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Abstract

Recent advances in Natural Language Processing have substantially improved contextual-

ized representations of language. However, the inclusion of factual knowledge, particularly

in the biomedical domain, remains challenging. Hence, many Language Models (LMs)

are extended by Knowledge Graphs (KGs), but most approaches require entity linking

(i.e., explicit alignment between text and KG entities). Inspired by single-stream mul-

timodal Transformers operating on text, image and video data, this thesis proposes the

Sophisticated Transformer trained on biomedical text and Knowledge Graphs (STonKGs).

STonKGs incorporates a novel multimodal architecture based on a cross encoder that uses

the attention mechanism on a concatenation of input sequences derived from text and KG

triples, respectively. Over 13 million so-called text-triple pairs, coming from PubMed and

assembled using the Integrated Network and Dynamical Reasoning Assembler (INDRA),

were used in an unsupervised pre-training procedure to learn representations of biomedical

knowledge in STonKGs. By comparing STonKGs to an NLP- and a KG-baseline (operat-

ing on either text or KG data) on a benchmark consisting of eight őne-tuning tasks, the

proposed knowledge integration method applied in STonKGs was empirically validated.

Speciőcally, on tasks with a comparatively small dataset size and a larger number of

classes, STonKGs resulted in considerable performance gains, beating the F1-score of the

best baseline by up to 0.083. Both the source code as well as the code used to implement

STonKGs are made publicly available so that the proposed method of this thesis can be

extended to many other biomedical applications.
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1 Introduction

The purpose of the following sections is to outline the rationale and the goals of this thesis.

First, a high-level introduction to the subjects covered in this thesis is given in Section

1.1. Next, the investigated hypothesis is stated in Section 1.2. Lastly, the steps required

to examine the hypothesis of this thesis are formulated as concrete aims in Section 1.3.

1.1 Context in Biomedicine

In general, the process of drug discovery proves to be a tedious, risky and costly endeav-

our, as shown in the ongoing COVID-19 crisis [Shi+20]. Although many clinical trials

pass the early stages, they are retracted at late stages due to a lack of eiciency or severe

unexpected side efects. For instance, multiple promising drugs for Alzheimer’s disease

(AD) were based on Beta-secretase (BACE) 1 inhibitors, since they proved to be efective

in reducing the accumulation of amyloid-β (Aβ) peptides (a major contributing factor in

AD) in mice [DY19]. However, this efect has not been successfully replicated in human

subjects yet, resulting in costly failures of multiple clinical trials [DY19]. To prevent such

failures and accelerate the discovery process, the assessment of each scientiőc discovery

must incorporate contextual information (such as the species in which a given biological

interaction is occurring).

Throughout the last years, Machine Learning (ML), speciőcally Deep Learning (DL), has

played a crucial role in accelerating biomedical research (see, e.g., [Mio+18; MLY17] for

related surveys). Context is typically integrated through multiple distinct data sources,

so-called modalities, in the same ML model. One such example is the ML-based classiő-

cation of disease stages in AD (see, e.g., [Tan+20] for a review). It is typically based on,

inter alia, a combination of cognitive assessments, demographics and Magnetic Resonance

Imaging (MRI) features [Bir+20]. However, the notion of context learned by an ML model

is highly dependent on the quality and size of the dataset used for training. Especially in

the biomedical domain, many ML applications are limited by the small number of partic-

ipants in the clinical trials used as a basis for training the model.

In contrast, eforts have been made to design large-scale ML models based on vast amounts

of biomedical literature, which focus on learning context through the surrounding infor-

mation of a given input. Such models are typically trained in a transfer learning setting,

meaning they are trained on large training datasets in a semi-supervised or unsupervised

manner and then transferred to speciőc tasks by further training the same model on much

smaller task-speciőc datasets. Essentially, there are two ways for learning contextualized
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ML models from literature: through structured information in the form of Knowledge

Graphs (KGs) learned by Network Representation Learning (NRL) approaches or through

unstructured information in the form of text data in Language Models (LMs), learned

by Natural Language Processing (NLP) methods. Recent comparisons and surveys on

existing NRL methods and LMs in the biomedical domain can be found in, e.g., [Su+20]

and [Lew+20], respectively.

Both NRL and LMs share the goal of projecting input features into high-dimensional

vector spaces, and these projections are commonly referred to as embeddings. Nonethe-

less, only a few approaches in the biomedical domain, such as the Bidirectional Encoder

Representations from Transformers based language model integrated with Medical Knowl-

edge (BERT-MK) [He+20], focus on utilizing information from both modalities, i.e. both

Knowledge Graphs and text corpora. Moreover, these multimodal approaches typically

rely on explicit alignments between text and KG entities, which leads to limited use of the

available KG data. Given the recent successes of novel large-scale multimodal ML mod-

els in the general domain, such as DALL-E [Ram+21] or Contrastive LanguageśImage

Pre-training (CLIP) [Rad+21], there is considerable potential for using methodological

advances in the general domain to develop an improved model leveraging both text and

KG embeddings in the biomedical őeld.

1.2 Hypothesis

Figure 1: Overview of the hypothesis examined in this Master’s Thesis. The three proposed models

are trained and evaluated in a shared setting. Moreover, the data sources (PubMed and the Integrated

Network and Dynamical Reasoning Assembler, INDRA) as well as the models (BioBERT, node2vec) are

outlined in Section 2 and 3. (Image source: own.)

Naturally, the question arises as to whether a biomedical ML model utilizing both text

and KG embeddings (KGEs) can lead to increased performance compared to models that

only rely on either one of the two modalities. The foundation of this comparison is

2



a common training dataset containing pairs of text and KG data entries and a shared

evaluation framework for all three models in a transfer learning setting, consisting of

multiple evaluation tasks. Details on the datasets, models and evaluation strategies are

given in Section 3. Overall, the general hypothesis can be stated as follows:

Based on a shared training dataset and evaluation framework, a model utilizing both text

embeddings and KGEs (NLP x KGE)1 leads to improved performance compared to two

baseline models, namely a KGE baseline and an NLP baseline, which only use KG or

text data from the training dataset, respectively.

It is important to note that although Figure 1 is indicating a hypothesized improvement

of the KGE baseline model over the NLP-based one, it is not a required outcome of this

thesis. The main focus lies on the proposed superiority of the NLP x KGE classiőer

over both baselines rather than on a comparison of the performances between the two

baselines.

1.3 Aims of the Master’s Thesis

In order to examine the proposed hypothesis, the following objectives are deőned for this

thesis, resulting in an overall step-by-step procedure:

1. Data: Find and pre-process a suitable large-scale dataset comprising a wide range

of biomedical literature, which can be used to train all three model variants. The

dataset should contain pairs of text and KG data entries.

2. KGE baseline method: Select a KG embedding model (KGEM), which will be

used to build the KGE baseline and to obtain the KGEs used in the NLP x KGE

model. One subgoal is to őnd a suitable method for sampling sequential inputs

(i.e., a list of entities) from the graph-based KGEM in order to be able to build a

cross-modal model later on.

3. NLP baseline method: Identify an LM, which will be used to build the NLP

baseline as well as to obtain the text embeddings used in the NLP x KGE model.

It is important to note that it would be preferable not to train a new LM from

scratch on the data identiőed in 1., but rather to őnd an LM, which was trained

on a biomedical literature corpus suiciently close to the dataset used for the other

models in this thesis.

1It should be noted that in this thesis, the x in NLP x KGE does not represent the mathematical

cross product operator and does not indicate a cross product between the two modalities in any way.

3



4. NLP x KGE method: Choose a suitable approach for implementing a cross-

modal NLP x KGE model, which processes both text and KG embeddings. The

main goal is to take inspiration from the latest research on multimodal transfer

learning architectures in the general domain and apply the same concepts in the

biomedical setting of this thesis, possibly leading to an improvement of the state

of the art. One additional goal is to design the model without an entity linking

component, i.e. the model should require explicit alignments between text and KG

entities.

5. KG baseline construction: Use the chosen KGEM from 2. to construct the KG

baseline model based on a KG built from the training data collected in 1.

6. NLP baseline construction: Use the identiőed LM from 3. to construct the NLP

baseline model.

7. NLP x KGE model construction: Construct the NLP x KGE model using the

dataset from 1. and the methodology derived from 4. One optional goal is to make

this model publicly available so that it can be used for various transfer learning

settings.

8. Evaluation: Set up multiple biomedically relevant evaluation tasks and metrics,

which can be used to evaluate all three models. Ideally, this will result in an overall

benchmark-like setting. Prepare respective task-speciőc datasets.

9. Comparison: Evaluate all three models on the chosen tasks in a benchmark-like

setting and compare the model performances.

The subsequent sections of this thesis are dedicated to processing these goals successively.

Section 2 is providing the theoretical foundations behind KGEs and NLP, as well as an

overview of relevant data sources and state-of-the-art methods needed to tackle the steps

outlined in 1-4. Next, an overview of the őnal dataset used in this thesis is given in Section

3, followed by a detailed explanation of the three proposed models and descriptions of the

implementation and evaluation procedure. The central results of the outlined method are

given in Section 4 and discussed in Section 5. Lastly, Section 6 is providing a summary

of the central őndings and insights of this thesis.
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2 Related Work

This section lies the foundation for the central methodological concepts and data sources

employed in Section 3. First, Section 2.1 provides an overview of the sources for unstruc-

tured text and structured KG data used to construct the dataset for this thesis. Then,

outlines of recent state-of-the-art research directions in NLP and NRL are given in Section

2.2 and 2.3, focusing on the approaches central to this work. Lastly, Section 2.4 introduces

so-called multimodal Transformers, i.e., the model architecture used as an inspiration for

combining text and KG data in the NLP x KGE model (see Section 3.2.3).

2.1 Biomedical Databases

As mentioned in Section 1.1, biomedical literature is forming the basis for most large-scale

ML models in the biomedical domain. Typically, the contained information is either used

in its plain form (i.e., unstructured text data) or assembled into a set of structured state-

ments, which can be used to build a KG. These two variants are employed to generate the

text and KG data used in this thesis. In both cases, PubMed (i.e., the largest biomedical

literature database [NCB18]) is chosen as a starting point. While Section 2.1.1 provides

a general overview of PubMed, its main components and the resulting text data, Section

2.1.2 introduces the Integrated Network and Dynamical Reasoning Assembler (INDRA)

[Gyo+17] used to extract KG data from PubMed.

2.1.1 Unstructured Data in PubMed

PubMed is a freely available literature database for biomedical literature, comprising over

32 million citations, abstracts, and metadata of biomedical literature as of June 2021

[Med21a]. It is maintained by the U.S. National Center for Biotechnology Information

(NCBI), which is part of the National Library of Medicine (NLM) at the National In-

stitutes of Health (NIH). Since its launch to the public in 1997, the literature database

focuses on collecting citations in biomedicine and various related őelds, such as bioengi-

neering, life sciences, behavioral sciences, and chemical sciences. Although several sources

are used for the extraction of citations, two components make up the vast majority of

PubMed:

1. MEDLINE: Comprising over 27 million citations of journal articles as of June

2021, MEDLINE is by far the largest component in PubMed [Med21c]. Between

its original launch in 1966 and the public launch in 1997, MEDLINE served as

an index of medical articles mainly used by university libraries. Ever since, the

number of indexed articles has grown continuously, as shown in Figure 2. MEDLINE
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includes citations from over 5,200 journals in 40 languages, which are updated daily.

The included journals are selected by the Literature Selection Technical Review

Committee (LSTRC), consisting of biomedical experts. A key distinctive feature of

MEDLINE is that its citations are indexed with Medical Subject Headings (MeSH)

(i.e., key terms from an ontology of standardized biomedical concepts) [NCB18]. A

citation typically consists of such terms, together with general metadata such as the

title, source and authors of the respective publication. Additionally, many citations

include an abstract; however, they typically do not contain the full-text article.

2. PubMed Central (PMC): On the other hand, PMC focuses on a collection of

full-text articles, which currently covers over 6 million records [Bio21]. These articles

mainly stem from a publisher program deposit with over 2,000 journals. Some of

these articles are cross-referenced to their respective MEDLINE entries. Moreover,

a third of PMC consists of author manuscripts and digitalization projects of older

literature.

Figure 2: Cumulative count of listed citations in the MEDLINE component included in the PubMed

literature database between 1980 and 2019. It is important to note that this overview is restricted to the

chosen time span (i.e., the number of citations before 1980 and after 2019 are excluded). As a result,

it should be regarded as an exemplary illustration of the growth of MEDLINE rather than a complete

depiction of all its citations. (Image source: own, based on the statistics provided in [Med21b].)

2.1.2 Structured Data in INDRA

Essentially, the Integrated Network and Dynamical Reasoning Assembler aims at an auto-

mated assembly of biological computational models from descriptions provided in natural
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language [Gyo+17], primarily stemming from PubMed. A common use case in such au-

tomatically assembled computational models is to simulate biochemical reactions with

Ordinary Diferential Equations (ODEs) based on the information comprised in biomedi-

cal literature. To achieve this goal, INDRA combines numerous extraction sources as well

as model assembly approaches and uniőes them in a shared three-step software architec-

ture (see Figure 3).

Figure 3: Three layer architecture used in INDRA. First, information from external sources is accessed

by source-specific interfaces and processed with its processors. The processed information stored in its

intermediate format (i.e., in INDRA statements), which standardizes the given data from all sources.

Lastly, the statements are used as a basis for various biological models built by assemblers. (Image

source: taken from [Gyo+17].)

The őrst step consists of accessing information from a total of 28 diferent sources [GB20],

which each contain information extracted from biomedical literature. Each source has a

diferent focus (e.g., drugs, chemicals, proteins or more abstract biological processes)

and format. An exemplary overview of some of the most important sources (i.e., the

ones making the largest contributions) and short descriptions for each listed source are

given in Table 1. As highlighted in the table, there are three main groups of extrac-

tion sources: reading systems, molecular pathway databases and chemical information

databases. The listed reading systems are the REading and Assembling Contextual and

Holistic mechanisms from text (REACH) [Val+18] approach, the biological component

of the Rochester Interactive Planner System (TRIPS) [All+15] and the Eidos [Sha+19]

approach. For molecular pathway databases (i.e., databases containing descriptions of

biological processes), the Biological Expression Language (BEL) [Sla14], the Biological

Pathway Exchange (BioPAX) [Dem+10] and the SIGnaling Network Open Resource (SIG-

NOR) [Per+16] are listed in Table 1. Lastly, INDRA includes, among others, the Compar-

ative Toxicogenomics Database (CTD) [Dav+17] and DrugBank [Wis+18] in their chem-
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ical information databases. While reading systems are NLP-based and mostly focused

on automatic extraction, the molecular pathway and chemical information databases are

typically characterized by a higher degree of manual curation.

Type Name Description

Reading Systems

REACH [Val+18] Combination of rule-based extraction and CRFs

TRIPS [All+15]
Context-free grammar processing, inter alia,

semantic types and dependency relations

Eidos [Sha+19]
Based on trigger words, dependency trees and

simple word embeddings for entity linking

Molecular Pathway

Databases

BEL [Sla14]
Subject–predicate–object statements describing

biological entities, processes and their relationships

BioPAX [Dem+10]
Represents, among other things, metabolic and

signaling pathways and molecular interactions

SIGNOR [Per+16] Manually curated protein-protein interactions

Chemical Information

Databases

CTD [Dav+17]
Manually curated relations between chemicals,

genes and diseases

DrugBank [Wis+18]
Manually curated drug-drug and drug-target

interactions

Table 1: Overview of a few selected statement extraction sources used in INDRA. A full list of all

employed sources can be found in [GB20]. Through a respective processor, the interactions identified in

each source are converted into INDRA statements, which possibly also contain text evidence. While the

molecular pathway and chemical information databases are treated statically, the reading systems are

regularly updated and run on the latest content drawn from PubMed (MEDLINE) and PMC [GB21].

By using source-speciőc processors, INDRA intends to standardize and unify the entailed

information coming from each source in its second step. As a result, INDRA statements

form an intermediate representation, which can be used as a basis for many diferent ap-

plications, such as computational models or KGs. Depending on the intended use case,

various assemblers can be used to represent the desired biological application, as shown

in the third step in Figure 3. However, since the dataset used in this thesis is directly

constructed from INDRA statements, the assembly process will not be further discussed

at this point (see [Gyo+17] for more details on various assemblers).

In its simplest form, statements can be interpreted as a description of biological processes

consisting of two entities and a relationship between them. Based on a list of statements,

the available information about a given set of entities and their relations can then be used

to construct a KG. For most statements coming from reading systems (but also in some

instances from molecular pathway and chemical information databases), the extracted

information contains an evidence attribute, encompassing the natural language description
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from which the statement has been extracted (automatically or manually). This text

evidence typically consists of one or two sentences from the biomedical article in which

a given biological process has been mentioned. Moreover, some statements also contain

an annotation attribute, which provides additional information on the context in which

a biological process takes place. Such context might include, for instance, the disease or

species that the biological process refers to. The respective terms are typically taken from

controlled vocabularies of various biomedical ontologies.

2.2 Natural Language Processing

The data sources mentioned above ofer much potential for the application of sophis-

ticated ML models. Particularly regarding the text data present in biomedical publi-

cations in PubMed, Natural Language Processing methods can be used to provide an

all-encompassing view on biomedical knowledge contained in large collections of such text

sources, so-called text corpora. More speciőcally, NLP is a sub-domain in ML that deals

with the automated interpretation and manipulation of human language. As a result of

the ever-increasing size and quality of text corpora (especially in the biomedical domain)

and the steady improvement of the computational power of Graphics Processing Units

(GPUs) as well as Tensor Processing Units (TPUs), NLP has led to breakthroughs in

various Natural Language Understanding (NLU) tasks in recent years. For instance, Mi-

crosoft’s recent Decoding-enhanced Bidirectional Encoder Representations from Trans-

formers with disentangled attention (DeBERTa) model [He+21] has proven to surpass

human baseline scores on the Super General Language Understanding Evaluation (Super-

GLUE) benchmark [Wan+19a].

The particular NLP approaches that led to such methodological advances will form a

central building block for the methodology used in this thesis. Therefore, the following

subsections2 provide an overview of the respective core concepts needed to understand the

approaches presented later on. Starting with an outline of commonly applied preprocess-

ing steps in Section 2.2.1, this subsection intends to gradually lead from NLP foundations

(Section 2.2.2 and 2.2.3) to the concrete approaches (Section 2.2.4 and 2.2.5), which will

serve as a basis for the models introduced in Section 3.

2These subsections are a re-written and shortened version of the NLP foundations presented in the

preceding Master’s Project [Bal21].
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2.2.1 Preprocessing of Text Data

Similar to other ML subdomains, the approaches used in NLP are typically operating

on numerical inputs. Hence, raw text data entries present in text corpora need to be

converted into a numerical representation beforehand. More speciőcally, three steps are

usually applied to contiguous strings of text to transform them into input features for

ML-based NLP models, so-called Language Models: segmentation, normalization and to-

kenization [JM20, pp. 14ś22].

First, segmentation deals with breaking down a long piece of text (e.g., a paragraph) into

parts that can be used as chunks of input for an LM. One of the most straightforward

segmentation approaches consists of splitting by periods. However, most of the recently

published LMs avoid a separate segmentation step by using a őxed input length by which

the splits are arranged. Next, normalization aims at creating a more standardized rep-

resentation of the input data by removing, for instance, special characters. Additionally,

the normalization step might include removing unwanted byproducts of web-scraping (i.e.,

the most common method for generating large text corpora), such as HyperText Markup

Language (HTML) syntax. These steps are typically applied in a rule-based manner based

on őltering the text with speciőed patterns, referred to as regular expressions.

Lastly, tokenization is arguably forming the most important preprocessing step. The goal

of tokenization is to dissect a given (segmented) piece of text (e.g., a sentence) into its

single units, which are then passed as an input sequence to an LM. Each unique unit is then

mapped onto a respective numerical representation. Similar to segmenting by periods,

the simplest tokenization method involves splitting by whitespace. As a result, words, so-

called tokens in this context, become the respective single input units. However, the main

problem of this approach lies in the lacking strategy for dealing with out-of-vocabulary

(OOV) tokens, which might appear in previously unseen text during inference. Therefore,

most modern tokenizers include a maximum number of unique tokens that are mapped

onto numerical values (e.g., a vocabulary size of 30,000) and a special token used for other

or unknown words. Moreover, modern tokenization methods split by subwords rather than

whole words, which proves to be more ŕexible for compound words since known subwords

can be easily identiőed. The choice of the exact subwords is usually based on picking the

ones that appear the most often (or most likely) in natural language. For instance, the

WordPiece tokenizer starts with a set of characters (e.g., Latin letters) and iteratively

combines two units in the present vocabulary based on a maximum increase of the overall

likelihood of a given text corpus. (For a more detailed explanation of the WordPiece

tokenizer, see [Wu+16] and [SN12].)
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2.2.2 Statistical Language Modelling

Overall, the goal of Language Models is to learn a joint probability distribution of sen-

tences or word sequences, which can be used as a basis for various NLU tasks. This prob-

ability distribution aims at distinguishing likely/plausible phrases (e.g., "Helena loves to

swim in the lake when it’s sunny outside") from unlikely/implausible ones (e.g., "Helena

loves to write her thesis when it’s sunny outside"). More speciőcally, the probability

distribution is (directly or indirectly) learned in a frequentist manner based on examples

from text corpora. In its beginnings, NLP approaches have tried to directly model the

probability of a given phrase as a product of the conditional probabilities of its single

tokens [JM20, p. 31]:

P (w1:n) = P (w1)P (w2|w1)P (w3|w1:2)...P (wn|w1:n−1) =
n︂

k=1

P (wk|w1:k−1) (1)

This notion assumes that each token in a given sequence is dependent on its predecessors,

hence, P (w1:n) is describing the joint probability P (w1, w2, ..., wn) of the token sequence

w1, w2, ..., wn based on the probability chain rule. Nonetheless, given the creativity and

sparsity of natural language, it is extremely challenging to learn conditional probabilities

based on a long sequence of predecessors. This is why in one of the earliest successful

LMs, namely the n-gram model [JM20, p. 32], the conditional probabilities are restricted

to a őxed number of k predecessors per token:

P (wn|w1:n−1) ≈ P (wn|wn−k+1:n−1) (2)

However, such n-gram models have been increasingly replaced with neural LMs over time.

One of the őrst neural LMs was proposed by Bengio et al. in 2003 [Ben+03], and it aimed

at representing the probability distribution in an indirect manner through a combination

of token feature vectors, so-called token (or word) embeddings. Its core concepts, which

are still applied in most (if not all) modern LMs to this day, can be summarized in three

steps, as stated in the original publication [Ben+03]:

1. "Associate with each word in the vocabulary a distributed word feature vector (a

real-valued vector in R
m)" [Ben+03]

2. "Express the joint probability function of word sequences in terms of the feature

vectors of these words in the sequence" [Ben+03]

3. "Learn simultaneously the word feature vectors and the parameters of that proba-

bility function" [Ben+03]
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That being said, most LMs only difer in the approaches used to learn such word em-

beddings as well as in the method used to combine the embeddings. A general abstract

visualization of this method is shown in Figure 4a. One of the reasons for the popularity of

this paradigm is its intuitive application of the so-called distributional hypothesis, which

states that words that appear in similar contexts are similar in their semantic meaning

[JM20, p. 96]. The learned vector space of token embeddings typically intends to repre-

sent semantically related words through similar vectors (i.e., vectors with a high cosine

similarity).

In particular, the word2vec approach introduced by Mikolov et al. in 2013 [Mik+13a]

[Mik+13b] proved to be quite successful at putting this paradigm into practice. In short,

two model variants, i.e., the continuous bag-of-words (CBOW) and skip-gram models, in-

troduced respective training objectives that directly target the distributional hypothesis.

While the goal of the CBOW model is to predict the middle token in a given sequence

of neighboring words, the skip-gram model turns this idea around and aims at predicting

the surrounding tokens of a given middle token (shown in Figure 4b). In both cases, the

training objectives are used to learn the token embedding projections.

(a) General concept of a neural language model based on word embed-

dings. (Image source: taken from [Ala18b].)

(b) Skip-gram model.

(Image source: taken

from [Mik+13a].)

Figure 4: Abstract representation of a neural language model and its concrete realization in the skip-

gram model architecture employed in word2vec [Mik+13a] [Mik+13b]. Based on the general idea of

projecting tokens onto high-dimensional embedding vectors, word2vec’s skip-gram model trains such

word embeddings in order to predict the surrounding tokens of a given input token.

The learned token embeddings can be then used as features for various NLU tasks. Such

NLU tasks are mainly formulated as classiőcation tasks and can be roughly divided into

three categories: document-, sentence- and token-level classiőcation [Kow+19]. For in-
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stance, Named Entity Recognition (NER) is a common token-level task that aims at

identifying tokens that describe named entities (such as proteins, genes and diseases) in

a given text sequence [JM20, p. 153]. Another common sentence-level task is Relation

Extraction (RE), which deals with the prediction of speciőed relationship types (such as

A interacts with B) for named entities in a given sentence [JM20, pp. 332-334]. Lastly,

entity linking is the (token-level) task of correctly mapping a speciőed text mention to a

normalized entity in a database or KG [JM20, p. 416], which includes the disambiguation

of similar or identical words in diferent contexts (e.g., "Corona beer" versus "Corona

infection").

2.2.3 Attention Mechanism and Transformers

Similar to the classic neural LMs outlined in the previous subsection, the goal of the

attention mechanism is to learn word embedding representations. In addition to learn-

ing embeddings, the attention mechanism overcame two main disadvantages of word2vec

and subsequent recurrent neural LM architectures, which arguably led to its widespread

success:

1. Computational inefficiency: Many recent LMs rely on recurrent architectures

(e.g., Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)

networks, see [Mik+11] and [Pet+18]). The sequential nature of these LMs makes it

impossible to parallelize the training procedure since each component requires the

previous one for its calculations. Particularly for longer input sequence lengths, this

usually forms the bottleneck in terms of training speed.

2. Inability to learn long-range dependencies: On top of the impeded training

speed for longer input sequences, most recurrent architectures implicitly assign a

higher importance to directly preceding words for calculating the embedding repre-

sentation of a given token. As a result, this makes it challenging to learn long-range

dependencies present between diferent parts of phrases (especially in long sentences)

in natural language. Even though word2vec is not a recurrent model, it efectively

faces the same challenge since the training objective is restricted to a őxed and

typically small context window (e.g., three to seven words).

This is where the attention mechanism led to a major breakthrough: Instead of relying

on a őxed structure for representing the context, the goal is to learn so-called attention

weights that determine the relevance of each token in the overall sentence (or word se-

quence) for the representation of a given token. In more detail, the attention mechanism

was originally introduced by Bahdanau et al. in 2015 [Bah+15], and consisted of an RNN-

based sequence-to-sequence model for Machine Translation, i.e., a model that creates an
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output sequence in a target language based on an input sequence in a source language.

In general, the model architecture consisted of an encoder and a decoder, which each used

an RNN to generate hidden state vectors for each token in the input sequence, as well as

in the generated output sequence. The introduced attention mechanism referred to how

the decoder created the output based on the information from the encoder: Instead of

just using the last hidden state h as a basis for generating the i-th output yi, Bahdanau

et al. created a context vector ci for each output yi. More speciőcally, there are three

steps involved in generating the context vector (see [JM20, pp. 191ś192, 213ś214]): com-

parison, normalization and the calculation of the context vector. First, the comparison

step encompasses generating similarity scores between the last decoder hidden state si−1

and each encoder hidden state hj, typically based on the dot product. Next, all similarity

scores are normalized to create the attention weights αij, using the softmax function.

Lastly, the context vector is calculated as a weighted sum of all hidden state vectors of

the input sequence of length Tx:

ci =
Tx
︂

j=1

αijhj (3)

However, a slightly diferent variant of the the attention mechanism is predominantly

used nowadays. The particular variant was introduced by Vaswani et al. [Vas+17] in

2017 and consists of mapping a matrix with the initial embedding vectors X onto query,

key and value matrices: Q = WQX,K = WKX, V = W VX (see [JM20, p. 192] for

an additional explanation on the query, key and value analogies). More speciőcally, the

matrices WQ,WK ,W V are the parameters of the attention mechanism, which are learned

during training. In total, the query, key and value matrices are combined to generate the

őnal embedding representation of each token [Vas+17]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

Even though this notation is diferent, this attention variant applies the same general idea

used in the original attention mechanism. First, the similarity scores are generated for

each input pair through the multiplication of Q and KT . Then, the normalization step

is realized through the division by the square root of the embedding dimension
√
dk and

the application of the softmax function. Lastly, a matrix of context vectors is calculated

using the multiplication of the attention weights a = softmax(QKT

√
dk

) with V .

A common technique for visualizing the attention mechanism is to display the learned at-

tention weights by links between diferent parts of the source and target sentence and use
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Figure 5: Visualization of the attention weights in the attention mechanism. This example depicts the

self-attention employed in the Transformer model architecture introduced by Vaswani et al. [Vas+17].

(Image source: taken from [Vas+17].)

diferent opacities depending on the numerical value of the respective attention weight.

An example of this is shown in Figure 5. By this, it is possible to provide an overview

of the learned interdependencies between diferent parts of a given phrase, which often

correlates with how humans view natural language. However, it is important to note that

this correlation is not always given and that there are contrasting views on the observed

linguistic (in)abilities of attention-based models (see, e.g., [RKR20] for a review).

Together with the previously described variation of the attention mechanism, Vaswani et

al. also introduced the Transformer model architecture in the same publication [Vas+17],

which forms the basis for various modern LMs. With their introduced sequence-to-

sequence architecture, the authors signiőcantly improved the state of the art in Machine

Translation. More speciőcally, the Transformer is a encoder-decoder model (see Figure

6), both parts consist of multiple stacked Transformer layers.

The encoder contains a self-attention and a feed-forward component, whereas the decoder

part additionally encloses an encoder-decoder attention component. In self-attention,

the attention mechanism is solely applied to the input sequence, i.e., the query, key and

value matrices are calculated based on the initial embeddings of the input sequence.

On the other hand, encoder-decoder attention aims at learning links between input and

output (phrases in the source and target languages from the training dataset in this case)

by forming the query and key matrices with the input and the value matrix using the

output. Both attention components are realized through multi-head attention, meaning

that there are multiple projections of the input X onto multiple query, key, and value

matrices: Qi = WQ
i X,Ki = WK

i X, Vi = W V
i X. The resulting representations are then
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Figure 6: Overview of the Transformer model architecture, which was originally used for Machine

Translation. While self-attention focuses on learning links between different parts of the input sequence,

encoder-decoder attention aims at learning dependencies between the input and output sequences. (Image

source: taken from [Ala18a].)

concatenated and projected to the original embedding dimension using another weight

matrix WO.

2.2.4 BERT: Bidirectional Encoder Representations from Transformers

Although the previously introduced Transformer model architecture was originally in-

tended for Machine Translation, it efectively formed the basis for general LMs, which

can be used on various NLP tasks in a transfer learning setting. The Bidirectional En-

coder Representations from Transformers (BERT) model is arguably one of the most

well-known of such LMs. BERT was introduced by Devlin et al. in 2019 [Dev+19], and it

is based on the encoder part of the Transformer model by Vaswani et al. Consequently,

BERT is entirely built on self-attention, with the intention of learning links between parts

in a given phrase or word sequence rather than between an input and output sequence.

Like the original Transformer, BERT is a sequence-to-sequence model with a őxed input

length (n = 512 tokens). As a result, any input word sequence either needs to be short-

ened or padded accordingly (using a special [PAD] token).

The proposed transfer learning setting consists of two parts, namely the pre-training and

the őne-tuning step, as shown in Figure 7. While the pre-training part serves as a basis

for learning a general representation of language based on large text corpora, the őne-

tuning procedure consists of further training the pre-trained model on labelled datasets.

These datasets are typically much smaller than the pre-training corpora and speciőc to

a given NLP task (e.g., NER or RE). In BERT, Devlin et al. use a corpus extracted

from Wikipedia as well as the BooksCorpus [Zhu+15] (i.e., a collection of books) for pre-

training (3.3 billion words in total). The pre-training examples are generated based on

a concatenation of either two consecutive or two randomly sampled sentences from these
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Figure 7: Transfer learning procedure adopted in BERT, consisting of a pre-training and a fine-tuning

step. Once the BERT model has been pre-trained on the MLM and NSP objectives, it can be used for

multiple NLP tasks (e.g., NER or RE) with minimal architectural changes. (Image source: taken from

[Dev+19].)

corpora. Additionally, a special classiőcation ([CLS]) token is added in front of the com-

bined sequence, and special separator ([SEP]) tokens are added in between and after the

two tokenized sentences. For őne-tuning, the authors use a subset of the General Lan-

guage Understanding Evaluation (GLUE) benchmark [Wan+18]. The training datasets of

the chosen tasks range from 2,500 to 392,000 word sequences in size (see [Wan+18] for an

in-depth explanation of the datasets and tasks employed in the benchmark). Hence, the

pre-training procedure is forming the computationally more intensive part (4 days on 16

Tensor Processing Unit (TPU) chips in this case). In contrast, the őne-tuning procedures

usually do not require more than a couple of hours on comparable hardware.

In pre-training and őne-tuning, diferent training objectives are used to learn a general

representation of language and task-speciőc characteristics, respectively. For pre-training,

two objectives are employed in the sequence-to-sequence model: the Masked Language

Model (MLM) and the Next Sentence Prediction (NSP) objectives. Masked language

modeling is inspired by the Cloze task [Tay53] and aims at correctly predicting tokens,

which have been replaced with a special masking ([MASK]) token. Devlin et al. randomly

mask 15% of the tokens in the input sequence. The partially masked input sequence is

őrst fed through BERT’s stacked Transformer layers to generate the predictions for each

masked token. Then, each embedding of the output sequence is mapped onto the vo-

cabulary size (30,000 tokens based on a WordPiece tokenizer) using a linear layer with

a softmax activation function, which is added on top of the Transformer encoder. This

additional layer is also referred to as the language modeling head. On the other hand,

the NSP objective intends to distinguish consecutive and randomly combined sentences
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in the training dataset. This is achieved by performing binary classiőcation based on the

output embedding of the initial [CLS] token. As a result, the total loss function of the

pre-training procedure consists of the sum of the cross-entropy losses of the MLM and

NSP objectives.

The aforementioned [CLS] token is also used for generating predictions in őne-tuning

tasks, especially in sequence-level classiőcation tasks (e.g., user reviews that are either

classiőed as positive or negative). In such cases, the [CLS] token functions as an aggre-

gated representation of the entire output embedding sequence. In analogy to the MLM

objective, the predictions are generated by mapping the [CLS] vector onto the number

of classes of the respective őne-tuning tasks using a linear layer with a softmax activation

function. Again, the cross-entropy is forming the loss function that ought to be minimized

during őne-tuning.

Due to the widespread success of the pre-training and őne-tuning paradigm as well as the

signiőcant increase in performance on the GLUE benchmark, BERT has been adapted to

various other domains and languages. For instance, GottBERT [Sch+20a], CamemBERT

[Mar+20] and BERTje [Vri+19] are the German, French and Dutch versions of BERT,

which have each been pre-trained on language-speciőc corpora instead of Wikipedia and

the BooksCorpus. Common examples of BERT adaptations in the biomedical domain

are BioBERT [Lee+20], ClinicalBERT [Als+19] and SciBERT [BLC19]. BioBERT will

be of particular interest in Section 3 since it has been pre-trained on the PubMed and

PMC corpora discussed in Section 2.1. Lastly, there are also multiple approaches, which

aimed to improve the hyperparameter choice and further model design choices of BERT.

To give an example, RoBERTa is a BERT-based model, which has led to improved GLUE

benchmark scores by leaving out the NSP training objective, improving the masking

pattern and using larger batches [Liu+19].

2.2.5 Knowledge Graph Enhanced Transformers

Ever since the advent of the őrst embedding approaches for large-scale text corpora,

combining KGs and word embeddings has been an evident option for integrating factual

knowledge into NLP applications. For instance, in 2015, Celikyilmaz et al. used entities

from Freebase [Bol+08] related to information about movies to improve word2vec embed-

dings for semantic tagging [Cel+15], i.e. the task of assigning a speciőc semantic meaning

to various words in a given phrase. In the biomedical domain, one of the most common

NLP tasks that beneőted from the inclusion of KGs is the extraction of Chemical-Disease

Relations (CDRs). Multiple approaches are based on including KGEs learned from the
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Comparative Toxicogenomics Database (CTD) to identify possible mentions of relations

in text [Zhe+18; Zho+18; Zho+19]. However, such approaches are tailored to one speciőc

NLP task and are hardly generalizable. That is why the following overview is primarily

focusing on Transformer-based LMs that are enhanced with KGs since these models can

be typically adapted to many diferent tasks in a transfer learning setting.

Table 2 is showing a comparison of selected KG-enhanced Transformers published in 2019

and 2020. One of the őrst published approaches on KG-enhanced Transformers was the

Enhanced Language Representation with Informative Entities (ERNIE) model [Zha+19]

by Zhang et al. This model is not to be confused with the Enhanced Representation

through Knowledge Integration (ERNIE) [Sun+19] model by Sun et al., which is based

on altering the masking strategy rather than integrating KGs. (For the remainder, ERNIE

is referring to the model published by Zhang et al.) Based on the pre-trained BERT model,

ERNIE integrates Wikidata [Fou19] KGEs based on information fusion, i.e. a linear com-

bination of KG and word embeddings of tokens that have been mapped to respective KG

entities. More speciőcally, ERNIE extends the MLM and NSP training objectives pre-

sented in BERT with a third objective called the denoising entity auto-encoder (dEA),

aimed at correctly predicting masked token-entity alignments based on given alignments

in the training data.

The trend of using Wikipedia data in combination with aligned Wikidata (or WordNet

[Pri21]) entities is continued in several other KG-enhanced Transformers, such as Know-

Bert [Pet+19], K-Adapter [Wan+20] and Knowledge-enabled BERT (K-BERT) [Liu+20].

It is important to note that the entity linker is not őxed in KnowBert, but learned along-

side other model components based on training examples [Pet+19] (therefore still re-

quiring linked entities in the training procedure). In contrast to these three approaches,

the Knowledge Embedding and Pre-trained Language Representation (KEPLER) model

[Wan+19b] is not directly using plain Wikipedia text data, but rather KG entities from

Wikidata. These entities contain metadata in the form of short textual descriptions from

the Wikipedia page for a given entity. The overall goal is to minimize both the MLM

objective and a KGE loss function based on the sequence embedding representations of

the textual descriptions of the entities. Hence, no entity linking procedure is required

in KEPLER. Unlike the previously presented approaches, the Contextualized Language

and Knowledge Embedding (CoLAKE) model tries to incorporate KG entities through a

so-called word knowledge graph (WK graph), which intends to include subgraph struc-

tures between the linked entities in a given phrase. Practically, the subgraph structure

is learned by concatenating word and KG nodes into a sequence and learning the entity
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embeddings with an extended MLM objective, as shown in Figure 8.

Regarding the biomedical domain, the most evident choice for a large-scale text corpus is

PubMed. However, őnding corresponding entities in a KG is not trivial as in Wikipedia

since there are aligned entities by default. Moreover, biomedical approaches tend to use

various heterogeneous KGs rather than a uniőed KG (i.e. Wikidata). One example of a

biomedical KG-enhanced Transformer that uses various sources for generating a KG is the

biomedical KG-LM (BioKGLM) [Fei+20], which is based on BERT and an in-house KG

built from, among others, Reactome [Fab+16] and UniProt [The15]. In BioKGLM, the

objective is to correctly predict the (masked) entities based on concatenated token and

KG embedding vectors [Fei+20]. Another proposed biomedical KG-enhanced Transformer

is BERT-MK [He+20], which also contains a information fusion component similar to

ERNIE. However, the major diference is that BERT-MK is integrating subgraphs, rather

than isolated entities, into the Transformer. More speciőcally, this is achieved by sampling

a subgraph based on n-hops from a given start entity and representing the subgraph by its

adjacency matrix in the model. Furthermore, the so-called triple restoration task, which

aims at preserving the sampled subgraph structure in the overall model, is added to the

existing pre-training tasks [He+20]. Both BioKGLM and BERT-MK rely on explicit

alignments between entities and text.

2.3 Network Representation Learning

Structured data, as for instance present in INDRA, can help to provide a deeper insight

into the dependencies and interactions between thousands or up to millions of structured

facts, resulting in an all-encompassing view on a given őeld. Such data is typically orga-

nized in a network, and it can include anything from a group of people and relationships

(e.g., [Hin90]), a system of synonyms in linguistics [Pri21], or interactions between chem-

icals, proteins and diseases in the biomedical domain [LHZ21]. In its simplest form, a

network consists of a set of entities (also refered to as nodes), which are connected pair-

wise through undirected edges [HYL18].

The rich information present in these networks can be used for various applications, such

as the classiőcation of diferent interests of a social media user (entity classification), word-

sense disambiguation (entity disambiguation) or the prediction of candidate drugs (link

prediction). In their beginnings, these applications relied heavily on hand-engineered fea-

tures. However, with the advent of Machine Learning, the named tasks were formulated

as classiőcation tasks, and the respective features were obtained by applying dimensional-

ity reduction techniques (such as Principal Component Analysis, PCA) on the adjacency
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Model Backbone
Knowledge

Integration

Needs An

Entity

Linker?

General/

Biomedical?

Training

Data

ERNIE [Zha+19] BERT
Information

fusion
✓ General

Wikipedia &

Wikidata

KnowBert [Pet+19] BERT

Knowledge

attention &

contextualization

component

(✓) General
Wikipedia &

WordNet

KEPLER [Wan+19b] RoBERTa
Joint KGE &

LM objective
✗ General

Wikipedia &

Wikidata

K-Adapter [Wan+20] RoBERTa

Factual adapter

based on relation

classification

✓ General
Wikipedia &

Wikidata

K-BERT [Liu+20] BERT

Sentence tree

enhanced

token sequence

✓ General

Chinese

Wikipedia &

DBPedia

BioKGLM [Fei+20] BERT

Entity prediction

based on token +

entity embeddings

✓ Biomedical

PubMed &

Reactome &

UniProt

CoLAKE [Sun+20] RoBERTa

Word

knowledge

graph structure

✓ General
Wikipedia &

Wikidata

BERT-MK [He+20]
ERNIE

(BERT)

Information

fusion with

subgraph

conversion

✓ Biomedical
PubMed &

UMLS

Table 2: Comparison between central characteristics of the most recent KG-enhanced Transformer

LMs. As shown in this table, the presented approaches mainly differ in the methods used for knowledge

integration. A majority of the outlined approaches are trained using KG entities that are aligned with

Wikipedia text data. All of the presented approaches are built based on either BERT or RoBERTa.
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Figure 8: Concatenation of word and entity nodes in CoLAKE [Sun+20]. Based on the pre-trained

RoBERTa model, Sun et al. further train the transformer on Wikipedia text with aligned Wikidata

entities. The MLM training objective is extended to mask both word and KG entities. (Image source:

taken from [Sun+20].)

matrix of a given network [HYL18]. Nonetheless, such methods sufered from a lack of

ŕexibility and scalability. Hence, similar to the evolution of NLP methods, projections

of entities onto embedding vectors were proposed to solve this problem. As a result, the

őeld of Network Representation Learning (NRL) emerged as its own Machine Learning

subdomain.

Due to the variety of domains and backgrounds involved in NRL research, the terminology

used in this őeld is characterized by many synonymous terms as well as concepts with

only minor diferences (see Table 3 for an overview on key terms and their respective syn-

onyms in NRL). For instance, a network is generally referring to a collection of facts with

undirected edges. In contrast, the term Knowledge Graph is typically used to describe a

set of entities with directed edges of speciőc relation types r ∈ R. That is why in KGs,

facts are usually referred to as triples of the form (h, r, t), describing a relation r between

a head entity h and a tail entity t. Moreover, in many KG-based applications, the term

Knowledge Representation Learning (KRL) is often used instead of NRL, and the trained

embedding models are referred to as Knowledge Graph Embedding Models (KGEMs). Ad-

ditionally, KGEMs typically learn embeddings not just for the entities but also for the

relations r. In practice and the remainder of this thesis, the terms KG and network (just
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like NRL and KRL) are used interchangeably.

Term Synonyms Description
Mathematical

Notation

Entity Node, Vertex

Individual units in a network/graph that

represent anything from a concrete

instance to an abstract concept

e ∈ E or h, t ∈ E
or u, v ∈ E 3

Relation Edge
Links representing a connection between

entities
r ∈ R

Triple Fact
Knowledge about a relation between

a head and a tail entity
(h, r, t) ∈ F

Network

Undirected

(Knowledge)

Graph

Collection of nodes and undirected edges

between them

G = {E , E},
{u, v} ∈ E

Knowledge

Graph (KG)

Knowledge

Base (KB)4
Collection of triples (i.e., nodes with

directed edges between them)
G = {E ,R,F}

Network

Representation

Learning (NRL)

Representation

Learning

"Learn a mapping that embeds

nodes [...] as points in a low-dimensional

vector space" [HYL18]

fNRL : E → R
d 5

Knowledge

Representation

Learning (KRL)

Knowledge

Graph

Embedding (KGE)

"Map [...] entities and relations into

low-dimensional vectors" [Ji+21]

fKGE :

E ∪ R → R
d 6

Table 3: Overview of the the terminology and common synonyms used in NRL, based on [HYL18; Ji+21;

LHZ21; Ali+20]. Networks and Knowledge Graphs are describing collections of unspecific/undirected and

specific/directed edges for a given set of entities, respectively. Hence, networks (and NRL) can be seen

as superordinate generalizations of KGs (as well as the field of KRL).

Similar to the variety in NRL terminology, there are also several strategies for catego-

rizing diferent groups of NRL modeling approaches. For instance, Hamilton, Ying, and

Leskovec list matrix factorization-based embedding approaches such as Laplacian Eigen-

maps [BN01] and the Graph Factorization (GF) algorithm [Ahm+13] as well as random

walk-based methods like node2vec [GL16] (further discussed in the next subsection) as

shallow approaches, since the learned embeddings result in a static embedding lookup

table [HYL18]. The authors contrast these models with deep embedding methods such

3In some cases (e.g., [HYL18]), E is used to denote the set of edges instead, and the set of entities is

referred to as V.
4Technically, a Knowledge Base is specifying a set of triples based on a specified semantic structure,

whereas a Knowledge Graph is typically focusing on the graph structure emerging from such a set of

triples [Ji+21]. Practically, the two terms are used interchangeably in many publications.
5
R

d can be replaced with any other suitable vector space or manifold.
6See previous footnote.
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as Graph Convolutional Networks (GCNs) [KW17] and the Graph Sample and Aggregate

(GraphSAGE) method [HYL17], which dynamically represent a given entity or relation

based on its graph neighborhood. On the other hand, Ji et al. propose a more őne-

grained categorization, including, among others, linear [Bor+13], Convolutional Neural

Network- (CNN-) [Det+18], RNN- [NRM15] and attention-based [Vel+18] models [Ji+21].

Nonetheless, Ji et al. resemble Hamilton, Ying, and Leskovec in their clear progression

from standard factorization or ML methods (i.e., static embeddings) to state-of-the-art

DL-based embedding approaches (i.e., dynamic embeddings).

Contrary to the NLP domain, more sophisticated DL-based NRL approaches have not

established themselves as the predominant choice in most KGE applications yet, and

static embedding methods are still widely used. This circumstance is mainly caused by

several challenges regarding the scalability of dynamic embedding approaches on large-

scale KGs:

1. Lack of parallelization: In analogy to classic CNNs, most dynamic embedding

approaches operating on graphs are based on aggregating the embeddings of the

local neighborhood of a given entity (or relation) to form its embedding vector. As

a direct result, it is hardly possible (in fact, in most cases impossible) to partition

the graph into smaller subgraphs to learn the embeddings. Hence, the entire KG

needs to be loaded into memory for training the KGEM. Large-scale KGs frequently

contain hundreds of thousands of entities and up to millions of triples. Therefore,

training many modern KGEMs on large-scale KGs requires hardware with hundreds

of gigabytes of memory.

2. Exploding number of parameters: Many DL-based embedding approaches (e.g.,

Graph Attention Networks (GATs) [Vel+18]) learn an attention coeicient for each

pair of connected entities in a given graph. Hence, the number of trainable parame-

ters is proportional to the number of edges |E|, which, in the worst case, is quadrati-

cally proportional to the number of entities in the graph (|E| = |E|(|E|−1)
2

= O(|E|2)).

3. Inefficient inference: Contrary to static embeddings, which are by deőnition lim-

ited to the entities (and relations) seen in training, dynamic methods can generate

new embeddings for previously unseen entities based on their graph neighborhood.

However, the entire KG needs to be loaded in memory for this step since the em-

beddings are calculated at runtime.
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Figure 9: Visualization of the return and in-out parameters (p and q) used to specify the weights α for

the transition probabilities πvx in node2vec. Based on a previous transition from t to v, p and q are used

to follow an either BFS-like or DFS-like strategy for picking the next edge (i.e., either (v, x1), (v, x2) or

(v, x3)). (Image source: taken from [GL16].)

2.3.1 Node2vec

Since node2vec [GL16] serves as a basis for the KG embeddings used in Section 3, a more

detailed description of the model is given in the following paragraphs. Node2vec is a

static KGE approach that őrst generates random walks for each node (i.e., entity) in a

given graph and then learns embeddings using word2vec’s skip-gram model [Mik+13a]

on each random walk. The overall method is summarized in Algorithm 1. As a result of

this approach, each node of the KG is associated with one embedding vector as well as

one random walk. It is important to note that this method is independent of the relation

types r of the edges. Hence, it can be applied on (undirected) networks.

As the name suggests, a random walk is a sequence of nodes, which is constructed by

randomly traversing a graph starting from a given node u. Rather than just uniformly

sampling the next node from a list of neighboring nodes, Grover and Leskovec introduce

a probability distribution P (ci = x|ci−1 = v) based on a transition probability πvx and a

normalization constant Z for choosing the next node x in a walk, given a current node v:

P (ci = x|ci−1 = v) =

⎧

⎪

⎨

⎪

⎩

πvx

Z
if {v, x} ∈ E

0 otherwise
(5)

The main incentive behind this probability distribution is to allow for more control over

the nature of the constructed random walk. More speciőcally, Grover and Leskovec name

two main strategies for sampling neighboring nodes, either Breadth First Search (BFS)

or Depth First Search (DFS). While BFS is more tailored towards exploring the local

neighborhood of a given start node u (i.e., nodes with a őxed distance to u), DFS aims at a
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more global exploration of the (sub)graph by iteratively increasing the distance to the start

node for each new node in the random walk. The authors argue that the ideal sampling

strategy is a blend of both strategies that is dependent on the concrete application at

hand. Therefore, Grover and Leskovec introduce two hyperparameters, p and q, which

control the impact of the two complementary approaches on the transition probability πvx.

More precisely, for a network with no edge-speciőc weights, the probability πvx describing

the transition from v to any node x is determined by a so-called search bias αpq(t, x),

which is dependent on v’s predecessor t and the distance dtx between t and x:

πvx = αpq(t, x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
p

if dtx = 0, t = x

1 if dtx = 1, t ̸= x and {t, x} ∈ E

1
q

if dtx = 2, t ̸= x and {t, x} /∈ E

(6)

Since the search bias is formed using the reciprocals of p and q, smaller values of p and

q encourage a more locally or globally focused random walk, respectively. A concrete

example for the efect of p and q on the overall sampling strategy is shown in Figure

9. Grover and Leskovec list [0.25, 0.5, 1, 2, 4] as the chosen range in which they conduct

hyperparameter searches for the optional values of p and q.

Based on the pre-determined values for the transition probabilities πvx (see line 1 in the

őrst procedure in Algorithm 1), the random walks are generated for each node in the graph

(see line 6-9, as well as the entire second procedure). The second part of the algorithm

(i.e., using word2vec’s skip-gram model) leverages the generated random walks to learn

the embedding function f : E → R
d (see line 10 of the őrst procedure), maximizing the

following log-likelihood:

max
f

︂

u∈E
logP (Ns(u)|f(u)) (7)

More speciőcally, P (Ns(u)|f(u)) expresses the probability of observing the neighborhood

Ns(u) (i.e., the list of nodes in the random walk) for a given node u. Similar to word2vec’s

skip-gram model [Mik+13a], two additional assumptions as well as a simpliőcation are

used to generate a computationally feasible maximization problem based on Formula 7:

1. Conditional independence (see Formula 8): The probability of observing a neigh-

boring node ni given the embedding representation f(u) of u is independent of all

of its other neighbors. Hence, the conditional probability P (Ns(u)|f(u)) can be

reduced to the product of the probabilities for the individual neighbors.
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Algorithm 1 The node2vec algorithm. (Source: taken from [GL16].)

1: procedure LearnFeatures(Graph G = (V,E,W ), Dimensions d, Walks per node r, Walk length

l, Context size k, Return p, In-out q)

2: π = PreprocessModifiedWeights(G, p, q)

3: G′ = (V,E, π)

4: Initialize walks to Empty

5: for iter = 1 to r do

6: for all nodes u ∈ V do

7: walk = node2vecWalk(G′, u, l)

8: Append walk to walks

9: end for

10: f = StochasticGradientDescent(k, d, walks)

11: end for

12: return f

13: end procedure

1: procedure node2vecWalk(Graph G′ = (V,E, π), Start node u, Length l)

2: Initialize walk to [u]

3: for walk_iter = 1 to l do

4: curr = walk[−1]

5: Vcurr = GetNeighbors(curr,G′)

6: s = AliasSample(Vcurr, π)

7: Append s to walk

8: end for

9: return walk

10: end procedure

2. Symmetric relations between nodes (see Formula 9): The individual likeli-

hoods P (ni|f(u)) are modeled using a softmax expression based on the dot product

similarity, normalized by a set of potential source-neighborhood node pairs {u, v}.
Inherently, using the dot product results in a symmetric similarity measure between

the embedding representations of two given nodes.

3. Negative sampling (see Formula 9): The denominator of Formula 9 intends to

normalize the observed similarity between u and ni. However, given the large size

of the set of edges E , using all possible node pairs proves to be unfeasible. Thus,

a signiőcantly smaller subset (i.e., E ′) is used to approximate the normalization

constant. E ′ is based on the neighbors ni as well as a small number (typically

between 5-20) of negative samples (i.e., non-neighboring node pairs).

P (Ns(u)|f(u)) =
︂

ni∈Ns(u)

P (ni|f(u)) (8)
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P (ni|f(u)) =
exp(f(ni) ∗ f(u))

︁

v∈E ′ exp(f(v) ∗ f(u))
(9)

The for-loop in line 5 of the őrst procedure in Algorithm 1 indicates multiple iterations

for the given maximization problem. While it is common to run multiple iterations for

smaller KGs, it is often computationally impossible to run more than one iteration for

large-scale KGs with hundreds of thousands of nodes (speciőcally for longer random walk

lengths l). Given a suiciently interconnected and large KG, a single iteration can be ade-

quate to learn embedding representations analogous to running one epoch of the word2vec

algorithm on a suiciently large and diverse text corpus. All in all, node2vec can be sum-

marized as a computationally eicient KGEM, which generates an embedding lookup table

and a random walk for each node in a given network by applying the word2vec skip-gram

algorithm on the generated sequences of nodes.

2.3.2 Text Enhanced Knowledge Graph Embedding Models

Similar to KG enhanced Transformers in NLP (see Section 2.2.5), text data can be used to

enhance and improve upon existing KGEMs. Typically, the included text is either present

in the form of entity and relation descriptions or textual metadata (e.g., a Wikipedia arti-

cle) associated with a given entity. Analogous to the inclusion of KG embeddings in NLP,

the main challenge for including textual embeddings in KGEMs is to őnd an approach to

combine both modalities in a shared embedding space meaningfully. An overview of the

models discussed in the following is provided in Table 4.

One of the őrst approaches combining both text and KG embeddings was introduced by

Wang et al. in 2014 [Wan+14]. The main idea of the proposed approach was to train

an alignment model A, which aligns KG embeddings K coming from a probabilistic ex-

tension of the (linear) TransE model [Bor+13] with text embeddings T from a variant

of word2vec’s skip-gram model [Mik+13a]. More precisely, Wang et al. deőned a log-

likelihood-based training objective that aligns the best matching text for a given entity

based on either the entity name or a so-called Wikipedia anchor (linking to a page text).

Overall, the model was trained by jointly minimizing the losses of the two embedding

models combined with the alignment loss: L = LK + LT + LA. The authors validate the

performance gain of the combined embeddings on, amongst others, a (binary) triple clas-

siőcation task, which consists of predicting whether a potential candidate triple (h, r, t)

is a true triple (i.e., part of the test dataset) or not (i.e., a negative example).
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Most other text-enhanced KGs, which have been published after Wang et al.’s approach,

share the same idea of using joint training objectives based on both text and KG em-

bedding models. For instance, Xie et al. extend the training objective of TransE (i.e.,

minimizing ∥h− r+ t∥ for a given triple (h, r, t) [Bor+13]) to combinations of text and

KG embedding vectors for h and t in their Description-Embodied Knowledge Repre-

sentation Learning (DKRL) model [Xie+16]. Another example is demonstrated in the

Semantic Space Projection (SSP) approach by Xiao et al., building upon a shared loss

based on the sum of a TransE-like loss function for learning structural KG properties

and a Latent Semantic Analysis (LSA) based topic modelling objective for the available

text data [Xia+17]. Both of the named appraoches were validated on Knowledge Graph

Completion (KGC) tasks, which intend to őnd the correct matching entity for an incom-

plete triple (?, r, t) or (h, r, ?). On the contrary, in many of the more recent applications,

text-enhanced KGs are constructed and applied in text-to-data generation settings. For

such settings, encoder-decoder architectures (such as extensions of Vaswani et al.’s Trans-

former [Vas+17]) are commonly used to encode the KG into an embedding space őrst, in

order to then decode the resulting representation into text (e.g., the Knowledge-Grounded

Pre-Training (KGPT) [Che+20a] and Entity-to-Description (ENT-DESC) [Che+20c] ap-

proaches).

2.4 Multimodal Transformers

Section 2.2.5 and 2.3.2 have outlined several approaches, which beneőt from a joint train-

ing procedure on two modalities, namely on unstructured text and structured KG data.

Naturally, this concept can be extended to any pair or set of modalities using the same

methodology. Hence, such applications serve as further inspiration for the methodology

developed in this thesis. More speciőcally, the Transformer architecture is of special in-

terest in this context, not only due to its widespread success in multiple ML application

domains (e.g., NLP [Dev+19], computer vision [Dos+21] and bioinformatics [Ji+20]),

but also its straightforward architecture that easily allows for combinations of multiple

modalities. Intuitively, the weighted average present in the attention mechanism of the

Transformer can act as a learnable weighting component, which evaluates how single

parts of diferent modalities contribute to the overall contextual representations. That is

why in the following, an overview of recent multimodal Transformers is given (see Table 5).

In the general domain, text, vision (i.e., images and/or videos) and audio are the three

dominating modalities for multimodal Transformers. Overall, multimodal Transform-

ers can be grouped into either single stream or two-stream architectures, depending on
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Model Backbone Text Integration
Requires

Linking?

General/

Biomedical?

Validation

Data

KG and Text

Jointly

Embedding

[Wan+14]

TransE

Combined loss

function for

text, KG and

alignments

✓ general
Freebase/

Wikipedia

DKRL [Xie+16] TransE

Extend TransE

objective to

text and KG

embeddings

✓ general

Freebase

15K (FB15K)

[Bor+13]

SSP [Xia+17] TransE

Combine TransE

and LSA

objectives

✗ general FB15K

KGPT [Che+20a] GAT

Train on text-

subgraph pairs

for data-to-

text generation

✗ general

Web Natural

Language

Generation

WebNLG

[SG18]

ENT-DESC

[Che+20c]
GCN

Encoder-decoder

model for

data-to-text

✓ general
Wikidata/

Wikipedia

Table 4: Comparison between central characteristics of selected text-enhanced KGEMs, analogous to

the overview of KG-enhanced LMs given in Table 2. The main idea behind most text-enhanced KGEMs

is a joint training objective that combines losses from textual and KG embeddings, as well as the loss of

an optional alignment model. Notably, all of the identified approaches are applied using data from the

general domain, rather than the biomedical domain.

whether they are using a concatenation of modalities or a transformation between them

[Kam+21]. For instance, one of the őrst two-stream architectures, MulT, introduced

by Tsai et al. in 2019 [Tsa+19], tried to combine the three named modalities through

three so-called crossmodal Transformers. Each modality-speciőc crossmodal Transformer

consisted of two crossmodal attention components, which each modeled transformations

between a given target modality and one of the other two source modalities. More specif-

ically, the transformations were modelled as latent adaptations based on the attention

mechanism in which the query matrix Qα was formed using the target modality α, and

the key and value matrices (Kβ and Vβ) were constructed using the source modality β

[Tsa+19]:

β → α = softmax(
QαK

T
β√

dk
)Vβ (10)
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Figure 10: Excerpt from the single stream MDETR model architecture, based on a concatenation of

text and image embeddings in a cross encoder. The text and image features are generated using a pre-

trained textual Transformer and a CNN with a subsequent flattening procedure, respectively. (Image

source: taken from [Kam+21].)

For example, the vision-speciőc Transformer (i.e., for sequences of images V ) consists of

two latent adaptations from language (i.e., text) to vision L → V = softmax(
QV KT

L√
dk

)VL

and audio to vision A → V = softmax(
QV KT

A√
dk

)VA. The intuition behind these transforma-

tions is that two contextualized vision representations are formed using (learned) weighted

averages of text and audio data for each image in the vision sequence, respectively. This

approach was validated on, amongst other datasets, the Carnegie Mellon University Mul-

timodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset [Bag+18],

consisting of a sentiment analysis task on combined text, audio and video data. Fur-

ther approaches such as the co-attention module used in the Vision-and-Language BERT

(ViLBERT) model [Lu+19] or the cross-modality encoder introduced in the Learning

Cross-Modality Encoder Representations from Transformers (LXMERT) approach [TB19]

apply the same idea to binary combinations of vision and text data.

However, cross-modal representations in Transformers can also be approached from an-

other direction, namely using single stream methods, which ŕexibly combine diferent

modalities into a joint input sequence in one Transformer. Such single stream methods

are typically based on concatenations of sequences of inputs from diferent modalities.

As a result, such a heterogeneous input sequence can be used to form contextualized

representations for a given item in a sequence not only based on other items from the

same modality but also from other data sources, using the same attention mechanism

(i.e., a shared weighted average across multiple modalities). For instance, the Universal

Image-Text Representation (UNITER) architecture by Chen et al. [Che+20b] is based on

feeding a concatenation (w,v) of text tokens w = {w1, ...,wT} and Region of Interest

(ROI) features v = {v1, ...vK} extracted from image data as the combined input to a
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Model Backbone
Multimodal

Integration

Single Stream

or Two-Stream?

General/

Biomedical?

Validation

Data

MulT

[Tsa+19]
Transformer

Latent adaptations

between target

and source

modalities

two-stream general CMU-MOSEI

ViLBERT

[Lu+19]
BERT

Latent adaptations

in co-attention

modules

two-stream general

Common

Objects

in Context

(COCO)

[Che+15]

LXMERT

[TB19]
Transformer

Latent adaptations

in cross-modality

encoders

two-stream general

Visual Question

Answering

(VQA) v2.0

[Goy+17]

UNITER

[Che+20b]
BERT

Concatenation

of ROI image

and text

features

single stream general VQA, COCO

MDETR

[Kam+21]
Transformer

Concatenation

of CCN-based

image and

text features

single stream general COCO

DALL·E

[Ram+21]
GPT

dVAE encoder

and GPT decoder
single stream general COCO

Table 5: Comparison between central characteristics of multimodal Transformers, analogous to the

overviews of KG-enhanced LMs and text-enhanced KGEMs provided in Table 2 and 4. Similar to the

list of text-enhanced KGEMs, and contrary to the KG-enhanced LMs, this collection of multimodal

Transformers is limited to approaches in the general domain.

Transformer. The original MLM training objective is extended with the Masked Region

Modeling (MRM) objective for predicting masked ROI features. Moreover, the NSP ob-

jective is replaced by the Image-Text-Matching (ITM) task, which aims at distinguishing

coherent text-image pairs from randomly paired ones. Another more recent example is

the Modulated Detection Transformer (MDETR) model [Kam+21] shown in Figure 10.

More speciőcally, MDETR concatenates ŕattened image features (that were previously

processed by a CNN) with text features, which are already passed through another tex-

tual Transformer beforehand. The combined sequence is then used as the input to the

so-called cross encoder (depicted on the right in Figure 10).

Lastly, it is important to note that most of the previously mentioned models focus on
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the encoder part of the Transformer architecture, similar to BERT. However, a generative

model including both an encoder and a decoder can be the more convenient choice in some

contexts. For instance, the recent DALL·E model [Ram+21] (in this case, the model name

is not representing an acronym, but rather "a portmanteau of the artist Salvador Dalí

and Pixar’s WALL·E" [Ope21]) contains both an encoder and a decoder component to

process concatenated image and text data. More precisely, the encoder consists of a

discrete variational autoencoder (dVAE) [Rol17] for image data and a simple tokenizer

for text, whereas the decoder is based on the Generative Pre-trained Transformer (GPT)

model (i.e., a model architecture using the original Transformer decoder rather than the

encoder) applied to the encoded and concatenated input. With this architecture, Ramesh

et al. were able to generate images based on a textual description (see [Ope21] for example

queries such as "an armchair in the shape of an avocado").
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3 Methodology

This section describes the methodology developed in this thesis used to test whether a

biomedical ML model utilizing both text and KGEs can lead to increased performance

compared to models that only rely on either one of the two modalities. As stated in

Section 1.2, testing the hypothesis consists of comparing three models in a shared experi-

mental setting (consisting of the same dataset and evaluation method, as shown in Figure

11a), one using both text and KG data and two baselines using only either one of the

modalities (see Figure 11b).

To test the hypothesis, a step-by-step procedure was deőned in Section 1.3. Hence, the

following subsections intend to subsequently address the items identiőed in the list of aims

of this thesis. First, an overview of the employed dataset and some of its main charac-

teristics is given in Section 3.1. Next, Section 3.2 is providing an in-depth explanation

of the three model architectures used in this approach. More speciőcally, Section 3.2.1

and 3.2.2 are dedicated to the baseline models, i.e., the NLP baseline built on top of

BioBERT and the KGE baseline (referred to as the KG baseline in the following) based

on node2vec. Section 3.2.3 then introduces the novel NLP x KGE method designed for

combining both text and KG data in this thesis: the Sophisticated Transformer Trained

on Biomedical Text and Knowledge Graphs (STonKGs). After the elaboration of the

model architectures, Section 3.3 describes the method used for evaluating and comparing

the performances of the three models in a transfer learning setting. Lastly, Section 3.4

is providing concluding remarks on the implementation of the proposed approach of this

thesis.

Moreover, it is important to note that this thesis goes hand in hand with a planned publi-

cation that is written in parallel to the thesis7. Since both the thesis and the publication

refer to the same approach, certain sections from the publication might serve as a basis

for sections in the thesis and vice versa. In addition, őgures, as well as tables, are shared

in the two manuscripts.

3.1 INDRA Data

Due to the nature of the proposed experimental setting, the dataset that ought to be used

by all three model architectures has to ideally contain pairs of text and KG data entries

7As of August 18th, a preprint has been published [Bal+21] (https://www.biorxiv.org/

content/10.1101/2021.08.17.456616v1, accessed on August 18th, 2021), and the publication

is undergoing a review process for journal submission.
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(a) The three models are trained and evaluated in a shared experimental setting, consisting of a common

dataset of text-triple pairs and an evaluation benchmark.

(b) For each text-triple pair, the two baseline models use only one of the two modalities, whereas

STonKGs is utilizing both.

Figure 11: Overall workflow of the methodology used to test whether a model utilizing both text and

KG data (i.e., the proposed STonKGs model) can outperform two baselines that are trained on either

one of the modalities. (Image source: own.)

(i.e., triples from a KG), referred to as text-triple pairs in the following. Using paired

entries, contrary to a text dataset with a loosely coupled KG dataset, helps to increase

the comparability of model performances when evaluating on diferent modalities and iso-

lating diferences in performances to the change in modalities rather than the nature of

the modality-speciőc dataset subsets.

Hence, the INDRA statements (see Section 2.1.2) consisting of triples and associated text

evidence (and in some cases, further annotations) are well suited for the chosen experi-

mental setting. It is important to note that as of July 2021, the complete dataset of all

INDRA statements curated by the INDRA labs team at Harvard Medical School (HMS)

used in this thesis is not publicly available. More speciőcally, the dataset used in this

thesis is a dump of INDRA statements generated by the INDRA labs team on April 28th

2021, based on applying INDRA to all full-text articles from PubMed. Figure 12 is show-
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Figure 12: Example of INDRA statements contained in the dataset used in this thesis. The generated

INDRA data dump is provided as a JavaScript Object Notation (JSON) line (in short, JSONL) file, in

which each line consists of a JSON object containing all the information for a given statement. This

example demonstrates three different statements containing triple information (highlighted in blue), text

evidence (highlighted in purple) as well as an annotation for the first statement (highlighted in orange).

(Image source: own.)

ing an excerpt from the dataset, containing three statements (i.e., text-triple pairs) with

triple, text and annotation information.

The following subsections aim at providing a closer understanding of the nature of this

dataset, as well as the pre-processing steps applied to it. More speciőcally, the őrst

two subsections intend to explain some of the characteristics of the triples and the text

evidences associated with them. The last subsection further speciőes the included anno-

tations in the INDRA dataset, which are central for the evaluation procedure (see Section

3.3).

3.1.1 Triples

The original data dump used as a starting point for this thesis contained 35,150,093

statements. However, INDRA is not only based on reading systems but also other bio-

logical databases (see Table 1). As a result, some statements do not necessarily contain

any text (or incorrectly generated text, e.g., "No evidence.") for a given triple. Thus,

these statements were excluded from further use. Moreover, many statements come from

reading systems with triples containing so-called ungrounded nodes (i.e., nodes that are

not normalized against any known ontology). Constructing a KG with such nodes is prob-

lematic since the lack of normalization is causing a potentially redundant and ambiguous

graph. For instance, without a normalization procedure, the nodes Aβ and amyloid-β

would be modelled as two separate nodes with distinct connections in the graph, even

though both terms are referring to the same peptide. Hence, all statements that con-
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Figure 13: Classes of node and relationship types in the BEL graph constructed from the filtered INDRA

statements. Notably, the largest share of nodes are complexes, which are multiple tightly interconnected

biological entities merged into a single node. (Image source: own.)

tain ungrounded nodes are őltered out as well. The resulting statements are grounded

in normalized terminology stemming from a total of 11 diferent ontologies, with the

majority coming from the Human Genome Organisation Gene Nomenclature Committee

(HGNC) [Twe+21] and PubChem [Fu+15] (including Chemical Entities of Biological In-

terest, ChEBI [Has+13]) ontologies.

Next, a KG using the BEL format (more speciőcally, using the PyBEL converter [HKE18])

was constructed from the set of statements resulting from the őrst two őltering steps.

This BEL graph (referred to as the INDRA KG in the following) is directly built on the

grounded nodes and their relationships described in the triples from the őltered INDRA

statements. As a result of the BEL format, there are several relation and node types (not

to be confused with the set of unique nodes), as shown in Figure 13. While node types

such as proteins or biological processes describe isolated entities, complex nodes (the most

common node type in the INDRA KG) refer to a set of multiple linked biological concepts.

The use of such complex nodes plays a crucial role in maintaining a computationally

manageable size of nodes in the INDRA KG (see Section 2.3 for remarks on the challenges

that arise when scaling KGEMs to large-scale KGs). However, one remaining major

problem of the constructed KG is the presence of isolated nodes or other small graph

components that are not part of the main component. Therefore, all triples that are not

part of the largest component in the INDRA KG are őltered out, resulting in a total of

13,609,994 triples (text-triple pairs), eight diferent relation types and 174,534 unique

nodes.
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Figure 14: Histogram for the token length distribution of the text evidences contained in the filtered

INDRA statements. The number of tokens in each text evidence contained in an INDRA statement

is determined by tokenizing the evidence using the BioBERT tokenizer. The resulting tokens in each

evidence are counted, counts greater than 600 are filtered out, and the remaining counts are grouped

into a total of 100 bins of equal width. The y-axis describes the absolute frequencies of the number of

evidences for each bin (in millions). On the other hand, the x-axis specifies the ranges for the number of

tokens covered by each bin. (Image source: own.)

3.1.2 Text Evidences

In the pre-processed 13,609,994 text-triple pairs, the contained text evidences were typi-

cally extracted at sentence level from the respective PubMed article that a given INDRA

statement is based on. As a result, each evidence usually consists of one sentence. Given

the speciőc writing style of scientiőc publications, this sentence is typically longer than

the average English sentence in other text sources such as social media or books. A man-

ual inspection of a small subset of the INDRA dataset revealed that a few text evidences

contain more than one sentence (up to őve sentences). Moreover, it is important to note

that some of the readers in INDRA already applied some basic data cleaning steps to the

text data (e.g., removing references). However, those steps are not necessarily the same

across all readers. Hence, some textual evidences might have been pre-processed difer-

ently than others. To avoid further inconsistencies, no additional cleaning steps (such as

case folding or lemmatization) were applied to the text data.

Since the dataset of this thesis is serving as input to Transformer-based models with

a őxed input length, it is of crucial importance to assess the number of tokens in each
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evidence beforehand to avoid excessive truncation of the input sequences. Figure 14 shows

the token length distribution of the text evidences in all pre-processed text-triple pairs.

More speciőcally, the token length of each evidence was determined based on tokenizing

the text and counting the resulting number of tokens using the tokenizer of the BioBERT

model since the same tokenizer was also used for the NLP-baseline and the proposed

multimodal Transformer later on (see Section 3.2.1 and 3.2.3). As depicted in Figure

14, the vast majority of evidences is shorter than 200 tokens. Notably, the resulting

distribution is an apparent unimodal distribution rather than a multimodal one, having

its peak at around 50 tokens (equating to roughly 30-40 words). Moreover, only a few

examples have a meager number of tokens (e.g., less than 20 tokens). Hence, no length-

speciőc őltering was applied to the data, such as removing text-triple pairs in which the

number of tokens in the text is lower than a speciőc threshold.

3.1.3 Annotation Types

As shown in the őrst example in Figure 12, some INDRA statements contain an addi-

tional annotation őeld, which provides further information about the context in which a

given statement has been extracted from. These contexts are either manually annotated

or provided by the INDRA processors (i.e., either included as metadata in a biological

database or extracted from text with a reading system). It should be pointed out that

only 1,507,150 (11.07%) out of the pre-processed 13,609,994 text-triple pairs contain an

annotation. Furthermore, even though there are 31 diferent types of annotations, most

of them are not biologically relevant, or there are too few examples per unique annotation

in the respective annotation type. However, four annotation types are relevant for the

later evaluation procedure (see Section 3.3):

1. Cell line (i.e., "a cell culture selected uniformly from a cell population from a

usually homogeneous tissue" [Mer21]) (n = 19, 108 many examples): Provides in-

formation on the speciőc cell line in which a given triple was observed in, which is

speciőcally important for the interpretation of biological experiments.

2. Disease (n = 17, 046): Names the disease in which a certain triple was detected in,

mostly covering cancer-related conditions. The disease context can help understand

why a given biological interaction characterized by a triple happens in some cases

and not others.

3. Location (n = 14, 092): Speciőes the cellular location in which the biological pro-

cess described by a triple occurs in. This information can help to retrace the efects

of a given process in larger organisms.
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4. Species (n = 1, 339, 057): Names the species in which a certain biological observa-

tion encompassed by a triple was made. This context is essential in drug discovery

processes (see Section 1.1), in which diferences between animal test subjects and

human patients need to be estimated precisely.

It is important to note that all the annotations are open-ended in theory (i.e., there is

no őxed set of classes from which an annotation has to be chosen). Practically, however,

most annotations are grounded to an ontology (like the nodes in the INDRA KG). Hence

they are limited to the terms listed, which, as a result, is still a considerable number of

classes. Therefore, the later evaluation procedure only operates on small subsets of these

annotation-speciőc datasets since the number of classes needs to be lowered to a number

that is appropriate for model evaluation beforehand (see Section 3.3 for more details).

3.2 Models

This subsection intends to explain the three proposed model architectures used to test

the hypothesis in-depth. The two key motivations behind the design of the experimental

setting employed in this thesis are 1. to enable a high degree of comparability between

the data sources and evaluation procedures and 2. to establish a generalizable evaluation

procedure that can help to assess the transferability of the observed performances to

future biological use-cases. Transfer learning is a suitable ML paradigm that addresses

both requirements:

1. Unified experimental setting: The two-fold pre-training and őne-tuning pro-

cedure used in transfer learning settings allows for adding an abstraction layer to

the overall model comparison. More speciőcally, the initial pre-training step can

be applied to large amounts of unlabelled data, ofering the models to learn task-

independent embeddings of text and (or) KG data őrst. The subsequent őne-tuning

step allows for transferring the learned general representations of the three models on

much smaller labelled datasets by adapting the models’ weights using task-speciőc

loss functions.

2. Assessment of the generalizability of model performances: The clear dis-

tinction between pre-training and őne-tuning allows for the incorporation of multiple

őne-tuning tasks in a benchmark-like evaluation setting. The pre-trained models can

be repeatedly adapted to diferent biological use-cases, which can help to provide

more insights on the strengths and weaknesses of the models and more evidence for

either supporting or rejecting the hypothesis.
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Figure 15: Overview of the three proposed model architectures (contained in the blue, green and orange

boxes) as well as their input sources (above the boxes) and the consistent architectural change applied

in the fine-tuning setting (below the boxes). (Image source: modified based on [Lee+20], [Vas+17] and

[GL16].)

The three proposed model architectures explained in the following have been designed ex-

plicitly for incorporating the transfer learning paradigm. More precisely, all three models

are pre-trained on extensive unlabelled data őrst. Then, the adaptation to the őne-tuning

setting is realized through an architectural change (explained in more detail in the follow-

ing subsections) that is consistently applied to all three models (see Figure 15). However,

it is important to note that due to the nature of static embeddings in the node2vec model

used in the KG baseline, the KG baseline is rather a feature extraction than a transfer

learning-based model architecture. Still, due to consistency reasons, it will be referred to

as a transfer learning setting in the following.

In the following, Section 3.2.1 covers the NLP-baseline based on the BioBERT model,

which only operates on text data. Then, Section 3.2.2 continues to explain the KG-

baseline, which leverages node2vec to process sequential data generated from the triples in

INDRA’s text-triple pairs. Lastly, Section 3.2.3 introduces the proposed STonKGs model

architecture, i.e., a multimodal Transformer that operates on combined input sequences

of text and KG data extracted from the text-triple pairs in the INDRA dataset.
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3.2.1 NLP Baseline

As previously mentioned, the NLP-baseline is based on the pre-trained BioBERT v1.1

model [Lee+20]. BioBERT v1.1 is a Transformer-based language model trained for 1 mil-

lion steps on chunks of 512 tokens coming from a 4.5 billion token corpus extracted from

PubMed abstracts (see [Lee+20] for more details on further hyperparameters). Therefore,

rather than pre-training a new LM on the text evidences from INDRA’s text-triple pairs

from scratch, this thesis leverages the already pre-trained representations learned by the

BioBERT model. There are two main reasons for that. First, this thesis is subject to

limited computing power that can be utilized for the proposed experiments (see Section

3.4). Instead of reinventing the wheel for building purely text-based Transformers and

spending weeks of available GPU resources on a pre-training procedure on text evidences

from INDRA, it is arguably more expedient to use the available resources to explore the

available resources pre-training procedures for the novel STonKGs model architecture.

Secondly, although the text corpus used for BioBERT is not entirely identical to the set

of text evidences included in the text-triple pairs of the INDRA dataset, the two text

sources are expected to have considerable overlaps since both are based on PubMed. The

two major diferences that are important to point out are the smaller size of the text evi-

dence corpus in INDRA (i.e., roughly 13 million evidences with 50 tokens per evidence on

average, resulting in 13 ∗ 50 = 650 million tokens, compared to 4,500 million tokens used

in BioBERT) and the shorter input sequence length in INDRA (i.e., 50 tokens on average,

compared to chunks of 512 tokens in BioBERT). Nonetheless, the practical implications

imposed by the limited computing power, together with the overall similarity between

the text sources used in BioBERT and INDRA, speak in favour of using the pre-trained

BioBERT model over a new LM trained from scratch.

In order to apply the pre-trained BioBERT model to INDRA statements in later őne-

tuning evaluation procedures, the contiguous string of text coming from the text evidence

of each text-triple pair is őrst tokenized with the BioBERT tokenizer. Similar to the

original BERT approach (see [Dev+19] for more details), the resulting input sequence is

augmented with the special classiőcation and separator tokens (i.e, [CLS] and [SEP])

and padded or truncated (padded in most cases, cf. Figure 14) accordingly to the expected

input length of 512 tokens in BioBERT. Passing the input sequence through BioBERT

yields a contextualized embedding sequence as its output (see the blue box in Figure 15).

Each token embedding is represented as a 768-dimensional vector formed as a weighted

average of its surrounding tokens (weighted by the attention coeicients) in this output

sequence.
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To adapt the pre-trained BioBERT model to the őne-tuning classiőcation tasks (more

details on the chosen tasks are provided in Section 3.3), additional model components,

namely a pooling layer and a linear layer, were added to further process the output embed-

ding sequence coming from the pre-trained BioBERT model (see the lower part of Figure

15). More speciőcally, pooling consists of using the special classiőcation (i.e., [CLS])

token as an aggregated representation for the entire output sequence, analogous to the

original BERT model [Dev+19]. Afterwards, the linear layer projects the pooled sequence

onto class probabilities for the given őne-tuning task through a softmax activation func-

tion. While training the adapted model architecture on the task-speciőc data, all model

weights are őne-tuned, including the weights of the BioBERT model.

3.2.2 KG Baseline

The starting point for the KG-baseline is a node2vec model [GL16] that is trained on the

pre-training partition of the INDRA KG speciőed in Section 3.1.1. Excluding the triples

that are later used in the őne-tuning datasets from the set of triples used for learning

KG embeddings in the KG-baseline is of central importance. Otherwise, there would be

information leakage (regarding the known connections of nodes in the KG) between the

pre-training and őne-tuning parts of the overall transfer learning procedure (see Section

3.3 for more details on the pre-training and őne-tuning splits of the INDRA dataset).

The node2vec model is trained for one iteration8, using a random walk length of l = 127

and an embedding dimension size of d = 768 (the reasons for the choice of these values

are given in Section 3.2.3). Both p and q are set to 1. Based on the set of random walks,

word2vec is trained for four epochs to learn the embedding vectors for each node. In more

detail, the internal word2vec model uses a window size of w = 3, n = 5 negative samples

and a batch size of b = 10, 000. Moreover, the word2vec model is optimized using the

Stochastic Gradient Descent (SGD) optimizer [KW52] with a linearly decreasing learning

rate starting at lr = 0.025.

Although a hyperparameter search (e.g., to őnd the optimal values of p and q) could

have possibly helped to improve the later evaluation performance, it was not computa-

tionally feasible to conduct such a Hyperparameter Optimization (HPO) procedure given

the size of the INDRA KG. Lastly, it should be pointed out that node2vec is a static

embedding approach, contrary to the NLP-baseline covered in the previous subsection.

8It is important to note that the hyperparameter options offered by the framework used for the

implementation of node2vec (see Section 3.4) are not entirely consistent with the notation and steps

outlined in the original node2vec publication (see Algorithm 1).
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Figure 16: Generation of a random walk-based embedding sequence based on the source and target

(i.e., head and tail) nodes of a given triple (the nodes labelled as number 1 in the left and right halves

of the figure, respectively). The two random walks (shown by the bold black arrows) associated with

the two nodes by the pre-trained node2vec model are used as a starting point. Then, for each node in

the two random walks, the embedding vectors learned by node2vec (shown in orange) are accessed and

concatenated into the final random walk-based embedding sequence (demonstrated in the lower part of

the figure). (Image source: own.)

Therefore, the learned embeddings consist of a static lookup table that cannot be adapted

in a őne-tuning procedure extended to previously unseen nodes. Hence, the initial output

generated by the pre-trained node2vec model for an input triple of a given text-triple pair

from INDRA consists of two embedding vectors of the source and target node of the triple

(as node2vec is indiferent to relation types and thus unable to produce relation-speciőc

embeddings). These embedding vectors implicitly contain the encoded context of the

graph neighborhood structure.

However, the main incentive is to create a KG-baseline that can be used under com-

parable conditions with the NLP-baseline as well as STonKGs, which both operate on

sequential input and output sequences. As a consequence, it is favourable to create a

KG-baseline that also produces sequential outputs based on the two nodes in a given

triple. This is where the random walks leveraged by node2vec come into efect. The

overall goal is to create a so-called random walk-based embedding sequence e(hi, ti) based

on the source node h and target node t in a given triple (hi, ri, ti) (see Figure 16). The
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generation of the random-walk embedding sequence consists of three steps. First, the

associated random walks h = (hi, ..., hn) and t = (ti, ..., tn) learned by the pre-trained

node2vec model are extracted, starting from h and t, respectively. Secondly, each node

n in the two walks is replaced by its embedding vector en⃗ learned by node2vec, resulting

in two embedding sequences (ehi
⃗ , ..., ehn

⃗ ) and (eti⃗ , ..., etn⃗ ). Lastly, the two embedding se-

quences are concatenated to provide the overall random walk-based embedding sequence:

e(hi, ti) = (ehi
⃗ , ..., ehn

⃗ , ehi
⃗ , ..., etn⃗ ).

Analogous to Section 3.2.1, the same components used for the NLP-baseline are added to

the KG-baseline to adapt the pre-trained model to the őne-tuning classiőcation settings

(see Figure 15). More speciőcally, each triple’s random walk-based embedding sequence

is pooled and passed through a linear layer to project the embedding dimension to the

number of őnal classiőcation labels. This model performs pooling using the dimension-

wise maximum of the sequence embeddings to map the sequence to a single aggregated

representation. As a result, and contrary to őne-tuning all the weights of the entire model

architecture, the weights of the linear layer are the only additional model weights learned

in the őne-tuning procedure of the KG-baseline.

3.2.3 STonKGs: A Sophisticated Transformer trained on biomedical text and

Knowledge Graphs

The proposed STonKGs model architecture directly builds upon the NLP- and KG-

baselines (referred to as NLP- and KG-backbones in the following) discussed in the previ-

ous subsections. Both the token embedding sequences produced by BioBERT [Lee+20] as

well as the random walk-based triple embedding sequences constructed based on node2vec

[GL16] are used to represent text and KG data in a shared model, respectively. More

speciőcally, as shown in Figure 17, STonKGs is a multimodal single stream Transformer

that uses a concatenation of these text- and KG-based embedding sequences as input to

a cross encoder (similar to approaches like CoLAKE [Sun+20] and MDETR [Kam+21],

which are used as inspiration for the methodology developed in this thesis).

The intuition behind this architectural design choice is that by passing a multimodal

input sequence through a single stream Transformer, the model might be able to learn

complex interdependencies between text and KG inputs. More speciőcally, since the

output embedding representations returned by the Transformer are each weighted averages

of its surrounding inputs, the Transformer is potentially able to incorporate context from

the KG into the representation of a text token and vice versa. Figure 17 depicts the

attention mechanism of the cross encoder, in which the attention coeicients are indicated
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Figure 17: Input and output embedding sequences of the cross encoder used in STonKGs. This multi-

modal approach leverages the initial token embedding sequence produced by BioBERT (shown in purple)

and the random walk-based triple embedding sequence generated based on node2vec pre-trained on the

INDRA KG (shown in blue). The concatenation of the two embedding sequences is augmented with spe-

cial classification and separator tokens to form the final input embedding sequence, which is subsequently

processed by an attention mechanism (visualized by the orange links). (Image source: modified based on

[Vas+17].)

by the orange links between the input and output sequences. With this approach, it is

hoped to learn attention coeicients that can indicate which parts of an input (sub)graph

or sentence are relevant to form the representation of a given unit of the overall multimodal

input sequence9.

In more detail, the STonKGs model architecture is a modiőcation of the BERTBASE

model [Dev+19] using the same maximum sequence length (m = 512), embedding dimen-

sion (d = 768), number of Transformer layers (L = 12) and number of attention heads

(A = 12). The maximum sequence length is split in half to provide 256 tokens for text-

and triple-based embedding sequences from INDRA’s text-triple pairs and processed by

the NLP- and KG-backbone, respectively. Moreover, similar to the original BERT model,

there are several special tokens, such as the classiőcation ([CLS]), separator ([SEP])

9Whether the model is actually able to learn meaningful multimodal contexts or not would need to

be further investigated (e.g., by taking a closer look at the values of the attention weights for a set of

text-triple pairs). However, this aspect is beyond the scope of this thesis, as it is not central to proving

or disproving the initial hypothesis.
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and masking ([MASK]) tokens. Based on the combined input sequence generated by the

backbones, the [CLS] token is added to the very beginning őrst, which is crucial for

forming an aggregated representation of the input sequence later on. Next, three [SEP]

tokens are added i) between the text- and triple-based input, ii) between the two random

walks and iii) at the very end of the sequence (see Figure 17). These [SEP] tokens intend

to i) structurally diferentiate the text- and triple-based inputs as well as ii) the random

walks from each other iii) and indicate the end of the entire sequence, similar to the

original BERT model [Dev+19]. Lastly, the [MASK] token is used to mark the masked

tokens in the pre-training objectives (described below). Analogous to BERT, positional

and segment embeddings (also used to indicate the diference between text and KG input)

are employed by STonKGs as well.

In the overall pre-training procedure applied to the text-triple pairs coming from the

pre-training partition of the INDRA dataset (see Section 3.3), there are three training

objectives. These training objectives are inspired by the original BERT model and applied

to diferent subsets of the overall input sequence. All three objectives are jointly used to

train the cross encoder of STonKGs:

1. Masked Language Modeling (MLM): The MLM objective is adopted from the

original BERTBASE model and applied to the text-based part of the multimodal

input sequence (i.e., the őrst 256 tokens). Overall, the goal is to correctly predict

speciőc text tokens that have been replaced by the special [MASK] token before-

hand. This is realized through adding a so-called MLM head consisting of a linear

layer and followed by a softmax function, which projects the output embedding se-

quences generated by the cross encoder to a vector of the size of the vocabulary used

by the NLP-backbone (i.e., 30,000 tokens [Lee+20]). As a result, each dimension of

an output produced by the MLM head represents one token of the overall vocabu-

lary. The resulting values (normalized by the softmax function) in each dimension

are the probabilities for a given masked token being the respectively represented

token. Therefore, the true labels used in the MLM task consist of one-hot encoded

vectors that contain the value 1 at the dimension of the underlying true token be-

hind the [MASK] representation. STonKGs masks the same proportion of tokens

as BERTBASE, namely 15% of all tokens are chosen for replacement. From these

tokens, 80% are masked, 10% are left unchanged, and the remaining 10% are re-

placed by a random token (to add further noise to the model, aiming at making the

learning procedure more robust to errors) [Dev+19].

2. Masked Entity Modeling (MEM): As the name suggests, this training objective
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is derived from the MLM task and adapted to the triple-based part of the multimodal

input sequence (i.e., the last 256 tokens). Here, the goal is to predict masked

nodes (rather than masked text tokens) in the random walk-based sequence. The

resulting MEM head again consists of a linear layer followed by a softmax. However,

the output embedding representations are mapped to the "vocabulary size" (i.e.,

the number of unique nodes) of the INDRA KG used for pre-training (extended

by the special [SEP] token to ensure consistency with the additional separators).

Again, the underlying true labels for the masked nodes consists of one-hot encoded

vectors that contain the value 1 at the index of the correct node behind the masked

representation. It is important to note that the indices used for the nodes in the

MEM head are entirely independent of the indices used for tokens in the MLM head

since the two heads operate independently on diferent subsets of the combined input

sequence. Only the initial masking operation is applied to the entire sequence before

passing it through the cross encoder since the chosen proportions of masked tokens

are kept entirely the same as in the previous training objective, which evidently

speaks for a joint masking procedure.

3. Next "Sentence" Prediction (NSP): This training objective is also adopted

from the original BERT model used as a basis for this multimodal Transformer.

However, there is one major diference: Instead of predicting whether two sentences

belong to each other or not, the NSP objective used in STonKGs is designed to dis-

tinguish valid text-triple pairs from randomly combined triples and text evidences.

More speciőcally, this is achieved by augmenting the original pre-training dataset

by a proportion of mismatching (i.e., negative) text-triple pairs. The chosen ratio

of negative examples is 25%, which is lower than the 50% used in BERT. Nonethe-

less, the smaller proportion is selected on purpose, as it still incorporates the NSP

objective without increasing the overall dataset size too much (ensuring that it is

still computationally feasible to train the model for multiple epochs).

All in all, the losses of the three presented training objectives are added up to form the

őnal loss function that is ought to be minimized during pre-training: Ltotal = LMLM +

LMEM + LNSP. STonKGs is pre-trained for 300,000 steps using a batch size of b = 512

and an Adaptive Moment Estimation with Decoupled Weight Decay (AdamW) [LH19]

optimizer with a linearly decreasing learning rate starting at lr = 10−4.

Following the same procedure outlined in the previous two subsections, STonKGs can be

once again adapted to őne-tuning tasks operating on text-triple pairs using a classiőcation

component that consists of a pooling step and a linear layer (see Figure 15). In more detail,
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pooling is performed using the [CLS] token embedding vector. During őne-tuning, all

model weights, including the ones of the pre-trained cross encoder, are adapted based on

the task-speciőc loss function.

3.3 Evaluation

As outlined in Section 1.2, the main incentive of this thesis is to test whether a model using

both text and KG data (i.e., STonKGs) can lead to improved performance compared to

two baselines (i.e., the NLP- and KG-baselines) that only use either one of the modalities.

However, no clear deőnition has been given in this thesis so far regarding how this im-

proved performance would need to look like. That is why this section provides an overview

of the employed evaluation setting and the metrics used to deőne the model performances.

Generally, the idea behind the chosen evaluation setting for this thesis consists of applying

the transfer learning paradigm (see [Goo+16, pp. 524-539] for an in-depth explanation on

transfer learning) to evaluate all three models in a comparable setting. This means that

there are two types of training procedures for each model: pre-training and őne-tuning.

In the pre-training procedures employed in this thesis, the respective objectives are used

to learn general task-independent (embedding) representations of text and (or) KG data

in an unsupervised manner. The most common strategy to evaluate the pre-training pro-

cedure is to monitor the loss in regular intervals over all training steps. As the main focus

of this thesis is to validate the novel STonKGs model architecture (rather than to verify

the widely used node2vec and BioBERT models), the loss will only be recorded for the

pre-training procedure of the STonKGs model.

The main focus of the evaluation procedure, however, lies in the őne-tuning tasks. Con-

trary to the pre-training procedure, the őne-tuning tasks consist of labelled datasets.

These labelled datasets are used to measure the performance (occasionally referred to as

the downstream performance in this thesis) of a model adapted to a speciőc task. Based

on such a pre-trained model, this process can be repeated several times on diferent task-

speciőc datasets, and the resulting set of tasks can be grouped into a benchmark. Hence,

the evaluation procedure applied in this thesis consists of measuring the downstream

performance of each of the three proposed models on each task in the constructed bench-

mark. All tasks described in the following are either binary or multiclass classiőcation

tasks to keep the tasks consistent and comparable to a reasonable degree. Each labelled

task-speciőc dataset can be split into training and test splits that allow for őne-tuning

the model parameters (as described in Section 3.2) using a loss function operating on

the labelled data őrst. Then, the classiőcation performance is evaluated on the test set
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afterwards. All őne-tuning procedures of all three models are based on training for őve

epochs with a batch size of b = 16 on the respective training partition, using the AdamW

optimizer and a linearly decreasing learning rate starting at lr = 5 ∗ 10−5.

First, the dataset splits used to separate the pre-training from the őne-tuning data are

explained in more detail in Section 3.3.1. Next, Section 3.3.2 covers the speciőcs of the

constructed benchmark used for evaluation, as well as of each őne-tuning task contained

in it. Lastly, Section 3.3.3 is introducing another orthogonal evaluation aspect, namely

ablation studies designed to measure the efect of certain model design choices employed

in the STonKGs model architecture on the downstream performance.

3.3.1 Dataset Splits

Overall, the őltered set of INDRA statements (i.e., a set of text-triple pairs, of which

some contain an annotation) is separated into two main disjunct components, namely the

pre-training and őne-tuning splits. The main reason for this disjunct split is to prevent

information leakage between the pre-training part and the evaluation of the models on the

őne-tuning tasks. Otherwise, if the pre-training partition contained text-triple pairs that

are also present in the őne-tuning datasets, the models could potentially exploit previously

learned characteristics of the respective data entries. This might skew the downstream

performance (i.e., the performance might look better compared to an evaluation on actual

out-of-distribution (OOD) data) and contradicts the idea of an unbiased transfer learning

procedure10.

Since pre-training procedures aim to learn general representations that can be adapted to

various use-cases, they typically require large datasets (such as a 3.3 billion word corpus

for BERT [Dev+19], a 4.5 billion corpus for BioBERT [Lee+20] or even a 300 billion

token corpus for GPT-3 [Bro+20]). Therefore, the majority of the 13,609,994 pre-őltered

text-triple pairs were used for the pre-training partition. More speciőcally, since the pre-

training procedure is unsupervised, all INDRA statements (i.e., text-triple pairs) with

no additional annotation (see Section 3.1.3) are used as a basis for the creation of the

pre-training dataset. Only two small fractions of the unannotated statements, containing

12,836 and 78,979 text-triple pairs, respectively, are őltered out beforehand, as they are

10Note that although this reasoning might appear to be evident, it is not consistently applied in

many well-known publications. For instance, BERT [Dev+19] has been primarily trained on text data

from Wikipedia, and several of the GLUE [Wan+18] tasks used for evaluation have been extracted from

Wikipedia as well. However, Devlin et al. did not mention any explicit checks on possible information

leakage.
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used for two types of őne-tuning tasks that do not require annotations for the construction

of the particular labels (explained in more detail in the next subsection).

With regards to the INDRA statements that contain some type of annotation (n =

1, 507, 150, see Section 3.1.3), the vast majority of annotations are disregarded (as they

are not suitable for the creation of biologically relevant evaluation tasks) and grouped with

the unannotated statements for pre-training. Only a small partition of INDRA statements

that contain some relevant annotation and pass the evaluation task-speciőc őltering steps

(35,334 text-triple pairs chosen from the signiőcantly larger set of text-triple pairs includ-

ing any of the four relevant annotation types, see Section 3.1.3) is used for the őne-tuning

partition. In total, 127,149 text-triple pairs (0.93%) are used for all fine-tuning

tasks, leaving 13,482,845 text-triple pairs (99.07%) for the pre-training proce-

dure of STonKGs and the KG-baseline (i.e., to form the INDRA KG used for training

node2vec).

3.3.2 Fine-tuning Tasks

As explained before, the general idea behind the őne-tuning setting is to evaluate the

general representations learned by the three pre-trained models on multiple classiőcation

tasks that represent a wide range of biologically relevant use-cases. Each task-speciőc

őne-tuning dataset is further split into training and test splits. While the training split

adapts the pre-trained representations with classiőcation-speciőc loss function, the test

split is used to measure the models’ performances on previously unseen data. In general,

any biological application represented by labelled text-triple pairs can be used to con-

struct a classiőcation task to evaluate the three models. The only limitation imposed by

the model designs is that the nodes contained in the triples need to be included in the

INDRA KG because it is impossible to create embedding representations for previously

unseen nodes in node2vec. In this thesis, however, subsets of the őltered INDRA dataset

(i.e., the őne-tuning split described in the previous paragraph), based on certain special

characteristics, were chosen as a starting point for constructing a total of eight classiőca-

tion tasks. These tasks can be grouped into three diferent biological application types

(see Table 6). Examples for the text evidences in each of the eight tasks are provided in

Table 7, and the class distributions in each task are shown in Figure 18.

In all eight tasks, multiple text-triple pairs based on the same text evidence (i.e., diferent

triples that were extracted from the same text source) were deőned as duplicates. There-

fore, only one text-triple pair from each set of duplicates was kept. The main reason for

this additional őltering step in the őne-tuning tasks is to avoid modality-speciőc biases:
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Task type Task name Dataset

size

# of

classes

Description Class labels Ontology

Relation

type

1) Polarity 78,979 Binary Up-/down-

regulation of

the target caused

by the source

Increase, decrease -

2) Interac-

tion type

78,979 Binary Physical or non-

physical interaction

between the source

and target

Direct, indirect -

Context

annota-

tion

3) Cell line 3,760 10 Cell line context HEK293, DMS114,

HeLa, NIH-3T3,

HepG2, MCF7,

COS-1, THP-1,

LNCAP, U-93711

Cell Line

Ontology

(CLO)

[Sar+14]

4) Disease 4,586 10 Disease context Neuroblastoma,

breast cancer, lung

cancer, atheroscle-

rosis, multiple

myeloma, leukemia,

melanoma, osteosar-

coma, lung non-small

cell carcinoma

Disease

Ontology

(DO)

[Sch+12]

5) Location 5,223 5 Cellular location

context

Cell nucleus, extra-

cellular space, cell

membrane, cyto-

plasm, extracellular

matrix

Medical

Subject

Headings

[Lip00]

6) Species 21,765 3 Species context Human, mouse, rat NCBI

Tax-

onomy

[Sch+20b]

Annotation

error

7) Annota-

tion error

(binary))

12,836 Binary Whether the ex-

tracted triple is ex-

tracted correctly or

not

Correct, incorrect -

8) Annota-

tion error

(multi-

class)

12,611 8 Whether the ex-

tracted triple is ex-

tracted correctly or

not (including all

error types)

Correct, no rela-

tion, wrong relation,

grounding, polarity,

act vs amt, entity

boundaries, hypothe-

sis

-

Table 6: Overview of the eight classification tasks used to create the evaluation benchmark, grouped by

their task types. For the context annotation tasks (task 3-6), the ontologies used by INDRA to ground the

annotations used as class labels are listed as well. While the datasets used in each context annotation task

are distinct from each other, the datasets used in task 1-2 as well as 7-8 are the same/largely overlapping.
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Task name Example

1) Polarity “HSP70 [...] increases ENPP1 transcript and protein levels”

[Mar+09]

2) Interaction type “SHP repressed [...] transcription of PEPCK through direct

interaction with C/EBPalpha protein” [Par+07]

3) Cell line “We show that upon stimulation of HeLa cells by CXCL12,

CXCR4 becomes tyrosine phosphorylated” [Cha+05]

4) Disease “[...] nicotine [...] activates the MAPK signaling pathway

in lung cancer” [Tro+04]

5) Location “The activated MSK1 translocates to the nucleus and acti-

vates CREB [...].” [Dea+98]

6) Species “Mutation of putative GRK phosphorylation sites in the

cannabinoid receptor 1 (CB1R) confers resistance to

cannabinoid tolerance and hypersensitivity to cannabinoids

in mice” [Mor+14]

7) Correct/Incorrect (Binary)
Examples are available at INDRA’s curation guidelines12.

8) Correct/Incorrect (Multiclass)

Table 7: Examples for the text evidences included in each of the eight fine-tuning tasks.

While the KG-baseline, as well as STonKGs, would recognize duplicate text-triple pairs as

diferent entities (due to their distinct triple characteristics), the NLP-baseline would fail

to do so, as it solely operates on text. If such duplicates were present across the training

and test split of the őne-tuning tasks, there would be a high chance of the NLP-baseline

exploiting statistical cues, as a duplicate used in the test set might have already been

present in the training data.

First, two so-called relation type classiőcation tasks are testing the models’ abilities

to diferentiate between opposite relation types present in protein-protein interactions

(PPIs). The őrst task, termed the (1) polarity task, deals with the binary classiőcation

of n=78,979 text-triple pairs that describe either up- or down-regulated processes. An

up-regulation is characterized by a biological entity that increases the quantity of another

one, whereas a down-regulation describes a decreasing quantity. Hence, the classes are

referred to as increase and decrease in the following. The second task, the (2) interac-

tion type task, distinguishes between direct and indirect interactions in the same dataset

that is used for the polarity task (this time, however, using the direct and indirect class

labels). Peng et al. deőne the two interaction types as follows: "An interaction is ’direct’

if the molecular interfaces of two proteins contact with each other; otherwise an interac-

12https://indra.readthedocs.io/en/latest/tutorials/html_curation.html#

curation-guidelines (accessed on August 9th, 2021)
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Figure 18: Class distributions for all eight fine-tuning tasks used in the evaluation benchmark. A basic

degree of class balance was ensured by limiting the maximum number of classes to ten and leaving out

classes present in less than 1% of the labels. However, there is still a considerable class imbalance in some

tasks (i.e., the species, location and annotation error (multiclass) tasks). (Image source: own.)

54



tion is ’indirect’ if two proteins are physically separated, but they interact through other

intermediates and build a complex." [Pen+17]. The labels for both classiőcation tasks

are extracted from the intermediate BEL representation of the triples in the text-triple

pairs. More speciőcally, four relation types are mapped to the binary labels for the two

tasks (summarized in Table 8), respectively: direct increase (DIR-INC), direct decrease

(DIR-DEC), indirect increase (INC) and indirect decrease (DEC). Overall, the two rela-

tion type tasks intend to test how well the nature of those relations is (implicitly) encoded

in text and (or) the KG, which is particularly interesting for the models that include KG

data (i.e., the KG-baseline and STonKGs) since node2vec does not explicitly include the

triples’ relation type.

Next, there are four multiclass context annotation tasks that evaluate whether the

models are able to classify four diferent types of biological contexts, namely the (3) cell

line, (4) disease, (5) location and (6) species in which a given biological interaction

described by a text-triple pair can occur in. All of the four classiőcation tasks are di-

rectly based on the annotations provided in the INDRA statements. However, since the

annotations in the INDRA statements are based on a set of ontologies, there is a vast

number of possible values for each context type (e.g., more than 250,000 possible species

names based on the NCBI taxonomy [Sch+20b]). Moreover, the distribution across this

vast number of classes is tremendously skewed, as the majority of the available biological

literature is concentrated on certain őxed experimental settings (for instance, drugs are

mainly tested on humans, mice or rats rather than birds). To construct appropriate mul-

ticlass classiőcation tasks with a reasonable number of classes and class distribution, two

constraints were applied to the unőltered datasets: i) A maximum of ten classes is allowed

in each of the four tasks, and ii) each possible class needs to be represented by at least

1% of the total number of labels. As a consequence, the number of classes in each of the

four tasks ranges from three to ten classes (see Table 6 for a complete list of all possible

classes for each task). Moreover, the resulting datasets sizes are: n=3,760 (cell line),

n=4,586 (disease), n=5,223 (location), n=21,765 (species). Altogether, the con-

text classiőcation tasks are speciőcally relevant in drug discovery and clinical applications.

In such applications, certain biological efects might be diferent, if not even entirely re-

versed, depending on the species, disease, cell line or cellular location they are observed in.

Lastly, there are two annotation error-based tasks, which aim at providing a meta-level

12The full names of the cell line classes are omitted due to the lack of space. See https://www.

ebi.ac.uk/ols/ontologies/clo (accessed on August 9th, 2021) for the full names and further

descriptions.
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Relation 1) Polarity 2) Interaction type

Increases (INC) Increase Indirect

Decreases (DEC) Decrease Indirect

Directly Increases (DIR-INC) Increase Direct

Directly Decreases (DIR-DEC) Decrease Direct

Table 8: Mapping between the BEL relation types (listed in the leftmost column) and the labels for the

two relation-type classification tasks. As a result, the same dataset can be used to construct both the

polarity and the interaction type tasks.

perspective on the quality control aspect of the INDRA dataset. Since the majority of

the extracted text-triple pairs are stemming from automated reading/text mining systems

(see Table 1), certain types of processing errors cannot be entirely ruled out. For instance,

two common error types are the extraction of the wrong relation and the grounding of

nodes to the wrong normalized terms in a given ontology. Linking the presence of errors

(or even the speciőc error types) to certain characteristics in the text-triple pairs can

potentially help to identify reasons for those annotation errors. Hence, if the proposed

STonKGs model can outperform the two baselines on this task type, it could potentially

be employed in quality control pipelines in the future. To test the models’ abilities to

detect erroneous text-triple pairs, two classiőcation tasks are constructed: The (7) an-

notation error (binary) and the (8) annotation error (multiclass) tasks. Based

on a manually annotated dataset from the INDRA labs team at HMS, the respective

binary or multiclass class labels are created by either grouping all error types together

and discriminating between erroneous text-triples and correctly extracted ones (resulting

in the incorrect and correct for the binary task), or by treating each error type as well

as the correctly extracted cases as an individual class label (resulting in a total of eight

labels, as listed in Table 6). Some error types make up less than 1% of the overall labels.

Therefore they were őltered out. As a result, the dataset used for the annotation error

(multiclass) task is slightly smaller (n=12,611) than the one used for the binary task

(n=12,836).

In each of the eight classiőcation tasks, the őne-tuning model architecture adaptations

described in Section 3.2 are used to generate the respective class probabilities, and the

class with the highest probability is chosen as the predicted label. During the őne-tuning

procedure, all pre-trained model weights are further trained using binary or multiclass

cross-entropy loss functions (see Formula 11 and 12, based on [Con19]) to compare the

predicted labels ŷi to the true labels yi for all data entries n. In the binary case, the

ground truth labels yi consist of either zero or one (using increase, direct and correct

as the positive classes for task 1, 2, and 7, respectively). This idea is extended to the
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multiclass case, in which the true label for the i-th data entry is only equal to one (yic = 1)

if the class c is the correct class and is zero otherwise (yic = 0). Afterwards, the models

are used to predict the labels for the test split, and F1-scores are employed to measure

the test performance (see Formula 13 and 14, based on [Dev20]). More precisely, in the

binary case, the F1-scores are calculated based on the number of true positives TP , false

positives FP and false negatives FN included in the precision P = TP
TP+FP

and recall

R = TP
TP+FN

scores. For the multiclass tasks, the F1-scores are őrst calculated for each

class in a "one-versus-all" setting (resulting in class-speciőc values Rc and Pc for recall and

precision, respectively). Then, the total F1-score is formed as a sum of all class-speciőc

F1-scores, weighted by the relative number of entries for each class.

Lbinary = −
N︂

n=1

yi log ŷi + (1− yi) log (1− ŷi) (11)

Lmulticlass = −
N︂

n=1

C︂

c=1

yic log ŷic (12)

F1 = 2 ∗ P ∗R
P +R

(13)

F1 =
C︂

c=1

nc

N
∗ 2 ∗ Pc ∗Rc

Pc +Rc

(14)

Overall, the training and testing process is repeated multiple times within the framework

of a őve-fold13 cross-validation procedure with changing train-test splits. (However, the

train-test splits are the same for all models). The őnal reported F1-scores are the means

as well as the standard deviations across the őve recorded folds. It is important to note

that the standard deviations should be taken with a grain of salt, as they only cover the

variance across a very low number (i.e., őve) splits. Hence, the sample size is too small

for quantitative statistical tests (e.g. a t-test or a Mann-Whitney U test). Instead, the

diferences in F1-scores will be described qualitatively. More speciőcally, to describe the

diferences, both the absolute and the relative improvements (see Formula 15) of the best

STonKGs variant (explained in the following subsection) over the best baseline model on

each őne-tuning task are reported in Section 4.

F1-diferencerelative =
STonKGsbest − Baselinebest

Baselinebest

(15)

13A larger number of folds would not have been computationally feasible, as it would have significantly

increased the required runtime.
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3.3.3 Ablation Studies

In addition to comparing the performances of the two baseline models and STonKGs, this

thesis also intends to investigate the role of speciőc pre-training and model design choices

on the performance of the STonKGs model itself. A common method for the examination

of such efects is the conduct of so-called ablation studies. The goal of an ablation study

is to leave out one speciőc model component and observe how the model performance

changes. Based on a default model, the two aspects chosen for the ablation studies

conducted in this thesis are changes in the number of training steps and the exclusion of

the NSP objective. All ablations are applied to the pre-training procedure of STonKGs,

and their efects are analyzed based on changes in the downstream performance on the

evaluation benchmark. In total, there are three variants of STonKGs that are presented

in Section 4:

1. STonKGs300k (default): This model variant is the basis for the following two

ablated versions. More speciőcally, STonKGs300k is pre-trained for 300,000 train-

ing steps using the hyperparameters outlined in Section 3.2.3, including all three

pre-training objectives (MLM, MEM and NSP). The reason for choosing precisely

300,000 steps is to reach a proportionate order of magnitude for the number of pre-

training steps compared to the BioBERT model used as the NLP-baseline, given

the available compute power and runtime. In more detail, BioBERT v1.1 has been

pre-trained for 1 million steps using a batch size of b = 192 [Lee+20] (resulting in

192 ∗ 106 = 192, 000, 000 total training samples that are passed through BioBERT

during pre-training), whereas STonKGs is pre-trained for 300, 000 steps using a

batch size of b = 512 (resulting in 512 ∗ 300, 000 = 153, 000, 000 total training

samples). (Note that this is a very vague comparison since the average number of

tokens per input sequence (before padding) is signiőcantly diferent in BioBERT

and STonKGs.)

2. STonKGs150k: The second variant is the realization of the ablation regarding the

number of training steps. Instead of using the full 300,000 steps, STonKGs150k is

only trained for half as many steps. This ablation intends to investigate whether

fewer training steps signiőcantly decrease the model performance or not. It should

be noted that rather than pre-training a new model from scratch, this ablation is

realized through model checkpointing (i.e., STonKGs150k is an interim checkpoint of

STonKGs300k).

3. STonKGsNO NSP: Since the efectiveness of the NSP objective has been ques-

tioned in existing literature before [Liu+19], the STonKGsNO NSP model variant is
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constructed to measure the efect of the inclusion or exclusion of the NSP objective

on the downstream model performance. Due to computational constraints, however,

this model can only be trained for 150,000 instead of the full 300,000 steps. Hence,

the efect of the NSP objective on the overall performance is ought to be analyzed

by comparing STonKGsNO NSP to STonKGs150k rather than STonKGs300k.

3.4 Implementation

All of the code used in this thesis is comprised in the stonkgs package14 written in

Python [VD95] (v3.8.8). The two main components of the stonkgs package are the

stonkgs.data and stonkgs.models submodules that contain all relevant code for

the data processing as well as the model creation and training steps. However, since the

INDRA dataset is not publicly available, none of the raw data, the pre-training dataset

or the őne-tuning evaluation datasets is included in the remote repository (instead, they

only exist in local copies of the repository). Moreover, stonkgs also contains several

Jupyter Notebooks [Klu+16] that are primarily used to generate data statistics.

Although a complete overview of all Python packages and frameworks used for imple-

mentation is beyond the scope of this thesis, several central packages are discussed in the

following (summarized in Table 9, in which all links to the packages are listed as well).

With regards to processing the INDRA statements (and creating a BEL graph), the imple-

mentation relied on the respective indra package as well as pybel. Next, the node2vec

implementation from the nodevectors repository was used to train the node2vec model,

and the KG-baseline was constructed using a pytorch-lightning module. The two

Transformer-based models (i.e., the NLP-baseline as well as STonKGs) were implemented

using HuggingFace’s transformers library [Wol+20] with a pytorch [Pas+19] back-

end. The transformers package enabled to pre-train STonKGs in the half precision

ŕoating-point format (FP16), which signiőcantly reduces the required computational re-

sources for most operations (e.g., the weight updates). Another employed technique used

to lower the required GPU memory is gradient accumulation. This method lowers the

number of training examples that are passed to a GPU at once in two steps: First, the

given efective batch size (b = 512 in STonKGs) is split into multiple parts (eight parts,

in this case, resulting in a batch size of bacc = 64) and the gradient for each part is cal-

culated individually. In the second step, the weights are updated with the accumulated

gradients. Overall, both the pre-trained process as well as the őne-tuning procedures

are logged using the mlflow package, which tracks the pre-training loss, the evaluation

14The source code is publicly available at https://github.com/stonkgs/stonkgs (accessed on

August 22nd, 2021).
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Category Python Package Purpose Documentation/Link Version

Data
indra Process INDRA statements https://indra.

readthedocs.io/en/

latest/

1.19.0

pybel
Create the KG from INDRA

statements
https://pybel.

readthedocs.io/en/

latest/

0.15.2

Models

nodevectors Train node2vec embeddings https://github.

com/VHRanger/

nodevectors

0.1.23

torch
Pytorch backend for all three

models
https://pytorch.

org/docs/stable/

index.html

1.8.1

pytorch-

lightning
Implement the KG-baseline https://

pytorch-lightning.

readthedocs.io/en/

latest/

1.2.3

transformers

Implement the NLP-baseline

and STonKGs and create

model checkpoints

https://

huggingface.co/

transformers/

4.6.1

Other
mlflow Logging all results https://www.

mlflow.org/docs/

latest/index.html

1.15.0

sklearn Calculate the metrics https://

scikit-learn.org/

stable/modules/

classes.html

0.24.1

Table 9: Overview of the most important Python packages, their categorization, purpose and the

employed version used in the implementation of this thesis. A complete list of all packages used in the

source code of this thesis is provided in the setup.cfg file included in the stonkgs package. All listed

web pages were accessed on August 5th 2021.

metrics (calculated using sklearn) as well as a variety of hyperparameters. Moreover,

during pre-training, model checkpoints are created in regular intervals (i.e., every 2500

training steps) since the pre-training procedure needs to be interrupted and continued

without losing the progress.

In more detail, the NLP-baseline is initialized by loading the pre-existing dmis-lab/biobert-

v1.1 model uploaded by Lee et al. on the HuggingFace model hub15. The main in-

15https://huggingface.co/dmis-lab/biobert-v1.1 (accessed on August 5th, 2021)
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centive of the HuggingFace model hub platform (shown in Figure 19a) is to provide

the possibility for researchers to share pre-trained models with the NLP community so

that they can be easily re-used by other users and integrated into their use-cases with

the existing transformers Application Programming Interface (API). In particular,

this is convenient for users that do not have access to powerful computer clusters that

are needed to pre-train most Transformer-based models, since they can simply down-

load and re-use already pre-trained models. Contrary to the NLP-baseline, STonKGs

is implemented with custom written Python classes (STonKGsForPreTraining and

STonKGsForSequenceClassification) that mimic the same behavior as the two

respective classes from the transformers package (achieved through class inheritance

from the BertForPreTraining as well as the BertForSequenceClassification

classes). The main reason for choosing to inherit from these two classes is that it enables

to share the pre-trained STonKGs models (i.e., STonKGs300k and STonKGs150k) in a

straightforward manner on the model hub as well16 (see Figure 19b). More speciőcally,

the uploaded STonKGs models allow future users to utilize the stonkgs package and

download the already pre-trained models through the default from_pretrained func-

tion that is included in all model classes in the transformers package, as well as the

STonKGs-speciőc classes that inherit from them.

With regards to the computational resources used in this thesis, most of the required

training procedures are GPU- rather than CPU-intensive. The only exception to this is

the pre-training procedure of the KG-baseline, for which the main limitation is not im-

posed by the demanded GPU power but by the required Random-Access Memory (RAM)

since the entire KG needs to be loaded and processed in memory at once. Hence, the

KG-baseline is the only model that has been trained on a symmetric multiprocessing

(SMP) compute cluster node with four Intel Xeon Platinum 8160 processors and 1.5 ter-

abytes RAM. All other models are trained and evaluated on another compute cluster

node with four NVIDIA A100 Tensor Core GPUs with 40 gigabytes of memory each (a

single-machine multi-GPU node referred to as the GPU node in the following).

The major bottleneck for the computational tasks executed in this thesis is the available

runtime on the GPU node, limited by i) the six-month duration of this thesis as well as

ii) deadlines that need to be met by other users that require the GPU node. As a result,

a total of roughly one and a half months of runtime on the GPU node can be seen as

16STonKGs300k and STonKGs150k are available at https://huggingface.co/stonkgs/

stonkgs-300k and https://huggingface.co/stonkgs/stonkgs-150k, respectively (accessed

on August 9th, 2021).
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(a) Most popular models in the HuggingFace model hub.

(b) Searching for the STonKGs models in the HuggingFace model hub.

Figure 19: Screenshot of the HuggingFace model hub, which is a platform used to share pre-trained

Transformers with the NLP community. (Image source: taken from [Con21].)

a realistic estimate to conduct all experiments. Hence, the main factors inŕuencing the

runtime have been adapted accordingly. These factors include the number of pre-training

steps for STonKGs or the number of cross-validation folds regarding the repetition of the

evaluation procedure on the őne-tuning tasks. The vast majority of the available GPU

was utilized for the pre-training procedure of STonKGs. More speciőcally, it took 284.18

hours (≈11.84 days) and 568.35h hours (≈23.68 days) to pre-train the STonKGs150k and

STonKGs300k models, respectively (note that the pre-training time of STonKGs150k is

included in the time listed for STonKGs300k). Moreover, the pre-training procedure for

STonKGsNO NSP took additional 289.73 hours (≈12.07 days), as it needed to be pre-trained

from scratch.

62



4 Results

Similar to the clear distinction of the pre-training and őne-tuning parts in Section 3, the

main results presented in this section can be grouped into these two categories once again.

With regards to pre-training, the main focus lies on the novel STonKGs model rather than

the two baseline models. As outlined in Section 3.3, the loss of the joint training objective

used in STonKGs is the chosen metric used to assess the progress of the pre-training

procedure. That is why in Section 4.1, the loss curves of STonKGs150k/STonKGs300k

as well as STonKGsNO NSP are presented and analyzed in more detail. However, the

centerpiece of this section consists of the őne-tuning performances described in Section

4.2, based on the benchmark model performances reported in Table 10. This central table

lists a total of őve models (i.e., two baseline models and the three STonKGs variants)

evaluated on each of the eight classiőcation tasks, resulting in 40 reported performances.

More speciőcally, Table 10 provides the basis for an in-depth analysis of performances

from three diferent perspectives, namely based on the diferences between STonKGs and

the baselines (Section 4.2.1), between STonKGs and its ablations (Section 4.2.2) as well

as across the diferent tasks (Section 4.2.3). Furthermore, Table 10 also includes the

absolute and relative diferences in performance between the best baseline and the best

STonKGs variant. All in all, this section intends to provide an all-encompassing view on

the comparison of all proposed models on all constructed tasks, which serves as a basis

for the interpretation of the juxtaposition of models provided in Section 5.

4.1 Pre-Training STonKGs

In Figure 20, the loss curves (i.e., the value of the loss as a function of the number

of training steps) for all three STonKGs variants are shown. It should be emphasized

that the loss curve of STonKGs150k is a subset of the loss curve of STonKGs300k (since

STonKGs150k is implemented through an interim checkpoint of the pre-training proce-

dure of STonKGs300k at 150,000 steps in order to avoid another redundant and compu-

tationally expensive pre-training procedure). Therefore, the losses of STonKGs150k and

STonKGs300k are represented by the same loss curve (see Figure 20a). On the other hand,

STonKGsNO NSP requires a pre-training procedure from scratch, since its join loss (i.e.,

LNO NSP = LMLM + LMEM) is diferent from the loss used for the other two STonKGs

variants (i.e., Ltotal = LMLM +LMEM +LNSP). Moreover, it should be noted that the pre-

training procedure requires large amounts of compute power resulting in a long runtime

(see Section 3.4), and hence needs to be conducted in many separate parts17, indicated

by the diferently colored segments of the loss curve shown in Figure 20.

17Mainly caused by the maximum 48-hour runtime limit on the GPU compute node used in this thesis.
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(a) Loss curve of the joint pre-training procedure of STonKGs150k and STonKGs300k (i.e., STonKGs150k

is an interim checkpoint of STonKGs300k, as indicated on the x-axis), based on the Ltotal loss, consisting

of the MLM, MEM and NSP pre-training objectives.

(b) Loss curve of the pre-training of STonKGsNO NSP, based on the LNO NSP loss, consisting of the MLM

and MEM pre-training objectives.

Figure 20: Pre-training loss curves of the different STonKGs variants for all 300,000 training steps.

While Figure 20a is showing the loss curve of STonKGs150k and STonKGs300k, Figure 20b is displaying

the loss curve of the STonKGsNO NSP model. In both parts, the x-axis is depicting the number of training

steps at which the loss was captured (note that the shown intervals are different in 20a and 20b), whereas

the y-axis is showing the value of the loss on a logarithmic scale. In both pre-training procedures, the loss

was recorded every 50 steps, resulting in 6,000 and 3,000 data points in Figure 20a and 20b, respectively.

The different colors appearing in the loss curves show the different runs (i.e., interruptions and re-starts

of the pre-training procedures) in which the models were sequentially pre-trained. (Image source: own.)

The őrst main general observation regarding the pre-training loss of STonKGs is that

the loss continuously decreased with an increasing number of training steps for all model

variants. Furthermore, the main decrease of the loss can be seen in the őrst parts of

both pre-training procedures. Afterwards, the loss curves become increasingly ŕat (but

continue to decrease slightly). For instance, while pre-training STonKGs300k, more than

94% of the loss reduction is taking place within the őrst 50,000 training steps, whereas the

following 250,000 training steps merely account for the remaining 6%18. Additionally, the

18The values of the respective loss curve are Ltotal ≈ 12.98 at the first step, Ltotal ≈ 1.42 at 50,000

steps and Ltotal ≈ 0.69 at 300,000 steps
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(a) Steep decline of the loss curve between 5,000 and 20,000 pre-training steps

(b) Less steep and more fluctuating decline of the loss curve between 150,000 (i.e., the checkpoint used

for STonKGs150k) and 165,000 pre-training steps

(c) Almost non-declining but highly fluctuating loss curve between 285,000 and 300,000 pre-training

steps (i.e., the final checkpoint used for STonKGs300k)

Figure 21: Close-up snapshots of the pre-training loss curve of STonKGs over three chosen inter-

vals. More specifically, the three figures show the loss curve of the shared pre-training procedure for

STonKGs300k and STonKGs150k (i.e., an earlier checkpoint of STonKGs300k), captured in three different

intervals consisting of 15,000 training steps each. Again, the x-axis is showing the number of pre-training

steps, whereas the y-axis is depicting the value of the loss. The loss is logged every 50 training steps,

resulting in 300 data point for each of the three shown intervals. (Image source: own.)
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shapes of both loss curves depicted in Figure 20 resemble typical logarithmic loss/cross-

entropy loss curves. This is not surprising, given that the overall loss is calculated as the

sum of three (or two) cross-entropy-based loss functions.

On a large scale (e.g., over the entire 150,000 or 300,000 training steps), both loss curves

are seemingly smooth and hardly exhibit any irregularities. However, when taking a closer

look (see Figure 21), it becomes evident that the amplitude of the ŕuctuations increas-

ingly outweighs the decrease in loss over time. More precisely, this is depicted by the

diferent levels of ŕuctuation in the depiction of the loss curve in equally sized intervals at

three diferent stages of the pre-training procedure. In the őrst interval (starting at 5,000

training steps and ending at 20,000, see 21a), it can be seen that the overall diference of

the loss between the beginning and the end of the interval (Lα − Lω ≈ 3.8 − 2.2 = 1.6)

is greater than the ŕuctuations between neighboring logging steps. In the second inter-

val (from 150,000 to 165,000 training steps, 21b), there is no such clear trend anymore.

Instead, the amplitude of the ŕuctuation (lying at around 0.02 on average) is already in

the same order of magnitude as the overall loss decrease in that interval (≈ 0.03). Lastly,

in the third interval ranging from 285,000 to 300,000 (see Figure 21c), the ŕuctuations

clearly show a greater impact on the change of the loss function compared to the overall

decline.

Lastly, it should be highlighted that all reported values for the losses are based on the

added partial losses from the individual pre-training objectives. Hence, it is not possible to

conduct an in-depth analysis of the proportion of each of the three individual pre-training

objectives (i.e., the MLM, MEM and NSP objectives for STonKGs150k/STonKGs300k and

the MLM and MEM objectives for STonKGsNO NSP) on the overall loss at each logging

step. However, indirect observations can be made about the role of the NSP training

objective on the overall loss, as it is included in STonKGs150k/STonKGs300k (see Figure

20a) but not in STonKGsNO NSP (see Figure 20b). Based on comparing the two respective

loss curves, it becomes evident that the curves are almost identical in shape. This poten-

tially indicates that the NSP objective is not harmful to the decrease of the loss during

pre-training, and that it might only play a minor role in the overall progression of the

loss. A further indication is given by the minor discrepancy between the two respective

losses (Ltotal and LNO NSP) at 150,000 training steps. More speciőcally, while Ltotal is

roughly equal to 0.91, LNO NSP lies at around 0.76 (cf. Figure 20a and 20b), resulting in

a diference of 0.15.
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4.2 Fine-Tuning Benchmark Performances

Table 10 summarizes the mean and standard deviations for the weighted F1-scores recorded

over őve cross-validation folds for each proposed model evaluated on each constructed task.

More speciőcally, the rows in Table 10 are listing all of the eight benchmark tasks, grouped

and color-coded bases on their task types. The őrst őve columns, on the other hand,

are listing all őve models, namely the NLP- and KG-baselines, as well as STonKGs150k,

STonKGs300k and STonKGsNO NSP. In each row, the model with the highest F1-score for

the given task is highlighted in yellow. Moreover, the rightmost two columns are listing

the absolute and relative diferences (see Section 3.3.2) between the best baseline model

and the best STonKGs variant on each task. Overall, the reported means of the F1-scores

vary greatly depending on the concrete model and task, ranging from 0.020 to 0.995. Fur-

thermore, the recorded standard deviations range from 0.325 to 0.000 (i.e., falling below

the precision of the measurement consisting of three decimal places), but considerably

low (i.e., lower than 0.01) in more than half (i.e., 22) of the 40 reported performances.

Together with the low number of cross-validation folds, this results in a generally low

explanatory power of the reported standard deviations. Therefore, the following compar-

isons are primarily supported by the mean F1-scores rather than the standard deviations.

The following subsections aim to provide three orthogonal perspectives for an in-depth

analysis of the results reported in Table 10. First, Section 4.2.1 is taking a closer look

at the diferences between STonKGs and both baselines, as well as between the baseline

models, to examine the initial hypothesis of this thesis (see Section 1.2). Then, the efects

of the ablations are summarized in Section 4.2.2 to provide a closer understanding of how

a decreased number of training steps and the exclusion of the NSP training objective

afect the downstream benchmark performance of the STonKGs model. Lastly, Section

4.2.3 is reporting the diferences in performance across the eight diferent tasks (rather

than across the diferent models) and summarizes the main trends. It should be noted

that absolute diferences concerning the F1-scores are expressed in decimal numbers in

the following. In contrast, percentages are indicating relative performance gains or losses

(unless stated otherwise).

4.2.1 Differences Between STonKGs and the Baselines

As demonstrated by the task-speciőc best performances in Table 10, STonKGs beats

both baselines in six out of eight classiőcation tasks, namely on the (2) interaction

type, (3) cell line, (4) disease, (5) location, (7) annotation error (binary) and

(8) annotation error (multiclass) tasks. More precisely, all three STonKGs variants,
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Table 10: Reported mean and standard deviations of the weighted F1-scores recorded for all models

on all eight tasks from the evaluation benchmark (i.e., the first five columns). A standard deviation

of 0.000 does not necessarily indicate zero variance; it means that the value surpasses the precision in

terms of recorded decimals (i.e., three decimal places). The two baselines (the NLP-baseline and the

KG-baseline), as well as the three STonKGs variants (STonKGs300k, STonKGs150k and STonKGsNO NSP)

are grouped together to facilitate the overall comparison. For each task, the best result is highlighted in

yellow. Additionally, the absolute as well as the relative performance gains (see Section 3.3.2) between the

best baseline and the best STonKGs variant are reported in the rightmost two columns and highlighted

in green or red, depending on whether STonKGs improved over the baselines or not.

68



and not only the best STonKGs model, consistently results in higher F1-scores than the

baselines on the named tasks. Moreover, the NLP-baseline persistently outperforms the

KG-baseline on all eight tasks, with considerable margins ranging from 0.046 on task (2)

to 0.492 on the (1) polarity task. Hence, the KG-baseline is the model with the lowest

F1-scores on all tasks. For seven out of eight tasks, there is a gap of more than 0.100 (i.e.,

10%19) between the KG-baseline and the next best model with regards to the respective

F1-scores. Only for task (2), the KG-baseline scores roughly on par with the other models

(discussed in more detail in Section 4.2.3). Additionally, the KG-baseline is the model

for which the largest standard deviations are reported across all tasks (except for task

(3)). However, since the initial hypothesis of this thesis is focusing on the aspect of an

NLP x KGE Transformer beating both baselines, rather than on the comparison between

the two baselines, the following paragraph is centered around the diference between the

NLP-baseline (i.e., the best baseline model) and STonKGs (the NLP x KGE model).

Additionally, it is important to note that while there are three STonKGs variants, the fol-

lowing explanations implicitly refer to the STonKGs model with the highest performance

for a given task (since all STonKGs models consistently perform better or worse than the

NLP-baseline on all tasks).

To compare the NLP-baseline to STonKGs in more depth, it makes sense to distinguish

between less complex tasks (i.e., tasks with either two or three classes: (1) polarity,

(2) interaction, (6) species and (7) annotation error (binary)) and more complex tasks

(i.e., those with either őve or ten classes: (3) cell line, (4) disease, (5) location and

(8) annotation error (multiclass)). For the more complex tasks, STonKGs clearly

outperforms the NLP-baseline by a substantial margin, speciőcally on task (3)

(+0.023 absolute improvement), (4) (+0.034) and (7) (+0.083). Moreover, the magnitude

of the diferences becomes even more apparent when looking at the relative improvements

(+8.81%, +15.89% and +9.42% for task (3), (4) and (7), respectively). Even for the

fourth less complex task, namely for task (5), STonKGs still leads to a +2.02% relative

performance gain. On the other hand, for the less complex tasks, there is no clear

trend indicating that STonKGs is outperforming the NLP-baseline or the other

way around. In more detail, while STonKGs is leading to a larger F1-score on task (2)

(+0.004/+0.40%) and (7) (+0.067/+7.35%), this is not the case for task (1) and task

(6), resulting in performance losses of -0.009 (-0.96%) and -0.005 (-0.58%), respectively.

However, it should be highlighted that in three out of the four less complex tasks (task

(1), (2) and (6)), the diference in F1-scores is smaller than 1%.

19This percentage is not to be confused with the relative performance gain.
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4.2.2 Differences Between STonKGs and Its Ablations

Based on the reported performances in Table 10, one can recognize a clear trend: Across

all tasks, the diferences in performance between the three diferent STonKGs variants

are consistently smaller than the diferences between all STonKGs models and the base-

lines. For instance, on task (8), the performances of the STonKGs variants vary be-

tween 0.960 and 0.964 (∆within STonKGs = 0.004), whereas the diference between the

best baseline (i.e., the NLP-baseline with a score of 0.881) and the worst STonKGs

model (i.e., the STonKGsNO NSP resulting in a F1-score of 0.960) is substantially larger

(∆between models = 0.079 ≈ 20 ∗∆within STonKGs). This suggests that the general incorpora-

tion of both the text and the KG modality has a greater efect on the performance than

the change in pre-training steps or objectives (discussed in greater detail in Section 5). In

general, out of the three constructed model variants in this thesis, STonKGs300k results

in the best overall performance on the eight benchmark tasks, beating the other two

variants on task (4), (5) and (8), and achieving the same F1-score as the next best model

on task (2) and (6). On the other hand, STonKGs150k leads to the highest F1-scores on

task (1) (still resulting in a lower score than the NLP-baseline) and task (7). Lastly,

the STonKGsNO NSP model results in considerably lower performances than the other two

variants, apart from task (3), in which it proves to be the best STonKGs variant.

However, on most tasks, the differences between the STonKGs variants are

marginal, such as the +0.001 F1-score improvements on tasks (5) and (8). In fact, the

reported standard deviations are greater than the diference across the means of the model

variants in some cases (e.g., in task (5), the standard deviations of all three models are

> 0.001, and thereby greater than the diference between STonKGs300k and STonKGs150k).

Moreover, it should be highlighted that the disparities between the STonKGs variants are

not or just hardly passing the measurement precision of three decimal places. Only on task

(3) and (4), there are apparent diferences (≥ 0.004 and ≥ 0.008, respectively) between

the F1-scores of the three STonKGs models.

4.2.3 Differences Across Tasks

Naturally, the most prominent variations across the F1-scores of the models on the eight

tasks are linked to the nature of the respective classiőcation settings, more speciőcally,

the number of classes. For instance, in Table 10, one can observe that the reported

F1-scores on the three binary tasks (i.e., task (1), (2) and (7)) are considerably

higher than the respective scores on the other tasks, particularly for the NLP-

baseline and the STonKGs variants. In the case of the two relation type tasks (task (1)
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and (2)), another key distinctive feature is the increased dataset size compared to the

other tasks. While there are n = 78, 979 annotated text-triple pairs for the (1) polarity

and (2) interaction tasks, the datasets of the other six tasks contain n = 21, 765 text-

triple pairs at most (i.e., less than 30% of the data used for the őrst two tasks, see Table 6).

Next, there are three tasks with three to eight classes: (5) location (nclasses = 5), (6)

species (nclasses = 3) and (8) annotation error (multiclass) (nclasses = 8). Surprisingly,

across these three tasks, the NLP-baseline and all STonKGs variants reached the highest

F1-scores on the eight-class task (task (8)). Comparing these F1-scores to the perfor-

mances on the three-class species task (task (6)) reveals another striking detail: While on

task (6), the best STonKGs model is resulting in a F1-score of 0.860, STonKGs surpasses

this performance by more than 0.1 (i.e., ∆NLP (8)-(6) = 0.964 − 0.860 = 0.104) on task

(8). However, for the NLP-baseline, the diference across these two tasks is substantially

smaller (∆STonKGs (8)-(6) = 0.881− 0.865 = 0.016). This may indicate that task (8) proőts

more from the joint use of both KG and text data than task (6) (which is further reŕected

by the NLP-baseline outperforming all STonKGs variants on that task). On the contrary,

task (5) proved to be more challenging, resulting in a maximum F1-score of 0.405, which

is a decrease of more than 0.4 compared to the performances on task (6) and (8).

Lastly, for the two ten-class tasks, namely the (3) cell line and (4) disease tasks, Table

10 clearly highlights the relatively low performance of all models on the ten-class

classification tasks (i.e., F1-scores less or equal to 0.261) compared to the other six

tasks. In addition to having the largest number of classes, these two tasks also contain

the lowest number of text-triple pairs (n = 3, 760 and n = 4, 586 for task (3) and (4),

respectively). These are also two of the tasks in which the best STonKGs variant led to

the greatest relative performance gains compared to the NLP-baseline (see Section 4.2.1).

However, the most notable discrepancies between the reported F1-scores across

all eight tasks can be observed for the KG-baseline, ranging from 0.020 on task

(3) to 0.945 on task (2). In addition to the large deviation in the means of the F1-scores,

the KG-baseline also demonstrates substantially larger variations in the reported standard

deviations for the task-speciőc F1-scores compared to the NLP-baseline and the STonKGs

variations. For instance, on task (2), the reported standard deviation is σKG (2) = 0.002,

whereas on task (6), the reported value is σKG (6) = 0.325, which is more than 150 times

larger (i.e., σKG (6) = 162.5 ∗ σKG (2)). More speciőcally, there two tasks with very low

standard deviations (σ ≤ 0.010), task (2) and task (3) (σKG (2) = 0.007). Interestingly,

these are the two tasks on which the KG-baseline performs best and worst, respectively.
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Next, there are three tasks with medium-scale standard deviations (0.010 < σ ≤ 0.100):

Task (4), (7) and (8). While for task (7) and (8), the reported standard deviations are

still roughly an order of magnitude smaller than the respective mean F1-scores, the stan-

dard deviation on task (4) (σKG (4) = 0.029) is almost as large as the mean F1-score itself

(µKG (4) = 0.030). Lastly, there are three remaining tasks with comparatively large stan-

dard deviations compared to the other tasks (0.100 < σ), namely task (1), (5) and (6).

These large values represent large variations across the performances of the KG-baseline

on varying train and test splits in the cross-validation procedure, which indicates the lack

of robust model performance on changing dataset partitions. All in all, the substantial

variations in the means and standard deviations of the reported F1-scores across tasks

can potentially be linked to statistical biases in the training partitions of some őne-tuning

datasets. In certain cases, this might motivate the KG-baseline to exploit correlations

between certain nodes and speciőc labels present in the text-triple pairs rather than to

learn meaningful feature representations.

To further examine this claim, it makes sense to investigate whether there are any statis-

tical cues between the unique nodes present in each őne-tuning dataset and the labels for

the respective text-triple pairs in which the nodes appear. For instance, the őne-tuning

dataset used for the (2) interaction (as well as the (1) polarity) task contains 464 text-

triple pairs, in which the node p(HGNC:14931 ! SIRT3) (i.e., the Sirtuin-3 (SIRT3)

gene) is mentioned. In 462 cases, the respective text-triple pairs are associated with the

direct label for task (2), compared to only two examples, which are labelled as indirect.

For such nodes, the KG-baseline is potentially able to exploit the correlation

to the imbalanced class labels, since in the test split, a text-triple pair containing a

given node is likely to have the same label as another text-triple pair including the same

node in the training split. In the provided example, the percentage of direct examples

out of all text-triple pairs for the given node lies at 462
464

≈ 99.6%. This imbalance for

binary classiőcation tasks (indiferent to which of the two labels is the dominating one)

is referred to as the class imbalance ratio in the following.

Figure 22 depicts the results of such an analysis on all unique nodes of the dataset used

for the (1) polarity and (2) interaction tasks. More speciőcally, on the x-axis, there are

multiple groups of bars representing the set of unique nodes contained in at least two

(or three, four or őve) text-triple pairs in the dataset. The y-axis depicts the percentage

of unique nodes in these groups with a class imbalance ratio of more than 90%. As

shown by the large discrepancy between the bars belonging to the (1) polarity and the

(2) interaction tasks in each group, there are substantially more nodes with a skewed
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Figure 22: Percentage of unique nodes with a class imbalance ratio of greater than 90% for the (1)

polarity and (2) interaction tasks (shown on the y-axis). The percentages are calculated for different

groups containing all the unique nodes of the fine-tuning dataset used for task (1) and (2) that contain

at least two, three, four or five text-triple pairs with a given node, respectively (i.e., the different groups

on the x-axis). As shown by the large discrepancies between the bars belonging to the (1) polarity and

(2) interaction tasks in each group, there are significantly more unique nodes with a large class imbalance

ratio in task (2) than (1). (Image source: generated by Dr. Daniel Domingo Fernández)

class imbalance ratio for task (2) than task (1). This őnding is particularly helpful for

explaining the protruding performance of the KG-baseline on task (2) compared to all

other tasks (discussed in more detail in the next section).
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5 Discussion

Combining both text and KG data in a multimodal NLP x KGE Transformer-based ML

model yields great potential for improving the downstream performance on a variety of

classiőcation tasks in a transfer learning setting. Such an NLP x KGE model can po-

tentially learn meaningful links and interdependencies between sentence-level information

present in unstructured text and subgraph-level information derived from structured KG

data. Learning these links is based on a pre-training procedure on large quantities of text-

triple pairs that encompass all biological knowledge available in biomedical literature. A

three-step comparison was carried out to test the efectiveness of such a multimodal ap-

proach in this thesis. In more detail, the underlying hypothesis was that the proposed

NLP x KGE model could improve downstream performances when compared to an NLP-

baseline operating entirely on text data as well as a KG-baseline that solely uses KG data

in a shared experimental setting (see Figure 1). The main results presented in Table 10

provide evidence in support of this initial hypothesis: The proposed NLP x KGE model,

STonKGs, outperformed the two baselines on six out of a total of eight sequence classiő-

cation tasks. Moreover, the pre-trained STonKGs models are made publicly available (see

Section 3.4), which enables anyone to re-use the methodology developed in this thesis for

their own use-cases dealing with the annotation (i.e., classiőcation) of arbitrary text-triple

pairs.

This section provides a closer examination of the central őndings (reported in Section

4) and their implications. First, Section 5.1 is discussing further interpretations of the

downstream model performances listed in Table 10 and the main trends summarized in

Section 4.2. Next, Section 5.2 is covering the main limitations of the methodology applied

in this thesis, followed by a summary of the major challenges encountered in this work in

Section 5.3. Lastly, Section 5.4 is listing future research directions regarding the extension

to other applications as well as further analyses that can provide a deeper understanding

of this work.

5.1 Differences in Performances

Generally, STonKGs was able to outperform the other two baselines on six out of eight

sequence classiőcation tasks (as shown in Table 10). In particular, some of the largest

relative performance gains were observed for the (3) cell line and (4) disease tasks, which

are the tasks with both the largest number of classes as well as the lowest number of

text-triple pairs. This őnding suggests that the inclusion of both modalities in STonKGs

is speciőcally beneőcial for settings with a large number of classes and a low number
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of examples for each class, which resembles potential real-world annotation settings the

most (see Section 5.4). Surprisingly, there were not any substantial diferences in the

downstream performances of the three variations of the STonKGs model architecture

(i.e., STonKGs150k, STonKGs300k and STonKGsNO NSP). This is possibly linked to i) the

similar loss curves of STonKGs150k/STonKGs300k and STonKGsNO NSP (cf. Figure 20a

and 20b) as well as ii) the low proportion of the overall loss reduction that takes place

between STonKGs150k and STonKGs300k (see Figure 20a). More speciőcally, towards the

last portion of the 300,000 training steps, the levels of ŕuctuation clearly outweigh the

overall decreasing trend of the loss curve (see Figure 21c), which likely indicates the minor

efect of the additional pre-training steps in STonKGs300k.

Overall, the KG-baseline model exhibited a comparatively poor performance across all

eight benchmark tasks compared to the NLP-baseline and the three STonKGs variants.

This is not surprising, given that the chosen classiőcation tasks focus on predicting the

context or relation type of a given text-triple pair, which is not explicitly captured by the

KG embeddings learned by node2vec. Another reason that could potentially explain the

relatively low performance is the employed őne-tuning strategy of the static KG-baseline

model. Technically, the employed őne-tuning strategy is not strictly following the pre-

training and őne-tuning setting of the transfer learning paradigm since the weights of

the node2vec model are not adapted based on the task-speciőc cross-entropy losses in

the őne-tuning procedures. Moreover, although the implemented őne-tuning architecture

(consisting of the pooling procedure, the linear layer and the softmax activation func-

tion) aimed at providing a consistent comparison to the other two model architectures, it

might not have been suitable for generating class predictions based on a set of static KG

embeddings. For instance, the derived random walk-based embedding sequences do not

contain the same special classiőcation (i.e., [CLS]) token that is used in the other two

Transformer-based models. Hence, a simple dimension-wise pooling procedure is expected

to perform worse than using a dedicated aggregated [CLS] representation of an input

sequence. After all, the order of magnitude of the efect from these complementary factors

on the downstream performance of the KG-baseline cannot be precisely estimated, thus,

requiring further experiments and analyses.

Interestingly, there are great diferences across the task-speciőc performances for the KG-

baseline. For instance, regarding the binary classiőcation tasks, the model achieved an

F1-score of 0.945 on the (2) interaction type task, compared to an F1-score of 0.448 on the

(1) polarity task. Based on the demonstrated discrepancy in the class imbalance ratios

between these two tasks (see Figure 22), there is evidence for substantial biases between

75



the unique nodes and their associated labels in each task. The KG-baseline possibly ex-

ploits these biases, which could explain the large diference in performance on these two

tasks. More speciőcally, the biases could prevent the KG-baseline from learning appro-

priate values for the weights in the linear layer in the őne-tuning architecture component,

which might also explain the large standard deviations of the model, particularly on the

(1) polarity, (5) location and (6) species tasks. Moreover, the observed task-speciőc bi-

ases between the nodes and the class labels have further implications for STonKGs. More

speciőcally, the same biases could be exploited in the attention mechanism (more pre-

cisely, through the learned attention coeicients) of STonKGs. Therefore, the reported

results for both the KG-baseline and all STonKGs variants are potentially afected by

these distortions. In the latter case, this considerably impacts the overall proof of concept

of the multimodal Transformer, since it is hardly possible to tell apart whether the supe-

rior performance of STonKGs is caused by purposeful combinations of text and KG data

or whether it is mainly inŕuenced by potential biases present in the KG data20. However,

the substantially lower standard deviations of all STonKGs variations indicate a more

robust classiőcation procedure compared to the KG-baseline.

Although such biases can exist in text data as well (e.g., certain words that are statistically

correlated to speciőc class labels but not meaningfully related to a given őne-tuning task),

the performance of the NLP-baseline proved to be both more robust (in terms of lower

standard deviations) and higher compared to the KG-baseline. In fact, on many tasks,

speciőcally on those with a comparably low number of classes (e.g., task (1), (2) and

(6)), the NLP-baseline achieved a similar (if not better) performance compared to the

best STonKGs variant. This indicates that for some tasks, the context information is

suiciently included in sentence-level text data rather than in subgraph-level KG data,

meaning that a purely text-based Transformer can be adequate to solve these classiőcation

tasks. For instance, in the (6) species task, it is evident to assume that keywords such as

human, mouse or rat mentioned in the text evidence (but not encoded anywhere in the

random walk-based sequence data) are central indicators for the classiőcation of a given

text-triple pair. Furthermore, the lower standard deviations of both the NLP-baseline

and STonKGs (compared to the KG-baseline) could indicate that őne-tuning all model

weights (rather than only the őne-tuning components) is playing a central role in the

robust adaptation of the pre-trained embedding representations.

20A careful investigation of the pre-trained attention coefficients of STonKGs on a small set of examples

could potentially provide clarification. However, choosing the suitable Transformer layers, heads and

examples easily leads to cherry-picking. Hence, this procedure is not ideal for explaining the general

behavior of the model.
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5.2 Limitations

While the main results of the thesis support the initial hypothesis, there are several limi-

tations to the proposed methodology and the explanatory power of the reported results.

First, as mentioned in the previous subsection, there are potential biases in the őne-tuning

datasets used to construct the benchmark, which are likely to inŕuence the overall ex-

pressiveness of the superiority of STonKGs on the benchmark. Hence, it is necessary to

validate the three proposed model architectures on further carefully designed őne-tuning

tasks that exclude such biases to provide stronger evidence regarding the central hypoth-

esis. Moreover, although the pre-training and őne-tuning dataset splits were explicitly

designed to be disjunct to prevent any information leakage (see Section 3.3.1), the őne-

tuning datasets used in the benchmark are still based on INDRA statements, which are

extracted using the same readers as the text-triple pairs employed in the pre-training

procedure. As a result, possible inclinations of the readers employed by INDRA are po-

tentially adopted in the creations of the őne-tuning datasets as well. For instance, most

readers focus on high precision rather than high recall, which potentially favors the ex-

traction of frequently mentioned and easily detectable biological processes rather than

rare interactions.

To strengthen the evidence for a robust model performance of STonKGs, further text-

triple pairs from sources and readers other than the ones used in INDRA need to be

employed in the datasets. Regarding the őne-tuning datasets/tasks, the inclusion of more

heterogeneous data sources is relatively straightforward, as it only requires extracting

(or even manually curating) a comparatively small number (i.e., thousands) of labelled

text-triple pairs from other sources. However, enriching the pre-training dataset with

other sources is substantially harder since it requires a much larger number (i.e., millions)

of examples. In the biomedical domain, there is a lack of publicly available large-scale

datasets that can be used to create training examples in the required text-triple format.

Essentially, this results in two options for obtaining large-scale text-triple datasets; either

through collaborators who are willing to share their datasets or through unassisted data

collection, which is expected to take a tremendous amount of time and efort21. Even

though it was possible to leverage a considerably large number of raw statements through

INDRA (i.e., over 35 million statements), both the applied őltering procedure (resulting

in over 13 million triples, see Section 3.1.1) and the relatively short average token length

(see Figure 14) cause the INDRA dataset to be smaller and less abundant in comparison

to other sources from the general domain such as Wikidata.

21Hence, it would not have been feasible to collect an independent dataset suitable for both pre-training

and fine-tuning within the scope of this thesis.
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Next, there are additional limitations concerning numerous őxed (model) design choices,

which could have been tested more thoroughly to provide further insights and possibly

improve downstream model performances. For instance, őxed values were allocated for

several hyperparameters of node2vec and the őne-tuning procedures for all three models,

which left no possibility to explore further options that could have potentially improved

the benchmark performances. More speciőcally, in node2vec, both q and p were set to one,

meaning that neither local nor global exploration was favored when creating the random

walks. Moreover, to guarantee the integration of KGEs in STonKGs, the random walk

length l as well as the embedding dimension d had to be set to predetermined values (i.e.,

l = 127 and d = 768), which are still in the same order of magnitude, but considerably

larger than the common choices for these hyperparameters. To be more precise, Grover

and Leskovec tested a range of [40, 100] for l in the original node2vec publication [GL16],

and Mikolov et al. evaluated a range of [50, 600] for the embedding dimension d in the

word2vec model [Mik+13b] (that is internally used in node2vec). Therefore, a compari-

son between the node2vec model with the employed values in this thesis to another one

with smaller values for l and d could have helped to estimate the efect of the unusual

hyperparameter choices on the quality of the learned KGEs. For that, it would have been

helpful to monitor the pre-training process of the node2vec model in more detail (e.g.,

the value of the log-likelihood used to optimize the internal word2vec model) to validate

the efectiveness of the overall training procedure.

In addition, both the KG-baseline and STonKGs used a static lookup for the associated

random walks for each node in the unique set of nodes in the INDRA pre-training dataset.

Alternatively, it would have been possible to dynamically sample random walks for each

node in the KG to generate the embedding sequences for each text-triple pair in the

KG-baseline and STonKGs. However, that would have substantially increased the overall

complexity of both models, which might have particularly led to an infeasible pre-training

procedure for STonKGs. Another complementary strategy would be to leverage more so-

phisticated KGEMs such as GCNs or GATs to generate the embedding sequence for a

given triple. This could also potentially eliminate one weakness of STonKGs, namely the

static nature of the pre-trained node embeddings, which makes it impossible i) to derive

an embedding representation for any node that is not included in the original pre-training

partition of the INDRA dataset and ii) to incorporate relation types present in the triple

data. In particular, the dependency on the set of nodes included in the pre-training pro-

cedure strongly hampers the application of STonKGs on data sources outside of INDRA.

However, at least two aspects impede the use of such KGEMs in the proposed NLP x
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KGE model architecture of this thesis. First, it is practically impossible to train embed-

ding representations of millions of triples using convolutional or attention-based KGEMs

(see Section 2.3). Secondly, to incorporate embeddings from a chosen KGE model into

a multimodal Transformer, sequential representations (such as the random walks gener-

ated in node2vec) need to be created for a given triple őrst. Therefore, other KGEMs

would require major adaptations prior to their integration into a multimodal Transformer.

Moreover, there are restraints in terms of the conclusions that can be drawn based on

the proposed benchmark and evaluation procedure. All eight tasks are centered around

sequence classiőcation. Hence, all reported model performances must be interpreted with

respect to this particular task type. To create a more all-encompassing benchmark, addi-

tional task types (with matching őne-tuning architecture modiőcations) must be incorpo-

rated as well (see Section 5.4). Next, although there is evidence that STonKGs is leading

to improvements in performance, particularly on tasks with smaller datasets, profound

conclusions can only be drawn based on a closer investigation of this aspect. For instance,

it would have been possible to test the performances of all models on multiple smaller

subsets of the same dataset for a given task (e.g., subsets with 1,000, 2,000, 5,000, and

10,000 entries). This could have possibly revealed more detailed insights about the po-

tential beneőts of STonKGs for transfer learning on small datasets.

Additionally, it can be argued that some of the őne-tuning tasks, speciőcally the binary

ones, are too trivial to test for meaningful diferences across the there proposed model

architectures. This is particularly demonstrated in the (2) interaction task, in which four

out of the őve proposed model variants achieved an F1-score of > 0.99 (see Table 10).

Combined with the lack of statistical testing based on the reported means and standard

deviations (due to the low number of folds in the cross-validation procedure), one cannot

argue using the statistical signiőcance of the reported diferences in model performances,

which impedes the overall explanatory power. Furthermore, it can be argued that the

binary tasks are unrelated to most real-world application scenarios, which are character-

ized by a large number of classes and a low number of examples per class. Lastly, all the

comparisons made in this thesis are based on two custom-built baselines rather than on

other biomedical LMs that incorporate KG data such as BioKGLM [Fei+20] or BERT-

MK [He+20] (see Table 2). However, ensuring a fair comparison to STonKGs would not

have been trivial since most of these models explicitly require entity linking (i.e., datasets

that explicitly link single tokens to nodes, which is substantially diferent from the loose

coupling of sentence-level text and subgraph-level KG data in this thesis).
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5.3 Challenges Encountered in This Thesis

Although all of the previously outlined aims (see Section 1.3) have been achieved, there

have been several challenges in the realization and implementation of the goals of this

thesis. First, there were several complications concerning the employed INDRA dataset.

The generation of the raw INDRA dataset was delayed by almost two months on the

part of the INDRA team at HMS, leaving a smaller window than initially planned for

the data preprocessing part and the execution of all pre-training procedures (including

the ablations). In general, one major challenge was to őnd an appropriate balance be-

tween quality and quantity with regards to preprocessing the raw INDRA statements.

As stated in Section 3.1.1, the main impediment has been the absence of text evidence

in many statements. This did not leave much room for additional quality control mech-

anisms (for the remaining 13 million statements) since they would further reduce the

number of text-triple pairs for pre-training and őne-tuning. Moreover, many aspects of

the data dump generation were not entirely transparent (e.g., possible caveats concerning

the readers, the proportion of statements coming from each reader or additional settings

regarding the lengths of the extracted text evidences), making it hard to ensure the over-

all quality of the dataset. Furthermore, the annotations were much sparser than initially

anticipated, which caused several problems for the creation of the őne-tuning tasks. The

set of proposed őne-tuning tasks had to be changed multiple times, as some of the tasks

did not have enough examples. Also, it would have been desirable to create tasks with a

larger number of classes (e.g., nc = 20 or even nc = 100 classes). However, this was not

possible due to the small number of text-triple pairs in the minority classes.

In addition, it is important to highlight the immense computational resources and amount

of time that is required to pre-train STonKGs (see Section 3.4). Consequently, this meant

that there was only a very limited number of attempts for pre-training the model and its

variants on the preprocessed pre-training partition of INDRA. Hence, it was not possible

to make changes to the preprocessed dataset or to the cross encoder of STonKGs later

on, which implied that potential feedback could not be fully respected (especially given

the overall time constraints of the thesis). Moreover, there were several issues regarding

the implementation of the pre-training procedure. One of the central bottlenecks of this

thesis was the runtime of the pre-training procedure. Thus, major eforts were invested

into reducing the required runtime per training step (e.g., using FP16 precision instead of

full precision, see Section 3.4). The deepspeed Python library [Ras+20] appeared to be

a promising option for optimizing the runtime. However, it turned out that due to GPU

driver incompatibilities, it was impossible to implement the library with the leveraged

GPU resources (i.e., four NVIDIA A100s) in this thesis.
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5.4 Future Work

There are plenty of future applications and developments that can be built around STonKGs.

For instance, as literature grows, future versions of INDRA can be used to further pre-train

STonKGs. Moreover, a public release of the full corpus of INDRA statements would be

favorable so that other researchers can proőt from the all-encompassing biomedical infor-

mation contained in this large-scale dataset as well22. Similarly, other INDRA-equivalent

KGs containing text-triple pairs could be leveraged, speciőcally to create őne-tuning tasks

that can help to validate the robustness of STonKGs. Overall, the existing benchmark

tasks based on INDRA and other potential tasks from external sources could be used to

publicly release a benchmark. The research community can use this benchmark to evalu-

ate new multimodal models that leverage both KG and text information in the biomedical

domain. Additionally, further improvements to the existing STonKGs GitHub repository

can be made. An increase in the overall user-friendliness may help to encourage the re-

search community to use STonKGs on other use-cases. Furthermore, additional eforts can

be made to update or replace the basic framework of the cross-encoder of STonKGs, given

the recent advances in Transformer-based architectures beyond BERT. For instance, Clark

et al. published the Generative Adversarial Network-like (GAN-like) "Eiciently Learning

an Encoder that Classiőes Token Replacements Accurately" (ELECTRA) model in 2020

[Cla+20]. In theory, it is possible to adapt ELECTRA to an unsupervised pre-training

procedure on text-triple pairs, based on replacing some text tokens or nodes with plausible

alternatives and training a discriminator on such examples. Similarly, another biomed-

ical language model other than BioBERT could be employed as the NLP-backbone of

STonKGs.

While the efectiveness of STonKGs has been demonstrated on various tasks in the pro-

posed benchmark of this thesis, the model can be őne-tuned on numerous additional

biomedical applications. For instance, based on őne-tuning STonKGs on non-INDRA

triples that are annotated with labels from a őxed set of neurodegenerative diseases (e.g.,

coming from [Dom+17]), STonKGs can be used to classify to what neurodegenerative

disease context a given text-triple pair belongs to (as indicated in [Bal+21]). As such, the

described task is highly similar to the (4) disease task in the proposed benchmark. Still,

it proves that the őne-tuning procedure of STonKGs is not limited to a particular type of

biological context (i.e., the primarily cancer-related diseases in task (4)) but highly adap-

tive to the set of labels provided by the user of STonKGs. The extension of STonKGs

to novel and carefully designed őne-tuning tasks on text-triple pairs from sources other

22The INDRA dataset is a proprietary dataset owned by the INDRA team at HMS, and it is planned

to be publicly released in the near future.
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than INDRA can also help in preventing node-speciőc biases present in at least one of

the tasks included in the benchmark (as previously discussed in Section 5.1 and 5.2). In

particular, additional tasks with a closer resemblance to the expected real-world use-cases

(i.e., tasks with a larger number of classes) can be added to the benchmark to assess the

potential of STonKGs to future application scenarios.

Moreover, such őned-tuned models could be deployed as automatic annotation systems

that generate predictions for previously unseen text-triple pairs. Such predictions can

assist human curators to enrich metadata in KGs, thereby signiőcantly reducing costs

and speeding up the curation process [Hoy+19]. Generally, as stated in Section 5.2, it

is required that both nodes of a given text-triple pair are present in the INDRA KG.

Future adaptations of STonKGs could be made to generate predictions in an inductive

setting (i.e., making predictions with text-triple pairs containing nodes not present in

INDRA). To do so, nodes can be inductively added to KG, and an inductive KGEM

can be employed to generate the embeddings. Lastly, as indicated in Section 5.2, further

eforts should be dedicated towards the extension of possible őne-tuning task types and

respective őne-tuning model architecture adaptations. Such task types can include but

are certainly not restricted to NER, RE, question answering, link prediction, and node

classiőcation.
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6 Conclusion

This thesis has successfully demonstrated the efectiveness of the proposed NLP x KGE

approach, STonKGs, in comparison to both the KG-baseline (based on node2vec) and the

NLP-baseline (based on BioBERT) in a transfer learning setting. Based on pre-training

the models on over 13 million text-triple pairs from INDRA in an unsupervised manner,

the pre-trained embedding representations for each model were compared against each

other on the constructed benchmark comprising eight sequence classiőcation tasks. The

eight őne-tuning tasks were grouped into three task types, representing diferent categories

of biological applications. STonKGs achieved higher F1-scores than the other two baseline

models on six out of eight tasks, and the largest performance gains were observed for

tasks characterized by a small dataset and a large number of classes. This suggests that

(semi-)automated annotation procedures can potentially proőt from the inclusion of both

text and KG data in STonKGs the most. However, further analysis and extensions of the

benchmark to other data sources are required to make more profound conclusions. Lastly,

through the public release of both the pre-trained STonKGs model and the code utilized

in this thesis, it is possible to expand STonKGs to numerous future applications.
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