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Abstract: In this paper, residual sinks are used in bond graph model-based quantitative fault 
detection for the coupling of a model of a faultless process engineering system to a bond graph 
model of the faulty system. By this way, integral causality can be used as the preferred 
computational causality in both models. There is no need for numerical differentiation. 
Furthermore, unknown variables do not need to be eliminated from power continuity 
equations in order to obtain analytical redundancy relations (ARRs) in symbolic form. 
Residuals indicating faults are computed numerically as components of a descriptor vector of a 
differential algebraic equation system derived from the coupled bond graphs. The presented 
bond graph approach especially aims at models with non-linearities that make it cumbersome 
or even impossible to derive ARRs from model equations by elimination of unknown variables. 
For illustration, the approach is applied to a non-controlled as well as to a controlled hydraulic 
two-tank system. Finally, it is shown that not only the numerical computation of residuals but 
also the simultaneous numerical computation of their sensitivities with respect to a parameter 
can be supported by bond graph modelling. 

Keywords: bond graph modelling, quantitative model-based fault detection, fault indicators, 
numerical computation of residuals, residual bond graph sinks, differential algebraic equation 
systems, simulation of fault scenarios, parameter sensitivity of residuals 

1 INTRODUCTION 

As to safety, automated fault detection and isolation 
(FDI) and system reconfiguration are crucial in 
supervision and fault-tolerant closed-loop control 
of all kinds of industrial process engineering sys-
tems. To that end, it is obvious to compare the 
measured behaviour of a real system subject to faults 
with that of the faultless system and to use 
significant deviations as indicators to possible faults 
in some system components. The accurate beha-
viour can be provided by a system model. This is 
usually referred to as model-based fault detection. A 
survey of the state of the art in model-based fault 
detection and diagnosis can be found in reference 
[1]. 

The bond graph methodology [2–7] is particularly 
suited for modelling and for structural analysis of 
multidisciplinary process engineering systems [8– 
11]. Moreover, the use of bond graphs for qualitative 
as well as quantitative model-based FDI has been 

the subject of various recent research activities and 
publications [12–19]. An excellent presentation of 
model-based FDI using bond graphs can be found in 
chapter 15 of the textbook of Mukherjee et al. [7]. 
Other presentations of model-based FDI techniques 
not using bond graphs can be found, for instance, in 
[20–22], just to mention some textbooks out of the 
vast literature on FDI, fault diagnosis, and fault-
tolerant control. 

In model-based FDI, derivation and evaluation of 
so-called analytical redundancy relations (ARRs) [23, 
24] play a key role. They establish constraints 
between known variables – input variables and 
measured output variables – and, in general, also 
include known model parameters. When a process 
operates under normal mode conditions, evaluation 
of these constraints should reveal values within 
certain small error bounds. Theoretically, these 
values, also called residuals, should be zero. In 
practice, they will never be identical to zero over 
some time span owing to numerical inaccuracies, 
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sensor noise, or process parameter uncertainties. 
Numerical values exceeding given thresholds can 
serve as indicators to faults in some system 
components. Structural analysis of analytical con-
straint relations reveals whether or not faults can be 
isolated. 

On the other hand, Borutzky and Cellier [25] and 
Borutzky [26] proposed to add so-called residual 
sinks to bond graphs of engineering systems in 
order to help identify variables for tearing the 
algebraic part of a differential algebraic equation 
(DAE) system derived from the bond graph. If the 
algebraic part is linear with respect to the tearing 
variables, mathematical software can solve it sym-

bolically and transform the DAE system into a state 
space model prior to a simulation run. 

In this paper, it is shown how these residual bond 
graph sinks can be used for the numerical computa-

tion of fault indicators without having to derive ARRs 
from model equations in symbolic form. Unlike their 
use in the context of tearing, in fault detection, the 
purpose of residual bond graph sinks is not to help 
reformulate the underlying DAE system. The math-

ematical model rather remains a DAE system. 
The paper is organized as follows. The next section 

recalls relevant features of model-based FDI. Section 
3 reconsiders residual bond graph sinks and section 
4 presents the proposed bond graph approach to a 
numerical computation of fault indicators. In section 
5, for illustration, the approach is applied to a 
hydraulic two-tank system as an example of a simple 
process engineering system. For the study of some 
fault scenarios, the underlying DAE system has been 
solved numerically by means of the open-source 
mathematical software package Scilab [27]. Section 
6.2 shows that not only the numerical computation 
of residuals but also the simultaneous numerical 
computation of their sensitivities with respect to a 
parameter also can be supported by bond graph 
modelling. The paper concludes by summarizing the 
features of the proposed bond graph approach. 

2 BOND GRAPH MODEL-BASED QUANTITATIVE 
FAULT DETECTION 

FDI starts from a model with unknown variables. 
After their elimination, constraints between known 
variables (input variables and measured output 
variables) remain, defining what is called ARRs. In 
general, these constraints also include known model 
parameters. Their numerical evaluation at each time 
instant, t, produces a residual res. Under normal 
mode of operation it should be zero, theoretically. In 

practice, it always takes non-zero values owing to 
numerical errors, sensor noise, or parameter un-
certainties. In bond graphs, such constraints arise 
from junctions. Each junction contributes a con-
tinuity equation for flows or efforts respectively. By 
using the constitutive equations of bond graph 
elements and by elimination of unknown variables, 
ARRs may be obtained in symbolic form if non-
linearities permit necessary eliminations. The form 
of the set of ARRs is not unique and depends on the 
choice of computational causalities in a bond graph 
and the procedure that is applied. Moreover, 
algebraic dependencies indicated by causal paths 
in the bond graph and non-linear constitutive 
relations may prevent the elimination of unknown 
variables. Given that unknown variables can be 
eliminated, then structural analysis of each equation 
leads to a so-called signature in terms of known 
variables and system component parameters for 
each residual. 

For illustration, consider the simple, oft-used 
example of a hydraulic two-tank system depicted 
in Fig. 1. It could be part of a closed-loop control 
system that ensures a certain fluid flow Qo. Figure 2 
shows a causal bond graph of the system in Fig. 1. 

2.1 Structural observability and sensor 
placement 

It is evident that for FDI, a system under study 
should be structurally observable. Moreover, it must 
be structurally controllable to enable fault-tolerant 
control (FTC) (necessary conditions). 

In Fig. 2, the two bond graph elements of type De 
indicate effort sensors. They read the pressures in 
the tanks. Evidently, there is a causal path from each 
C element to a sensor. Moreover, both C storage 
elements could take preferred differential causality if 
the causality of the sensors is inverted. This means 
that the system with the two pressure sensors is 
structurally state observable [28]. The tank pressures 
are states that can be observed. 

Fig. 1 Schematic of the hydraulic two-tank system 
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Fig. 2 Bond graph of the hydraulic two-tank system 
with two pressure sensors 

Other sensor placements are also possible. For 
instance, the volume flow rate through valve 1, QR1

, 
and the pressure at the bottom of tank 2 could be 
monitored. The Df-element in Fig. 3 denotes a flow 
sensor. This system is also structurally observable. 
The system is also structurally observable with just 
one pressure sensor attached to the 0-junction of 
tank 2, or when the tank pressures and the volume 
flow rates through both valves are sensed. In the 
following, the two-tank system with two pressure 
sensors will be used as an illustrative example. 

2.2 Derivation of analytical redundancy relations 
from a causal bond graph 

ARRs will be derived from those bond graph 
junctions with a detector attached to them. 

The left-hand-side encircled 0-junction in the 
bond graph of Fig. 2 provides the continuity equa-
tion for the volume flow rates 

0~Qp{QC1 {QR1 ð1Þ 

If, in this equation, the left-hand-side zero is 
replaced by a residual, res1, and if the constitutive 
equations of the energy C-store, C1, and of the 
hydraulic resistor, R1, are inserted, then equation (1) 
reads pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
res1 ~Qp{C1p_ 1{k1signðp1{p2Þ jp1{p2j ð2Þ 

Fig. 3 Bond graph of the hydraulic two-tank system 
with a flow and a pressure sensor 

The right-hand side of this equation only includes 
known variables and known component parameters, 
because the pressures in the tanks are measured 
output variables as indicated by the two effort 
detectors in Fig. 2. That is, equation (2) is an ARR. 

Likewise, the sum of all volume flow rates at the 
right-side 0-junctions 

0~QR1 {QC2 {QR2 ð3Þ 

leads to an ARR for residual res2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi 
res2 ~k1signðp1{p2Þ jp1{p2j{C2p_ 2{k2 p2 

ð4Þ 

2.3 Structural fault signature matrix 

In equation (2), tank 1, T1, contributes the parameter 
C1 and the valve, V1, between both tanks the 
parameter k1. From this view of ARRs, a so-called 
occurrence matrix can be set up with one row for each 
known variable or component parameter and one 
column for each residual. If the occurrence of a 
variable or a parameter in an ARR is indicated by ‘1’ 
and its absence by ‘0’, then the result is a binary 
matrix. It indicates which components contribute to 
which residual. This matrix is usually augmented by 
two other columns. The first one with the heading D 
indicates whether a fault can be detected. The second 
additional column with the heading I indicates 
whether a fault can be isolated [13], or, in other 
words, can be identified unequivocally as the cause of 
a failure among other possible faults in one or several 
system components. If this is feasible, then it is 
marked by ‘1’, otherwise by ‘0’. A fault can be detected 
if there is at least one non-zero entry in that row. This 
is indicated by ‘1’ in the first additional column, 
otherwise by ‘0’. The augmented matrix is called a 
fault signature matrix. Its columns are called fault 
signatures (of the ARRs of the residuals). Its rows 
display the fault signatures of components. Table 1 
shows the fault signature matrix of the hydraulic two-

tank system with two pressure sensors. 
The fault signature matrix of the two-tank system 

with two pressure sensors includes only two resi-
duals although each 1-junction in the bond graph 
also contributes a continuity equation for the efforts. 
These equations could be transformed into ARRs. 
However, their signatures turn out to be identical to 
those already listed in the fault signature matrix. 
Thus, there are only two structurally independent 
residuals in the bond graph model of the two-tank 
system. In fact, consider, for instance, the sum of 
efforts at the 1-junction representing the volume 
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Table 1 Structural fault signature matrix of the two-tank system with two pressure sensors 

Component Variable/parameter res1 res2 D I 

Pump Qp 1 0 1 0 
Pressure sensor 1 p1 1 1 1 0 
Pressure sensor 2 p2 1 1 1 0 
Tank 1 C1 ~AT1 rg 1 1=ð Þ  0 0 
Tank 2 C2 ~AT2 rg 0 1=ð Þ  1 0 ffiffiffiffiffiffiffiffi 
Valve 1 1 1 1 02=r 
Valve 2 k2 ~cdAV2

2=r 0 1 1 0 
k1 ~cdAV1 pffiffiffiffiffiffiffiffi 

flow rate, QR1
, through valve 1 between the two and the structural fault signature matrix takes the 

tanks. If the pressure drop across valve 1 is expressed form given in Table 2. In the fault signature matrix of 
by the known volume flow rate of the pump, Qp, and Table 2, the fault signatures of tank 2 and valve 2 are 
the measured pressure in the first tank, T1, then the unique. Consequently, faults in these two compo-

residual, res3, of the continuity equation of this 1- nents can be isolated. If it is assumed that sensors 
junction reads are not faulty, then their rows can be eliminated 

from the fault signature matrix. 
1 2 For the two-tank system with two pressure sensors,

0~p1{p2{ Qp{C1p_ 1 sign Qp{C1p_ 1k2 the number of structurally independent residuals is1 

two. In the second case with two pressure sensors and 
~res3 ð5Þ 

a flow sensor, their number is three. In general, for an 
observable system, their number is equal to the 

Clearly, the signature of res3 is structurally identical 
number of sensors present in the system [7].

to the one of res1. Finally, note that for obtaining a structural fault 
signature matrix it is not necessary to establish 

2.4 Fault isolation model equations and to eliminate unknown vari-
ables. A structural fault signature matrix can be set 

The fault signature matrix of the two-tank system up directly by inspection of causal paths in a causal 
with two pressure sensors shows that all faults can bond graph [17, 18] regardless of the special form of 
be detected, but none of them can be isolated. In non-linear constitutive element equations. It is 
fact, if, for a given time instant, t, for instance, only sufficient to know which of the two conjugate 
residual res2 is above a given threshold, the reason variables at a power port has been assigned the role 
may be either a leakage from the second tank or a of an input variable. In the previous two subsections, 
fault in its outlet valve V2. Clearly, a single fault can ARRs for the illustrative two-tank example have been 
be located (isolated), if it can be detected and if the determined analytically for pedagogical reasons and 
pattern of non-zero entries in the corresponding row for convenience. 
of the matrix is unique. 

Adding a flow sensor (Df) that measures the 
3 RESIDUAL BOND GRAPH SINKS 

volume flow rate through valve 2 allows an observer 
to distinguish between a leakage from tank 2 and a This section explains and motivates residual bond 
fault in valve 2. In this case, the constitutive equation graph sinks. These elements have been used for 
of valve 2 provides the ARR different purposes, but, to the author’s knowledge, 

they have not been used in bond graph model-based pffiffiffiffiffi 
res4 ~Qo{k2 p2 ~0 ð6Þ quantitative FDI so far. 

Table 2 Structural fault signature matrix of the two-tank system with two pressure sensors and a 
flow sensor 

Component Variable/parameter res1 res2 res4 D I 

Pump Qp 1 0 0 1 0 
Pressure sensor 1 p1 1 1 0 1 0 
Pressure sensor 2 p2 1 1 1 1 1 
Flow sensor Q0 0 0 1 1 1 
Tank 1 C1 ~AT1 =ð Þ  1 0 0 1rg 0 
Tank 2 C2 ~AT2 =ð Þ  0 1 0 1rg 1 ffiffiffiffiffiffiffiffi 
Valve 1 k1 ~cdAV1

2=r 1 1 0 1 0 pffiffiffiffiffiffiffiffi 
Valve 2 k2 ~cdAV2

2=r 0 1 1 1 1 
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A residual bond graph sink is a bond graph sink 
that adjusts its output power variable so that the 
power conjugated variable into the sink vanishes. 
Figure 4 shows a graphical representation according 
to Bos [29]. It explicitly depicts the internal modula-

tion of the sink. In this case, the difference of efforts, 
,De :5 e1 2 e1, into the modulated flow sink is sensed. 

It controls the output of the sink, f, such that the 
difference, De, is driven to zero. The difference De 
can be considered the residual of the 1-junction. If 
there is no such difference, the output, f, of the 
residual sink is zero. The latter is equal to the 
residual, res, of the upper 0-junction. For brevity, we 
will denote residual sinks by rSf or rSe, respectively. 
They can be used for different purposes, e.g. for 
representing internal constraint forces or moments 
in bodies [3, 29, 30], i.e. Lagrange multipliers, or for 
indicating tearing variables in bond graph models 
[25, 26]. In Karnopp’s all-derivative causalities 
approach to the derivation of Lagrange equations, 
residual flow sources indicate generalized coordi-
nates. In that context they are know as artificial flow 
sources [31]. Furthermore, in [32], Gawthrop and 
Smith used residual sources for a modification of the 
standard sequential causality assignment procedure 
in the case of bond graphs with algebraic loops. 
A residual sink results if the parameter of an 

energy store is assumed to tend to zero. A linear 
inertia in integral causality with inertance I, for 
instance, provides a flow such that 

_I|f ~De ð7Þ 

For I R 0, the constitutive equation of the I energy 
store turns into the algebraic equation 0 5 De or, if 
zero is replaced by the residual res, into the equation 

Fig. 4 Representation of a residual flow sink according 
to Bos [29] 

res 5 De. Now, the flow is no longer the output 
variable of an I energy store in integral causality. It is 
not a state variable anymore. It is rather a variable 
determined by the algebraic equation 0 5 De. As the 
derivative of f has vanished, while f itself is still an 
unknown, the mathematical model now is a DAE 
system and the flow, f, can be considered a 
component of a descriptor vector. As causal bond 
graphs express relations between power variables 
and do not explicitly account for relations between 
generalized displacements, DAE systems derived 
from bond graphs are, in general, of index ( 2. 

In the following, it is shown that these residual 
bond graph sinks can also be used for numerical 
computation of fault indicators. 

4 COUPLING THE MODELS OF REAL AND 
FAULTLESS PROCESS BY RESIDUAL SINKS 

Model-based FDI starts from the comparison of the 
actual behaviour of a process engineering system 
with that of the ideal, faultless system. Signals from 
the real engineering process can be obtained by 
means of sensors and can be fed into the model of 
the faultless process. However, the deliberate 
introduction of faults into a real engineering 
process for test purposes may lead to hazardous 
situations, even to periods of process instability if 
the equipment allows for introduction of faults at 
all. Therefore, it is obvious to replace the real 
process by a behavioural model which enables the 
introduction of all kinds of faults without risk, and 
to analyse various fault scenarios through simula-

tion. In an offline simulation, residuals of ARRs, 
being indicators for faults, are numerically evalu-
ated along with the simultaneous solution of the 
equations of real and faultless process models. This 
approach [15] has the advantage that there is no 
need for elimination of unknown variables from 
continuity equations in order to obtain ARRs in 
symbolic form, because a set of coupled equations 
determining residuals is solved numerically. In  
general, non-linear constitutive equations of ele-
ments may even prevent the generation of ARRs in 
symbolic form. 

In contrast to the method in reference [15], this 
paper proposes to couple the real engineering 
process model to a model of the faultless process 
by means of residual bond graph sinks introduced in 
the previous section and to use integral causality as 
the preferred computational causality in both bond 
graph models so that there is no need for numerical 
differentiation. Signals from the behavioural real 
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process model, sensed by detectors De or Df 
respectively, control modulated sources. Their out-
put values are compared with corresponding values 
from the model of the faultless process. 

The real engineering process model accounts for 
faults by means of modulated sources that can be 
switched on and off (modelling leakage from the 
tanks) and by modulated resistors with a time-

dependent parameter (modelling partial blockage 
of the valves). These elements allow for analysing 
various fault scenarios by deliberately introducing 
one single fault at a time. If no faults are 
introduced into the real process model, then the 
difference between ‘measured’ signals and their 
corresponding signals from the faultless process 
model, theoretically, is equal to zero. The differ-
ence is input into the residual sinks. If it vanishes, 
the output of a residual sink is equal to zero. 
However, if a process variable differs from the 
corresponding variable in the faultless process 
model owing to a fault introduced into the real 
process model, the residual sink provides a flow or 
an effort, respectively in order to adapt the 
faultless process model’s behaviour to the per-
turbed process behaviour and to force the differ-
ence to zero (cf. Fig. 5). This non-zero output of a 
residual sink is equal to a residual of an ARR and is 
a numerical indicator to a fault. 

Introducing various single faults in the real 
process model, one at a time, and performing 
simulation runs on the basis of the two coupled 
process models, are a fast mean to test which 
residuals are sensitive to which faults. 

Fig. 5 Coupling the models of real and faultless 
process by residual sinks 

5 APPLICATION EXAMPLE 

For illustration, the proposed simulation supported 
bond graph approach to quantitative fault detection 
based on the use of residual sinks is applied to a 
hydraulic two-tank system as a simple example of a 
process engineering system. For simplicity, only the 
mass flow is considered, not the associated thermal 
convection. First, the non-controlled system de-

picted in Fig. 1 is considered. 

5.1 The non-controlled system 

In Fig. 6, the lower part of the overall bond graph 
represents the real process model accounting for 
faults. A process fault such as leakage from one of the 
tanks means that an opening in the bottom of the tank 
reduces the area of the bottom for some period of 
time. Consequently, the capacity parameter Ci~ 
ATi =ð Þ changes abruptly or progressively. rg Alter-

natively, leakage from a tank can be modelled by 
adding a valve to the tank or by means of a modulated 
flow source as is done in some publications on bond 
graph model-based FDI (cf. for instance [16]). The 
latter representation is adopted in this paper. A partial 
blockage of valve Vi is related to a reduction of the 
valve’s parameter ki (cf. Table 1). Consequently, ki is a 
function of time that takes into account the way in 
which the valve blocks, for instance, abruptly or 
progressively. In the model of the faulty process the 
valves are modelled by two modulated resistors. It is 
assumed that the pressures in the two tanks are 
‘measured’. Accordingly, effort detectors have been 
attached to their 0-junctions. The upper part of the 
overall bond graph represents the faultless process 
model. Both bond graphs, coupled by means of 
residual sinks, are submodels of the overall model. 
The submodel of the real process differs from the 
faultless process model by the elements that allow for 
user-introduced faults. 

5.1.1 The underlying mathematical model 

The integrated model in Fig. 6 has been computed 
numerically by means of the open-source mathe-

matics package Scilab [27]. Formulation of the under-
lying DAE system in Scilab’s mathematical input 
language is straightforward. The equations can be 
directly derived from the bond graph of Fig. 6. For the 
example under consideration, this has been done 
manually, but could be automated. The Scilab func-
tion of the DAE system of the integrated model is 
displayed in Fig. 7. As required for the formulation of 
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Fig. 6 Coupling of the process model subject to faults (lower part) and the faultless process 
model (upper part) by means of residual bond graph sinks 

DAEs in Scilab input language, the constitutive 
Lf2 1 0  {1 0equations of the energy stores and the equations of 

~ ð9Þ 
the residual sinks have been written in implicit form. Lx 0 1  0  {1 
The residuals r(i), i 5 1, …, 6, in the Scilab script are 
not to be confused with the residuals of the ARRs to be and 
computed. The latter are f1, f2. Names of perturbed 32 

{1=C1 0 power variables in the real engineering process model 
Lf1 

6664 0 {1=C2 
7775 start with the letter t meaning tilde (cf. Fig. 6). ð10Þ~ ,,Let x :5 [p1, p2, p1, p2]

T 

variables and w :5 [f1, f2] the vector of the residuals. 0 0 
Then the DAE system is of the form 

Consequently 

Lwbe the vector of the state 0 0 

x_ ~f1ðx, wÞ ð8aÞ " 
Lf2 Lf1

det ~det
Lx Lw 

#! 
0{1=C1 

0 {1=C2 
0~f2ðx, wÞ ð8bÞ 

1 
~ =0 ð11Þ 

C1C2Furthermore, according to the equations in Fig. 7 
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Fig. 7 Scilab function with the DAE system of the two-
tank models coupled by residual sinks 

That is, the differential algebraic index of the DAE 
system is two. 

5.1.2 Simulation of fault scenarios 

For the numerical solution of DAE systems, Scilab 
provides the widely used DASSL code [33]. Solving a 
DAE system requires a consistent set initial condi-
tions for the components of the descriptor vector 
and their time derivatives. For the consistent 
initialization of a DAE system, the algorithm of 
Pantelides [34] can be used. In order to facilitate the 
specification of a consistent set of initial conditions, 
it is assumed that the two tanks are empty at initial 
time t 5 0 and that the pump delivers a constant 
volume flow rate, Qp, for the time period 
10.0 s ( t ( 40.0 s. That is, the empty tanks are filled 
for 30 s and then they discharge at a rate depending 
on how much the valves are open. Figure 8 depicts 
the undisturbed dynamic behaviour. 

Leakage from tank 1. As to this example, two types 
of potential faults can be considered, namely, 
leakage from the tanks and partial blockage of the 
valves. As a first fault scenario, a constant leakage 
flow from tank 1 is assumed to be effective for the 
time period 50 s ( t ( 60 s, while the two tanks 
discharge. As a result, the pressures in the tanks 
decrease at a higher rate during this time period. 
Figure 9 shows the time evolution of the tank 
pressures in the case of a leakage from tank 1. 
Leakage from tank 1 corresponds to a decrease of the 
area of its bottom. According to the fault signature 
matrix of Table 1, residual res1 is affected, while 
residual res2 is not. Figures 10 and 11 depicting the 
residuals f1 and f2 validate this expectation. Note that 
at t 5 60 s the leakage from tank 1 stops abruptly. 
The system abruptly returns to normal operation. 
Accordingly, residual f1 abruptly drops to zero. 

Partial blockage of valve 1. Another fault that may 
occur is a partial blockage of the valve between the 
two tanks. If it happens after the pump has switched 

Fig. 8 Tank pressures in the case of no faults 

Fig. 9 Tank pressures in the case of a leakage from 
tank 1 

Proc. IMechE Vol. 223 Part I: J. Systems and Control Engineering JSCE666 F IMechE 2009 



345 Bond graph model-based fault detection using residual sinks 

Fig. 10 Residual f1 in the case of a leakage from tank 1 

5.2 The controlled system 

With regard to safety, it is important that the closed-
loop control of a system is robust in the presence of 
faults. This is evident, for instance, for the control of 
the pressure in a covered tank. A precondition for 
FTC is the detection and isolation of faults in a 
controlled system. In the following, it is shown that 
the proposed coupling of a faultless process model 
to the real process model by means of residual bond 
graph sinks is also applicable to controlled systems 
or processes. 

For illustration, the fluid level in the second tank 
of the example system is sensed and is input into a 
PI controller which controls the feed pump. Accord-
ingly, the constant flow pump is replaced by a flow 
pump with the characteristic displayed in Fig. 14, 
where up denotes the input signal from the con-
troller and Qmax the maximum outflow. 

The bond graph of the controlled system is 
depicted in Fig. 15. Again, the model of the con-
trolled process in Fig. 15 is coupled to a model of the 
controlled faulty process by means of residual bond 
graph sinks as displayed in Fig. 16. For numerical 
computation of the overall model in Fig. 16, again, it 
is assumed that both tanks are empty at initial time 
t 5 0. They are filled by the flow pump until a fluid 

Fig. 11 Residual f2 in the case of a leakage from tank 1 

off, then, during the time period this fault is 
effective, the pressure in the first tank decreases at 
a lower rate, while the pressure in the second tank 
decreases at a higher rate. This can be seen from 
Fig. 12. According to the fault signature matrix, both 
residuals are sensitive to a fault in valve 1 connecting 
both tanks. This is verified by Fig. 13. 

Fig. 13 Residuals f1 and f2 due to a partial blockage of 
the valve between the two tanks 

Fig. 12 Tank pressures in the case of a partial 
blockage of the valve between the two tanks Fig. 14 Characteristic of the controlled flow pump 
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Fig. 15 Bond graph of the controlled two-tank system 
with two pressure sensors 

Fig. 17 Fluid levels in both tanks in the case of a 
leakage from tank 2 

Fig. 16 Coupling of both bond graph models of the 
controlled process 

level of 1 m in the second tank has been reached, 
while at the same time, there is an outflow Qo from 
tank 2. The fluid level in tank 2 is maintained by the 
PI controller. Its set point is 1 m. 

5.2.1 Simulation of a fault scenario 

The fault scenario under study is an abruptly 
occurring leakage from tank 2 lasting for the time 
period 400 s ( t ( 500 s. Figure 17 shows the time 
history of the fluid levels in both tanks. As can be 
seen from Fig. 17, the abrupt leakage from tank 2 
decreases the fluid level. As a result, the PI controller 
causes the pump to feed more fluid into tank 1. This 
leads to a higher fluid level in tank 1, which is 
decreased by the outflow into tank 2. When the 
leakage abruptly stops at t 5 500 s, the PI controller 
ensures that the prescribed fluid level is reached and 
maintained. Figure 18 shows that an abnormal 
operation induced by leakage from tank 2 is clearly 
reflected by the numerically computed time history 
of residual f2. In accordance with the fault signature 

Fig. 18 Residual f2 in the case of a leakage from tank 2 

matrix of Table 1, residual f2 is sensitive to this fault, 
while f1 is not. 

6 SENSITIVITY OF RESIDUALS 

As has been shown in the previous sections, faults in 
a system are clearly reflected by the numerically 
computed outputs of residual sinks. If each residual 
is sensitive to only one fault, faults can unambigu-

ously be identified. 

6.1 Residual thresholds 

The residual sinks introduced in section 3 react as 
soon as the difference between a ‘measured’ signal 
from a behavioural model of the faulty real engi-
neering process and its corresponding signal from 
the faultless process model is different from zero. 
This difference, however, will never be identical to 
zero over some time span owing to inaccuracies of 
the numerical computation. Moreover, if measured 
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signals are provided by real sensors the difference of 
signals into a residual sink will be affected by sensor 
noise and uncertainties in the parameters of the 
engineering process. As a result, a residual sink will 
produce a non-zero residual that does not necessa-
rily indicate a fault. In order to avoid incorrect fault 
detection and false alarms in a process supervision 
system a difference between a measured signal and 
its corresponding signal from the faultless process 
model must be allowed to vary within given bounds. 
The introduced residual sinks can account for a 
threshold by a small modification. Consider the 
residual flow sink in Fig. 19. As long as the absolute 

,value of the difference between a measured effort, e , 
and its corresponding effort, e, from the faultless 
process model, |De| :5 |e 2 ,e |, is below a given 
threshold, e, the signal, s, modulating the residual 
sink is set to zero and the residual sink remains 
inactive. Otherwise, |De| is the modulating signal and 
causes the residual sink to drive the difference to 
zero 

0 if j jveDe 
s~Tð De Þ~j j  ð12Þ 

De if j joeDe 

6.2 Sensitivity of residuals to parameter 
uncertainties 

the structural fault signature matrix considered in 
section 2.3, a matrix can be set up that accounts for 
sensitivities of residuals. In reference [11], such a 
matrix is called a practical fault signature matrix. 

In the literature, various bond graph-based ap-
proaches to parameter sensitivity analysis have been 
proposed [35–38]. Recently, Samamtaray and 
Ghoshal [39] used so-called residual sensitivities to 
speed up FDI by parameter estimation in the case of 
multiple simultaneously occurring faults. Djeziri et 
al. [40] split an ARR into a nominal part and a part 
due to uncertainties and apply sensitivity analysis to 
the uncertain part. 

_ 

In the following, the sensitivity pseudo bond graph 
approach [35, 36] will be adopted; namely, bonds do 
not carry power variables e and f respectively, but 
their partial derivatives with respect to a parameter 
h. There can be as many such sensitivity pseudo 
bond graphs as there are parameters in the model. 
However, these sensitivity pseudo bond graphs can 
have the same structure. 

6.2.1 Parameter sensitivity model of a 1-port C 
energy storage element 

Consider the constitutive equation of a linear 1-port 
C element with the capacitance C 

C|eC ~fC ð13Þ 

_ 
_ 

Given numerically computed values of residuals, a 
Then, partial differentiation of equation (13) withnatural question is how sensitive they are to 
respect to a parameter h gives parameter uncertainties and which are the para-

meter uncertainties that affect a residual under 
eC 

eC zC 
LC L LfC

consideration most significantly. Clearly, fault detec- ð14Þ~ 
Lh Lh Lh 

tion and isolation should be robust with regard to |{z}
~: Ch parameter uncertainties, e.g. owing to tolerances in 

the manufacturing process of system components, 

s _:

|{z}
~ e

C 

|{z}
~: f s 

C 

The factor ch :5 LC/Lh in equation (14) is either equal or to faulty parameter identification. In addition to 
to one or it vanishes. In any case, equation (14) can 
be represented by the sensitivity component pseudo 
bond graph model in Fig. 20 (cf. Borutzky and 
Granda [38]), in which variables, e s and f s with a 
superscript s are taken as ‘power’ variables. Note 
that in the sensitivity component pseudo bond 
graph in Fig. 20 only causal strokes change if the 
constitutive equation of the C element, equation 
(13), is written in integral causality form. 

6.2.2 Parameter sensitivity model of a non-linear 
1-port orifice 

In the same way, a sensitivity component pseudo 
Fig. 19 Residual flow sink with a threshold bond graph model can be found for a non-linear 1-
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Fig. 20 Sensitivity pseudo bond graph of a linear 1-
port C storage element 

port orifice. Consider the constitutive equation of an 
orifice of cross-section area A assuming that the 
pressure drop across the orifice, Dp, is non-negative pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffi 

QR~ cdA 2=r | Dp ð15Þ |fflfflfflfflfflffl{zfflfflfflfflfflffl}
~: k 

where cd denotes the discharge coefficient. Partial 
differentiation with respect to a parameter h yields 

pffiffiffiffiffiffiffi 
~ Dp z k| pffiffiffiffiffiffiffi | 

LQR Lk 1 LDp 
Lh Lh 2 Dp Lh ð16Þ |{z} |{z} |{z}

s ~: f
R 
s ~: kh ~: e

R 

equation (16) can be represented by the sensitivity 
component pseudo bond graph model in Fig. 21. 
Note that this submodel also holds if the constitutive 
equation of an orifice is written in resistance 
causality, that is, Dp~QR 

2 k2. Only causalities at 
the submodel’s power port and at the MR element 
change. 

6.2.3 Adding a sensitivity pseudo bond graph to the 
faultless process model 

With these two sensitivity component pseudo bond 
graph models, a sensitivity pseudo bond graph 
(SPBG) of the two-tank system can be constructed. 
It has the same structure as the bond graph of the 
system depicted in Fig. 2. Note that this construction 
of an SPBG as a companion of a given bond graph is 

Fig. 21 Sensitivity pseudo bond graph of a non-linear 
1-port orifice 

not limited to the example under consideration. For 
all other bond graph elements sensitivity component 
models can be developed as well. The sensitivity 
model of a 1-junction (0-junction) again is a 1-
junction (0-junction). Clearly, sources providing a 
signal independent of any element parameter be-
come sources of value zero. The structure of the 
sensitivity bond graph differs from the one of the 
initial bond graph only by additional sources (cf. 
[38]). 

The SPBG is coupled to the faultless process 
model of the two-tank system as displayed in 
Fig. 22. Parameters in the behavioural model of the 
faulty real engineering process can be stochastic 
variables with a certain distribution, a mean value, 
and a standard deviation. Moreover, to make the 
behavioural real process  model even more realis-

tic, noise can be taken into account. In that case, 
signals provided by detectors must be input into 
appropriate filters before they are used in the 
comparison with signals from the faultless process 
model. Now, sensitivities of residuals can be 
sensed by flow detectors as shown in the upper 
part of the integrated bond graph in Fig. 22. In 
fact, for instance, summing up ‘flow’ variables at 
the right-hand-side 0-junction in the SPBG part 
yields 

L 
res2ð Þt ~f s ð Þt {f s ð Þt {f s ð Þt ð17ÞR1 C2 R2Lh 

or 

L LQR1 LQC2 LQR2 res2ð Þt ~ ð Þt { ð Þt { ð Þt ð18Þ
Lh Lh Lh Lh 

Equation (18) is equivalent to the one obtained by 
partial differentiation of equation (4) assuming 
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Fig. 22 SPBG (upper part) and bond graph of the two-tank system coupled together 

p1 > p2. The ‘flow’ variables on the right-hand side 
of equation (17) are the outputs of the sensitivity 
component pseudo bond graph models of the 
corresponding C and R elements in the bond 
graph of the two-tank system. The information 
needed to compute them is provided by these 
elements as indicated in Fig. 22. That is, residuals 
and their sensitivities with respect to a parameter 
can be computed numerically at the same time. 

In the SPBG part of Fig. 22 the two flow detectors 
entail derivative causality at the MCs elements. 
These elements are not by default in derivative 
causality. They can take integral causality as well, as 
pointed out in section 6.2.1. However, as flow 
detectors do not impose an effort different from 
zero while measuring a flow, the input into the MCs 

elements in derivative causality is zero. Conse-

quently, no numerical differentiation of an input 
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different from zero has to be performed and the MCs 

submodel (cf. Fig. 20) reduces to a flow sink 
modulated by a flow computed in the faultless 
process model. Other sensor placements, e.g. the 
one depicted in Fig. 3, are also possible, but they 
also do not entail numerical differentiation of a non-
zero input. 

7 CONCLUSIONS 

A bond graph approach to the numerical computa-

tion of fault indicators in quantitative model-based 
fault detection based on the use of residual sinks has 
been presented. The approach especially aims at 
models with non-linearities that make it cumber-

some or even impossible to derive ARRs from model 
equations in symbolic form by eliminating unknown 
variables. 

A behavioural model of an engineering process 
subject to faults is coupled to a faultless process 
model by means of residual bond graph sinks. The 
approach has the following advantages. 

1. The residual bond graph sinks have a clear and 
intuitive role. They provide an effort or a flow 
respectively that forces the difference between a 
monitored variable and its corresponding variable 
from the faultless process model to zero, and 
adapts the latter to the signal perturbed by a fault. 
At the same time, the output of a residual sink is 
the residual of an ARR. 

2. Furthermore, in order to avoid incorrect fault 
detection, residual sinks can account for given 
residual thresholds. 

3. Unknown variables do not need to be eliminated 
from model equations in order to obtain ARRs in 
symbolic form. Residuals as fault indicators are 
computed numerically as components of a de-
scriptor vector of a DAE system. 

4. Standard bond graph methodology can be used to 
construct both a behavioural model of a real 
engineering process and a faultless process 
model, and to assign preferred integral computa-

tional causality in both models. There is no need 
for numerical differentiation. 

5. The DAE system derived from the coupled bond 
graph models can be solved numerically by 
means of the widely used DASSL code. 

6. By means of offline simulation runs, the impact of 
all kinds of faults can be studied without risk. In 
the case of thermodynamic processes, ‘signals’ 
from the simulated faulty process can be obtained 
much faster than from the real process. 

7. In addition to residuals, parameter sensitivities of 
residuals can also be computed numerically at the 
same time. To that end, a sensitivity pseudo bond 
graph can be systematically constructed from the 
faultless process model. It has the same structure 
as the faultless process model. Apart from junc-
tions, its sensitivity models of bond graph 
elements are, in general, modulated by power 
variables from the faultless process model. The 
placement of sensors detecting parameter sensi-
tivities of residuals may entail that some sensi-
tivity submodels of 1-port energy stores take 
derivative  causality. This, however, does not  
necessarily mean that numerical differentiation 
of a variable different from zero has to be 
performed. Information about sensitivities of 
residuals can be used for setting up another fault 
signature matrix that can serve in fault accom-

modation. 
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APPENDIX 1 

Notation 

AT cross-sectional area of a tank 
AV cross-sectional area of a valve orifice 
cd discharge coefficient of a valve orifice 
e effort variable at a power port of an 

element or component 
s e ‘effort’ variable in the corresponding 

SPBG of a bond graph 
f flow variable at a power port of an 

element or component 
f s ‘flow’ variable in the corresponding 

SPBG of a bond graph 
g gravitational acceleration 

(9.81 m/s2) 
MR R element with a signal modulated 

resistance 
MCs SPBG of a linear 1-port C storage 

element 
MCs SPBG of a non-linear 1-port orifice 
p tank pressure 
Q volume flow rate 
res residual of an ARR 
t time 
T tank 
u(t) system input 
V valve 
y(t) system output 
y,(t) perturbed system output 

h model parameter 
r fluid density (assumed constant) 

APPENDIX 2 

// Parameters of the non-controlled hydraulic two 
tank example 
// 
// Gravitational acceleration: 
g 5 9.81; // [m/sˆ2] 
// Oil density: 
rho 5 780.0; // [kg/mˆ3] 
// Discharge coefficient: 
c_d 5 0.61; 
r 5 c_d*sqrt(2/rho); 
// 
// Cross-sectional area of the tanks: 
AT1 5 1.53e 2 1; // [mˆ2] 
AT2 5 AT1; 
// Capacitances of tanks: 
C1 5 AT1/(rho*g); 
C2 5 C1; 
// Cross-sectional area of the valves: 
AV1 5 0.2e 2 2; // [mˆ2] 
AV2 5 0.1e 2 2; // [mˆ2] 
// 
// Flow of the pump: 
Flow 5 0.5e 2 2; // [mˆ3/s] 
// 
// Leakage from tank T_1: 
Ql 5 0.1e 2 2; // [mˆ3/s] 
// 
// Pressure of the environment: 
p0 5 0.0; // [Pa] 
// 
// Initial conditions: 
// 
// Tanks are empty at t 5 t0; 
// no flows into and out of the tanks at t 5 t0: 
y0 5 [0.0;0.0;0.0;0.0;0.0;0.0]; 
ydot0 5 [0.0;0.0;0.0;0.0;0.0;0.0]; 
// 
// Parameters of the controlled two-tank system 
// 
// Parameters of the PI controller: 
Kp 5 2.0e 2 2; // proportional gain 
Ki 5 1.0e 2 4; // integral gain 
SP 5 1.0; // [m], set point 
// 
// Pump: 
// maximum outflow 
Qmax 5 1.0e 2 2; // [mˆ3/s] 
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