classify between normal and abnormal time series up to
96% of the time.

4.2 Unsupervised time series clustering and anomaly scoring: multiple classes

The next problem we tackled is the extension of anomaly detection given multiple classes. Here, we
have taken into account all three zones to compose our training dataset (weights in zone 1, zone 2 and
zone 3). We trained a VRAE again using a single hidden LSTM layer, in this case, we modified this layer
to 128 units. The bottleneck layer (variational layer) project these 128 dimensional representations into
latent vectors of 5 dimensions. We have also changed the latent dimensionality based on fine-tunning of
hyperparameters. Adam optimizer is used, gradient clipping (to avoid gradient explosion) and dropout in
the hidden layer with rate of 0.2. The learning rate is I = 0.0005 and momentum 0.9. The data is split
in 70% training and 30% validations sets with time series split into chunks of 200 time steps and the 6
features described in the previous chapter. We load batches of 64 into memory and perform training
for 2000 epochs. The reconstruction term in the loss objective is the MSEloss. The training time is

approximately 1.5 hours.
VRAE unsupervised representation learning with multiple classes

The figures below correspond to the PCA projections of the learned representations in the case of
multiple classes. Similar to the case of the classes, we compare principal components and plot latent
vectors as lines. In this case, we obtained that the model is capable of clustering normal versus abnormal
cases, however, it is not capable of clustering appropiately abnormal classes depending on the zone. As

we can see in both figures 4.8(a) and 4.8(b), regardless of the principal components we compare, the

32

Chapter 4. Experiments and Results

projections always show that abnormal cases never spread with respect to each other. This leads us to

think that there is no real variability for time series corresponding to each zone and therefore the VRAE

is clustering all together of them together. Recall that the labels are colored simply based on groundtruth

values, the model never uses labels when training.

(a)
Mul-
ti-
class
first
com-
po-
nent
Vs
sec-
ond

com-

nent.

Figure 4.8: PCA projections of learned representations in the case of multiple classes. (a) Projection in

Latent vectors (z_run) as lines

N

05 1.0 15 20 25 30 35 40

(¢) Multiclass projections: Sampled latent vectors plotted

(b)
Mul-
ti-
class
first

com-

nent
vs
third

com-

nent.

2D using first and second components. (b) Projection in 2D using first and third component. (¢) Plots of
normal and abnormal 5-dimensional latent vectors as a line.

The observed behavior in figures 4.8(a) and 4.8(b) is actually consistent with figure 4.8(c), note that

there is high variability between normal and abnormal cases, but there is no variability between abrnomal

cases themselves, they rather tend to describe the same behavior. Given these 5-dimensional latent vectors,

33

4.2. Unsupervised time series clustering and anomaly scoring: multiple classes

we also note that the highest contrasts between latent vectors are found in the first and third components

of these vectors.

For the sake of comparison, we also used t-SNE and spectral embeddings as alternative dimensionality
reduction methods. We obtained a similar behavior as in PCA; both methods are capable of grouping
normal versus abnormal cases, but none of them is capable of clustering the different zones adequately.

See figure below for a visualization.

t-SNE on z_run Spectral Embedding on z run
normal . 0.0100 « normal
+ abnormal zone 1 Iy + abnormal zone 1
+ abnormal zone 2 o + abnormal zone 2
10 + abnormal zone 3 %’e’,“: 0.0075 + abnormal zone 3
00‘00 e
. \d o o0 3“
* 3”’0’.‘ .
IRELE 0.0050{ ¢
N *
.‘30' ’o“c»o 3
5 o B ey 4 IR
t“ . ‘6 W . 0.0025 s
. - *
oy el Lo
Sodn, s 00000 3 * 4
“‘t’ K 00’00&: ' 4 % 2
0 O‘ é‘!;é'. IS o'j:t: 3Ry
} MR e 1 -0.0025 X
. & : "§N H ‘ s . -
A e ® . . b * . .
(SRR o S -
s e ~0.0050 3"‘3'3 R
K2 T
g
*
S —0.0075 o
-10
—0.0100
-30 -20 -10 0 10 20 —0.004 -0.002 0.000 0.002 0.004 0.006 0.008 0.010

Figure 4.9: Left figure: 2D t-SNE projections of the latent vectors in multiclass case. Right figure: 2D SE
projections of the latent vectors in multiclass case.

The results obtained so far led us to try other approaches in order to see if could cluster abnormal
zones better. We implemented a VRAE using bi-directional LSTMs and also feeding samples of 500 time
steps (not 200). However, for the bi-directional LSTM we obtained similar results as the ones shown above
(uni-directional LSTM), in the case of longer time steps, we obtained even worse results, this can have
to do with the fact that longer sequences implies less available training samples. Due to these reasons
we did not run an anomaly scoring on top of these projections, we have to re-evaluate what we consider
constitutes actual significant zone classes, increase the size of our dataset and test a multi-layered VRAE

architecture.

VRAE multi-variate time series reconstructions

34

Chapter 4. Experiments and Results

Wind turbine time series: Reconstructions (top) vs Original (bottom) Wind turbine time series: Reconstructions (top) vs Original (bottom)

Normalized amplitude
°
=

Normalized amplitude

0.70 /

0.60 ///—’—’

o

a

&
|

|

I

o
o

Normalized amplitude
< e <
8
|
|
|

o o
s 0
& 3

—

8

3

0 25 50 7 100 125 150 175 200
Time steps

0.70

0.65

o
Y

o
o

0.60

o
S

o
W
Normalized amplitude

0 25 50 75 100 125 150 175 200 0 25 50 7 100 125 150 175 200
Time steps Time steps

Wind turbine time series: Reconstructions (top) vs Original (bottom) Wind turbine time series: Reconstructions (top) vs Original (bottom)

Normalized amplitude

Normalized amplitude

065 0.70
0.65
0.60 3
2
£ 0.60
=
£
0.55 ©
T 055
o
N
©
0.50 £ 0.50
o
z
0.45
0.45
0 25 50 7 100 125 150 175 200 0 25 50 7 100 125 150 175 200
Time steps Time steps
065 0.70
0.65
0.60 3
3
F=2
3 0.60
0.55 £
«
B 055
o
0.50 N
]
0.50
S
0.45
= o0as
0.40
0.40
0 25 50 75 100 125 150 175 200 0 25 50 7 100 125 150 175 200
Time steps Time steps

Figure 4.10: VRAE time series reconstruction results for a time series of 200 timesteps and 6 features.
Upper left: reconstruction at 0-th epoch. Upper right: reconstruction at 200-th epoch. Lower left:
reconstruction at 400-th epoch. Lower right: reconstruction at 600-th epoch.

During this experiment we also tested the reconstruction capabilities of the VRAE. The figures above
correspond to a reconstructed sample at every 200-th iteration (epoch). In each figure, bottom row
corresponds to the original signal and upper row corresponds to the reconstructed signal by the model.

Each line represents one of the 6 features that are the input to the model. Note that in every case, the

35

4.3. Turbulence reconstruction and generation: two dimensions

model is being able to reconstruct the tendency and the amplitude of each individual feature signal. It is
not, however, being able to reconstruct each signal with the original level of detail. This reconstruction
evaluation can also give us better hints in order to optimize further the architecture and parameters of
our model. For instance, a pre-processing of the data consisting of Fourier transforms might help recover

the level of detail that is being missed in the figures above.

The reconstruction of tendencies is a good result given that there is no further pre-processing being
done, however, it has been recently proven that VAEs can learn further finer reconstruction details by
adding a latent constraint network that forces the model to learn new latent variables that are similar to

training samples [33]. Further improvements in reconstructions will be in this direction.

4.3 Turbulence reconstruction and generation: two dimensions

We have trained a CVAE on a dataset consisting of 500 turbulence slices. We built a custom pytorch
dataset that takes as input numpy arrays containing the flow data and converts them into iterables
in pytorch. This custom dataset can perform any image augmentation technique. We restricted these
transformations to a simple normalization of the data to a particular range. Using this normalized data,
we assigned a heat map to the slices in order to represent the intensity of the physical variable in 2D. As
mentioned in the previous chapter, both encoder and decoder have 4 convolutions each followed by ReLLU
and batch normalization after each convolution. The dimensionality of the latent space in this case is 64
(8 x 8 pixel matrices). We used Adam optimization and binary cross entropy as the reconstruction term
in the loss function. The data was split in 70% training and 30% validation. the learning rate I, = le=3
and we trained for 600 epochs with batch size of 128. This implementation was also using Tesla V100
GPU cards with 32 GB RAM. Training took 2 hours approximately.

The figure below shows the reconstruction results obtained with the CVAE trained with the HVAC
duct turbulent flow. We show snapshots during training every 200-th epoch until the last 600-th epoch.
As we can see (zoom in the image), the model is efficiently being able to reconstruct the slices up to a
certain pixel resolution. There are particular regions where reconstruction fails, for instance, the second
slice (from left to right) in Figure 4.11(c), shows that the model is not capable of reconstructing up to the

highest resolution possible, it is at most being able to reconstruct the interface-like structure of the slice.

These results can be further improved by tunning the architecture and obtain pixel-level reconstruction
results. The reconstructions obtained look promising and the next thing is to use a metric to evaluate the
reconstruction accuracy as well as a comparison with other methods such as bicubic interpolation. We

have not added the analysis on 3D cubes due to time constrains, that is left for future work.

36

Chapter 4. Experiments and Results

N e
e

(a) CVAE reconstruction results at 200-th epoch.
| |
. P
! r. e
- |
|

M
>~ -
- e TE.

(b) CVAE reconstruction results at 400-th epoch.

(c) CVAE reconstruction results at 600-th epoch.

Figure 4.11: CVAE turbulent flow reconstruction results. Upper row: original turbulence data. Lower
row: reconstructed data.

We have added a plot of the latent representation of the CVAE. The figure below corresponds to the
latent matrices encoded by the model, they are 8 x 8 matrices and encode the information of the input

slices in a compressed form. We believe this can help us achieve turbulence data clustering in the future.

Figure 4.12: Latent representations of turbulence slices encoded by the CVAE.

In this experiment we also analyzed the potential of our model to generate 2D turbulence slices. The

37

4.3. Turbulence reconstruction and generation: two dimensions

figure below corresponds to a grid of a total of 64 different slices that were synthetically generated by
the model. We took samples from the latent distribution and decoded using the transposed convolutions.
Future work on this regard will consist in exploring the potential of the model to generate synthetic 3D
turbulence cubes, this is based on the idea that turbulence is mainly a 3D phenomena. From here, we can

test if the synthetic cubes are physically coherent.

Figure 4.13: Synthetic turbulence data generated from the CVAE learned latent distribution.

38

Conclusions

This chapter summarizes the work that has been done with Variational Autoencoders so far. We
provide a recapitulation of the main contributions of this project. We reflect on the lessons learned and

finally describe the future research avenues emerged from this work.

5.1 Contributions

For the wind turbine anomaly detection problem, we have built a dataset composed of wind turbine
simulations, we have developed tools to pre-process this dataset in order to feed the data into a neural
network. Moreover, we have trained a VRAE on this data in order to learn low-dimensional latent
representations of multi-variate time series and optimized it in order to cluster such low-dimensional
representations. We have also implemented clustering algorithms that work on top of these latent
representations and predict the class correspondence for each one of them. This whole pipeline has been
built for two classes and multiple-classes. For the case of two classes, we have achieved an accuracy of

96% for correctly predicted time series.

For the turbulence data, we developed a pipeline to process two dimensional turbulence slides from a
HVAC duct in order to feed them into a CVAE. We trained and optimized the parameters of the CVAE
in order reconstruct and generate synthetic data. We were able to achieve a good resolution quality up to

a certain pixel level as well as generating synthetic samples.

5.2 Lessons learned

We have learned the importance of building datasets that are expressive enough in order to train
neural networks with them. Defining what a normal and abnormal time series must be done with careful
criteria, otherwise the model might not provide the expeceted outputs. We have also worked out the
technicalities when pre-processing wind turbine and turbulence data. Each one of these data domains
require different pre-processing steps that are crucial in order to train neural networks. Moreover, we
have gained deeper insights into the training of Variational Autoencoders. Great part of this project was

spent building and fine-tunning the hyperparameters of the models in order to improve our results.

39

5.3. Future work

5.3 Future work

There are many aspects to be considered for future work. In the case of wind turbines, we plan to
improve the clustering of time series for the multiclasses problem. For this, we want to explore attention
mechanisms in Recurrent Networks and a more complex multi-layered architecture. At the same time,
we plan to do a more extensive analysis on the dimensionality of the latent vectors by studying the
correlations between normal and abnormal classes. We also plan to compare kernel PCA with a Radial
Basis Function in order to compare it with the dimensionality reduction methods used (PCA, t-SNE and
SE).

We also want to explore the benefits of taking a Fourier transformation approach in the pre-processing
of the data in order to improve the reconstruction results of the Variational Autoencoder. So far it has
been able to reproduce tendencies but not able to reconstruct all the fine details of time series. For
anomaly scoring methods, we plan to implement a Wasserstein metric in order to compare it to the
clustering algorithms used.

For turbulence data, we have started to work with 3D turbulence cubes. This is a line of research in
its own since this requires a CVAE that uses 3D convolutions, for example. We also will carry out more
concrete studies on the quality of the reconstruction of the flow by comparing it with other standard
methods like bicubic interploation. Added to this, an addition of a custom loss function based on the
physics of the turbulent flow at hand is within our interest. Moreover, we plan to design a scheme to

study the characteristics of the synthetic turbulence data generated.

40

Design Details and Parameters

A.0.1 Wind turbine dataset simulation parameters

The table below corresponds to the physical parameters used in the simulation of the wind turbine
dataset.

41

Wind turbine simulation parameters

Parameter Description

Wind1VelX Wind velocity in x component

Wind1VelY Wind velocity in y component

BldPitchl Blade 1 pitch angle (position)

Azimuth Rotor azimuth angle (position)

RotSpeed Rotor azimuth angular speed

Spn3MLxbl Blade 1 local edgewise moment at span station 3

Spn3MLybl Blade 1 local flapwise moment at span station 3

SpnlALxbl Blade 1 local flapwise acceleration (absolute) of span station 1
SpnlALybl Blade 1 local edgewise acceleration (absolute) of span station 1
Spnl1ALxb2 Blade 2 local flapwise acceleration (absolute) of span station 1
SpnlALyb2 Blade 2 local edgewise acceleration (absolute) of span station 1
Spnl1ALxb3 Blade 3 local flapwise acceleration (absolute) of span station 1
Spnl1ALyb3 Blade 3 local edgewise acceleration (absolute) of span station 1
Spn2ALxbl Blade 1 local flapwise acceleration (absolute) of span station 2
Spn2ALybl Blade 1 local edgewise acceleration (absolute) of span station 2
Spn2ALxb2 Blade 2 local flapwise acceleration (absolute) of span station 2
Spn2ALyb2 Blade 2 local edgewise acceleration (absolute) of span station 2
Spn2ALxb3 Blade 3 local flapwise acceleration (absolute) of span station 2
Spn2ALyb3 Blade 3 local edgewise acceleration (absolute) of span station 2
Spn3ALxbl Blade 1 local flapwise acceleration (absolute) of span station 3
Spn3ALybl Blade 1 local edgewise acceleration (absolute) of span station 3
Spn3ALxb2 Blade 2 local flapwise acceleration (absolute) of span station 3
Spn3ALyb2 Blade 2 local edgewise acceleration (absolute) of span station 3
Spn3ALxb3 Blade 3 local flapwise acceleration (absolute) of span station 3
Spn3ALyb3 Blade 3 local edgewise acceleration (absolute) of span station 3
GenPwr Electrical generator power

42

References

David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 07, pages 1027-1035,
USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Python Awesome Blog. Variational recurrent autoencoder for
timeseries clustering in pytorch. https://pythonawesome.com/
variational-recurrent-autoencoder-for-timeseries-clustering-in-pytorch/. Accessed:
2020-08-04.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD 96, pages 226-231. AAAT Press, 1996.

Otto Fabius and Joost R. van Amersfoort. Variational Recurrent Auto-Encoders. arXiv e-prints, art.
arXiv:1412.6581, 2014.

Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution reconstruction of turbulent flows
with machine learning. Journal of Fluid Mechanics, 870:106-120, 2019. doi: 10.1017/jfm.2019.238.

Sudhakar Gantasala, Jean-Claude Luneno, and Jan-Olov AidanpAdAd. Identification of ice mass
accumulated on wind turbine blades using its natural frequencies. Wind Engineering, 42(1):66-84,
2018. doi: 10.1177/0309524X17723207. URL https://doi.org/10.1177/0309524X17723207.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 2672-2680. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/

5423-generative-adversarial-nets.pdfl

K. Grogan. Variational autoencoder for turbulence generation. Discussion paper, Department of

Mechanical Engineering, Stanford University, 2017.

Berthold Hahn, Thomas Welte, Stefan Faulstich, Pramod Bangalore, Cyril Boussion, Keith Harrison,
Emilio Miguelanez-Martin, Frank OAAZConnor, Lasse Pettersson, Conaill Soraghan, Clym Stock-
Williams, John Dalsgaard SAjrensen, Gerard van Bussel, and JAjrn Vatn. Recommended practices
for wind farm data collection and reliability assessment for o&m optimization. Energy Procedia,
137:358-365, 2017. ISSN 1876-6102. doi: https://doi.org/10.1016/j.egypro.2017.10.360. URL
http://www.sciencedirect.com/science/article/pii/S1876610217353353.

43

https://pythonawesome.com/variational-recurrent-autoencoder-for-timeseries-clustering-in-pytorch/
https://pythonawesome.com/variational-recurrent-autoencoder-for-timeseries-clustering-in-pytorch/
https://doi.org/10.1177/0309524X17723207
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.sciencedirect.com/science/article/pii/S1876610217353353

References

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

K. He, G. Gkioxari, P. DollAar, and R. Girshick. Mask r-cnn. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2980-2988, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained

variational framework. International Conference on Learning Representations (ICLR), 2017.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504—-507, 2006. ISSN 0036-8075. doi: 10.1126/science.1127647. URL https:
//science.sciencemag.org/content/313/5786/504.

Sepp Hochreiter and JAijrgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, 1997. doi: 10.1162/neco0.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9,
8.1735.

Joel Jaskari and Jyri J. Kivinen. A Novel Variational Autoencoder with Applications to Generative
Modelling, Classification, and Ordinal Regression. arXiv e-prints, art. arXiv:1812.07352, Dec 2018.

Jordan Jeremy. Variational autoencoders. https://www.jeremyjordan.me/

variational-autoencoders/. Accessed: 2020-08-02.

Sergios Karagiannakos. How to generate images using autoencoders. https://theaisummer.com/
Autoencoder/. Accessed: 2020-01-12.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiw:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv e-prints, art.
arXiv:1312.6114, Dec 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages 1097-1105,
2012.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436-444,
2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, pages 849-856. MIT
Press, 2001.

Lan Huong Nguyen and Susan Holmes. Ten quick tips for effective dimensionality reduction.
PLOS Computational Biology, 15(6):1-19, Jun 2019. doi: 10.1371/journal.pcbi.1006907. URL
https://doi.org/10.1371/journal.pcbi.1006907.

44

https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.jeremyjordan.me/variational-autoencoders/
https://www.jeremyjordan.me/variational-autoencoders/
https://theaisummer.com/Autoencoder/
https://theaisummer.com/Autoencoder/
https://doi.org/10.1038/nature14539
https://doi.org/10.1371/journal.pcbi.1006907

References

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch.
2017.

[25] J. Pereira and M. Silveira. Learning representations from healthcare time series data for unsupervised
anomaly detection. In 2019 IEEE International Conference on Big Data and Smart Computing
(BigComp), pages 1-7, Feb 2019. doi: 10.1109/BIGCOMP.2019.8679157.

[26] JoAc¢o Pereira and Margarida Silveira. Unsupervised representation learning and anomaly detection
in ecg sequences. International Journal of Data Mining and Bioinformatics, 22:389-407, Aug 2019.
doi: 10.1504/1JDMB.2019.101395.

[27] Alan P Reynolds, Graeme Richards, Beatriz de la Iglesia, and Victor J Rayward-Smith. Clustering
rules: a comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical
Modelling and Algorithms, 5(4):475-504, 2006.

[28] David Ruelle. The turbulent fluid as a dynamical system. In New Perspectives in Turbulence, pages
123-138. Springer New York, 1991. ISBN 978-1-4612-3156-1.

[29] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579-2605, 2008. URL http://www. jmlr.org/papers/v9/vandermaatenO8a
html.

[30] Xing Victor, Lapeyre Corentin, and Joly Laurent. Exploration of the ability of deep learning to
learn the characteristics of turbulent flows. Discussion paper, Centre Europeen de Recherche et de
Formation Avancee en Calcul Scientifique (CERFACS), France, 2018.

[31] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416, 2007.

[32] Sebastian J. Wetzel. Unsupervised learning of phase transitions: From principal component analysis to
variational autoencoders. Physical Review E, 96:022140, Aug 2017. doi: 10.1103/PhysRevE.96.022140.
URL https://link.aps.org/doi/10.1103/PhysRevE.96.022140.

[33] Chunkai Zhang, Shaocong Li, Hongye Zhang, and Yingyang Chen. Velc: A new variational autoencoder

based model for time series anomaly detection, 2019.

[34] Hongshan Zhao, Huihai Liu, Wenjing Hu, and Xihui Yan. Anomaly detection and fault analysis of wind
turbine components based on deep learning network. Renewable Energy, 127:825 — 834, 2018. ISSN
0960-1481. doi: https://doi.org/10.1016/j.renene.2018.05.024. URL http://www.sciencedirect|
com/science/article/pii/S0960148118305457.

45

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://link.aps.org/doi/10.1103/PhysRevE.96.022140
http://www.sciencedirect.com/science/article/pii/S0960148118305457
http://www.sciencedirect.com/science/article/pii/S0960148118305457

	Introduction
	Motivation
	Challenges and Difficulties
	Problem Statement
	Sections outlook

	State of the Art
	Autoencoder
	Variational Autoencoder
	Variational Recurrent Autoencoder
	Convolutional Variational Autoencoder

	Unsupervised Representation Learning of Time Series with Deep Neural Networks
	Turbulent Flow Compression, Reconstruction and Generation using Machine Learning
	Limitations of previous work

	Methodology
	Wind turbine time series dataset
	Wind turbine time series data pre-processing
	Wind turbine time series proposed model for anomaly detection
	Turbulence dataset, data pre-processing and proposed model

	Experiments and Results
	Unsupervised time series clustering and anomaly scoring: two classes
	Unsupervised time series clustering and anomaly scoring: multiple classes
	Turbulence reconstruction and generation: two dimensions

	Conclusions
	Contributions
	Lessons learned
	Future work

	Appendix Design Details and Parameters
	Wind turbine dataset simulation parameters

	References

