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Abstract: The following work presents algorithms for semi-automatic validation, feature extraction 
and ranking of time series measurements acquired from MOX gas sensors. Semi-automatic mea-
surement validation is accomplished by extending established curve similarity algorithms with a 
slope-based signature calculation. Furthermore, a feature-based ranking metric is introduced. It 
allows for individual prioritization of each feature and can be used to fnd the best performing sensors 
regarding multiple research questions. Finally, the functionality of the algorithms, as well as the 
developed software suite, are demonstrated with an exemplary scenario, illustrating how to fnd the 
most power-effcient MOX gas sensor in a data set collected during an extensive screening consisting 
of 16,320 measurements, all taken with different sensors at various temperatures and analytes. 
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1. Introduction 

Since metal-oxide (MOX) gas sensors are cheap, easy to acquire and available in 
large quantities, they have become popular in different measurement scenarios such as 
leakage detection in chemical factories or air quality measurements in central venting 
systems [1,2]. The sensors can detect gas concentrations down to the ppb level, but suffer 
from the disadvantage of not being selective enough. Hence, researchers continuously 
create and test new material combinations with the goal of building sensors that are very 
selective and sensitive to a specifc target [3]. In addition to the actual composition of the 
sensitive layer, the sintering parameters used for the process of applying the metal-oxide 
onto the empty sensor carrier impacts the sensor’s performance immensely. Therefore, 
custom-made sensors are manufactured in batches with the same metal oxide composition, 
but individual sinter parameters. In order to test the achieved individual sensitivity and 
selectivity of the sensors in a batch, all sensors are exposed simultaneously but sequentially 
to different gases whilst being operated at different substrate temperatures. This procedure 
is called a sensor screening [4,5]. 

Depending on the granularity, a screening can be a very time-consuming task (i.e., 
several days) and should ideally be highly automatized. In our previous work, we pre-
sented hardware solutions for automated batch sintering [6] and a sensor readout system 
to carry out highly automated sensor screenings [7]. Since the acquired data has to be 
analyzed and interpreted to achieve the fnal goal of fnding the best ftting sensor and its 
optimal operating temperature for a given target, an automated measurement hardware 
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for sensor screenings is only half way to the goal. Due to the large amount of raw data 
captured during an automated screening with many parameter combinations, a manual 
interpretation can also be very time-consuming and will therefore beneft greatly from a 
high degree of automation itself. 

There are two main challenges identified for the automatized processing and analysis of 
the data acquired during an automated screening that have to be addressed algorithmically: 

• Validation 
Since manufacturing and operating parameters are still under research, some sensors 
may show a malformed or no response at all. The occurrence of such invalid measure-
ments in a screening is therefore very likely. These measurements need to be sorted 
out, to only include measurements from proper sensors for the fnal assessment. 

• Ranking 
To identify the best sensor for a given application, a performance metric is required. It 
should be based on quantifable and individually prioritizable features extracted from 
the time series measurements. The ability to tune the metric through feature-wise 
prioritization will help to model the scenario, for which the ranking is performed, in 
greater detail. 

In the following work, we will present method combinations and algorithms needed to 
address the identifed challenges. To fnd invalid or unusual measurements, we propose an 
automatic validation method based on curve similarity that compares new measurements 
against a well-known reference to determine how correlative they are. An algorithm 
calculates a numeric similarity value between the given reference and the curves under 
test. A threshold can then be used to automatically sort out measurements that are too 
dissimilar from the reference. Furthermore, we propose a signature extraction algorithm 
that signifcantly enhances the performance of the well-established curve metrics, directly 
improving the numeric similarity results. The solution for the sensor ranking is split into 
feature extraction and the ranking algorithm itself. Sensor-expert interviews led to the 
identifcation of several MOX sensor-specifc features. A relevant set of features, extractable 
from the sensors’ time series, was mathematically formalized. Finally, we can use the 
resulting feature vectors as input for our proposed ranking algorithm, which is based 
on multiplicative arithmetic. The ranking can individually prioritize a freely selectable 
combination of features from the vector, to best possibly adapt the ranking process to the 
target application for the sensor. 

We will conclude by showing the developed algorithms and software on an exem-
plary ranking performed on a data set obtained during an extensive sensor screening, to 
automatically fnd the most sensitive sensor for a given analyte, while consuming as little 
power for its heater element as possible. 

2. Related Work and Data Origin 

Since this works primary contributions are algorithms and methods for automatic data 
validation and ranking of newly manufactured sensors for application of specifc detection 
tasks, we looked at similar work in this feld. 

Many research groups like Leo et al. [8] mention their data processing as using 
several individual pieces of heterogeneous, commercial software tools like LabView or 
Matlab, or scripts. Often, the used sensor-features and statistical methods are presented 
informally as incomplete textual expressions or as black boxes entirely [9]. This makes 
a reproduction of the algorithms diffcult. The software Dave3 [10], is a toolbox with 
a graphical user interface, which comes close to the idea, we want to convey. The tool 
is, however, specialized for the evaluation of data obtained during temperature cyclic 
operation of gas sensors and not applicable for the validation and performance ranking for 
sensors according to their screening data. Another unnamed software for the evaluation of 
data obtained from an electronic nose could be found. The software is limited to a specifc 
subset of sensors and also is not suitable for ranking or validating data [11]. Both tools have 
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the major shortcoming of being based on commercial software like MatLab or LabView 
which requires additional licences. 

Our goal is to present the algorithms for validation and ranking as well as the needed 
features in a mathematically formalized way so that can they can be implemented in a 
variety of (open source) languages of choice, such as Python or R. 

2.1. Sensor Screening Method 

The data used in this work is the result of a detailed screening of 64 sensors exposed 
to nine different analytes. The sensors under test differ in their substrate composition as 
well as their sinter times and sinter temperatures used during their production. As the 
operating temperature greatly impacts the sensor performance, a single physical sensor 
operated at different temperatures can be regarded as multiple virtual sensors with very 
different sensitivity and selectivity [12]. The operating temperatures were therefore varied 
during the screening, to record the resulting impact on the sensor performance. Sensor 
resistance, heater voltage and heater current were sampled with 1 Hz during the entire 
screening. A single measurement for a sensor and an analyte at a given temperature is 
repeated at least three times before the temperature is changed and the cycle starts over. 
The resulting time series for each measurement in the described data set always consists of 
the following three segments and durations as defned by the screening procedure: 

Figure 1 is an exemplary depiction of the result from a single measurement. The dotted 
vertical lines indicate the analyte exposure to the sensor, while the toned down color of 
the curve, left and right of the dotted lines, is used to visualize the baseline and clearing 
segments as described in Table 1. 

Figure 1. Measurement of a Cr2O3 sensor, sintered with 800 ˝C for 720 min, operated at 450 ˝C, 
exposed to 5 ppm Acetone. The section between the dotted lines is the analyte exposition. The slightly 
toned down color before and after the analyte are the baseline and clearing parts of the measurement. 

Table 1. Basic structure of an individual measurement. 

Segment Duration Action 

(B) Baseline 
(A) Analyte 
(C) Clearing 

5 min 
20 min 
120 min 

Get sensor value in synthetic air before analyte 
Get sensor value during gas exposition 
Flush sensor and piping with synthetic air 

2.2. Preprocessing 

An out of range (OOR) detection algorithm checks that each sample lies within a 
range defned by a fxed lower boundary of 0 Ω and a customizable upper boundary 
τr, whereas τr ideally coincides with the maximal measurable resistance value of the 
measurement equipment. If more than 10 consecutive samples are outside these boundaries, 
the measurement is fagged as invalid. 
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If optional information for heater voltage and current is available, it can be used to 
detect and remove measurements that were performed with sensors that presumably have 
broken or malfunctioning heater elements. These extended checks are: 

• Regulation Deviation 
The recorded heater voltage is compared to the targeted voltage. The algorithm counts 
the occurrences of deviations of ˘5% to the target voltage. If this occurs more than 10 
times, the measurement is fagged as erroneous. 

• Continuous Current Flow 
Checks that the current is actually fowing through the heater element throughout the 
entirety of the measurement. 

• Heater-Characteristic 
Using the parameters from the technical information bulletin provided by UST 
Umweltsensortechnik GmbH [13], the resistance characteristic of the integrated plat-
inum heater element of the sensors at different temperatures can be validated. Sensors 
that were exposed to long sintering times at high temperatures are especially prone to 
damage to their heater element. Such sensors can be fagged with a warning. 

The system presented in our previous work [7] provides this additional data and was 
used for all screenings. Therefore, the extended preprocessing is applied to all measure-
ments in the available data set. According to the upper limit of the used measurement 
system, the upper boundary for the range checks is τr “ 4 GΩ. Finally, an outlier detection 
was performed to correct for single-sample signal anomalies. 

3. Algorithms for Validation and Ranking 

Based on the challenges described in Section 1, the following solutions are proposed: 

• Slope-based signature calculation as additional curve similarity metric to enhance a 
distance-based, semi-automatic measurement validation process; 

• Feature-based and prioritizable ranking metric to sort the sensors according to their 
performance towards a given analyte. 

Before getting started, the formal conventions are introduced. In this work a vector 
is denoted with x P R|x| where |x| is defned as the amount of the vector’s elements. The 
vector element at index i is referenced by xris with 1 ď i ď |x|. A window with size w P N 
around an index i can be interpreted as a vector itself containing only values from the 
original vector x with the limits l ď i ď r. 

## 
i ´ w if i ´ w ą 1, i ` w if i ` w ă |x|, 

xxi, wy with l “ and r “ (1)
1 else |x| else 

Let v “ p1 2 3 4 5q be a vector with fve elements. An exemplary window could 
then be vx3, 1y “ p2 3 4q. Furthermore, the last n elements of the vector could also be 
addressed via the window vx|v|, n ́  1y. For n “ 3, this gives vx5, 2y “ p3 4 5q. 

A measurement is a vector m P M with M being the set of all resistance measurements 
of one or multiple sensor screenings, as introduced in Section 2.1. The elements of this 
vector with their corresponding indices represent the sampled values and the time base of 
the measurement. Following this notation, the different segments of a measurement are 
defned as ma for the analyte exposure, mb for the baseline and mc for the clearing phase. 

The residual standard deviation used in the work is defned as [14]: 

spx, rq “

g

f

f

e 
ř|x|

i“1pxris ´ rrisq2 
, |x| ą |r| (2)

|x| ´ 2 

All notation conventions, including those introduced above, are summarized in Table 2 
as a compact overview. 
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Table 2. Summary of notation conventions for this work. 

Notation Meaning 

x Vector. 
|x| Amount of elements in Vector x 
xris Element with index i. 
xxi, wy Vector defned by window of size w around index i 
1x Min-max normalized vector elements 

x9 First derivative 
x̄ Arithmetic mean of all vector elements 
x̃ Savitzky Golay [15] fltered vector elements 
x̂ Linear regression model, based on index and elements of x 
spx, rq Residual standard deviation 

m Complete measurement with all segments 
ma, mb, mc Analyte, baseline and clearing segment 
M Set of all measurements of a sensor screening 

3.1. Slope-Based Curve Signature 

As mentioned in the motivation, one challenge to be solved algorithmically is to 
provide support for validating the screening measurements. To be as effcient as possible, 
without having detailed knowledge about the behavior of the sensor itself, the fastest way 
is to search for similar curves to a given reference time series. 

Since the proposed signature is based on the curve’s slope, the algorithm works on 
the frst derivative of the Savitzky–Golay [15] fltered measurement time series. It assigns 
each measurement a sequence comprised of the symbols `,´ and ˚, representing its slope 
characteristic. 

In preparation for the signature, a threshold t for the measurement’s noise is needed. 
It is calculated using the residual standard deviation s of the baseline’s last 200 s before 
analyte exposure and multiplying it with a customizable tolerance factor τv according to: 

t “ spx, x̂q ¨ τv, with x “ m̃9 bx|m̃9 b|, 199y (3) 

Each sample from the frst derivative is then assigned a symbol as follows: 

sgnpm, iq “ 

$

’

& 

’

% 

` if m̃9 aris ą t, 
´ if m̃9 aris ă ´t, (4) 

˚ else 

If the absolute value of m̃9 aris is smaller than the noise threshold t, it is assigned the ˚ sign, 
indicating that the slope is caused by noise. Else the sgn function values are coded as either 
` or ´. The values assigned with the ˚ symbol are not important to the signature itself, 
but are needed for correct hysteresis fltering. The resulting symbols from the sgn function 
are concatenated into a sequence, resulting in the measurement slope signature. The fnal 
signature is created, hysteresis fltered and simplifed as follows: 

• Build sig by concatenating results of sgnpm, iq for each sample. 
• Delete all leading ˚ from sig 
• Replace each remaining ˚ with the immediately preceding ` or ´ symbol 
• Delete all symbols that are not part of an at least ωs long sub-string of the same symbol 
• Reduce all identical consecutive occurrences of the same symbol to one occurrence 

Following is a non-exhaustive list of well-known curve similarity measures that can 
be extended by the proposed signature. 

• Area Method [16] 
• Discrete Fréchet Distance [17] 
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• Partial Curve Mapping (PCM) [17] 

We decided to use a simple difference-based approach for our application example, 
since it is fast and suffcient. This calculation is performed on the analyte segment of the 
reference curve r P M and the curve under test m P M, where ma 

1 represents a min-max 
normalized analyte segment of a measurement. 

ř|ma| 1 1 
i“1 |maris ´ raris|dpm, rq “ (5)

|ma| 

Because all calculations are performed on the min-max normalized curves and the resulting 
sum is divided by |ma|, identical curves have a distance of 0, whereas the maximum 
distance is limited to 1. 

3.2. Feature Extraction 

Before detailed defnitions of the actual features are given, the helper function u is 
introduced. It yields the smallest index of a measurement m P M, at which the average of a 
surrounding window reaches a relative amount τu of the reaction’s peak. The threshold 
τu and the window size ωu can be chosen as needed. The arithmetic mean of all values in 
a measurement is denoted with m̄ . The defnition of u is based on a case differentiation 
regarding the main direction of the reaction’s slope: 

# 
minti | z ě τuu if m has a positive-slope reaction, 

upm, τuq “ 
minti | z ď 1 ́  τuu else, (6) 

with z “ m1 
axi, ωuy, i P N, 1 ď i ď |ma| and τu P R, 0 ă τu ă 1. 

Moreover, some of the features depend on the slope mx̂ of a linear regression model, defned 
in the following sample-wise defnition of x̂. 

x̂ris “ mx̂ ¨ i ` bx̂ (7) 

The overall performance indicator for each measurement is calculated based on quan-
tifable features, which are each defned as a function f j : M Ñ R. All features are part of 
the feature set F and can be referenced using an index j P N with 1 ď j ď |F|. 

The following initial set of features was identifed after interviewing a domain expert 
in the feld of MOX gas sensors. The features were then formalized in the following list. All 
features marked with ´1 need to be inverted after normalization because a higher value 
will always be considered better for the performance metric introduced later in this section. 

1. Sensitivity 
The sensitivity quantifes how strong a sensor reacts to the analyte it is exposed 
to [18,19]. 
It is calculated by subtracting the mean-value of a window a “ max|ma|, 119y contain-
ing the samples of the last 120 s of analyte exposure from the mean value of a window 
b that contains the samples of the last 120 s before gas exposure (baseline), divided by 
the latter. 

b´af1pmq “ with b “ mbx|mb|, 119y and a “ max|ma|, 119y (8)b 

2. Reaction Speed I ´1 

This measure is an indicator of how fast the sensor reacts to the analyte it is exposed 
to. It covers the time from the start of the exposition to the analyte until the reaction 
reaches 50 % of its overall strength. 

f2pmq “ upm, 0.5q (9) 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

Reaction Speed II ´1 

The time between reaching 50% and 90% of the maximum reaction is used as a second 
measure for the reactivity of the sensor. 

f3pmq “ upm, 0.9q ´ upm, 0.5q (10) 

Plateau Quality ´1 

Ideally, after a transient response, the sensor signal will reach a plateau. Therefore 
the slope of a linear regression curve between the point where 90% of the maximum 
signal is reached and the end of the analyte segment can be used to quantify the 
quality of this plateau. 

f4pmq “ |m 
{ | with l “ upm, 0.9q and r “ |ma| (11)mapl,rq 

Drift ´1 

The slope of a linear regression curve ftted through the baseline segment shows a 
possible drift of the sensor resistance. While a small slope might be acceptable, higher 
drift leads to possible unstable sensor behaviour in the feld. 

f5pmq “ |m
p | (12)mb 

Repeatability ´1 

The similarity between all measurements of the same sensor/analyte combination 
is an indicator of the repeatability. The average of the curve distances d, introduced 
with Equation (5), is calculated for all possible combinations. The following equation 
is an example, defning the feature for the three valid measurements m, n, o P M per 
sensor/analyte pair. 

dpm, nq ` dpm, oq ` dpn, oq
f6pmq “ f6pnq “ f6poq “ (13)

3 

Dynamic Range ´1 

It is benefcial for the later integration of the read-out electronics that the sensor 
work in a low dynamic range. Therefore, the span of the analyte segment of the 
measurement can be extracted as a feature. 

f7pmq “ max ma ´ min ma (14) 

Power Consumption ´1 

The MOX sensors contain a heating element that needs to be heated up to a specifc 
temperature. As mentioned before, the operating temperature has a big infuence on 
the response and the power consumption of the sensor. A goal could be to minimize 
the power consumption by still maintaining a feasible response. The feature is the 
average of the heater voltage during the entire measurement. Let vm be the heater 
voltage values for measurement m, if available. 

f8pmq “ svm (15) 

Signal to Noise Ratio (SNR) 
To compare different sensors to each other, the ratio of signal strength to its baseline 
noise is a good indicator. To obtain the signal strength, the reaction phase of the 
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measurement is segmented into rolling mean-valued windows of size 41 samples. 
Depending on the reaction type, the signal strength is then calculated with: 

# 
max a ́  z if ma has a positive-slope reaction, 

pspmq “ 
z ́  min a else, (16) 

with z “ mbx|mb|, 40y and aris “ maxi, 20y, i P N, 1 ď i ď |ma| 

Finally, the SNR is calculated as: 

pspmq
f9pmq “ ´ ¯ (17) 

s mb, mxb 

Let mk P M be the measurement with the corresponding index k P N for which is 
claimed 1 ď k ď |M|. With the features defned in this section, a feature vector gj for each 
feature is calculated. 

gjrks “ fjpmkq (18) 

For further use, the features are min-max normalized and inverted, if needed. The 
fnal feature vector fj for each feature is defned as: 

# 
1gjrks if feature j does not need to be inverted, 

fjrks “ (19)
11 ́  gjrks else. 

3.3. Quantifable and Individually Prioritizable Ranking Metric 

To rank the sensors according to the selected features, an overall performance value 
for each measurement is calculated with 

ź

|F| 
´ ¯ 

prks “ pj fjrks (20) 
j“1 

and the linear feature-specifc priority function pjpxq 

pjpxq “ φj ¨ x ´ φj ` 1 with φj P R, 0 ď φj ď 1 (21) 

where the priority value φj can be chosen by the user for each feature to prioritize it 
individually during the calculation. To simplify things, we specifed a set of fve priority 
values, resembling the following priority levels: 

Lowest : φj “ 0.1 
Lower : φj “ 0.3 
Normal : φj “ 0.5 
Higher : φj “ 0.7 
Highest : φj “ 0.9 

Figure 2 shows the infuence of φj for these predefned levels. It is important to 
understand how the priority value steers the infuence of a feature within the performance 
indicator. With each feature value fjrks ă 1 involved in the product, the performance 
indicator prks for measurement mk will decrease. This demotion capability is restricted 
by pj to 1 ´ φj ď pjpfjrksq ď 1. Hence, a lower φj will give the feature a lower priority 
compared to features with a higher φj and vice versa. 
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1 

0.8 

0.6 

0.4 

0.2 

fjrks 

Figure 2. Graphs of boosting function pj for different φj. 

Consider, for example, the worst measurement mw for feature j with fjrws “ 0; then, 
setting φj “ 1 demonstrates the feature’s full demotion infuence on the performance 
indicator by annihilating prws completely: 

pjpfjrwsq “ 0 ñ prws “ 0 (22) 

By selecting φj “ 0.5 instead, fjrws is now only capable of decreasing the performance 
indicator for mw to 0.5. 

The min-max normalized performance indicator p1 now holds the respective perfor-
mance value for each measurement, where p1rxs “ 1 applies to the best overall performing 
measurement mx for the selected feature set. The fnal ranking of the measurements can be 

1achieved by sorting p . 

4. Application Example, Results and Discussion 

An important design target for mobile applications is to minimize power consumption. 
Because MOX gas sensors utilize a signifcant amount of power for heating their sensitive 
layer to a suitable working temperature, researchers are continuously trying to optimize 
substrate compositions that do not require high operating temperatures while still per-
forming adequately for a specifc application. In the following, we will therefore illustrate 
the suitability of the proposed algorithms for fnding the most energy-effcient sensor 
for Acetone detection based on the data of the sensor screening described in Section 2.1. 
Initially, the software which was developed for this work will be briefy introduced as the 
platform used for the application example. 

4.1. Software 

To support a user in all tasks related to data processing and evaluation, graphic user 
interface (GUI) software, depicted in Figure 3, was developed. To display and navigate 
through the data, the GUI implements a tree based navigation with fltering functional-
ity that is always visible on the left side of the software. To sort and structure the data, 
the measurements are hierarchically arranged top-down starting with the analytes, fol-
lowed by the virtual sensors which group the associated measurements for the specifc 
combination together. 

The software is divided into tabs, according to the introduced algorithms: View + Manual 
Validation, Auto Validation and Sensor Ranking. Each tab encapsulates the controls and 

p j
pf

jr
ks
q 

φj “ 0.1 
φj “ 0.3 
φj “ 0.5 
φj “ 0.7 
φj “ 0.9 

0 0.2 0.4 0.6 0.8 1 
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views needed for the respective use case. Depending on the active tab, the navigation is 
either used to browse through all measurements, choose a reference curve for the similarity 
algorithms or select the combinations of sensors and analytes for the ranking. 

The flter enables the user to specify the following parameters: 

• Analyte 
• Sensor Substrate 
• Sinter Temperature 
• Sinter Time 
• Sensor Operating Temperature 
• Validation Status 

Furthermore, the user can add measurements to a list of favorites or use the reference 
checkbox to obtain a list of all measurements that have been used as references in the curve 
similarity algorithm. 

Figure 3. The software showing the View + Manual Validation tab. 

Visual inspection is realized with four interactive graph views divided into two 
subgroups. The upper graphs are used to display all measurements for the selected 
combination of virtual sensor and analyte, whereas the lower ones show the specifc 
measurement selected in the navigation tree. The user is able to inspect the data by 
applying several flters and standardizations (e.g., frst derivative, baseline normalized 
resistance, etc.). 

After an in-depth inspection, a validity status can be assigned to the measurement 
manually by the user. A measurement can have three validation states: 

• Valid 
• Invalid 
• Not Validated 

All measurements are initially in the Not Validated state. Manual validation and anno-
tation is realized with four numbered radio buttons, a commentary feld and two buttons. 
Remarks and textual annotations can be added to the Comment text feld. In addition 
to the mentioned states, Reevaluate marks the measurement for later inspection, whereas 
Skip/Reset either resets its validation state back to Not Validated or skips the measurement if 
it is Not Validated. Care was taken to minimize the amount of clicks by adding keyboard 
shortcuts and effective tabbing. Using the shortcuts, the validation and textual comments 
are saved and the software automatically navigates to the next curve for inspection without 
any needed mouse interaction. 
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4.2. Automatic Measurement Validation 

The frst step before the measurements can be ranked is to remove those without 
useful information. This is done automatically as mentioned before by using established 
curve similarity metrics in conjunction with the presented slope-based signature calculation 
algorithm. The software implements several similarity methods, all of which compare two 
time series to each other. The complete functionality is encapsulated in a separate software 
tab and depicted in Figure 4. 

All metrics calculate and assign a score to each measurement and afterwards rank 
them with descending similarity in the middle list (yellow rectangle in Figure 4). The user 
can inspect candidate curves and reference together in an interactive graph view (purple) 
and afterwards apply the fnal validation with the buttons and the following list selection: 
The measurements moved to the upper list (red) are set to invalid, the status of those in the 
middle list are not changed and fnally the lower list (green) marks its contents as valid. 
The option Remove low SNR (blue) automatically proposes measurements as invalid that do 
not show enough signal amplitude by calculating the measurements signal to noise ratio 
(SNR) and comparing it to the threshold given in the spin box. 

Figure 4. Exemplary use of the auto validation function. Validation of all CO measurements per-
formed with In2O3-based sensors. The blue curve is the user-supplied reference, the green curves are 
the candidates as selected in the middle (yellow rectangle) and lower list (green rectangle). The upper 
list (red rectangle) holds all measurements that are greater than the selected reference threshold (light 
blue rectangle) and are therefore sorted out. 

For validation of the proposed signature algorithm, we created a test subset including 
the runs 52, 261, 267, 343 and 374 and calculated the distance with respect to the reference 
run 270 for all available curve distance methods. The proposed slope-based signature 
algorithm yields the same signature ` for the reference and all runs of the subset except 
for run 52, which was assigned the signature ´`. In Figure 5 run 52 shows a signifcant 
drop and therefore a different slope characteristic compared to the other runs, which is 
represented by the signature value. Referring to Table 3, the calculated curve similarities 
based on the four curve distance methods listed in Section 3.1 reveal that run 52 has a 
very similar distance to the reference compared to at least one of the other runs for the 
respective method. If the signature would not be used to sort out run 52, it would be on 
the same similarity level as the other curves, ignoring the signifcant difference in slope 
characteristics. 
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Table 3. Distance values for the four implemented distance metrics for the runs in the selected test 
set, compared to the reference run 270. 

Run Method Distance to 270 Distance of 52 to 270 

261 PCM 68.82963 68.62570 
267 Area 268.05069 264.02023 
343 Fréchet 0.62149 0.62126 
374 Point 0.23268 0.22901 
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Figure 5. Curve similarity of a subset of test curves with respect to the reference run 270 (blue). 
The curve of run 54 (red) yields a different signature (´`) to the other curves (green) (`) which is 
therefore fltered out although it has very similar distances (see Table 3) to the remaining curves. 

4.3. Features and Raking 

After the measurements are validated, the scenarios question needs the following 
features from the set introduced in Section 3.2 to fnd the most power-effcient sensor: 
Power, Sensitivity, Reaction Speed I, Reaction Speed II and Repeatability. The priorities were set 
as listed in Table 4. 

Table 4. Priorities of the features used for the exemplary ranking. 

Feature Priority Comment 

Power ( f8) Highest (φ8 “ 0.9) Cooler sensors need less power. 
Sensitivity ( f1) High (φ1 “ 0.7) Better for small amounts of the gas. 
Reaction Speed I ( f2) Normal (φ2 “ 0.5) Hot sensors have higher speeds. 
Reaction Speed II ( f3) Normal (φ3 “ 0.5) φ3, φ2 “ 0.5 are a good trade of. 
Repeatability ( f5) Normal (φ5 “ 0.5) Consider sensor stability ov. time. 

The resulting list in Table 5 shows the most power-effcient sensor for the task of 
measuring Acetone and is depicted in Figure 6. The second and third best sensors are 
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shown in Figure 7. Furthermore an exemplary midfeld sensor and the worst sensor from 
the ranking can be found in Figure 8. 

Table 5. The top 3, midfeld and worst sensors from the available validated dataset ranked according 
to the most power-effcient (coldest sensor operation) detection of the analyte Acetone. 

Rank 1p Substrate Sinter Temp. 
(˝C) 

Sinter Time 
(minutes) 

Op. Temp. 
(˝C) 

Sensitivity 
(Arb. Units) 

1 1 Cr2O3 1000 1140 350 0.77 
2 0.95 Cr2O3 900 10 400 0.79 
3 0.86 Cr2O3 1000 1440 400 0.66 

. . . . . . . . . . . . . . . . . . . . . 
240 0.4 Cr2O3 700 720 350 0.48 
. . . . . . . . . . . . . . . . . . . . . 
480 0 Cr2O3 1000 10 550 0.18 

The frst three sensors are very similar concerning their sensitivity (approximately 
0.7) and reaction speed toward the analyte as shown in the baseline-normalized depiction 
in Figures 6 and 7. Yet, the performance value of the sensor with the smallest power 
consumption of these three was chosen to be frst due to the selected feature prioritization. 
To put the best sensor into perspective, a sensor from the midfeld and the worst performing 
sensor of the ranking are depicted in Figure 8. While the midfeld sensor is operated 
at the same temperature as the best sensor, it is demoted due to its lower sensitivity 
towards Acetone of only 0.48. The last and therefore worst sensor in the ranking delivers a 
much lower sensitivity of just 0.18 whilst consuming more power to operate at the higher 
temperature of 550 ˝C. It is therefore the least favorable choice for this particular scenario. 

Figure 6. The fnal ranking, showing the measurement belonging to the best sensor for the 
given problem. 
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Figure 7. Second and third place of the fnal ranking. 

Figure 8. Midfeld place of worst sensor in the ranking. 

5. Conclusions 

In this work algorithms for validating measurements and a feature-based sensor rank-
ing have been presented. To address the challenge of automatic validation of the extensive 
screening data, a slope-based signature calculation has been proposed as an addition to 
established curve similarity metrics. Using the newly presented signature-extraction al-
gorithm, curves that differ in slope (shape) are now much more clearly separated, which 
directly leads to much faster post-processing time for the measurement validation. For the 
other major challenge, a sensor performance ranking, a set of features and a ranking metric 
have been introduced. The features, obtained by interviews with experts in the domain of 
gas sensor screening, were frst of all mathematically formalized and afterwards algorithms 
were implemented to extract and optionally normalize quantifable information from the 
time series. The performance metric offers individual prioritization of features and allows 
to rank the measurements according to their overall performance on all features used. 

Finally, the proposed algorithms were used to validate and rank various sensors in a 
large data set obtained during an extensive screening. It was shown that the additional use 
of the proposed slope-based signature delivers better results compared to the established 
curve distance methods that do not take slope characteristics into account. This new 
algorithm combination can help validate many measurements more effciently. The ranking 
and feature extraction algorithms were tested by taking on the question of which sensor 
has the highest sensitivity towards a specifc analyte under low-power constraints. A 
prioritization method for the quantifable features was developed and implemented to be 
able to adapt the ranking to multiple scenarios of interest. 

The software suite implemented for this work can be used as a solid foundation for 
future measurement campaigns, as it provides not only an extensible feature extraction, 
but also offers a structured storage model and can be used as a general management 
platform for screening data. Future goals are improving the outlier detection, extending 
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and refning the current feature set and integrating the control and acquisition protocols 
for the automatized sensor screening into the software suite. 
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