
Knowledge and Information Systems (2022) 64:1239–1262
https://doi.org/10.1007/s10115-022-01668-7

REGULAR PAPER

Context mining and graph queries on giant biomedical
knowledge graphs

Jens Dörpinghaus1,4 · Andreas Stefan2,3 · Bruce Schultz2 ·Marc Jacobs2

Received: 9 May 2020 / Revised: 17 February 2022 / Accepted: 18 February 2022 /
Published online: 29 March 2022
© The Author(s) 2022

Abstract
Contextual information is widely considered for NLP and knowledge discovery in life sci-
ences since it highly influences the exactmeaningof natural language.The scientific challenge
is not only to extract such context data, but also to store this data for further query and
discovery approaches. Classical approaches use RDF triple stores, which have serious limi-
tations. Here, we propose a multiple step knowledge graph approach using labeled property
graphs based on polyglot persistence systems to utilize context data for context mining,
graph queries, knowledge discovery and extraction. We introduce the graph-theoretic foun-
dation for a general context concept within semantic networks and show a proof of concept
based on biomedical literature and text mining. Our test system contains a knowledge graph
derived from the entirety of PubMed and SCAIView data and is enriched with text mining
data and domain-specific language data using Biological Expression Language. Here, con-
text is a more general concept than annotations. This dense graph has more than 71M nodes
and 850M relationships. We discuss the impact of this novel approach with 27 real-world
use cases represented by graph queries. Storing and querying a giant knowledge graph as a
labeled property graph is still a technological challenge. Here, we demonstrate how our data
model is able to support the understanding and interpretation of biomedical data. We present
several real-world use cases that utilize our massive, generated knowledge graph derived
from PubMed data and enriched with additional contextual data. Finally, we show a working
example in context of biologically relevant information using SCAIView.
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1 Background

The amount of available and stored data is constantly increasing in many areas in the course
of digitalization. The increasing amount of data represents a great challenge for storage and
requires the development of new storage technologies. At the same time, with more available
data and different storage technologies, new applications based on the data are of great
interest. Large data collections are used for data mining and knowledge discovery to answer
new and complex questions more efficiently. For this purpose, data is often stored in non-
relational databases, and while there are many types available, one of the more interesting
and promising types is knowledge graphs. In this database structure, the entities of a domain
are stored as nodes in a graph while connections between these entities are represented by
edges. This allows for visualization and analysis of networks between the data in order to
discover new applications.

Current systems use RDF (Resource Description Framework) Triple Stores, systems that
inherently have some serious limitations especially when compared to a labeled property
graph. For example, nodes and edges have no internal structure which does not allow complex
queries like subgraph matchings or traversals and it is not possible to uniquely identify
instances of relationships which have the same type, see [1]. Several approaches have been
made to create RDF knowledge graphs, for example Bio2RDF (see [2] and [3], reviewed
by [4] or [5]). For our generalized concept of context, we require labeled property graph
structures.

Context is a widely discussed topic in text mining and knowledge extraction since it is
an important factor in determining the correct semantic sense of unstructured text. In [6],
Nenkova and McKeown discuss the influence of context on text summarization. Ambiguity
is an issue for both common language words and those in scientific context. The challenge in
this field is not only to extract such context data, but also to be able to store this data for further
natural language processing (NLP), querying and discovery approaches. Here, we propose a
multiple step knowledge graph-based approach to utilize context data for biological research
and knowledge expression based on our results published in [7].We present a proof of concept
using biomedical literature and present an outlook on additional improvements which can be
implemented in the next generation of knowledge extraction, e.g., training approaches from
artificial intelligence and machine learning. Figure 1 depicts a real-world example subgraph
induced by both automatically detected and manually curated context data which highlights
the complexity and density of these graphs.

Knowledge graphs have been shown to play an important role in recent knowledge mining
and discovery. A knowledge graph (sometimes also called a semantic network) is a systematic
way to connect information and data to knowledge on a more abstract level compared to
language graphs. This type of data structure hasmany advantages in terms of searchingwithin
biomedical data and serves as a vital tool capable of generating novel ideas.Another important
attribute when generating knowledge is context and therefore connecting knowledge graphs
using contextual information can further enhance data analysis and hypothesis generation.

As a basis for this work, we generated a knowledge graph that initially contains publi-
cation metadata from PubMed (see https://www.ncbi.nlm.nih.gov/pubmed) which has more
than 30 million documents at its disposal, including biomedical publications. In subsequent
steps, the knowledge graph was expanded to include BEL (Biological Expression Language)
relations and named entities obtained from text mining using JProMiner (see [8]) and stored
in SCAIView (see https://www.scaiview.com/) as well as ontologies or terminologies like
MeSH. This results in a large amount of data for the graph with a very high number of nodes
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Fig. 1 Here, we present an example subgraph of the knowledge graph that shows several molecular key players
(like Amyloid-beta precursor protein (APP), and Calsyntenin-1 (CLSTN!)) and their interactions which are
involved in processes that finally lead to acquiring Alzheimer’s disease. We focus on the BEL statement
act(p(HGNC:KLC1))–>p(HGNC:MAPT). ThisBELstatement describes that the phosphorylation activity
of the human (HGNC) “Kinesin light chain 1” (KLC1) protein leads to a phosphorylation of the “Microtubule-
associated protein tau” (MAPT) protein. Which is a key event. The Cypher-query found all relations and
this graph was extended to the neighborhood of both nodes. Both HGNC terms have evidences in different
documents (orange). Some context entities (pink nodes). Several entities can be found in this context, for
example APP, CLSTN1 or SFAM MAPK JNK Family. Some other entities are automatically detected using
text mining, others are manually curated like confidence value Low (bottom) or subgraph annotations like
“Tau protein subgraph” or “Axonal transport subgraph” (top) (colour figure online)

and edges. Saving and managing such a graph poses challenges due to the horizontal scala-
bility of graph databases, therefore, it is to be expected that search queries on the graph have
a long runtime. This paper presents a polyglot persistence approach to tackle this challenge
using Neo4j, a graph database with a native graph storage.

Here, we use a general definition of context data assuming that each information entity
can also be contextual information for other entities, for example a document can also serve
as context for other documents (e.g., by citing or referring to the other publication). An
author is both metainformation for a document, but also itself context (by other publications,
affiliations, co-author networks, ...). Other data is more obviously purely context: named
entities, topic maps, keywords, etc. extracted with text mining from documents. However,
relations extracted from a text document may stand for themselves, occurring in multiple
documents and still valuable without the original textual information.

To start, we begin with a simple document graph and, in the first step, we added context
metainformation (see Fig. 2). This leads to an initial knowledge graph which can be used
for preliminary context-based text mining approaches. In doing so, additional context data
is added to the knowledge graph, such as entities or concepts from ontologies or relations
extracted from the analyzed text. The resulting knowledge graph can be used as starting basis
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Fig. 2 Proposed workflow to extend a knowledge graph. First starting with a document graph, the basic
document metainformation like authors, keywords, etc. are added. This can be used as a basis for text mining
which can be used to extend the graph again, for example named entity recognition (NER)may use normalized
keywords as context. Topic detection may also benefit from already assigned keywords, journals or author
information.Thegraph can also be extendedbyknowledgediscovery processes, for examplefindingparameters
of a clinical trial, progression within electronic health records, etc. In any case new context information are
added to the initial graph and improve the input of further algorithms

for more detailed text mining approaches which utilize the novel context data. These steps
can be repeated several times to further enrich the graph.

In fact, using a graph structure to house data has several additional advantages for knowl-
edge extraction: biological and medical researchers, for example, are interested in exploring
the mechanisms of living organisms and gaining a better understanding of underlying fun-
damental biological processes of life. Systems biology approaches, such as integrative
knowledge graphs, are important to decipher the mechanism of a disease by considering
the system as a whole, which is also known as the holistic approach. To this end, disease
modeling and pathway databases both play an important role. Knowledge graphs built using
BEL are widely applied in biomedical domain to convert unstructured textual knowledge into
a computable form. The BEL statements that form knowledge graphs are semantic triples
that consist of concepts, functions and relationships [9]. In addition, several databases and
ontologies can implicitly form a knowledge graph. For example Gene Ontology, see [10]
or DrugBank, see [11] or [12] cover a large amount of relations and references to which
reference other fields.

There are still several crucial issues to consider when converting literature to knowledge
such as evaluating the quality and completeness of such networks. Here, we rely on existing
data sets and present a novel approach on this data. We do not omit the question of quality
control this as a task of the initial data. Furthermore, in order to generate new knowledge,
context of concepts in a knowledge graph must be considered.

To start, we first present a preliminary overview about information theory and manage-
ment. Afterward, we will introduce and discuss the novel approach of managing and mining
contextual data of knowledge graphs. Finally, we will give a detailed list of issues that need
to be addressed and show the results from evaluating real use cases.
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1.1 Preliminaries

Data and knowledge management, sometimes also called information management, is a core
topic of data engineering and data mining. It is also an interdisciplinary field encompassing
economics (how efficient and expensive is the solution?), psychology (do people use this
solution in a way that was intended?) and, of course, informatics. One of the core concepts
is DIKW (data, information, knowledge, wisdom, see [13]), an approach used to describe all
of the important steps which are necessary to understand the ideas of data and knowledge
management.

Knowledge is often seen as either explicit or implicit, while data is always presented as
an explicit concept. It is important to note that implicit knowledge is not available for data
mining as it is only available as personal knowledge or experience. In information theory,
knowledge is obtained from data and information. Data are recorded, context-free facts such
as measured values from devices (mass spectroscopy) or basic notes (weight of patients),
but can also include images (e.g., computer tomography). If this data is enriched by context,
which impliesmeaning and purposewe get information. This information leads to knowledge
and wisdom if—once again—enriched by context.

The concept of DIKW hierarchy is crucial for the understanding of the work presented
here. First proposed by [14] in 1987, it was developed by [15] in 1989 who also introduced
the perspective of wisdom. At times, this hierarchy is depicted as a knowledge pyramid while
other times it is a linear chain. We may combine both perspectives: The linear perspective of
understanding and context with past and future and the pyramid’s perspective describing the
amount of data leading to a smaller amount of information, etc. More information about this
topic can be found in the work of [13] or [16].

A knowledge graph is a systematic way to connect information and data to knowledge.
It is thus a crucial concept on the way to generate knowledge and wisdom, to search within
data, information and knowledge.

Definition 1.1 (Knowledge graph) We define a knowledge graph as graph G = (E, R) with
entities e ∈ E = {E1, . . . , En} coming from a formal structure Ei like ontologies.

The relations r ∈ R can be ontology relations, thus in general we can say every ontology
Ei which is part of the data model is a subgraph ofG indicating E ⊆ G. In addition, we allow
inter-ontology relations between two nodes e1, e2 with e1 ∈ E1, e2 ∈ E2 and E1 �= E2. In
more general terms, we define R = {R1, ..., Rn} as a list of either inter-ontology or inner-
ontology relations. Both E as well as R are finite discrete spaces.

Every entity e ∈ E may have some additional metainformation which needs to be defined
with respect to the application of the knowledge graph. For instance, there may be several
node sets (some ontologies, some document spaces (patents, research data, ...), author sets,
journal sets, ...) E1, ..., En so that Ei ⊂ E and E = ∪i=1,...,n Ei . The same holds for R when
several context relations come together such as “is cited by,” “has annotation,” “has author,”
“is published in,” etc.

Definition 1.2 (Context) We define context C as a set with context subsets C = {c1, ..., cm}.
This is a finite, discrete set. Every node v ∈ G and every edge r ∈ R may have one or more
contexts c ∈ C denoted by con(v) ⊂ G or con(r) ⊂ G.

It is also possible to set con(v) = ∅. Thus we have a mapping con : E ∪ R → P(C). If
we use a quite general approach toward context, we may set C = E . Therefore, every inter-
ontology relation defines context of two entities, but also the relations within an ontology can

123



1244 J. Dörpinghaus et al.

be seen as context. With the neighborhood N (Ei ) every node set Ei ∈ {E1, ..., En} induces
a subgraph G[Ei ] ⊂ G:

Definition 1.3 (Extended context subgraph, graph embeddings) With Gc[Ei ] = G[Ei ] ∪
N (Ei ) we denote the extended context subgraph which also contains the neighbors of each
node in G, which is context of that node.

For a graph drawing perspective, if Gc[Ei ] defines a proper surface, we can think about
a graph embedding of another subgraph Gc[E j ] on Gc[Ei ]. This concept was introduced in
[17]. Here, semantic knowledge graph embeddings were displayed between different layers.
Every layer (for example: molecular layer, document layer, mechanism layer) corresponds
to another context defining new contexts on other layers.

Definition 1.4 (Context metagraph) We can create the metagraph M = (C, R′) of these
contexts. Each context is identified by a node in M . If there is a connection in G between two
contexts, we add an edge (c1, c2) ∈ R′. This means if ∃(v1, v2) ∈ R : c1 ∈ con(v1), c2 ∈
con(v2) ⇒ (c1, c2) ∈ R′ or ∃(v1, v2) ∈ R : c1 ∈ con((v1, v2)), c2 ∈ con(v2) ⇒ (c1, c2) ∈
R′ or ∃(v1, v2) ∈ R : c1 ∈ con(v1), c2 ∈ con((v1, v2)) ⇒ (c1, c2) ∈ R′.

Adding edges between the knowledge graph G or a subgraph G ′ = (E ′, R′) ⊆ G =
(E, R) and the metagraph M in G ∪ M will lead to a novel graph. This can be either seen as
inverse mapping con−1(G ′) or as the hypergraph H(G ′) = (X , Ê) given by

X = E ′ ∪ Gc[Ei ], Ê = {{ei , e∀e ∈ N (ei )}∀ei ∈ X}
This graph can be seen as an extension of the original knowledge graphG ′ where contexts

connect not only to the initial nodes, but also every two nodes in G ′ are connected by a
hyperedge if they share the same context.

If C = E , this will lead to new edges in G thus enriching the original graph. This step
should be performed after every additional extension of graph G.

We denote this hypergraph H on a knowledge graph G and a metagraph M with HG|M .
We can add multiple metagraphs M1 and M2 which is denoted by HG|M1,M2 .

The resulting graph can thus be seen as an enrichment of the original knowledge graph G
with contexts. It can be used to answer several research questions and to find graph-theoretic
formulations of research questions.

If the mapping con is well defined for the domain set, then Graph H can be generated
in polynomial time. Since this is generally not the case, this step usually contains data or
text mining task to generate other contexts from free texts or knowledge graph entities. With
respect to the notation described in [18] this problem p can be formulated as p = D|R|f :
D → X|err |∅. Here, the domain set D is explicitly given by D = G or—if additional full-
texts D̂ supporting the knowledge graph G exist—D = {G, D̂}, which in our case is the
domain subset R = D. Therefore, we need to find a description function f : D → X with
a description set X = C which holds all contexts. To find relevant contexts, we also need to
measure the error as defined by err : D → [0, 1].

Several research questions must be considered. First, what metainformation can be used
to generate context for a new metagraph? Several promising candidates include authors,
citations, affiliation, journal, MeSH terms and other keywords since they are all available in
most databases. We also need to discuss text mining results such as NER and relationship
mining. Having more general data including study data, genomics, images, etc. we might
also consider side effects; disease labels, population labels (male; female; age; social class;
etc.). Figure 2 shows a proof of concept for a less complex text mining metadata approach
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which describes the process of starting with a simple document graph that can be extended
with more context data derived from text mining. We discuss this in more detail in the next
section.

The second research question addresses the application of this novel approach for both
biomedical research as well as text classification and clustering, NLP and knowledge dis-
covery, with a focus on Artificial Intelligence (AI). How can we use the context metagraph
to answer biomedical questions? What can we learn from connections between contexts and
how do they look like in the knowledge graph? How can we use efficient graph queries uti-
lizing context? It may also be useful to filter paths in the knowledge graph according to a
given context or to generate novel visualizations. A possible question might be to learn about
mechanisms linked to comorbidities or mechanisms being contextualized by drug informa-
tion. The metagraph may also contain information about cause-and-effect relationships in
the knowledge graph that are “valid” in a biomedical sense under certain conditions as well
as contextualization based on demographic information or polypharmacy information. We
will discuss several use cases in the last section of this paper.

1.2 Method

1.2.1 Technical setup

We illustrate the following methods with example runs on PubMed and PMC data. Both
sources are already included in the SCAIView NLP-pipeline. PubMed contains 30 million
abstracts from biomedical literature, while PMC houses nearly 4 million full-text articles.
First and foremost, the knowledge graph must be stored and accessed by the software in an
efficient manner. To this end, a software component was written to integrate the knowledge
graph into our SCAIView microservice architecture, see [19]. This integration also ensures
that the knowledge graph is constantly updated with preprocessed data. The software compo-
nent also provides an API to execute several queries on the knowledge graph and is capable of
returning the result in JSON Graph Format which can be easily displayed by many frontend
frameworks.

Our software component was written in Java using Spring Boot and Spring Data to be
able to access the database backend in an abstract way and ensure the exchangeability of
the database technology. The database backend in our case is the graph database Neo4j. To
this end, we designed a software component that exports the data derived from SCAIView
as CSV files.

Storing a large knowledge graph from PubMed, such as the one presented here, in a single
database is not a simple task, and we expected the execution of our graph queries to be
very slow due to the size of the knowledge graph. To speed up the run times of the queries,
we decided to implement an approach that divides the graph using polyglot persistence.
Polyglot persistence is defined as combining heterogenous data storing technologies into a
single application. Instead of storing all of the data in one database, we chose to store different
parts of the data in different database technologies. The benefit of polyglot persistence is that
each database technology has different strengths and the application can take advantage of
them all.

In Neo4j, the graph structure is stored separately from the properties of nodes and edges.
This organization structure makes traversing the knowledge graph easier, however, storing
and accessing string attributes takes longer than integer attributes because of this property
[20]. To take advantage of this characteristic of Neo4j, we designed a storing system that
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Fig. 3 Example of a stored document node in Neo4j. On the left side, a PubMed document is stored with all
of its attributes. Using polyglot persistence we see on the right side the same document containing integer
encodings for two original attributes in Neo4j. The encoding of the used attributes is stored in the key-value
database Redis. An other attribute for content of the document like “Cost-effectiveness...” is still stored as its
original string value

encodes either some or all string (depending on the test scenario) attributes of the graph as
integers using polyglot persistence. By encoding and storing these attributes in key-value
databases, we reduced the data size of the knowledge graph and were able to speed up the
property access ofNeo4j. Figure 3provides an illustration of the designedpolyglot persistence
system.

In two iterations, we selected suitable attributes of all node types thus leading to three
systems: the original one using only Neo4j (calledFull) and two polyglot persistence systems
(called Poly1 and Poly2). Full stores all data directly in Neo4j. Poly1 stores only a few
information in another redis database while Poly2 uses not a single redis database but rather
combinesmultiple redis databases storing different information and theNeo4j graphdatabase.

We implemented another software component to execute the data preprocessing step for
Poly1 and Poly2. It uses the created CSV input files of Full to run the data encoding in key-
value databases and generates CSV input files for the Neo4j graph databases of the polyglot
persistence systems. The whole process is illustrated in Fig. 4.

To compare the execution runtime of queries on all three systems Full, Poly1 and Poly2,
we collected 27 real-word graph queries using the given knowledge graph. The results of the
query runtimes are discussed in Sect. 2.

1.2.2 Creating a document and context graph with basic context extraction

The first step in creating a document and context graph with basic context extraction is to
define the entity sets E1, ..., En and their relations. The articles and abstracts from PubMed
and PMC already contain a lot of contextual data. Thus, the starting point for our data schema
is straight forward: We define EDocument as the document set containing nodes, with each
one representing one document. Furthermore, we may add a set ESource = {PubMed, PMC}
as the source of a document. Thus, each document can be interpreted as contextual data of a
particular data source.

Since the original data set contains a lot of additional metadata, we need to add them as
single data points: all metadata are stored in new node sets. EAuthor stores the set of authors
and EAf f iliation stores their affiliation, which is again considered context for the authors.
Another relevant piece of contextual information is the publisher, in our case EJournal .
PubMed has several classifications for EJournal including: Books and Documents, Case
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Fig. 4 The software component scaiview-neo4j-csv createsCSVfiles for the bulk import inNeo4j from
SCAIView data. The created files are used as input for the system called Full. The second software component
cdv-scenario-creator uses the CSVfiles, runs the encoding of the selected string attributes and created
CSV import files for Poly1 and Poly2

Table 1 All node types and an excerpt of attributes

Node type Attributes

Author Forename, surname

Affiliation Affiliation

Document DocumentId, title, collection, provenance, etc.

Journal Journal

PublicationType Identifier, type

Entity Source, identifier, preferredLabel, uri

Unstructured Value, uri

BELFunction

These nodes are linked with relations (e.g., hasAffiliation, isAuthor, hasDocument,
hasRelation (Attributes: type, function, provenance, context) and optionalLabel)

Reports, Classical Article, Clinical Study, Clinical Trial, Journal Article and Review. We
store this classification in EPublicationT ype. Here, the relations are directly induced by the
original data schema: hasAffiliation, isAuthor, hasDocument, hasCitation
(Attribute: provenance), isOfType.

Other important context directly obtained from the initial document data is EAnnotation

which stores multiple types of annotations such as named entities or keywords, all of which
come from the MeSH tree, see [21]. Therefore, EMeSH ⊂ EAnnotation inherently contains
a hierarchy and edges RMeSH . The value of MeSH terms and their hierarchy for knowledge
extraction was shown in several recent studies [22]. Figure 5 depicts the knowledge graph of
a single document; Table 1 shows a list of all node types and relations.
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Fig. 5 An illustration of a single document within the context graph. The document node (purple) has several
gray annotation nodes, four red publication type nodes, a pink author node with a gray affiliation. The source
(PubMed) is annotated in a green node, the journal in a yellow node (colour figure online)

All other relations can be added between the sets Ei , for example RisCoAuthor ,
RhasA f f iliation , etc. With this information, it is—from an algorithmic point of view—quite
easy to combine all context relations such as RhasDocument , RisAuthor , RhasAnnotation and
RhasCitation , though these edges should also store additional provenance information as
shown in Fig. 6.

1.2.3 Extending the knowledge graph using NLP-technologies

The initial knowledge graph can be extended by NLP-technologies. Terminologies and
Ontologies are a widely considered topic in research during the last years. They play an
important role in data and text mining as well as knowledge representation in the semantic
web. They have become increasingly more important once data providers began publishing
their data in a semantic web formats, namely Resource Description Framework (RDF, see
[23]) and Web Ontology Language (OWL, see [24]), to increase integratability. The term
terminology refers to the Simple Knowledge Organization System metamodel (SKOS, see
[25] which can be summarized as concepts, unit of thoughts which can be identified, labeled
with lexical strings, assigned notations (lexical codes), documented with various types of
note, linked to other concepts and organized into informal hierarchies and association net-
works, aggregated, grouped into labeled and/or ordered collections and mapped to concepts.
Several complex models have been proposed in the literature and have been implemented in
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Fig. 6 An illustration of the initial document and context graph. A PubMed node is the source of document
nodes (purple). There are several context annotations like article type (red), keywords (gray), authors (pink)
and journal (yellow). Authors have additional context (affiliations, gray) (colour figure online)

software, see [26]. Controlled Vocabularies contain lists of entities which may be completed
to a Synonym Ring to control synonyms.Ontologies also present properties and can establish
associative relationships which can also be done by Thesauri or Terminologies. See [27] and
[28] for a complete list of all models.

Here, we define Terminologies similar to Thesauri as a set of concepts. They form a DAG
with child and parent concepts. Additionally, we have an associative relation which identifies
related concepts. Each concept has at least one label, one of which is used as the preferred
identifier while all others are synonyms. To sum up, using ontologies or terminologies for
NER has several advantages. In particular, it leads to a hierarchy within these ontologies
and orders named entities according to these relations. Though, we must not only consider
ontologies and terminologies, but also controlled vocabularies such as MeSH. Here, we have
additional annotations with different provenances, one derived as keywords with the data
and one obtained from NER. The relations itself can be determined by using the original
data structure: Either they are related to a document and thus describe an annotation or they
describe a relation between two entities and the relation is described with the original data
set which we will describe later.

Another example of a terminology is the Alzheimer’s Disease Ontology (ADO, see [29])
EADO or theNeuro-Image Terminology (NIFT, see [30]) EN I FT comingwith their hierarchy
RADO , RN I FT . The process of NER leads to another context relation RhasAnnotation . Since
not all ontologies or terminologies are described using the RDF or OBO format, we have
to add data using multiple external sources via a central tool capable of providing all the
necessary ontology data. We use a semantic lookup platform containing Ontology Lookup
Service (OLS) and Ontology Xref Service (OxO) (see [31]).

Additional context data useful for knowledge extraction are citations such as the edges
RhasCitation between two nodes in EDocument . Data from PMC already contains citation data
with unique identifiers (PubMed IDs). Some data is available with WikiData, see [32] and
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Fig. 7 An illustration of biological knowledge within the context graph. The document node (purple) has
several orange annotation nodes which come from different terminologies found with NER. The areas in
the background indicate arbitrary context subgroups to highlight that the different nodes belong to different
backgrounds. The relation extraction task found the relation “Levomilnacipran” inhibits “BACE1,” “BACE1”
improves “Neuroprotection” and “BACE1” improves “Memory.” These relations are illustratedwith red edges.
Since the document describes a clinical trial, this is also context for the relations as well. All other context is
illustrated by colored sets, defining subgraphs (colour figure online)

[33]. Other sources are rare, but exist, see [34]. Especially for PubMed a lot of research is
working on this difficult topic, see for example [35].

Furthermore, we can consider the relational information between entities. For example,
BEL statements naturally form knowledge graphs by way of semantic triples that consist of
concepts, functions and relationships [9]. To tackle such complex tasks they constantly gather
and accumulate new knowledge by performing experiments, and also studying scientific
literature that includes results of further experiments performed by researchers. Existing
solutions are primarily based on the methods of biomedical text mining which consists of
extracting key information from unstructured biomedical text (such as publications, patents
and electronic health records). Several information systems have been introduced to support
curators in generating these networks such as BELIEF, a workflow that builds BEL-like
statements semi-automatically by retrieving publications from a relevant corpus generator
system called SCAIView, see [36] and [37].

Figure 7 illustrates a few basic relations such as “Levomilnacipran” inhibits “BACE1,”
“BACE1” improves “Neuroprotection” and “BACE1” improves “Memory,” all of which
were found using relation extraction methods on named entities in a document. Here, the
relations between entities are directly described as BEL relations. It is important to note that
context for a document can also be context for the derived relations and vice versa. If an
entity that forms part of a relation has synonyms, or is found within another document with
a different context, this may lead to a deeper understanding about the statement. Due to the
complexity, the resulting graph structures become difficult to manually parse and interpret
thus requiring algorithmic approaches to properly analyze.

123



Context mining and graph queries on giant... 1251

2 Results

2.1 Real-world use cases for testing

We collected 27 real-world questions and queries in scientific projects. They are of varying
complexity (Table 2) and can be used to test the biomedical knowledge graph. Some of them
use local structures, for example conjunctive regular path queries (CRPQ, see [38]) which
combine subgraph pattern with queries regarding paths (problems 1,3,5,7,9,10,13,15,20) or
the extended version ECRPQ (8,18,22). Other local structures include Regular Path Queries
(RPQ, see [39]) (problems 2,11,14,16,17,19,21) and finding shortest path (problems 4,12).
Additional queries use global structures such as centrality which include Page Rank (6,23),
BetweennessCentrality (25) orDegreeCentrality (26).Another global problem is community
detection, for example Louvain Modularity (24) or Connected Components (27).

Because the general subgraph isomorphism problem is known to be NP-complete, we
expect that some of our queries, such as finding the shortest paths in P, to require a wide
range runtimes.

2.2 Storing the knowledge graph

Storing all of the data in one graph database without using Redis (Full) uses 58.9 GB of
memory, while Poly1 only uses 50.82 GB (Neo4j) and 0.9 GB (Redis) of memory. The third
system, Poly2, uses 50.74 + 10.2 GB (Neo4j) and 1.4 GB (Redis) memory.

The import data is about 50 GB and generates nearly 160M nodes with relations. These
nodes are merged by Neo4j to unique nodes. In the end, we obtained 71M unique nodes
and 860M relationships. Given the input data, we create ∼30M nodes describing documents
from PubMed and PMC, about 17M dedicated to authors, 21M affiliations and around 5M
entities. The graph contains 554M annotation relationships and in total 850M relationships.

2.3 Polyglot persistence systems

Figure 8 shows the runtime results of the 27 real-world queries described in Table 2.
We see that execution of some queries required a large amount of time with the longest

query taking more than one hour. Interestingly, the execution time for most of the queries
improved when ran using either the Poly1 or Poly2 implementation. We experienced that
seven out of the 27 queries did not terminate. This was mainly due to main memory issues,
other reasons for endless runtime could not be examined but we assume time complexity and
implementation issues for that.

For most queries, the polyglot persistence systems achieve better results, in the best case
up to 43%. However, there are differences between the systems for a few of the queries
tested in that Poly1 can sometimes have better results than Poly2 and vice versa. Contrary
to expectations, Full was found to have the best query time in most cases. The advantage
of Poly1 over Poly2 can be explained by the fact that the memory consumption of Poly2
increased significantly due to the process of converting from string to integer and therefore
the execution of the queries is slowed down. For the queries in which Poly2 performed better,
this can be explained by the fact that the queries take advantage of the optimized polyglot
data schema despite the higher memory consumption of the database. This is significant for
example in queries 8 and 17.
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Table 2 Biomedical example queries on knowledge graphs with context data

# Query Input example Output

1 Which author was the first to state
that {Entity1} has an enhancing
effect on {Entity2}?

APP, gamma
Secretase
Complex

Author and document title

2 Which genes {Entity1} play a role in
two diseases {Entity2}?

Entity.source =
HGNC, MESH

Subgraph of genes with 2
diseases

3 In which journal was it published that
{Entity1} has an enhancing effect
on {Entity2}?

APP, gamma
Secretase
Complex

Document and Journal

4 What is the shortest way between
{Entity1} and {Entity2} and what
is on that way?

Axonal transport,
LRP3

Path between nodes

5 Where was it published that
{Entity1} has an enhancing effect
on {Entity2} and what documents
cite this?

APP, gamma
Secretase
Complex

List of publishing and citing
documents

6 What are the most important entities
in context of {Entity1} disease?

Alzheimer’s Page Rank of neighboring
entities

7 Which authors publish in the same
journal on the topic {Entity1} and
have not yet published together?

Alzheimer’s
disease

List of author couples

8 Find a path of biological entities that
connects {Entity1} with {Entity2}

Alzheimer’s
disease, ACHE

Path of entities

9 Are there authors within the same
affiliation who make contradictory
statements regarding protein
{Entity1} and protein {Entity2}?

Apoptotic process,
SLC25A21

Number of statements for
both variants

10 Do the data in the literature correlate
with the concomitant diseases for
illness {Entity1}? So are the genes
mentioned in {Entity1} documents
also mentioned in {Entity2}
documents of the concomitant
disease?

Alzheimer’s,
Down syndrome

Genes involved in both
diseases in the literature

11 Does the function of a gene {Entity}
differ in different contexts?

IL1B List of all functions in
contexts

12 How far apart are {document1} and
{document2}?

PMID:16160056,
PMID:16160050

Shortest path between
documents

13 Does the biological process on gene
{Entity1} also exist in context of
{Entity2}? And what author
describes it?

APOE, brain Outcome graph in context of
the brain

14 Are there BEL statements that have
no source, so should be checked?

– List of relations

15 How many sources are there for the
statements of a contradictory BEL
statement?

hasRelation.
function =
increases,
decreases

Number of sources for each
of the cases
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Table 2 continued

# Query Input example Output

16 Is there also a relation between the
documents describing the entities
{Entity1} and {Entity2} that
matches the relation in a BEL
statement with the entities
{Entity1} and {Entity2}?

APP, Alzheimer Document pairs

17 Find the oldest document describing
an entity {entity}

APP Oldest Document

18 Is a reviewer {Author1} suitable for
a proposal with the author
{Author} or is there a conflict of
interest? Does the reviewer have
relationships with the author in the
form of joint work or equal
affiliation?

Ulrich Rothe, A.
Castillo

Potential Graph between the
authors

19 On which topics does the author
{Author} write most?

Ulrich Rothe List of the most frequent
annotations

20 In which other journals could the
author {Author} write with his
main topics? Which journal in
which he has not yet published
would suit him from his main
topics?

Ulrich Rothe List of journals that could fit
him

21 Which Affiliation has the most
publications on the topic {Entity}
in the Journal {Journal}?

D008358,
Biotechnology
letters

Affiliation with the highest
number of publications

22 From when is the document cited in
documents dealing with the subject
{Entity}?

D017629 Publication date of cited
document

23 Which document is the most cited
paper in connection with {Entity},
of papers that also annotate
{Entity}? Determined by
PageRank.

D017629 Most cited paper-type
document

24 Which entities have many relations
with {Entity}? Determined by
Community Detection.

APP Surrounding community
graph

25 Which author connects the two
subject areas {Entity1} and
{Entity2} most strongly?

Alzheimer
Disease,
Parkinson

Author with highest
betweenness centrality

26 Which gene {Entity} is the most
important?

Entity.source =
HGNC

Entity with highest degree
centrality

27 Are there strongly connected
components between the entities?

Assignment of the entities to
cliques
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Fig. 8 Runtime results of 27 real-world queries. The queries are grouped in four diagramswith similar runtimes
for a better overview. We see that the execution time of most queries is improved with Poly1 and Poly2. In the
best case, the improvement is 43%

The differences in the results become clearer when looking at the differences in runtimes
in percent comparing them with each other. The differences in the observed running times
become clearer when analyzing the percent change in the runtime when compared to Full as
shown in Table 3. For both systems, the average percent decrease in runtimes is calculated for
all queries, in order to compare both polyglot systems each other andwithFull. It is important
to notice that the speedup factor is significant especially for those queries depending on a lot
of attribute data—which is the data stored in the redis database, see in particular queries 14,
11 and 2.

There is no information for queries 4, 6, 7, 9, 12, 24 and 25, for which no runtime could
be determined on the systems as they did not go to completion. These queries are primarily
graph algorithms categorized as local and global structures in the schema discussed earlier.

The results do not show a clear trend for any of the categories discussed. The RPQ class
improves on average by 15.8% while the ECRPQ class by 10.5%. The classes CRPQ, Page
Rank,Degree Centrality andConnected Components are in the single-digit percentage range.
Since the speedup factor heavily depends on how many attributes of nodes and edges are
considered, it is not easy to measure this impact. This explains why for other time-consuming
queries, the improvement of efficiency is not significant. In general, the subcategories of local
structures seem to benefit more from the polyglot persistence designs. In addition, there is a
tendency for queries that only need to consider a few node and edge types (often entity
and hasRelation) to experience a greater decrease in runtimes than queries with many
node and edge types.
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Table 3 Decrease in the runtime
of tpoly1 and tpoly2 compared to
t f ull in %, sorted by Poly1
decreasing

Query Poly1 (%) Poly2 (%) Problem

14 26.8 25.8 RPQ

27 23.8 −2.6 Connected components

11 22.5 17.7 RPQ

8 18.2 43.3 ECRPQ

2 11.5 22.9 RPQ

15 10.3 4.5 CRPQ

20 9.2 2.5 CRPQ

23 7.7 6.8 Page rank

26 6.8 2.4 Degree centrality

16 6.6 5.1 RPQ

5 5.4 4.6 CRPQ

22 3.8 3.5 ECRPQ

17 3.1 31.9 RPQ

10 −0.2 7.0 CRPQ

3 −2.3 7.9 CRPQ

19 −2.3 8.0 RPQ

1 −2.5 4.9 CRPQ

13 −4.1 4.8 CRPQ

21 −11.0 −0.3 RPQ

18 −15.7 −15.1 ECRPQ

Average 5.8 9.8

The evaluation was done using the same queries

2.4 Graph queries

Here, we present results of some of those 27 queries introduced. Query 1 returns a subgraph:
Which author was the first to state that {Entity1} has an enhancing effect on {Entity2}?
We may execute this query using match (n:Entity preferredLabel: "APP")-
[r:hasRelation function: "increases"]->(m:Entity preferred
Label: "gamma Secretase Complex"), (doc:Document documentID:
r.context)<-[r2:isAuthor]-(author:Author) return doc, author
order by doc.publicationDate limit.

A result graph can be found in Fig. 9. On the left, the isAuthor relation with the most
recent author can be found. On the left the limit parameter was changed to 10 and thus the
result graph shows the most recent 10 publications and authors.

Query 2 returns a subgraph:Which genes {Entity1} play a role in two diseases {Entity2}?
One example output graph can be found in Fig. 10 (left). Due to the limitation of our model
to Alzheimer’s disease, it is not surprising to find only one gene—APP. If we remove the
limitation to two distinct diseases, the database returns a larger graph, see Fig. 10 (right).
Here, we see, that we may need to utilize inherent ontology information to filter those nodes,
that cover diseases. But we also see a second gene—TNF—with other diseases like Diabetes.
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Fig. 9 Example: The resulting subgraph for query 1: Which author was the first to state that {Entity1} has an
enhancing effect on {Entity2}? On the left the first author (blue node) and the publication (orange), on the
left the result shows the most recent 10 authors (blue) with their publications on this topic (orange). Here, it
is obvious that the result graph is often hard to visualize: As the number of nodes and edges increases it is not
easy to see all details (colour figure online)

Fig. 10 (left) A result subgraph example for query 2: Which genes {Entity1} play a role in two diseases
{Entity2}? Here, we see Alzheimer’s disease and Down Syndrome and the gene APP. The relations (and
especially the self relations APP→APP) can’t be visualized in a readable way but highlight the complexity
of the knowledge graph structure. (right) The resulting subgraph for query 2 without limitation to two distinct
diseases: Which genes {Entity1} play a role in two diseases {Entity2}? In contrast to figure, the results are
even more complex: APP plays a role in even more diseases. There are also some relations related to TNF
(Obesity, Diabetes and Alzheimer’s disease)
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3 Discussion

Here,we introduce the graph-theoretic foundation for a general context conceptwithin seman-
tic networks and show a proof of concept based on biomedical literature and text mining. Our
test system contains a knowledge graph derived from PubMed data which is then enriched
with text mining data and domain-specific language data coming from BEL. This dense
graph has more than 71M nodes and 850M relationships. We discuss the impact of this novel
approach using 27 real-world use cases and graph queries.

This proof of concept of a biomedical knowledge graph combines several sources of data
by relating their contextual data to one another. We processed data from PubMed and PMC
which generatedmore than 30M document andmetadata nodes. This initial knowledge graph
was extended using results from text mining and NLR-tools already included in our software
as well as with named entities from ontologies also stored in SCAIView. In addition, we
added data generated by domain-specific languages such as BEL. Thus, we were able to
assess both small data sets as well as large collections of data.

First we discuss the missing data and data integration problems, as well as the technical
issues which need to be solved. Afterward, we give an outlook on NLP based on context
information and the impact on answering semantic questions which is highly related to the
FAIRification of research data. Finally, we discuss the integration of these methods with
personalized medicine.

3.1 Missing data and quality control

Therewere several issueswith data integration andmissing data. Initially, we tried to integrate
publication data from several external sources, but some publishers used OCR technologies
to convert PDF documents in XML structures. These proved problematic to process as some
fields were either missing or incorrectly filled out.

We have not yet solved the issue of author and affiliation disambiguation which remains
a widely discussed topic, see [40]. An interesting novel approach—also based on Neo4j
database technology—was introduced in [41]. Franzoni used topological and semantic struc-
tures within the graph for author disambiguation. Taking this into consideration, we plan to
integrate such state-of-the-art technologies into our software in the future.

In addition, we did not consider the problem of quality control since the focus of our work
was different. Our approach merged existing data sets and thus we rely on the quality control
of these data sets. But merging data might lead to more quality problems as the issues with
missing data have shown. Thus further research has to be carried out here. In addition, we
presented some subgraphs received as output of the queries. However, we could not present
and discuss a quantitative evaluation of these solutions. Since the output heavily depends
on the data stored in the knowledge graph, this is another issue that needs to be considered
helping to understand the quality of the results.

3.2 Performance

Furthermore, performance for some semantic queries remains a major problem due to the
massive latency for request. Although the software is integrating in our microservice archi-
tecture, see [19], some queries did not run to completion. Here, we attempt to improve our
initial setup by establishing a polyglot persistence architecture in the database backend [7].
The detailed analysis in Table 3 raises new questions: Is it possible to determine querieswhich
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are optimal for one particular architecture? The results generated through this modification
are very encouraging and we will discuss additional topics for further research.

3.3 Context-based NLP

This novel system was designed to extend our knowledge base by utilizing contextual data.
Context serves as a very important foundation for text mining [6]. Context-based NER was
discussed by [42] and there is still ongoing research such as the content-aware attributed
entity embedding (CAAEE), see [43]. The key strength of our approach is that in every step
of text mining and NLP, all contextual data is readily available and new data is continuously
added. Therefore, this system can be used for both building and validatingMachine Learning
(ML) and AI approaches.

Of course, novel context data is not only suitable for NER, but also for relation extraction.
Prajapati proposed a novel approach to context-based relation extraction [44]. Although our
example is based on a small data set, the findings suggest that a lot of existing data can
be utilized as context data such as entities annotated by NER or manually curated BEL
statements.

Importantly, this research has several practical applications. First, it can be used to validate
data sets forML andAI approaches in context of textmining, however, further investigation is
required as to how this data can be used systematically. And second, this approach generalizes
the idea of context so that it can be used for semantic questions.

3.4 Answering semantic questions and FAIRification of data

Semantic questions can be formulated as subgraph structures of the initial knowledge graphs.
For example we may ask: “Which articles have been authored by Pacheco?”. This leads to a
subgraph with two nodes v1, v2 where v1 =Pacheco and an edge (v1, v2) =isAuthor, though
this is a relatively simple query, much more complex examples can also be used.

In general, these semantic subgraph queries (or: graph queries) have an input Q =
(V , E) ⊂ G and output all subgraphs H ⊂ G with H � Q. Therefore, the problem of
answering semantic questions is a generalization of the subgraph isomorphism problem.
Here, we presented a more detailed classification of queries, of which many can be solved in
polynomial time and as shown by their performance (Fig. 8).

We know that themost general case, subgraph isomorphism, is NP-hard, see [45]. It would
be interesting to find a formulation of the generalization or restrictions that can be applied
to these problems. Because Cypher already provides us with the possibility to query graph
substructure, further research should be directed toward exploring the runtime, finding a
better categorization of queries and discovering novel heuristics to solve this deficiency.

While this work did not consider the impact of novel ontologies and terminologies, it did
substantiate the impact of them on context data. This is an interesting and important step
toward the FAIRification of data. Wilkinson introduced his FAIR guiding principles in [46]
referring to the findability, accessibility, interoperability and reusability of data, especially in
regards to research data. A consequent application of context idea leads tometadata as context
on data which can afterward be used to make metadata searchable even if the data itself is
protected due to data protection rules. Thus, the inclusion of context in an information system
such as SCAIView will allow the data to be both findable and accessible. Furthermore, if
interoperable ontologies are available then this data will also be interoperable hence showing
that our proposed system already satisfies the three out of four issues addressed by FAIR data.
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However, the generalizability of these ideas is subject to certain limitations. For instance, the
question of interoperable ontologies or ontologies covering the issues of interoperability of
data is still not addressed and there is still no FAIR-data information system yet available.

3.5 Perspectives for personalizedmedicine

Hypothesis generation and knowledge discovery in biomedical data are widely sought after in
medical research anddigital health.Researchers often desire andutilize these toolswhendiag-
nosing patients, searching for genomic or molecular patterns, or build longitudinal models.
In addition, the massive amount of data available can be harnessed to construct a multitude of
predictive and personalizedmedicine usingML andAI approaches. One reasonable approach
to tackle reproducible research in predictive medicine would be to use a standardized and
FAIR context graph for biomedical research data. However, it would be necessary to anno-
tate not only biomedical literature, but also research data such as molecular data, imaging
data, genomics and electronical health records (EHR) with contextual information in order
to ensure the most accurate results.

Once implemented, this type of information system can be used to retrieve information by
way contextual data (cohort size, settings, demographics, ..) as well as by content (imaging
data, genomic or molecular measurements, ...) and would be able to answer questions such as
“Give me a clinical trial to reproduce my results or to apply mymodel” or “Give me literature
for phenotype A, disease B age between C and D and a CT-scan with characteristic E.”

Here, we presented a novel approach capable of annotating research data with contextual
information. The resulting structure is a knowledge graph representation of data, the context
graph, which contains computable statement representation (e.g., RDF or BEL). This graph
allows one to compare research data records from different sources as well as the selection
of relevant data sets using graph-theoretical algorithms.

4 Conclusion

Storing and querying a giant knowledge graph as a labeled property graph is still a technolog-
ical challenge. Here, we demonstrate how our data model is able to support the understanding
and interpretation of biomedical data. We present several real-world use cases that utilize
our massive, generated knowledge graph derived from PubMed data and enriched with addi-
tional contextual data. Finally, we show aworking example in context of biologically relevant
information using SCAIView.
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