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Abstract: (1) Background: Autologous bone is supposed to contain vital cells that might improve the
osseointegration of dental implants. The aim of this study was to investigate particulate and filtered
bone chips collected during oral surgery intervention with respect to their osteogenic potential and
the extent of microbial contamination to evaluate its usefulness for jawbone reconstruction prior to
implant placement. (2) Methods: Cortical and cortical-cancellous bone chip samples of 84 patients
were collected. The stem cell character of outgrowing cells was characterized by expression of CD73,
CD90 and CD105, followed by osteogenic differentiation. The degree of bacterial contamination
was determined by Gram staining, catalase and oxidase tests and tests to evaluate the genera of the
found bacteria (3) Results: Pre-surgical antibiotic treatment of the patients significantly increased
viability of the collected bone chip cells. No significant difference in plasticity was observed between
cells isolated from the cortical and cortical-cancellous bone chip samples. Thus, both types of bone
tissue can be used for jawbone reconstruction. The osteogenic differentiation was independent of
the quantity and quality of the detected microorganisms, which comprise the most common bacteria
in the oral cavity. (4) Discussion: This study shows that the quality of bone chip-derived stem cells
is independent of the donor site and the extent of present common microorganisms, highlighting
autologous bone tissue, assessable without additional surgical intervention for the patient, as a useful
material for dental implantology.

Keywords: autologous bone graft; dental implant; microbial contamination; antibiotic prophylaxis;
mesenchymal stem cells; cell viability; osteogenic potential

1. Introduction

A sufficient vertical and transversal bone level is necessary for long-term success
of endosseous dental implants [1]. Autologous bone graft is the preferred material for
reconstructing jawbone defects as it contains osteoinductive and -conductive properties and
does not evoke immunological reactions as must be expected from allogeneic material [2,3].
Next to natural occurring materials, artificial substances can be used for guided bone tissue
engineering [4,5]. However, among other problems, their osteoinductive and -conductive
properties are poor. Bone particles are commonly obtained from intra-oral sources such
as the mandibular symphysis or the retromolar region and can be applied for the grafting
procedure. Compared to extra-oral donor sites (e.g., the iliac crest, the tibia, or the skull),
these donor site materials are reported to entail a reduced operating and hospitalization
time as well as a better incorporation into alveolar defects with less resorption [6–8]. These
bone chips and their respective cells can also be used together with spacers in guided bone
regeneration. The collection of particulate bone chips during oral surgical treatment can
be performed without additional donor site morbidity [9,10], as the material can be easily
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obtained by bone collection traps integrated in the dental suction pipe or with special bone
scrapers [11].

The osteogenic capacity of different stem cell sources is well established (Figure 1).
Several stem cell types e.g., bone marrow-derived stem cells (BMSC) or umbilical vein
stem cells (UVMSC) display osteogenic capacity and can be obtained in banking ready to
use [12]. But also dental pulp stem cells (DPSC), periodontal ligament stem cells, and dental
follicle stem cells (DFSC) can differentiate towards osteoblasts in vitro and are reported
to be superior for treatment of bone defects in vivo than bone marrow-derived stem cells
(BMSC) or adipose tissue-derived stem cells (ADSC) [13–16], because the cellular origin
plays an important role in their osteogenic capacity. Cells isolated from the head region e.g.,
mandibular stem cells differentiate towards osteoblasts in vitro and contribute to wound
healing in animal models more efficiently than cells from other body regions e.g., tibia or
femur [17–22]. Cells from hard tissues, especially from the head region, seem to be already
pre-committed towards the osteogenic lineage, displaying less unwanted differentiation
effects.
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Figure 1. Osteogenic capacity of different stem cell types. Different stem cell types have been shown to
be pre-committed towards the osteogenic lineage depending on their origin. Cells isolated from hard
tissues e.g., teeth and bone show a higher osteogenic capacity than cells isolated from adipose tissue.
The cells isolated from bones of the head region seem to be more capable of osteogenic differentiation
than cells isolated from other bone regions. DPSC: dental pulp stem cells; DPDC: dental periosteum-
derived cells; DFSC: dental follicle stem cells; (m) MSC: (mandibular) mesenchymal stem cells; PDC:
periosteum-derived cells; BMSC: bone marrow stem cells; UCMSC: umbilical cord stem cells; ADSC:
adipose tissue-derived stem cells.

However, the quality of bone grafting materials form the oral cavity is insufficiently
investigated and has been evaluated inconsistently in the literature. Especially microbial
contamination of the collected bone tissue is a matter of concern, since it might lead to
postoperative complications or failure of the implantation process [23,24]. Pre-surgical
antibiotic treatment and chlorhexidine rinse seems to significantly decreases the bacterial
load [25–28]. Nevertheless, it is still unclear whether antibiotic prophylaxis is beneficial and
which antibiotic is most effective [29–33]. Conflicting data also exists regarding the viability
of the collected bone particles. Several studies identified an osteogenic differentiation
potential of cells growing out of bone chips [34–37]. Where as bone debris was identified
as not ideal grafting material, since its viability could not be demonstrated consistently in
another study [38].

The aim of this study was to systematically investigate in more detail the quality of
particulate and filtered bone particles and their potential use as bone grafts in regenerative
dentistry with and without antibiotic pretreatment. The outgrowth probability of stem
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cells from freshly isolated bone chips was determined with respect to the pretreatment
and the osteogenic differentiation potential was evaluated by specific osteogenic marker
expression. Further the microbiological contamination was determined by oxygen require-
ments, gram staining, catalase tests, oxidase tests and the presence of anaerobic bacteria,
and genera of contaminating streptococci or staphylococci were classified to pinpoint on
which contaminants might or might not influence the quality of the bone chip material.

2. Materials and Methods
2.1. Patient Groups

Eighty-four patients (49 women and 35 men, mean 39.2 years old, range 14–81 years)
were included in this study. The patients were divided into four groups based on the bone
chip donor site and presurgical antibiotic treatment: cortical bone chips with antibiotic
pretreatment (antibiotic pretreatment is not recommended in the treatment plan for wisdom
tooth removal in Germany), cortical bone chips without antibiotic pretreatment, cortical-
cancellous bone chips with antibiotic pretreatment and cortical-cancellous bone chips
without antibiotic pretreatment. Patients with general good health status (no systemic
diseases) were included. Pregnant women and patients allergic to Clindamycin were
excluded. Patients with systemic diseases and drug treatments, such as anti-rheumatic
drugs, cortisone therapy, or known high blood pressure medication were also excluded from
study participation. In a single-blinded experimental setup the patients were randomly
assigned to the four treatment groups and anonymized preventing experimental bias. The
dental surgeon randomized and anonymized samples (labeled as K + number), which were
handed over to the scientists for subsequent analysis. After the experiments were finalized,
the results were distributed in the respective four groups with the help of the surgeon.

The study protocol was accepted by the Ethics Committee of the University of Bonn
(reference number 209/04). All patients gave their informed consent before taking part in
the study.

2.2. Surgical Procedure

Samples of the mandible were collected from patients during wisdom tooth removal
(cortical bone chip group) or implant insertion (cortical-cancellous bone chip group), with
or without antibiotic pretreatment of the patients (300 mg Clindamycin ten and two hours
before surgery). All wisdom teeth isolated were completely impacted in the jawbone before
surgery.

Prior to surgery, all patients rinsed with 20 mL of 0.2% chlorhexidine solution
(Chlorhexamed® Forte) for 60 s.

Cortical bone chips were obtained by ablation of the cortical bone using single use
round drills (HP 10 ISO No. 500 104 001 001 027, Beavers Dental, Morrisburg, ON, Canada)
at a speed of 1000 revolutions per minute. For preparation of the implant bed, the single
use drill kit (Disposable Drill Kit DDKN315, Biomet 3i, Palm Beach Gardens, FL, USA) was
used by maximum 1000 revolutions per minute (Figure 2). The surgical drills were cooled
with sterile physiological saline solution.

All bone chip samples were collected by the same team (surgeon/assistants) under
conservation of a stringent aspiration protocol (two separate suction tips) according to
Haessler and coworkers and by using a single bone filter (BoneTrap®, Astra Tech, Mölndal,
Sweden) [39,40]. The bone chips were transferred immediately into cold sodium chloride
solution (0.9% w/v) and kept cooled until processing for subsequent cell culture and
microbiological evaluation.
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Figure 2. Collection of bone chips. (A) Collection of cortical bone chips during wisdom tooth removal.
The wisdom tooth (circle) within the dental follicle is visible next to the round drill. (B) Collection
of cortical-cancellous bone chips during implant insertion with a drill kit. (C) Within the groove of
the drill the bone chips can be found (rectangle). The bone chips were aspirated and collected in a
bone traps.

2.3. Sample Size Measurement

The collected samples were centrifuged for 1 min at 500× g. Afterwards the super-
natant was carefully aspirated and the resulting pellet was transferred to 1.5 mL tubes.
100 µL of the supernatant was used for further microbiological investigations. Subsequently,
the weight and the volume of the pelleted samples were determined before dissection. Of
the obtained bone material 100 mg each was used for cell culture and additional microbio-
logical analysis.

2.4. Cell Culture
2.4.1. Isolation of Bone Chip-Derived Stem Cells (BDSCs)

For cell isolation, bone chips were washed with phosphate buffered saline (PBS).
The material was distributed homogenously in a cell culture dish and stem cell medium
(SCM) was added. The SCM consisted of Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal calf serum (FCS), 2 mM L-alanyl-L-glutamine, 100 units/mL
penicillin, 100 µg/mL streptomycin and 1% amphotericin. The bone chips were cultured
at 37 ◦C in humidified atmosphere with 5% CO2 until first outgrowing cells were visible.
The bone chips were then removed by washing with PBS. SCM was added and the plastic
adherent cell fraction was cultured until 80% confluence for further use.

2.4.2. In Vitro Osteogenic Differentiation

For in vitro osteogenic differentiation, the BDSCs were seeded at a density of
1.3 × 103 cells/cm2. After 24 h SCM medium was replaced with osteogenic medium (OM)
consisting of SCM supplemented with 0.1 µM dexamethasone, 10 mM β-glycerol phosphate
and 50 µM ascorbic acid. The OM medium was changed once per week. For negative
control BDSCs were cultured with non-supplemented SCM. After 28 days, extracellular
matrix mineralization was visualized by Alizarin Red S staining. Briefly, cells were fixed
with 4% formaldehyde and stained with 40 mM Alizarin Red S (pH 4.3). In addition, gene
expression of the osteogenic markers osteonectin (ON) and bone morphogenetic protein
2 (BMP-2) was analyzed by RT-PCR. The human osteosarcoma cell line SaOS-2 (DSMZ
number: ACC 243) was used as positive control (data not shown).
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2.4.3. Semiquantitative RT-PCR

RNA was extracted with TRI Reagent™ (Sigma-Aldrich Chemie GmbH, Munich,
Germany) and reverse transcribed into cDNA using Revert Aid Reverse Transcriptase
(Thermo Fischer, Frankfurt, Germany) and oligo-dT primer (Metabion, Planegg, Germany).
Gene expression for CD73, CD90, CD105, BMP-2 and ß-Actin was used following primer
sets:CD73 (5′: AGG GCA CYA TCT GGT TCA CCG T, 3′: AGG AAT GCT GCT GTT KAG
AAG AAT GG), CD90 (5′: TCC CGA GGG CAG AAG GTG ACC, 3′: GGC RTG GAG GAG
GGA GAG GGA), CD105 (5′: CCT CTT CCT CAT CTG CAT CAG CG, 3′: GGC AGG AAG
CAG AGG GCG AAG AC), ON (5′: TGT GGG AGC TAA TCC TGT CC, 3′: TCA GGA
CGT TCT TGA GCC AGT), BMP-2 (5′: AGC AGG TCT TTG CAC CAA GAT G, 3′: CCC
TCC ACA ACC ATG TCC TGA), β-actin (5′: GCC ATC CTG CGT CTG GAC CTG G, 3′:
TAC TCC TGC TTG CTG ATC CAC A). Expression was evaluated semi-quantitative by
densitometry of bands.

2.5. Microbiological Analysis

For the determination of microbial contaminations, the bone chip samples were rolled
over the surface of Columbia blood agar (CBA) and fastidious anaerobe agar (FAA) plates
(Oxoid, Wesel, Germany, respectively according to QUELAB, Montréal, QC, Canada). Addi-
tionally, the transport solution was plated onto CBA and FAA plates. Plates were incubated
under aerobic and anaerobic conditions overnight at 37 ◦C. For the incubation under anaer-
obic conditions, the GasPak™100 system (BD Diagnostics, Heidelberg, Germany) was
used. With regard to morphological differences, single colonies were picked, isolated and
characterized by Gram staining, catalase and oxidase tests. For the detection of anaerob
bacteria, streptococci and staphylococci, single colonies were further characterized for
metabolic features, using three different API® stripes (Biomérieux, Nuertingen, Germany)
according to manufactures’ instruction.

2.6. Statistical Analysis

The patient data, which are subjected to statistical analysis, include information on
the treatment procedure (with and without antibiotic pre-treatment) and type of bone
tissue (cortical/cortical-cancellous). Furthermore, information is available on outgrowth
of the cells and the duration of outgrowth, and results with regard to contaminations
of the samples. Age and sex of the patients is known. The data of the patients were
subdivided into four groups according to the criteria type of bone tissue (cortical/cortical-
cancellous) and type of treatment (with/without antibiotic pre-treatment), respectively. In
our analysis we focus on the probability of outgrowth success and the respective duration
of the associated outgrowth of the cells as a function of the different groups. The statistical
parameters (mean, standard deviation SD and standard error of the mean SEM) for the
successful outgrowth of the cells and the duration of the outgrowth are determined and the
results are statistically compared between the different groups. The statistical comparison
of the means aims to examine whether the mean values differ significantly or not. The
hypothesis tests to check for equality of the means are carried out with a significance level
p. Unless otherwise stated, p values < 0.05 were considered statistically significant.

Hypothesis tests comparing two mean values are based on t-tests. Since the patient
data were divided into four groups, statistical analysis using t-tests is not applicable.
Therefore, at the beginning of the statistical analysis, F-tests were performed to check the
four groups for homogeneity of variance, which is a prerequisite for using one-way analysis
of variance (ANOVA) (ORIGIN 8.1 Software, OriginLab Corporation, Northampton, MA,
USA). ANOVA is applied to assess mean values between (three and more) groups. In detail,
the applied ANOVA analysis is based on the methods according to Bonferroni (pairwise
comparisons of mean values; group sizes must not be equal), Scheffe (differences of means
are compared, i.e., four values are considered; group sizes must not be equal) and Turkey
(pairwise comparisons of means; group sizes are equal). Mean values of the duration
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of outgrowth differs significantly, if at least one mean value differs significantly; i.e., the
means of statistical totalities are considered to be significantly different.

3. Results
3.1. Outgrowth Statistics

In total 84 bone chip samples (49 from women and 35 from men) were collected.,
The average mass of the samples was 0.25 g for cortical-cancellous bone chips (volume
240 µL) and 0.45 g for cortical bone chips (volume 420 µL). In 65 samples outgrowing cells
could be observed (39 from women and 26 from men). The mean age of the patients was
39.2 ± 23.2 years (Table 1).

Table 1. Patient Groups.

Patient Group Number of
Samples Mean Age Female Male

Cortical w/antibiotic pretreatment 15 22.2 ± 13.3 7 8
Cortical w/o antibiotic

pretreatment 30 19.4 ± 5.5 20 10

Cortical-cancellous w/antibiotic
pretreatment 20 61.7 ± 11.8 12 8

Cortical-cancellous w/o antibiotic
pretreatment 19 60.3 ± 15.1 10 9

Total 84 39.2 ± 23.2 49 35
Values for the patient age are mean ± SD; w/, with; w/o, without.

The data was divided into four groups: cortical bone chips with antibiotic pretreatment,
cortical bone chips without antibiotic pretreatment, cortical-cancellous bone chips with
antibiotic pre-treatment and cortical-cancellous bone chips without antibiotic pre-treatment.
Table 2 summarizes the outgrowth success for the collected bone chips, which did not differ
between patient groups. However, the mean outgrowth time of the cortical-cancellous bone
chips without antibiotic pretreatment was significantly different from the other groups
(p < 0.02). Cells derived from cortical-cancellous bone chips without antibiotic pretreatment
of patients needed significantly less time for outgrowth compared to cortical bone chips
with or without antibiotic pretreatment and cortical-cancellous bone chips with antibiotic
pretreatment (7.00 ± 2.18 compared to 12.85 ± 3.24, 15.81 ± 5.32 and 13.47 ± 5.25 days,
respectively).

After evaluation of the data according to the sample characteristics: cortical, cortical-
cancellous, with or without antibiotic pretreatment, the corresponding outgrowth was
calculated (Table 3). The patients’ bone chip samples had an overall outgrowth probability
of 77.38%. Statistical analysis confirmed that the cortical-cancellous bone chips group with
and without antibiotic pretreatment had slightly higher outgrowth probabilities than the
cortical bone chips group with and without antibiotic pretreatment (79.49% vs. 75.56%).
The highest outgrowth success was found in the cortical and cortical-cancellous bone chips
group with antibiotic pretreatment which was significantly higher (p < 0.05) compared
to the cortical and cortical-cancellous bone chips group without antibiotic pretreatment
(85.71% compared to 71.43%). To illustrate the outgrowth probability related to antibiotic
pretreatment, the groups were restructured and shown in Table 3.
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Table 2. Outgrowth probability and time of the bone chip samples with respect to the patient group.

Patient Group Number of
Samples

Outgrown
Samples

Outgrowth
Time [days] SEM

Outgrowth
Probability

[%]

Cortical w/antibiotic pretreatment 15 13 12.85 ± 3.24 0.90 86.67

Cortical w/o antibiotic pre-treatment 30 21 15.81 ± 5.32 1.16 70.00

Cortical-cancellous w/antibiotic
pretreatment 20 17 13.47 ± 5.25 1.27 85.00

Cortical-cancellous w/o antibiotic
pretreatment 19 14 7.00 ± 2.18 * 0.58 73.68

Values for the outgrowth time are mean ± SD; w/, with; w/o, without. * significantly lower outgrowth time (p <
0.02) compared to the other groups.

Table 3. Outgrowth probability of the bone chip samples after regrouping of the patient groups.

Patient Group Number of Samples Outgrown Samples Outgrowth
Probability [%]

Cortical w/& w/o antibiotic pretreatment 45 34 75.56
Cortical-cancellous w/& w/o antibiotic pretreatment 39 31 79.49
Cortical and cortical-cancellous w/antibiotic pretreatment 35 30 85.71 *
Cortical and cortical-cancellous w/o antibiotic
pretreatment 49 35 71.43

w/, with; w/o, without. * significantly higher (p < 0.05) compared to the cortical and cortical-cancellous patient
group w/o antibiotic pre-treatment.

3.2. Characterization of Bone Chip-Derived Stem Cells (BDSCs)
3.2.1. Confirmation of the BDSC Stem Cell Character

The cells growing out of the collected bone chip samples adhered to plastic and
showed typical spindle-shaped stem cell morphology (Figure 3d). BDSCs were tested
for three standard stem cell markers in accordance with the minimal criteria proposed
by the International Society for Cellular Therapy [41]. The cells positively expressed the
marker genes CD73, CD90 and CD105 with varying degrees shown by RT-PCR (Figure 3e),
confirming their stem cell character.

3.2.2. In Vitro Osteogenic Differentiation

Osteogenic induction of BDSCs of all four patient groups was successful with minor
variations in the strength of differentiation (Figure 4). After 4 weeks of osteogenic differen-
tiation typical calcium mineralization could be visualized in all 4 groups using Alizarin
Red S staining (Figure 4a). In addition, the osteogenic induced BDSCs showed increased
gene expression of the osteogenic markers osteonectin and BMP-2 (Figure 4b). The patients’
age, collection site and pretreatment (cortical vs. cortical-cancellous bone chips with or
without antibiotic pre-treatment) had no effect on the osteogenic differentiation potential
of the BDSCs.

3.3. Microbiological Analysis
3.3.1. Distribution of Gram Staining Forms and Morphology

Bone chip samples from all four groups contained viable microorganisms, even after
Clindamycin pretreatment (Figure 5). In total 259 morphologically different microorgan-
isms were observed. The bacterial species predominantly found belonged to the families of
Streptococcaceae and Staphylococcaceae (95.7%). Rod-shaped microorganisms were found in
lower percentage (3.9%). Yeast could only be isolated from one bone chip sample (0.4%).
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Figure 3. Characterization of bone chip-derived stem cells (BDSCs). (A) Isolated dental follicle
(B) Bone material in grooves of the drill. (C) Particulate jawbone material in a syringe. Size bar
equals 5 mm. (D) Cells proliferating out of the bone chip material. (E) RT-PCR for the mesenchymal
stem cell markers CD73, CD90, and CD105 in BDSCs for the patient groups: cortical bone chips with
antibiotic pre-treatment (group I), cortical bone chips without antibiotic pre-treatment (group II),
cortical-cancellous bone chips with antibiotic pre-treatment (group III) and cortical-cancellous bone
chips without antibiotic pre-treatment (group IV) as indicated. β-Actin served as internal expression
control, H2O served as negative control. The pictures shown are representative for outgrown bone
chip samples of the respective group.
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Figure 4. In vitro osteogenic differentiation. (A) Alizarin Red S staining after 28 days in vitro
osteogenic differentiation of BDSCs for the patient groups cortical bone chips with antibiotic pre-
treatment (group I), cortical bone chips without antibiotic pre-treatment (group II), cortical-cancellous
bone chips with antibiotic pre-treatment (group III) and cortical-cancellous bone chips without
antibiotic pre-treatment (group IV) as indicated. Main frame: osteogenic induced BDSCs, insert: non-
induced BDSCs served as negative control, magnification 40×. (B) RT-PCR for the osteogenic markers
osteonectin (ON) and bone morphogenetic protein 2 (BMP-2) after 4 weeks osteogenic differentiation
of BDSCs. β-actin served as internal control, H2O served as negative control. The pictures shown are
representative for outgrown bone chip samples of the respective group. C: non-induced BDSCs, O:
osteogenic induced BDSCs.
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Figure 5. Microbiological analysis. Microscope images of (A) streptococcaceae and (B) staphylococ-
caceae. (C) API® Test Strip for biochemical features of microorganisms. (D) The collected bone chip
samples have been microbiological investigated for viable microorganisms and the occurrence of
Gram-positive cocci, rods and yeast either in samples in which cells grew out or not. (E) Oxygen
requirements for anaerob or aerob microorganisms in bone chip samples with and without cellular
outgrowth (numbers represent %).

In the bone chip samples that showed cell outgrowth, 152 different microorganism
forms were detected. 96.1% of those were gram-positive cocci and 3.9% were gram-
positive rods. From the bone chip samples for which no cell outgrowth could be observed,
107 diverse shaped microorganisms could be isolated. Among them 95.3% were gram-
positive cocci, 3.7% were gram-positive rods and 1 microorganism could be identified
as yeast.

3.3.2. Oxygen Requirements of Microorganisms

With regard to their oxygen requirements we identified that 57.1% were facultative
anaerobes, 11.6% aero-tolerant, 15.8% obligate anaerobes, 4.6% obligate aerobes and 10.8%
showed no growth in the medium.

The samples for which cell outgrowth could be observed contained 54.6% facultative
anaerobes, 11.8% aero-tolerant, 17.1% obligate anaerobes, 5.3% obligate aerobes; 11.2%
showed no growth in the medium.

Of the 107 morphologically different microorganisms isolated from bone chip samples
without cell outgrowth 60.8% were facultative anaerobes, 11.2% were aero-tolerant, 14.0%
were obligate anaerobes, 3.7% were obligate aerobes and 10.3% showed no growth in the
medium. We could not observe any differences for oxygen requirements between the
sample groups or the antibiotic pretreatment.
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4. Discussion

In this study, cells derived from mandibular bone chips were evaluated. The isolated
cells showed typical stem cell characteristics according to the minimal criteria for defin-
ing multipotent mesenchymal stem cells, as suggested by “The International Society for
Cellular Therapy” [41]. These criteria are among others plastic adherence, spindle-shaped
morphology and positive expression of the markers CD73, CD90, and CD105. The out-
grown cells displayed a strong differentiation potential towards the osteogenic lineage
irrespective of the patient group. Interestingly, in contrast to ATSCs, BDSCs were found
to differentiate into adipocytes only to a marginal extent (data not shown). Similar re-
sults have been reported for dental follicle-derived stem cells (DFCs) [42–44]. The limited
differentiation potential indicates a lower plasticity which is correlating with a higher
differentiation status towards the osteogenic lineage. Therefore, BDSCs can be expected
to possess lower tumorigenicity, as well as a less undifferentiated cell population, or cell
differentiating into an unwanted lineage compared to stem cells from other body parts,
if differentiated towards the osteoblasts. The pre-commitment towards the osteogenic
lineage poses BDSCs as an ideal tool for dental bone grafting [45]. Their differentiation
state can be categorized between that of mesenchymal stem cells and osteoblasts. Springer
and coworkers classified cells derived from bone of the iliac crest as osteoblast-like, since
they stained positive for osteocalcin and alkaline phosphatase [46]. Several other research
groups identified outgrowing cells of cortical or cancellous bone as osteoblasts, but none of
these studies investigated the differentiation potential towards the adipogenic lineage as
evidence of an undifferentiated state or for a possible lineage commitment [33,36].

Parathyroid hormone-related protein (PTHrP) was described as a signaling molecule
that affects the differentiation process of mesenchymal stem cells [47]. The differential
expression levels of specific PTHrP isoforms might be considered as a molecular signature
associated with the respective differentiation state of BDSCs during osteogenesis.

Our results showed differences between the outgrowth time-point of cells derived from
cortical bone compared to those from cortical-cancellous bone. On average BDSCs of the
cortical-cancellous bone chip group showed faster outgrowth compared to the cortical bone
chip group. This is supported by similar results from the literature. Chiriac and colleagues
reported outgrowth times of cortical bone-derived cells varying from 6 to 19 days, whereas
cells of mixed sources were reported to grow out after 5 to 7 days [33,36].

It must be noted that donors of the cortical bone chip group were on average younger
than donors of the cortical-cancellous bone chip group in our study. This could be a possible
confounding reason for the differences in outgrowth. As the material obtained here was a
waste product of surgeries, indicated for medical reasons affecting different age groups:
Cortical bone material is derived during wisdom teeth removal, which is typical for patients
around 20 years of age. Cortical-cancellous bone chips are obtained during implantation
surgery, which occurs throughout all ages.

Unlike outgrowth time, outgrowth success was comparable in the cortical bone chip
group compared to the cortical-cancellous bone chip group and thus, seems to be indepen-
dent of by age. This is in line with our findings for mesenchymal stem cells and those of
others, but in contrast to the results of Chung and colleagues who showed that in vitro
outgrowth of iliac crest bone-derived cells was more successful using material of young
donors [35,48,49]. These contrary results might be explained with the different embryonic
origin of the investigated bone chip sources. Iliac crest bone-derived cells are of mes-
enchymal origin, developing form the pharyngeal arches, whereas cells of the mandibular
symphysis bone are ectomesenchymal, derived from the somites [6].

The capacity of BDSCs to differentiate towards the osteogenic lineage was further
independent from the jawbone section the bone chips were collected from. This is in
agreement with Chiriac and coworkers who found no significant differences in the charac-
teristics of the first adherent cells with respect to the patient age and donor site [36]. Similar
observations were made in the study of Kotte and colleagues [49].
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The microbiological analysis showed that all collected bone chip samples had viable
microorganisms. This was expected, since the oral cavity possesses the highest density of
microorganisms after the colon [50]. Among all identified bacterial species gram-positive
cocci have been shown to be most prominent. This correlates with the study by Young
and colleagues [23]. Here, for the first time we show that the composition of microbes
and their requirements for oxygen does not differ between outgrown and not outgrown
stem cells from bone chip samples. Under standard cell culture conditions with antibiotic-
supplemented medium there were no differences in terms of quality and osteogenic poten-
tial of the BDSCs. It must be noted, that the conducted microbiological investigations were
limited to the recognition of gram-positive or gram-negative cocci, aerobic and anaerobic
microorganisms. Not all possible occurring species in the oral cavity, excluding pathogenic
bacteria, rod-shaped gram-negative bacteria, yeasts and fungi, were detected due to test
limitations. Also the API test is limited to the organism selected on the strips. A detailed
analysis of the microorganisms using e.g., sequencing the DNA, performing genomic
analysis on the 16S-RNA or Maldi-TOF would shed more light onto the microbiological
composition found in the oral cavity. However, a pure culture would be the basis for a
detailed identification without improving the information needed to judge isolation of stem
cells and their possible use for bone grafts and thus, was not conducted herein.

Pre-surgical treatment of patients with Clindamycin significantly increased the out-
growth probability of the collected bone chips. In the cortical-cancellous bone chip group
with antibiotic pretreatment the cells grew out significantly slower than those of the corre-
sponding cortical-cancellous bone chip group without pre-operative antibiotic treatment.
With regard to the cortical bone chip groups such a difference in the outgrowth time could
not be observed. Duewelhenke and colleagues noticed an inhibitory effect of Clindamycin
on the proliferation and metabolic activity of human osteoblasts in vitro [51]. This might
also explain the increased outgrowth time and outgrowth probability of cortical compared
to cortical-cancellous bone chips with antibiotic pre-treatment because Clindamycin can
accumulate to higher amounts in the better blood-supplied trabecular bone than in compact
bone. There are several references related to the quality of bone chips obtained from patients
with antibiotic treatment prior to oral surgery [34,52–54]. Blay and coworkers evaluated
the bacterial load of bone chips obtained from bone drilling [34]. The patients included in
their study received prophylactic Amoxicillin-medication before the surgical procedure.
The article is reviewing the clinical behavior of the collected autologous bone graft without
having a non-antibiotic control group, which represents a major weak point of their study.
It should be pointed out, that in order to reduce the bacterial contamination of the cortical
bone chips collected during wisdom tooth removal, only completely impacted teeth were
included in our study. This was not the case for the study published by Lambrecht and
colleagues [52]. Antibiotic prophylaxis was shown previously to have a positive effect
regarding the success of the implantation process in general [31,32]. Since it is not possible
to obtain oral grafting material without bacterial contamination, a pre-surgical antibiotic
treatment seems to be recommendable [27,28,34,38,53,54]. The cytotoxic or cytostatic effect
of Clindamycin on primary human osteoblasts observed by Duewelhenke and coworkers
might be reduced by choosing an alternative antibiotic, e.g., Ciprofloxacin. Beyond this,
using antibiotic-supplemented bone grafts or rinsing the bone chips with a solution of
antibiotics must be considered carefully [27,28,55,56]. Isefuku and colleagues reported that
high concentration of Gentamicin inhibited proliferation of osteoblast-like cells in vitro
while Rifampicin was shown to be harmful on osteoblasts and bone tissue [57,58]. Other
studies investigating the effect of three antimicrobials showed also cytotoxicity on gingival
MSCs [59]. In conclusion, high local antibiotic doses should be avoided and further inves-
tigations to define the best antibiotic, or combination of antibiotics, in in combination of
utilizing stem cells for bone built-up in implantation are required.

Taken together, stem cells isolated from the medical waste of various dental tissues can
be differentiated into multiple cell types. They can also be used to generate cell lines and
iPSCs for long-term in vitro research [12]. In clinical studies the stability of dental implants



Appl. Sci. 2022, 12, 2031 12 of 15

using pre-osteoblasts from autogenic MSCs or xenogeneic grafts showed promising results.
Riecke and colleagues evaluated the effect of transplantation of precultured preosteoblasts
for experimental sinus floor augmentation on primary dental implant stability in com-
parison with conventional augmentation procedures in rabbits and revealed an enhanced
primary stability of implants with experimental maxillary sinus floor augmentation with
precultured osteoblast precursor cells from autogenic stems cells [60]. Lima et al. focused
on volumetric stability of autologous and xenogeneic block grafts and primary stability of
implants in maxillary grafted areas. They showed that xenogeneic block grafts are a suit-
able alternative to reconstruct horizontal defects in the alveolar ridge that had undergone
extensive resorption [61]. Next to clinician’s skills and surgery methods on the implant
site preparation, which may also have an impact on the stability of implants, the use of dif-
ferent scaffold materials is steadily emerging and shows improving cell adhesion, growth
and differentiation [62–64]. Thus, the question arises which bone chips are best for these
investigations and consecutive treatments. With respect to the outgrowth time point of
ectomesenchymal stem cells, cortical-cancellous bone chips are superior compared to those
of cortical sources. Yet, cortical bone chips showed a comparable osteogenic differentiation
potential and are known to be more stable against resorption under clinical conditions.
Pre-operative antibiotic treatment of patients reduced the microbial contamination of the
collected bone chip material without influencing its viability and increased the outgrowth
success. Taken together, particulate and filtered mandibular bone chips are a useful grafting
material in dental implantology.
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