
Generating Musical Compositions
through a Data-Driven Approach along

with Static Implementations of
Theoretical Principles

Daniel Jiang

Publisher: Dean Prof. Dr. Sascha Alda

Hochschule Bonn-Rhein-Sieg Ű University of Applied Sciences,
Department of Computer Science

Sankt Augustin, Germany

December 2022

Technical Report 04-2022

ISSN 1869-5272 ISBN 978-3-96043-103-9

This work was supervised by Wolfgang Heiden
Ernst Kruijf

Co-Author Wolfgang Heiden

Abstract

In the Ąeld of automatic music generation, one of the greatest challenges is the consistent
generation of pieces continuously perceived positively by the majority of the audience since
there is no objective method to determine the quality of a musical composition. However,
composing principles, which have been reĄned for millennia, have shaped the core charac-
teristics of todayŠs music. A hybrid music generation system, mlmusic, that incorporates
various static, music-theory-based methods, as well as data-driven, subsystems, is imple-
mented to automatically generate pieces considered acceptable by the average listener.
Initially, a MIDI dataset, consisting of over 100 hand-picked pieces of various styles and
complexities, is analysed using basic music theory principles, and the abstracted inform-
ation is fed into explicitly constrained LSTM networks. For chord progressions, each
individual network is speciĄcally trained on a given sequence length, while phrases are
created by consecutively predicting the notesŠ ofset, pitch and duration. Using these out-
puts as a compositionŠs foundation, additional musical elements, along with constrained
recurrent rhythmic and tonal patterns, are statically generated. Although no survey re-
garding the piecesŠ reception could be carried out, the successful generation of numerous
compositions of varying complexities suggests that the integration of these fundamentally
distinctive approaches might lead to success in other branches.

Copyright c÷ 2022, by the author(s). All rights reserved. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for proĄt or
commercial advantage and that copies bear this notice and the full citation on the
Ąrst page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speciĄc permission.

Das Urheberrecht des Autors bzw. der Autoren ist unveräußerlich. Das
Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Das Werk kann
innerhalb der engen Grenzen des Urheberrechtsgesetzes (UrhG), German copyright

law, genutzt werden. Jede weitergehende Nutzung regelt obiger englischsprachiger
Copyright-Vermerk. Die Nutzung des Werkes außerhalb des UrhG und des obigen
Copyright-Vermerks ist unzulässig und strafbar.

Digital Object Identifier https://doi.org/10.18418/978-3-96043-103-9

b

https://doi.org/10.18418/978-3-96043-103-9

Contents

1 Introduction 1

2 General Background 3

3 Related Work 5

4 Prerequisites 7

4.1 Theoretical Principles . 7

4.1.1 Definitions . 7

4.1.2 Context . 9

4.2 Artificial Neural Network . 10

4.2.1 Formal Definition . 10

4.2.2 Long Short-Term Memory Network 11

5 Static Approach 13

5.1 Overview . 13

5.2 Difficulties . 14

5.3 Analysis . 14

5.3.1 Analysis Criteria . 15

5.3.2 Chord Estimation . 15

5.3.2.1 Estimation Strategies 15

5.3.2.2 Merging Possibilities 18

5.3.3 Element Extraction . 18

5.4 Component Generation . 18

5.4.1 Counterpoint . 19

5.4.2 Pitched Accompaniment 19

5.4.3 Unpitched Accompaniment 20

5.4.4 Key Signature Change 20

5.5 Drawbacks . 20

v

vi Contents

6 Data-Driven Approach 21

6.1 Overview . 21

6.2 Difficulties . 23

6.3 Training Data . 23

6.4 Correlations . 24

6.5 Component Generation . 24

6.5.1 Chord Prediction . 24

6.5.2 Note Prediction . 25

6.6 Drawbacks . 26

7 Implementation 27

7.1 MIDI Handling . 27

7.2 Data Models . 28

7.3 Information Extraction . 29

7.3.1 Chord Estimation Algorithm 29

7.3.2 Phrase Classification . 29

7.3.3 Additional Element Extraction 30

7.4 Element Prediction . 30

7.4.1 Data Preparation . 30

7.4.2 Network Composition 31

7.4.3 Training Configuration 33

7.4.4 Chord Prediction . 33

7.4.5 Note Prediction . 34

7.5 Static Element Generation . 34

7.5.1 Counterpoint . 35

7.5.2 Pitched Accompaniments 35

7.5.3 Unpitched Accompaniments 35

7.5.4 Key Signature Change 35

7.6 Miscellanea . 36

7.6.1 Path Management . 36

7.6.2 User Interface . 36

7.6.3 Model Weights . 36

7.6.4 JSON Configuration . 37

8 Results 39

8.1 Information Extraction . 39

8.2 Element Prediction . 43

8.3 Static Element Generation . 43

9 Discussion 45

Contents vii

10 Conclusion 49

11 Bibliography 51

A Code Excerpts 57

B UML-Diagrams 59

C Generated Examples 61

viii Contents

Chapter 1

Introduction

Having existed since prehistoric times, music has incessantly occurred in every

known human culture as a form of entertainment. In the mid-2010s, with other

entertainment sectors growing in the past few years, the music industry’s revenue

has shrunk significantly compared to its peak in the early 2000’s due to digitisa-

tion and convergence of production and distribution systems. Nevertheless, with

streaming services having become a trend, the music sector has once again grown

after its previous plummet [Loz20]. Nowadays, in the development of digital

entertainment such as movie productions and video games, utilising music for

various purposes has become the norm in the those industries, additionally to music

itself being a separate sector on the market, implying that the production, as well

as the consumption, is steadily increasing.

Since the beginning of recorded history, albeit the contentious origins of music,

there has never existed an objective way to determine whether a musical composi-

tion sounds "good" due to this being a subjective matter that each individual has

to decide for oneself. However, this specific question has been topic of several

debates throughout history and disputants have yet to come to a conclusion that

the majority will agree with. Even so, the musical style, which heavily varies

depending on the culture, society, time period and geographical location, is of

highest importance whilst attempting to objectively classify a piece.

The main objective of this study is the exploration of a combined approach -

making use of both data-driven methods as well as theoretical principles - to im-

plement an application that is capable of generating an instrumental piece that is

considered satisfactory by the average listener in terms of melody, rhythm and har-

mony. The piece itself is to be presented as a Musical Instrument Digital Interface

(MIDI) file - a standardised format in modern music production-, utilising datasets

of various compositions as a statistical base for a machine learning approach as well

as static implementations of theoretical principles based on musical characteristics

1

2 Chapter 1. Introduction

of mainstream music of the past millennium. This project does not aim to further

improve additional characteristics like dynamics and timbre of the composition,

as doing this would require a tool more powerful than MIDI due to its internal

functionality and much more time than given with the time frame of a bachelor’s

thesis.

To set a minimum goal for the project, the most basic composition that will

be considered a piece shall be a melody with several clear, repeating patterns

accompanied by a chord progression that harmonise with each other by Western

standards [Ric98]. The piece itself is to be generated using a combined approach

from basic machine learning models along with implementations of theoretical

musical principles. Moreover, the application has to be accessible and partially

configurable from either a command line interface or a graphical user interface.

Furthermore, additional features of the application could be supplementary sub-

melodies, further accompanying elements and a more advanced instrumentation.

Should the remaining time be sufficient after implementing those, creating, or

rather improving, the application’s graphical user interface, exporting artefacts and

adjusting the code to suit a higher configurability are options worth considering.

Chapter 2

General Background

Nowadays, mainstream music is considerably influenced by earlier music, such as

music from the Classical (1750s - 1820s), Baroque (1600s - 1750s) and Romantic

(1820s - 1900s) period, thus creating certain guidelines of which characteristics in

a composition will sound acceptable to the average listener. Despite music having

evolved significantly in the past century, most of the compositions from that time

period are still based on the same characteristics (e.g. melody, harmony, rhythm,

and timbre) as the ones from the Renaissance, for example.

Although numerous endeavours to define music have been made, none of the

definitions has been officially accepted, implying that technically anything contain-

ing any sounds can be considered music1, which is why there can only be principles,

but no rules for composing music [SSS67]. Nevertheless, the result of the musical

evolution is that most people have adjusted their ears to certain intervals in-between

frequencies, which implies that harmonic rules could be derived according to that.

Notwithstanding the fact that this proves the possibility of utilising these main-

stream characteristics to compose a piece that will be considered harmonically

pleasing to the ear, it is difficult to statically generate compositions that are not

completely monotonous as a result of the brain’s demand for something more

compelling [Cly13]. On top of that, there is only a finite amount of possible

compositions of a given duration - assuming that these do not exploit the utilisation

of endless tuples, time signatures or orchestrations. An alternative would be the use

of high level probabilistic rules, which can subsequently be applied on parameter

learning algorithms, as well [SD10].

While multiple systems, which make use of different kinds of Artificial Neural

1Since music is a form of art, even complete silence can be interpreted as music, e.g. 4′33′′

(1952) by John Cage (1912 - 1992), which consists of four minutes and 33 seconds of absolute

silence.

3

4 Chapter 2. General Background

Networks (ANN) to compose polyphonic music, have been successfully imple-

mented [MMJ19; LWZM15; HHC18; HC16], purely using machine learning as an

approach has its disadvantages, as well. Considering the existence of difficulties

on a musical level while attempting to interpret a composition, these problems are

also being translated onto an implementational level. Due to the nature of music

not having clear rules, a chord, for example, could technically be interpreted in

various ways. Granted that only few of those chord interpretations would make

sense, having more than one option leaves room for multiple interpretations of the

current phrase, potentially changing the entire structure of a piece [SSS67]. Thus

suggesting, that the main computational challenges of chord recognition are the

ambiguity and contextual dependency, which are both proportional to the harmonic

complexity [SR08]. This is why there is no reliable algorithm to determine which

chord exists at what time in a more complex MIDI file (e.g. one that contains

more than a single chord per measure, extended chords, non chord tones and/or

interactions between multiple parts). Hence implying that - to properly train a

model to interpret and generate more complex compositions - one would have to

feed it immense amounts of data, so the correlations and patterns between every

single note can be computed, instead of larger elements like chords. Neither the

acquisition and preparation of the training data nor the time being used to train the

models are realistic in this case. Therefore, a proper chord recognition algorithm is

crucial to this approach.

As for the musical interface, MIDI offers enough functionalities that satisfy the

requirements for reading, editing and writing data, therefore it has been established

as a technical standard for now. It makes use of the chromatic scale [For13] - which

has mostly been used in popular music around the globe since the early modern

European periods - by mapping the scale’s frequencies onto notes - represented as

integers. A MIDI file itself contains event messages, that describe certain musical

elements. In the majority of MIDI pieces, most of these are Note On and Note Off

events that conjointly represent a note being played, which eventually have to be

processed to derive larger elements, such as chords.

Chapter 3

Related Work

Regarding data-driven approaches for music generation problems, it is crucial to

understand the syntactic rules within a composition. Additionally to improving the

synthesis, classification and information extraction, this knowledge can be taught

and implemented by the application of machine learning [Dan00]. For automatic

music generation problems, popular ANN choices include Convolutional Neural

Networks (CNN) [LB+95] and Recurrent Neural Networks (RNN) [RHW86].

A Long Short-Term Memory (LSTM) [HS97] network is an artificial RNN

architecture used in the field of deep learning, which is able to process sequences

of data. This type of ANN is used by Mangal et al. [MMJ19] in a successful

attempt at creating a system that automatically generates MIDI music. Similarly,

Lyu et al. [LWZM15] integrate a LSTM network with a Restricted Boltzmann

Machine (RBM) [Smo86] for high dimensional data modelling, with polyphonic

music generation as field of application. As last example, the variation by Huang

et al. [HHC18] is a model that combines a CNN with a LSTM network by estab-

lishing convolution layers to extract features of the musical score matrix, which

has previously been converted from a MIDI file.

A different kind of approach is the implementation of probabilistic rules, as Sneyers

and De Schreye [SD10] have done. In their paper, they make use of the probabilis-

tic logic language’s ability to express statistical and relational information to create

a new system for automatic music generation by modelling fragments of musical

compositions using high level probabilistic rules. The system allows parameter

training from arbitrary examples as well as previously generated pieces.

Contrary to that, Herremans and Chew present a system capable of automatic

music generation with recurrent pattern constraints and tension profiles that enables

the ability to generate music according to any given context [HC16]. This system

implements a variable neighbourhood search [MH97] optimisation algorithm us-

ing both hard and soft constraints in its generation process to allow for a successful

5

6 Chapter 3. Related Work

composition.

Disregarding the prior composing problem itself, generating accompaniment parts

for a present piece is achievable using different techniques, too. The work of

Crestel and Esling introduces the first system performing automatic orchestration

from a real-time piano input [CE16], by learning the underlying regularities ex-

isting between piano scores and their orchestrations by well-known composers.

To accomplish that, a class of statistical inference models based on a RBM is

investigated.

Lastly, referring to the previously mentioned chord estimation problem, two ways

to interpret chords within a piece are a CNN based deep feature extractor trained

to estimate chords of music audio recordings, as proposed by Wu and Li [WL18]

and Scholz and Ramalho’s Complex Chords Nutting (COCHONUT) system, which

uses contextual harmonic information to solve ambiguous interpretations [SR08] in

MIDI data. The latter study shows results indicating that the use of decision theory,

optimisation, pattern matching and rule-based recognition respectively enhance the

results, implying that the used approach is applicable on MIDI pieces of higher

complexity, as well.

Similar to the previously mentioned works, LSTM networks will be implemented

to predict on sequential music data, since the findings of said studies indicate

a practical application of this specific type of neural network. As for the chord

recognition and orchestration problems, static approaches based on methods util-

ising music theory will be applied in order to reduce the problems by abstracting

fundamental information.

Chapter 4

Prerequisites

Prior to the implementation of the ANN, a static analysis will be performed

on the MIDI data to create the network’s input data. To ensure the analysis’s

comprehensibility, a rudimentary understanding of music theory concepts crucial

for this study has to be established. Furthermore, basic concepts of ANNs will be

introduced before the in-depth presentation of either approach, too, since they are

fundamental to the understanding of the ensuing chapters of this thesis.

4.1 Theoretical Principles

The theoretical principles of musical composition are a set of guidelines and

practices of basic music theory concepts that are essential to the comprehension of

the music creation process.

4.1.1 Definitions

Since any arbitrary sound contains a certain amount of oscillating waves at a fixed

frequency, the membranes inside the human ear will perceive it differently, thus

resulting in what is known as pitch, one of the most basic fundamentals in music

theory. It is used in the chromatic scale, a set of twelve specific pitches, or notes.

In 1979, Forte described the chromatic scale as a series of half steps - the smallest

interval of the scale - which comprises all the pitches of our equal-tempered system

[For13]. In Western music, usually, a diatonic scale is used. It uses seven notes

of the chromatic scale and the intervals between notes consist of either a whole

step (two semitones) or a half step (one semitone). The series 2-2-1-2-2-2-1 or

full-full-half-full-full-full-half describes a major scale’s intervals between its notes.

In a diatonic scale, all notes are numbered by their amount of steps from the first to

seventh degree.

7

8 Chapter 4. Prerequisites

A musical piece is either a vocal or instrumental composition, which usually

consists of multiple sections, that are formally structured into arrangements of

musical units of rhythm, melody, and/or harmony that show repetition or variation

with a given orchestration [Tit09]. This definition contains three key concepts,

which can be interpreted as follows: In music theory, rhythm refers to any regular

recurring motion or a movement marked by the regulated succession of strong

and weak elements, or of opposite or different conditions. A melody is a linear

succession of musical tones - a combination of pitch and rhythm - that is perceived

as a single entity. Harmony is a perceptual property of music that consists of

concurrently occurring pitches; the sound of two or more notes heard simultane-

ously. Furthermore, the orchestration of a piece refers to the used combination of

instruments or parts inside the composition [Toc77; Ric98; Ape69].

In Western music, chords - a set of simultaneously played notes, usually

from the chromatic scale - have been the most widely used elements to create

harmony. Depending on the interval (e.g. an octave is an interval that consists of

12 semitones) between its notes, different chord types result, giving each chord its

own characteristics, allowing more complexity, whereas the chord’s root note - the

note, on which the remaining notes of the chord are built - determines its name.

Arranged into order, a set of chords becomes a chord progression, the foundation

of Western popular music on which melody and rhythm are built [Toc77; Ric98].

Since chord progressions are the foundation of most music, they direct the flow

of the piece and its overall perception, invoking the audience’s emotions associated

with the chords [YC11; Cly13]. Additionally, the function of chord progression

is the establishment of a key, which determines the scale - specifically ordered

notes of the chromatic scale - that forms the composition’s basis. In the context of

the key, each chord has its own function. Resolution is one of the most important

functions: Usually, a chord progression starts by building up tension with each

chord change, and follows up by decreasing said tension, until it resolves [Toc77;

Ric98].

To enhance the readability of the piece’s musical notation, it is common practice

for the composer to include key signatures and clefs. Both are mandatory symbols

to identify notes within any piece: The key signature implies the scale, while the

clef indicates the range in which the notes lie.

Figure 4.1: Chord Progression F-Am7-BZM7-BZmM7.

4.1. Theoretical Principles 9

The example in Figure 4.1 is a non-resolving chord progression in the key of F

written in musical notation utilising the treble clef. It consists of four chords: F

major, A minor seventh, B-flat major seventh and B-flat minor major seventh,

which are usually denoted as F, Am7, BZM7 and BZmM7, respectively. Based on the

given key signature, the scale can be derived, which allows the reader to calculate

the amount of semitones between each chord’s notes, consequently determining

the chord type.

4.1.2 Context

Put into context of the study, the above defined concepts have to be modelled as

data structures and implemented as either hard or soft constraints in the analysis as

well as in the generation process. The data models will be implemented as conven-

tional classes in any object-oriented programming language, while representing

any notes as numbers. Constraints will be used in the chord estimation algorithm

and the ANN’s element prediction.

Lastly, the importance of using MIDI for all music handling needs to be man-

ifested. The A note above middle C or C4 - the fourth C key from left on a standard

88-key piano keyboard - (hence also known as A4) is usually set at a frequency of

440 Hz, since it has been established as the pitch standard. It is known as A440 or

Stuttgart pitch [Ape69] and used in the specification of the MIDI Tuning Standard

(MTS) [Ass21]. The main reason MIDI is used as the music interface for this study

is not solely its popularity, but its straightforward internal pitch-to-note mapping,

which simplifies the conventionally logarithmic frequency scale to a linear scale of

integers: The MTS defines its data value d as

d = 69 + 12× log2

(

f

440 Hz

)

(4.1)

with f being the frequency. The quantity log2
(

f

440 Hz

)

represents the number

of octaves above A4, which can be multiplied by 12 to calculate the number of

semitones above that frequency. Adding 69 - the MIDI note number of A4 - equals

the number of semitones above the C five octaves below C4. To visualise the

equation’s application, two examples - of which both utilise the A440 standard for

the substituted frequencies - are shown below in Equations 4.2 and 4.3:

A4 = 69 = 69 + 12× log2

(

440 Hz

440 Hz

)

(4.2)

C4 = 60 ≈ 60.000028765 = 69 + 12× log2

(

261.626 Hz

440 Hz

)

(4.3)

10 Chapter 4. Prerequisites

4.2 Artificial Neural Network

The modelling of feedforward artificial neural network2 computing systems has

been originally inspired by biological neural systems (neural circuits). Nonetheless,

as modern machine learning research is driven by mathematical and engineering

principles, ANNs are consequently described as, inter alia, “function approximation

machines that are designed to achieve statistical generalisation” [HGBC18].

4.2.1 Formal Definition

Neural networks [HGBC18; LWG22] can be defined by the mapping y = f(x; θ),
where x denotes the input and θ the parameters that are required to optimise the

approximation to an underlying function f ∗ of the training data3. f is usually

modelled by a composition of subsequent functions, in which each one represents

a layer. The dependencies of the layers on one another can be illustrated by a

directed acyclic graph that represents the network itself. During the network’s

training process, the examples are assigned a ground-truth - an ideal expected

result that has been manually classified - label y ≈ f ∗(x) and the output layer

has to return a value that minimises the error at every training point. Neither the

behaviour (functions) nor the output of the layers in between is specified, implying

that the network has to learn the utilisation of these layers to implement the best

possible approximation.

When it comes to computing the values inside the hidden layers, a prede-

fined non-linear activation function has to be chosen in order for neurons to

perform linear regression or classification. On account of the activation function’s

non-linearity - since linear activation functions would not alter any data -, any

continuous function can be theoretically approximated up to an arbitrary tolerance

ϵ > 0 by a neural network with one hidden layer and a sufficiently large number of

neurons. One popular activation function is Rectified Linear Unit (ReLU), defined

by g(x) = max(0, x), where g denotes the function and x the input of the artificial

neuron.

In order to measure the output quality, a loss function is used to penalise the

deviation of the prediction from the target. Therefore, the goal is to minimise the

result of this function. Often - depending on the loss -, the network parameters need

to be adjusted. The amount and direction are specified by the network’s gradients

∇f which are computed by the loss through the network - a process also known as

backpropagation.

2Feedforward artificial neural networks will simply be referred to as neural networks from here

on.
3The learning of its parameters is equivalent to evaluating f on the provided training data and

comparing it to f∗.

4.2. Artificial Neural Network 11

x0

x1

x2

i

i0

i1

i2

h0

h00

h01

h02

h03

f0

h1

h10

h11

h12

h13

f1

o

o0

o1

y0

y1

Figure 4.2: Artificial neural network architecture with three layers. The input layer is not

counted. i, h0, h1 and o denote the input, first hidden, second hidden and output layer,

respectively. The nodes are named after their layer joint with individual indices. x and y

represent the input and output, while each f describes the hidden layer’s function.

To roughly visualise an ANN’s architecture, Figure 4.2 illustrates a simple feed-

forward neural network consisting of three layers: The input layer (marked red)

- which is not counted -, two hidden layers (marked blue) and the output layer

(marked green). In this example, each circle serves as a node, which represents

a neuron, while the arrows represent the connection from each neuron’s output

to the inputs of the consecutive neurons in the next layer. The input data x is fed

into the network using the input layer i and the hidden layers h0 and h1 learn the

parameters θ using functions f0 and f1, respectively. y denotes the final output -

the product of the output layer o.

4.2.2 Long Short-Term Memory Network

Long short-term memory networks [HS97] are a special kind of recurrent neural

network, which - unlike generic neural networks - considers not only the current

input example, but takes the previously perceived information into account instead.

It is dedicated to performing efficiently on sequences consisting of values of

12 Chapter 4. Prerequisites

variable length, where the length represents the period of information flow. Under

the assumption that learning specific parameters for an input feature is useful at

one time step, the ability to recognise this feature is implied to be of equal use at

other time steps, since it can be avoided to learn the parameters from anew.

In theory, any function that is computable by a Turing machine can also

be approximated by a two-layer RNN, while in practice, however, they are not

capable to learn long-term dependencies due to vanishing and exploding gradients

[BJZP20] during backpropagation4 [Hoc91]. LSTMs were developed to address

this exact problem by Hochreiter in 1991 [Hoc91] and later proposed by him and

Schmidhuber in 1997 [HS97]. LSTM units have mechanisms to control the flow of

information through each unit, which includes deciding on whether to keep, alter or

discard information. As a consequence of this design, LSTMs can handle vanishing

gradients far better than regular RNNs. Figure 4.3 illustrates and describes an

LSTM cell in more detail.

Figure 4.3: Illustration by Chevalier [Che18] of an LSTM cell Ct at the time step t - which

replaces the hidden units of a traditional RNN - used to process data sequentially and retain

long-term memory. Inside the unit, + and × are point-wise operations whereas σ and tanh

denote sigmoid and tanh activation layers that act as gates controlling which information

to keep, alter or discard. After it is decided which information can pass through, the former

cell state Ct−1 is updated. The current output is ht and the previous output is ht−1.

4A common problem when using gradient-based learning methods and backpropagation, is that

the gradients might shrink to a point where the network’s weights are effectively prevented from

changing their values. At the same time, the opposite - infinitely increasing gradients - leads to loss

of input information, as well.

Chapter 5

Static Approach

5.1 Overview

Starting with the initial input files in MIDI format, its data will first be transformed

into custom data models for further analyses using third party libraries for MIDI

processing. A chord progression is then identified by applying several different

strategies that are also used by musicians for manually interpreting pieces, as

well. For this process - the chord estimation -, it is crucial that the majority of the

interpreted chords is correct. Since the chord progressions are the foundation of

most pieces, its accuracy is essential to the succeeding interpretation of phrases.

After a successful chord estimation, the program will proceed with the residual

element extraction - a process that uses both the progressions and any existing

MIDI parts to save elements. This includes the extraction of independent phrases

which can be seen as melodies, and phrases that serve as either pitched or unpitched

accompaniments. To differentiate between these phrase types, a classification crite-

ria has to be defined and implemented.

The purpose behind this design is the partially static reusability of the extracted

elements for the generation of original pieces: Given any progression as context,

the accompaniments’ patterns - notes relative to each chord - can be applied to

create an accompanying part inside a piece, while the chord progressions and

melodies will be used to train the system’s neural networks in order to generate

original elements. The unpitched accompaniments will be saved and sampled for

"new" drumlines5. Figure 5.1 illustrates the complete design.

5The resulting drumlines only have the potential to be original due to the fact that they consist

of randomly combined patterns from the datasets’ pieces.

13

14 Chapter 5. Static Approach

Input MIDI

ProgressionsPhrases

classify combineMelodies

Accompaniments

Pattern

Drums

Neural Networks

Accompaniments

Progressions

Melodies

Output MIDI

Figure 5.1: Rough design of the system’s architecture. The subsystem containing the

neural networks to produce the progressions and melodies has been simplified and will be

described in detail in Chapter 6.

5.2 Difficulties

The main computational and implementational challenge is the accuracy maximisa-

tion of the implemented chord estimation algorithm due to the high heterogeneity

of the dataset. Depending on the piece and its style, genre, composer, transcriber

and/or arranger, a phrase’s underlying chords - provided the section has any - can

be indicated in numerous ways using notes only. Furthermore, if said accuracy

turned out to be insufficient, the static extraction of other musical elements could

be drastically hindered as a direct consequence. This would affect the input (and

therefore output) of the neural networks, as well.

Additional potential difficulties could result from a poorly designed project

architecture and implementation of certain data models.

5.3 Analysis

As mentioned before, the initial analysis consists of three main parts: MIDI

processing, chord estimation and element extraction. As for the first part, a library

has to be found that supports all necessities. At the same time, the criteria that

a MIDI file has to meet for it to continue be analysed has to be specified to

avoid unforeseen complications. The chord estimation method - which will be

the system’s most complex algorithm -, however, involves a much more intricate

procedure as it will incorporate multiple strategies to determine a chord at a given

5.3. Analysis 15

time. Although each of these strategies has to produce effective results on its

own, they will all be ultimately merged to find a value that is deemed the most

probable given its context (preceding and ensuing data). Lastly, provided that the

estimated chord progression is fairly accurate, the piece’s phrases will be able to

be investigated and subsequently classified, which eventually leads to the sample’s

following processing method.

5.3.1 Analysis Criteria

To limit this project’s scope, the analysis will only be performed on MIDI files

that fit the General MIDI (GM or GM1) standard - a standardised specification

for MIDI instruments. The pieces’ time signature must be 4/4 (as it is the most

common one in modern music) as the neural network predicting the progressions

will be solely trained for this time signature. Additionally, the MIDI tracks will

have to contain at least one Note On and Note Off event each since tracks with

control events only do not contribute any harmonic information6.

Consequently, the generated compositions will not include time signatures

other than 4/4 due to the neural network specifications and both tempo changes

or dynamic changes will be excluded as well, since the project does not aim to

improve these characteristics as stated in Chapter 1.

5.3.2 Chord Estimation

When it comes to chord estimation, various strategies have to be implemented, as

previously mentioned. Each individually yielded result - which contains chord

possibilities at a given time - is then evaluated and conclusively merged.

5.3.2.1 Estimation Strategies

The following chord estimation strategies have to be implemented in order for

a successful consecutive merge of all possibilities. An example piece will be

provided in Figure 5.2, which will be used to demonstrate each strategy’s outcome.

All Possibilities The initial transformation of the MIDI data. It does not discard

any parts, but attempts to fix7 any potential faulty elements caused by MIDI

processing errors. Since volume, tempo and orchestration are irrelevant for the

6Of course changes in a piece’s key signature - which are Controller events - add context for the

harmony, however, these are conventionally included in tracks containing the notes.
7In this context, fixing implies differently interpreting data during transformation in a constrained

manner.

16 Chapter 5. Static Approach

Figure 5.2: Original four measures of an arrangement based on It’s just a burning memory

(2016) by The Caretaker.

chord estimation, the respective information is excluded. This strategy can also be

used to verify the authenticity of the processed data by comparing it to the original.

Its output will be used by the other strategies. Given the example piece from Figure

5.2, ideally, the same MIDI (except for the volume, tempo and instruments) would

simultaneously be this strategy’s output.

Most Chords This strategy only accepts coherent sections of a MIDI track with

the most amount of notes per chord in each section. Figure 5.3 shows the strategy’s

output MIDI with Figure 5.2 as input.

Figure 5.3: The output produced by the Most Chords per Part Strategy converted back

into MIDI.

Potential Bassline Although not every piece has a bassline, one will be created,

if possible, as seen in Figure 5.4 (resulting output of Figure 5.2). With a bassline,

the likelihood of any chord possibility that contains the bassline’s notes increases,

since basslines are a type of accompaniment, which are usually built using a chord

progression.

5.3. Analysis 17

Figure 5.4: The output produced by the Potential Bassline Strategy converted back into

MIDI.

Triad Recognition Since most chords’ structures are built on top of triads - a set

of three notes stacked vertically in thirds (intervals between notes of either three

(minor third) or four (major third) semitones) -, this strategy will find these patterns

(either in chords or consecutive notes) inside the MIDI tracks’ phrases. In Figure

5.5, the triads recognised in Figure 5.2 by the strategy are shown.

Figure 5.5: The output produced by the Triad Recognition Strategy converted back into

MIDI.

Chordification "Chordify is a... word that we created in MUSIC21 for the pro-

cess of making chords out of non-chords... [by] reducing a complex score with

multiple parts to a succession of chords in one part that represents everything

that is happening in the score." (Cuthbert et al., 2006 - 2021) [CAHO21]. By

chordifying the score, its current total harmony (including notes outside the com-

poser/arranger/transcriber’s intended chord) at a given time can be calculated. The

MUSIC21 library offers a method that chordifies the MIDI stream, with Figure 5.6

representing the result of the method’s invocation on the given example piece from

Figure 5.2.

Figure 5.6: The output produced by the Chordification Strategy converted back into MIDI.

18 Chapter 5. Static Approach

5.3.2.2 Merging Possibilities

Although merging all possibilities can be considered a strategy, one key difference

does exist: It requires a successful application of all other strategies first. Assuming

the requirement is fulfilled, this algorithm will iterate over the Most Chords,

Potential Bassline and Triad Recognition strategies’ outputs and find all notes’

respective starts (time of the Note On event) to check whether any results for

the current start are viable. If that is the case, the possibility that seems most

plausible will be picked, else the original transformed information - output of the

All Possibility strategy - will be used to create chords from a given section.

5.3.3 Element Extraction

Next to the chord progression, additional information has to be extracted, too. For

this, the elements in question are the phrases within the MIDI tracks. There are three

kind of phrases in total, including chord-independent phrases (melodies), chord-

dependent phrases (pitched accompaniments) and percussive phrases (unpitched

accompaniments).

Before proceeding with the classification of phrases, the detected progressions

have to be validated. Using a checksum, the duration of a section - which can

be calculated by the amount of included measures - will be compared to the

progression’s affiliated rhythm to eliminate the chance of mistimed elements,

which would be fatal.

To classify a phrase, excerpts of the phrase in a given time window have to

be compared to the chord from the estimated progression at the same time. If all

notes from the phrase occur in their respective chord, the phrase will be classified

as (pitched) accompaniment, else as a melody. Disregarding the phrase itself, if

the part (MIDI track) containing the phrase has a percussive instrument mapped

as its MIDI instrument, it will be considered an unpitched accompaniment. All

information will be saved for further analysis.

5.4 Component Generation

Since the neural network will generate the progressions and melodies, any re-

maining elements based on them could be statically created and included in a

piece afterwards. The static elements that will be generated in this project are

counterpoint melodies, pitched accompaniments, unpitched accompaniments and

key signature changes.

5.4. Component Generation 19

5.4.1 Counterpoint

In music, Counterpoint is the relationship between multiple simultaneous phrases

which are harmonically interdependent yet independent in rhythm and melodic

contour [Lai08]. It focuses on melodic interaction and is used to designate a phrase

or an entire composition [Toc77; SD01].

There are several "species" of counterpoint with each increasing the complex-

ity. For this study, the first (and most basic) species of counterpoint - known as

1:1 Counterpoint - will be implemented, since its applications have lasted from

medieval times to now, proving its importance. Additionally, many classical com-

posers, such as Bach, Schubert, Salieri, Haydn, Mozart and Beethoven, were not

just taught this exact composing method, but also made use of species counterpoint

[Wil20].

In Figure 5.7, a well known counterpoint application is shown: The blue notes

represent a Cantus Firmus (simple, pre-existing melody that forms the basis of a

polyphonic composition) that has originally been written by Salieri as a counter-

point exercise, while the purple ones form the melody that his student Schubert

came up with as a solution.

Figure 5.7: Cantus Firmus (blue) written by Antonio Salieri (1750 - 1825) [CF20] and

Counterpoint Melody (purple) applied by Franz Schubert (1797 - 1828).

Based on Schubert’s style, a static algorithm will be implemented to create

counterpoint melodies for existing melodies.

5.4.2 Pitched Accompaniment

When saving the accompaniment information at the end of the element extraction,

the pitch (MIDI data value from 0 - 127) itself will not be saved, but its relation

to the chord’s triad instead. Inside a triad, the default three notes - which are

the root, third (major and minor, with a distance to the root consisting of three

and four semitones) and fifth (diminished, perfect and augmented, with a distance

to the root consisting of six, seven and eight semitones) - will be classified by

mapping 0 7→ r, 3 7→ t, 4 7→ t, 6 7→ f , 7 7→ f and 8 7→ f . Thus, a function

m : X → Y, x 7→ y can be defined with the domain X = {0, 3, 4, 6, 7, 8} with

x ∈ X and the codomain Y = {r, t, f} with y ∈ Y . Since the patterns’ notes

have a relation to each other to differentiate between their octaves, the octave o,

in which the note n ∈ {0, ..., 127} appears, will be calculated using o =
⌊

n
12

⌋

, too.

20 Chapter 5. Static Approach

Lastly, to account for the phrase’s transposition and its relation to the current chord,

the key signature’s relative pitch k (CZ 7→ 11, C^ 7→ 0, C\ 7→ 1, DZ 7→ 1, D^ 7→ 2,

D\ 7→ 3, etc.) and the chord’s root pitch c have to be subtracted from the note.

Provided that each pitch lies within a chord’s triad (which is the prerequisite that

has to be fulfilled by the phrase classification), this leaves us with a final mapping

(y, o) = a(n, k, c), as seen in Equation 5.1.

a(n, k, c) = (m((n− c) mod 12),

⌊

n− k − c

12

⌋

) = (y, o) (5.1)

5.4.3 Unpitched Accompaniment

Since the unpitched accompaniments (drums) are created by randomly picking a

sample of n patterns, the patterns can then simply be converted back into MIDI

without any further modification.

5.4.4 Key Signature Change

Upcoming key signature changes are usually hinted by the chord progression,

although that is often not the case. Since the neural network’s progressions will

be generated knowing only whether the progression should resolve, meaningfully

indicating any imminent key signature changes will not be possible. Instead, these

key changes should only occur if it is manually configured by the user.

5.5 Drawbacks

Using this design, one major drawback appears to be the potential bottleneck that

is being created using the chord estimation algorithm. All subsequent algorithms

depend on a successful, accurate chord estimation. Although a non-perfect result

is expected and accounted for8 - if the recognised progressions were exceedingly

divergent from the actual (unspecified) progressions9, those inaccuracies could

result in repeated occurrences of false phrase classifications, which would then

imply a poor element extraction and succeeding component generation. The neural

networks’ precision will be affected by inferior data, as well.

8A perfect result is not possible due to the non-deterministic nature of chord interpretations.
9This has to be manually assessed by the author.

Chapter 6

Data-Driven Approach

6.1 Overview

As previously pointed out, the usage of LSTMs is an established approach in the

context of automated music generation due to the architecture’s ability to process

sequential data and its high performance [MMJ19; LWZM15; HHC18]. Therefore,

it will be implemented for the prediction of all musical elements. The system itself

will consist of two subsystems - one for predicting chord progressions10, the other

one for predicting phrases11.

The progression network is the first network that needs to be implemented, since the

phrases will be based on the progressions. To maximise its precision, a progression

of n chords will require n− 1 different models, of which each will specialise on

predicting on a sequence of i ∈ {1, ..., n− 1} preceding chords. The first chord,

which will be required as the input of the first model, will be randomly chosen

from a set of predefined chords. Any subsequent inputs will be the prior model’s

output. This subsystem will predict tuples (r, t), which represent a chord’s root

note and chord type.

As for the phrase network, only three models are needed, since creating n− 1
new models for specific phrase lengths would not be pragmatic due to their sizes12.

Additionally, an average phrase contains more notes than the average amount of

chords in an arbitrary progression, thus implying that a higher sequence length

is required. Therefore, the models will specialise on predicting a note’s offset

o, pitch p and duration d, respectively, and produce single-value outputs with

10This subsystem will be simply referred to as progression network.
11This subsystem will be simply referred to as either phrase network or melody network.
12The total information stored in all phrases far exceeds the progressions’ information in terms

of size. This implies a distinctly higher computation time.

21

22 Chapter 6. Data-Driven Approach

input sequences of a fixed length m. A random excerpt from all phrases, whose

respective chord progression’s last chord matches the generated progression’s first

chord, will be chosen as the initial input. The order of each model’s invocation

will be essential for this subsystem to work properly, since they are dependent on

each other’s information. The pitch itself depends on the note’s time, since the

timing specifies a note’s function (e.g. whether a non-chord tone - pitch outside

the current chord - shall be used) according to music composing principles. Only

then - when a note’s pitch is known -, a sensible duration value can be assigned.

Summarised, an offset to the previous note has to be determined first, and by using

its value, a pitch can be predicted, followed by the note’s duration. Looping this

procedure (until it covers the entire progression), a phrase can be generated note

by note, invoking three consecutive predictions at a time.

Input Progressions

Start Chords

Input Phrases

Training

Training

p1 p2 pn−2 pn−1...

o p dinitial return?

Output Progressions

Output Phrases

δ = n

δ = m

δ = 1 δ = 2 δ = 3 δ = n − 2 δ = n − 1

δ = m δ = m δ = m δ = m

δ = n

δ = m

Figure 6.1: Rough design of the progression network and phrase network’s individual

architectures and their interrelation inside the data-driven subsystem. The initial inputs

(progressions and phrases) originate from the static analyses. δ denotes each sequence’s

length, n the progression’s maximum sequence length and m the phrase’s fixed sequence

length. p1 to pn−1 represent the n − 1 progression network’s subnetworks, o, p and d

represent the phrase network’s subnetworks responsible for predicting a note’s offset, pitch

and duration.

6.2. Difficulties 23

6.2 Difficulties

When working with any kind of artificial neural network, the configuration for the

training process, as well as the preceding data preparation is a major challenge for

the user. Even though every configured compiling network will produce results

eventually, the produced data will often not be usable, due to a lack of understanding

the network’s internal layers’ functionality, the misjudged relevance of any kind

of specific information from the dataset, incorrectly formatted (transposed) input

and/or output matrices, falsely interpreted output matrices, incompatible data

formats, faulty data inside the the training data, false or insufficient classifications

or poorly fitting13 the network during training. All of these issues must be regarded

during implementation.

Since this project aims to make use of music theory principles, every single

network has to implement individual constraints while evaluating its prediction

matrices. Although raw, unaltered results could technically be used, there is no

limit on the quantity of constraints that can be implemented either. Finding an

optimal amount will be an additional difficulty.

6.3 Training Data

Since ANNs require intensive training, a dataset comprising independent music

information with ground-truth labels is a necessary requirement for this phase.

Considering the availability and accessibility, MIDI will be chosen as the system’s

initial input format. On the other hand, the final network input will be part of the

generated artefacts that are created by the system following the analysis of the

provided dataset’s MIDI data and converted into a numeric format that is readable

by the neural network.

To ensure the highest possible heterogeneity of the input data, a new dataset

of over 100 MIDI files will be put together for this project. Most of the files are

transcriptions or arrangements of various popular pieces from different genres

throughout the past century, although the dataset contains original classical pieces -

that have been converted to MIDI -, as well. As for the origin of these files - approx-

imately half of files have been contributed from various users of the sheet music

sharing site Musescore.com [BV22], which uses a Creative Commons license

[Com22], while the other half consists of transcriptions/arrangements produced by

the author.

13Fitting means adjusting the network’s performance to work well on both data it was trained on

and data it was not trained on. Two common phenomenons are overfitting and underfitting.

24 Chapter 6. Data-Driven Approach

6.4 Correlations

Word2vec [Ron14] is a natural language processing technique that - as the name

implies - maps words onto vectors to detect any semantic similarity by using multi-

ple neural network models for word associations from a text corpus. Additionally

to the main machine learning systems, Word2vec will be incorporated as an alter-

nate element substitution method. Making use of these semantic similarities, any

musical element such as a chord is able to be substituted in a similar manner as

synonyms in a sentence, provided the musical context has been converted into a

consistent textual format.

6.5 Component Generation

As stated earlier, all musical elements generated using this approach will be pre-

dicted by the data-driven subsystem. The progression network generates a chord

progression by predicting chords, while the phrase network generates a phrase by

predicting notes.

6.5.1 Chord Prediction

The concept of chords is one of the most fundamental ones, meaning that chords

will become one of the most important data models of this project. The model’s

two most important fields are its root (integer) and its chord type (enum), of which

the latter’s type is incomprehensible for a neural network14. To circumvent this

issue, a new notation will be introduced. Similar to Roman numerals15, the chord

itself can be represented using numbers relative to the scale only (which reduces

transpositions to simply shifting the notes by the key’s value). In this case, a

tuple (r, t), where r denotes not the scale’s degree, but the semitone interval to the

scale’s value instead, while t refers to a predefined chord type (e.g. major 7→ 0,

minor 7→ 1, diminished 7→ 2, etc, as defined in Appendix A). For instance, in the

key of C, the chord progression F-G7-Em7-Am is denoted as IV-V7-iii7-iv using

Roman numerals, while a tuple of tuples ((5, 0), (7, 5), (4, 4), (9, 1)) represents

the same using the introduced notation. Converted into this notation, the chord

progressions (lists of these tuples) will be fed into the networks, while - with each

14Neural networks usually only work with numbers.
15One widely used chord representation consists of (primarily) Roman numerals (e.g. I, ii, iii, IV,

...). Most commonly, they denote the chord whose root note is also the current scale’s degree (e.g.

IV denotes a chord whose root note is the fourth note in the scale). Using this notation, uppercase

Roman numerals represent a major chord, while lowercase Roman numerals represent minor ones.

6.5. Component Generation 25

iteration -, a chord of a predefined duration will be predicted as a tuple to generate

a new rhythmic (due to the additional duration) chord progression.

The LSTM networks’ outputs will consist of three-dimensional matrices sized

xi×2×c (with x being the total amount of provided progression samples for the se-

quence length i ∈ {1, ..., n− 1} and c being the amount of different classes, which

is equal to max{p, 12} with p representing the amount of predefined CHORDTYPE

enums, while 12 is derived from the amount of possible root pitches in a chromatic

scale), that represents the total probabilities of each class being predicted. Con-

straints inside the prediction can be differentiated into hard constraints and soft

constraints. While the hard constraints directly prohibits or determines a prediction,

a soft constraint will only alter the probabilities by a given factor λ > 0. The input

matrices size, however, will be xi × i× 3. To take falsely identified chords (which

have a higher probability of having a short duration16) into account while training,

additional context will be added to the input tuples in form of a third value that

represents the chord’s duration d, making them triplets (r, t, d).

6.5.2 Note Prediction

Similar to chord progressions, each phrase will also be transformed into a readable

format for the networks. Each note will be represented as a triplet (o, p, d) (offset,

pitch and duration), meaning that phrases - which contain lists of notes - will be

represented as sets consisting of tuples.

In this subsystem, all three networks will each predict a value contributing

to the triplet. The network outputs matrices will be sized y × ci (with y being

the total amount of provided phrase samples and ci being the amount of different

classes per network i ∈ {0, 1, 2}). The input matrices will include additional

contextual information, too, as the progression networks’ inputs did. Their sizes

will be y × m × ai, where ai represents the respective network’s amount of

parameters (size of n-tuple). Using ∆ to symbolise the current prediction17 - when

it comes to the offset network, its input’s septuple will consist of the previous note’s

offset o∆−1, pitch p∆−1 and duration d∆−1, the previous chord (r∆−1, t∆−1) and

the current chord (r∆, t∆), flattened to (o∆−1, p∆−1, d∆−1, r∆−1, t∆−1, r∆, t∆). Its

output will be the current note’s offset o∆. Using this output, the pitch network will

take in a quadruple (o∆, p∆−1, r∆, t∆) to compute the current pitch p∆. Lastly, the

duration network will use the preceding information to calculate d∆ - the current

note’s duration. Its input value is the quintuple (o∆, p∆, p∆−1, r∆, t∆). After all

three models have predicted a value, the triplet is appended to the phrase. With

16Most chords of shorter duration are the consequence of the chordification process, which will

only be used if the preceding strategy merges did not yield anything of value.
17This implies that ∆ is incremented with each iteration.

26 Chapter 6. Data-Driven Approach

the iteration completed, ∆ is incremented and the network input is adjusted - after

appending the triplet to the input, the first item has to be removed in order to retain

the fixed sequence length of m items.

6.6 Drawbacks

Depending on the quantity of the input data, the amount of time required for training

the networks may rapidly surge. Considering the project’s experimental nature,

countless (yet final) configurations of the network have to be tested (which implies

training the network) in an attempt to optimise the results. Given the thesis’s time

frame and the project’s scope, only a fraction of all possible configurations can

be tested, implying that the optimisation attempt has to be halted while still in its

early stages.

Chapter 7

Implementation

Prior to the implementation, a programming language has to be chosen. For this

project, PYTHON 3.8 [Fou22], an interpreted, high-level, general-purpose pro-

gramming language, will be used, as its object-orientation approach and garbage

collection, together with its vast area of application, fulfil the minimum require-

ments of a project of this kind. Although comparably slower than languages closer

to the operating system (e.g. C [KR88]), internally, the language itself, as well as a

significant amount of popular libraries, are implemented in C to ensure the highest

possible performance for their respective tasks. Most importantly, however, Python

is especially heavily used in scientific fields due to its wide range of available li-

braries (for both standardised and specific purposes), such as NUMPY, PANDAS or

SCIKIT-LEARN, just to name a few. Especially MIDI handling and ANN interfaces

have been taken into account, for which multiple options are offered as Python

libraries.

7.1 MIDI Handling

MUSIC21 [CAHO21] is a Python library for computer-aided musicology, devel-

oped by Cuthbert et al. and licensed under the BSD license [Ini22]. It is employed

first in the static analysis to transform a stream of MIDI data into custom data

models, which will then be used to determine a chord progression. Afterwards,

only its MUSIC21.KEY.KEY class is used to compute relative keys.

While handling the MIDI data, a MIDIDATA (see Appendix B) object is cre-

ated for each MIDI file. Before being passed on to the following analyses, the

analysis criteria are verified immediately once the constructor has extracted the

file’s most important meta data.

27

28 Chapter 7. Implementation

7.2 Data Models

As mentioned before, specific classes have been implemented as an attempt to

model all relevant kinds of data in order to capitalise on the context that is provided

by each model. They are grouped into three categories: "analysis", "basic" and

"composition", with a respective module each. The ANALYSIS module contains

models useful to the analysis only. Its models do not have any additional application.

BASIC consists of all most fundamental musical elements, which have all been

previously mentioned. These models hold the highest importance since they

provide the neural networks’ data with context and thus they are tested using unit

tests, too. Lastly, COMPOSITION holds models which are used to create a piece.

Most models (from all three modules) have additional functions (logic), which are

used ubiquitously, beside just accessing their fields.

model/

|-- analysis/

| |-- chord_accompaniment.py

| |-- chord_possibilty.py

|

|-- basic/

| |-- chord.py

| |-- chord_progression.py

| |-- key.py

| |-- resolution.py

| |-- rhythm.py

| |-- rhythmic_chord_progression.py

| |-- scale.py

|

|-- composition/

| |-- drums.py

| |-- instrument.py

| |-- part.py

| |-- phrase.py

| |-- piece.py

| |-- section.py

|

Figure 7.1: SRC.MODEL module’s structure. Each file’s name represents its (main) content.

The ANALYSIS module’s content is used during analysis only and does not represent any

elements directly derived from music theory, contrary to BASIC and COMPOSITION.

Briefly summarised, a PIECE contains SECTION objects18, which consists of PART

objects. They on the other hands hold a PHRASE and an INSTRUMENT. In order to

stay within a thesis’s scope, none of the data models will be described any further.

A list of all implemented models can be found in Figure 7.1.

18Sections are essentially excerpts of a piece in a musical context, e.g. a chorus or a verse.

7.3. Information Extraction 29

7.3 Information Extraction

7.3.1 Chord Estimation Algorithm

Since multiple different strategies are used to find a chord progression, the strategy

pattern (or policy pattern)19 can be implemented for this algorithm’s architec-

ture. Additional to the strategies previously mentioned in Chapter 5.3.2.1 (All

Possibilities, Most Chords, Potential Bassline, Triad Recognition, Chordification),

the drum (unpitched accompaniment) extraction will be implemented as a strat-

egy, as well. Each strategy has additional strategy-specific functions next to the

overridden parent class ESTIMATIONSTRATEGY’s abstract functions and all ex-

cept for DRUMEXTRACTIONSTRATEGY return a list of CHORDPOSSIBILITY

- a data model from the ANALYSIS module - objects. MOSTCHORDSSTRAT-

EGY, BASSLINESTRATEGY and TRIADSTRATEGY invoke the inherited, protected

function _GET_COVERED_POSSIBILITIES_(SELF, ALL_POSSIBILITIES: LIST,

STRATEGY_FUNCTION, RELATE, CONSTRAINT) using self-evaluating CHORD-

POSSIBILITY functions and operators in order to fit the best possible CHORDPOS-

SIBILITY objects into their list, which will eventually be returned. MIDI results

of each strategy that can be verified are generated with the parent class’s function

CREATE_MIDI(SELF, COVERED: LIST, NAME: STR, CHANNEL=0). For a full

UML diagram, see Appendix B.

Once run through the algorithm, a RHYTMICCHORDPROGRESSION object,

which consists of a RHYTHM and CHORDPROGRESSION (a list of CHORD objects

with a corresponding KEY), is created and returned. Its numerical notation, which

is readable by the neural network, is saved into a CSV file.

7.3.2 Phrase Classification

Making use of Python’s dictionaries20, both CHORDPOSSIBILITY and CHOR-

DACCOMPANIMENT save their respective notes with this data structure: The key

marks the time in which a note appears, while the value contains either its pitch or

duration. Furthermore, CHORDACCOMPANIMENT contains a field in which the

current chord is saved. The reason for that is its creation process: After a rhythmic

(timed) chord progression has been estimated, each phrase will be divided at each

chord change, leaving only excerpts of phrases for each associated chord. Using

19When implementing a strategy pattern as a system’s behavioural software design pattern, the

algorithm associated with each strategy is selected during runtime.
20A dictionary is the Python equivalent of a hash table.

30 Chapter 7. Implementation

this method, the pitches are easily compared to the chord’s triad pitches21 in order

to classify a phrase as either melody or accompaniment. As for the unpitched

accompaniments, all percussion instruments are exclusively mapped on MIDI

channel 10, implying that filters can be utilised during the MIDI file-to-stream

transformation.

7.3.3 Additional Element Extraction

Using the chord progression and its classification, a phrase can be extracted

and saved. When it comes to melodies, quintuples (similar to the notation in

Chapter 6.5.2) consisting of (o∆, {p1∆ , ..., pn∆}, d∆, (r∆, t∆), (r∆+1, r∆+1)) with

∆ denoting the current index, and p1 to pn representing all current pitches (n

is mostly equal to 1), will be saved in a list for each part’s phrase. Accom-

paniments will be saved as lists of tuples, whose values are calculated using

a(n, k, c) = (m((n − c) mod 12),
⌊

n−k−c
12

⌋

) = (y, o) as described in Chapter

5.4.2, while each drumline is saved as a dictionary - which technically is a surjec-

tive map -

d :{∆1, ...,∆i} → {{p1∆1
, ..., pn∆1

}, ..., {p1∆i
, ..., pn∆i

}},

∆ 7→ {p1∆ , ..., pn∆
}

(7.1)

where each key ∆ represents the time and p1 to pn denote the current pitches at

time ∆. All elements are stored in CSV files.

7.4 Element Prediction

Keras [Cho22] is an open-source Python library that provides an interface for ANNs

such as the TensorFlow [AAB+15] library and implements common building blocks

used in neural networks. Due to its user-friendliness, modularity and extensibility,

the API will be utilised to implement the neural networks essential to this project.

7.4.1 Data Preparation

To start things off, the input and output data has to be computed. By iterating over

the previously extracted information, the input n-tuples and their corresponding

output n-tuples have to be mapped onto each other and all matrices have to be

transformed into the desired dimensions. In addition, the input is normalised

21Generally speaking, this refers to the first three pitches in a chord. Since all implemented

chords are triads or extended chords built on triads, this property (triad pitches) can always be

accessed.

7.4. Element Prediction 31

in order to obtain a mean close to 0, while the output is one-hot encoded22 for

categorisation.

7.4.2 Network Composition

Since the progression network, as well as the phrase network, predict on sequences,

their respective compositions resemble each other immensely. Thus, a generic

neural network is created that enables small variations by using a control parameter.

Figure 7.2 illustrates both networks side by side.

Progression Model

x

LSTM

PERMUTE

DENSE

PERMUTE

BATCHNORMALIZATION

DROPOUT

DENSE

RELU ACTIVATION

BATCHNORMALIZATION

DROPOUT

DENSE

SOFTMAX ACTIVATION

y

Phrase Model

x

LSTM

LSTM

BATCHNORMALIZATION

DROPOUT

DENSE

RELU ACTIVATION

BATCHNORMALIZATION

DROPOUT

DENSE

SOFTMAX ACTIVATION

y

Figure 7.2: The respective model of the progression network and phrase network. The

initial layer used for the input is marked red, while hidden layers are marked blue. Green

represents each network’s final, output layer.

As input, both implement LSTM layers that return the full sequence of hidden

states {h0, ..., hn}, as their utilisation has been established previously. Due to

the matrices of each network being of a different size, the progression network’s

matrix has to be reshaped with two PERMUTE-layers and an additional DENSE

22An one-hot is a group of bits consisting of only one single high (1) bit, while the rest remains

low (0).

32 Chapter 7. Implementation

layer (a deeply connected neural network layer) in order to fit the successive

layer’s input, while a second LSTM layer returning the hidden state hn at the

final time step is required for the phrase model in order to match the progression

model’s return type. BATCHNORMALIZATION is then applied for both to keep the

mean output close to 0 and the output standard deviation close to 123, followed

by a DROPOUT (layer which randomly sets input units to 0 with a specified

frequency) and DENSE layer. Purpose of the dropout application is to avoid

overfitting, while the dense connection is used with a parameter that defines a

particular amount of interconnected nodes. After a RELU ACTIVATION layer, the

BATCHNORMALIZATION-DROPOUT-DENSE-pattern is applied once more with

the same purpose as before. Finally, a SOFTMAX ACTIVATION layer - a separate

layer that implements an activation function which, in this case, is defined by

the softmax function (normalised exponential function) σ - is used to convert the

network’s internal vector z - which consists of K arbitrary numbers at this time -

into a vector that represents a probability distribution, where each value lies in the

interval (0, 1) and the total sum of all values is 1. The standard softmax function

σ : RK → (0, 1)K is defined as

σ(z)i =
ezi

∑K

j=1
ezj

(7.2)

with i ∈ {1, ..., K} and z = (zi, ..., zK) ∈ R
K .

When compiling the model, a loss function (function to calculate the loss through

the network) has to be defined. For this, categorical crossentropy - which is defined

in 7.3 (ŷi denotes the the i-th scalar value in the model output, yi the target value,

and n the number of scalar values) - is chosen, due to its application in multi-class

classification tasks. As for the optimisation algorithm - RMSprop24 is selected.

loss =
n
∑

n=1

yi × log(ŷi) (7.3)

To measure both the loss and accuracy, a portion of the dataset is set aside to

validate the performance of the model. This validation set is then used to compute

those two metrics anew. Using this method, each model will have four metrics (loss,

accuracy, validation loss and validation accuracy) that describe its performance.

23Since neural networks require their values to be normalised, using batch normalisation is

common practice.
24The RMSprop algorithm is a popular adaptive optimisation algorithm designed for neural

networks introduced by Hinton in 2012 [HSS12].

7.4. Element Prediction 33

7.4.3 Training Configuration

To allow for a more individually configurable network, the training process is

parameterised through a configuration file (described in detail in Chapter 7.6.3).

For each network type (progression and phrase), a set of five parameters is specified:

Firstly, TRAIN declares, whether a previously trained (implying that the model’s

weights have been saved) network has to be retrained from scratch or whether

training shall continue. Allowed values can be picked from the set {"NEITHER",

"RETRAIN", "CONTINUE"}. Additionally, the progression network’s maximum

sequence length n and the phrase network’s fixed sequence length m (as described

in Chapter 6) can be specified using the network’s respective SEQUENCE_LENGTH

parameter, as well as the amount of epochs (training iterations over the provided

training set) using EPOCHS (both require integer values). The batch size, which is

the number of samples that will be simultaneously propagated through the network

until every sample has been propagated, is configurable using BATCH_SIZE, too.

Ultimately, the user can specify the SAVE_FREQUENCY, which determines how

often the weights (a type of learned parameter) of a model shall be saved, in epochs.

When it comes to training (TRAIN), "NEITHER" is set as the default value,

as the training process is rather time consuming. The progression network’s

SEQUENCE_LENGTH is set to 16 as default, since most progressions consist of

a lesser amount of chords, while the phrase’s default value is 64, which would

be an estimated average amount of notes in a phrase that covers a 16-chord-long

chord progression. Considering the time factor again, the progression and phrase

networks’ respective EPOCHS value is set to 40 and 10 (the latter network is slower

due to its larger size). Since both networks process data which - with the provided

dataset - consist of hundreds to thousands of samples, both BATCH_SIZE default

values are set to 64 - a relatively small value that guarantees a faster training

session and requires less memory in exchange for less accurate estimates of the

network’s loss gradient. Lastly, due to insufficient physical storage, a frequency of

5 and 2 are specified respectively for the progression and melody network.

7.4.4 Chord Prediction

Since the last layer implements a softmax activation function, the final, predicted

1×2×c (c = max(p, 12) where p represents the CHORDTYPE enum amount) sized

matrix will contain each class’s probability. The first row - which represents the

root note r - possesses only 12 valid values, as there are only 12 notes in a chromatic

scale that spans over an interval of an octave. In the second row, the probability of a

chord type t is computed. Put together, a chord tuple (r, t) results. Since the corre-

lation of the two vectors is not given, constraints will be applied to estimate a chord

that succeeds the progression, while each respective duration is determined using a

34 Chapter 7. Implementation

set of predefined chord lengths. Using the total statistics - converted into relative

probabilities P - of all chords in the provided dataset, a new, relative probability is

calculated by multiplying each permutation’s product P (rc)× P (tc) by prt ∈ P .

At the same time, a debuff table - which alters a chord’s probability based on the

preceding progression - is created as a soft constraint, while hard constraints are

set by prohibiting certain chords in order to circumvent too many repeating chords.

Furthermore, real-time conditional, hard-coded chord substitutions are randomly

utilised, as well as semantic substitutions using Word2vec after a progression is

created. The initial chord essential to commence the progression generation is

randomly picked from the set {(0, 0), (5, 0), (7, 0), (9, 1)}, which is equivalent to

{I, IV,V, vi} in Roman numerals.

7.4.5 Note Prediction

To generate a triplet (o, p, d), the respective networks’ outputs have to be evaluated

successively. Since the final prediction outputs’ matrices are all sized 1× ci (with

ci equalling the amount of different classes per network), the prediction itself is

an one-dimensional list consisting of probabilities calculated by the output layer

using the softmax activation function. The highest result will be picked without

any alterations in the probabilities, unlike the method used by the progression

network. Therefore, heavy constraints are applied on top of the prediction result.

In an attempt to make the phrase coherent, all three values are potentially adjusted.

Pitches are linked and corrected based on the previous and the current note and

chord. Contrary to the progression network, an original phrase cannot be created

using an initial, singular triplet, as this would require (m− 1)× 3 networks in total

for a sequence length of m. Due to that fact, an input phrase of the fixed length

m is randomly picked from the network input, whose last note’s affiliated chord

matches the current chord of the generated chord progression. Since the phrase is

not expected to be completed due to it being chosen arbitrarily, the triplet’s values

are altered at random, as well. By adding uncertainty, originality of a piece results.

To balance out the induced unreliability of the note, the prediction results require

theory based adjustments in form of additional constraints. The methods applied

are based on music principles (utilising the context of the key, chords, progression,

borrowed and actual scale, rhythm and resolution) and will not be elaborated any

further, as they exceed the scope of the thesis.

7.5 Static Element Generation

As stated in Chapter 5.1, the reason for transforming and analysing the initial data

this thoroughly is the musical context, that is not just fed into the networks, but also

7.5. Static Element Generation 35

later generated with each element predicted by the neural networks. By creating a

foundation consisting of chord progressions and melodies using machine learning,

this allows for statically computable components afterwards, too.

7.5.1 Counterpoint

Without going into detail about the principles used by Schubert on 1:1 Counter-

point, summarised, harmonic intervals in phrases, classified as consonance and

dissonance are used to generate a new phrase on top of an existing one. A semitone

interval is calculated by the counterpoint melody’s relationship to the original

one by making use of the current (actual or borrowed) degree of the scale. In

addition, the algorithm differentiates between perfect (1st, 5th and 8th degree) and

imperfect (3rd, 6th and 10th degree) consonances. It is randomly chosen whether a

counterpoint melody lays above or below (in terms of pitch) the original phrase.

The only constraint is, that it has to fit the range of the instrument that the phrase is

assigned to.

7.5.2 Pitched Accompaniments

Since the pitched accompaniments’ pitches are saved as tuples (y, o), these can

be converted back into actual pitches when a chord is given. For example, (t, 5)
would represent the chord’s third (essentially equal to the second note of a triad)

in the fifth octave. Given an A major chord, its triad’s pitches are calculated by

adding a root rA = 9 to each pitch specified in the associated CHORDTYPE enum,

resulting in [P + rA FOR P IN [0, 4, 7]] 7→ [9, 13, 16]. Now, by picking the

chord’s third’s integer value (the second value of the triad pitches) 13, the amount

of octaves o (multiplied by 12) has to be added, which leaves the final result at

73. Using a pattern consisting of these tuples together with a duration and a start,

entire accompaniment phrases can be computed.

7.5.3 Unpitched Accompaniments

Unpitched accompaniments’ notes have been directly saved inside patterns using

their pitch’s MIDI value, implying that these values can be used once again. When

creating a piece, the previously saved patterns are then sampled (either randomly

or manually) to produce a drumline.

7.5.4 Key Signature Change

As mentioned, key signature changes are manually added inside a piece. Although

a key is randomly chosen for a piece, the key itself can be picked anew or a key

36 Chapter 7. Implementation

signature change event can be added by providing a transposition amount (in

semitones). Internally, all phrases inside a piece are saved in the key of C, while a

section possesses a field TRANSPOSE_AMOUNT, which is allowed to be altered by

the user and accessed during the MIDI creation to transpose each phrase.

7.6 Miscellanea

7.6.1 Path Management

All relative paths concerning the location of files are specified in the top level

package and therefore instantly loaded. The project’s root’s path is then attached

in front of each relative path to guarantee the usages of full paths for file accesses.

7.6.2 User Interface

The user interface is designed as user-friendly as possible. Since the given time did

not allow for a graphical interface, a textual one is implemented, in which default

PRINT() invocations are replaced by calling a custom method. This implementation

allows for extensibility during printing, as well as improved console outputs. Con-

sidering the time required for both the analysis and training process (which could

potentially take multiple days depending on the dataset and configuration), each

output includes a timestamp. To improve readability, the verbosity is configurable

and all prints are colour coded. The user inputs (choices and text) are handled

using the same methods, as well.

7.6.3 Model Weights

When it comes to saving "training checkpoints", the frequency is specified in

epochs and the model’s weights are saved as HDF5 (Hierarchical Data Format

version 5) files, which are later imported. Additional information, such as the

weight’s loss, accuracy or amount of undergone epochs, is stored in the file’s name.

While loading, each file is converted into a WEIGHTDATA object, which allows for

specific filtering. Depending on the configuration, the weight used for the network

is loaded from the file that contains either the best out of all, latest out of all or best

out of the most recent available (with the network compatible) weights. The score

s used to determine the best weight25 is calculated as seen in Equation 7.4, where

a denotes the training accuracy, l the training loss, aval the validation accuracy and

lval the validation loss. This formula emphasises a high accuracy and a low loss,

25Since none of the original four metrics has a higher importance compared to the rest, all values

have to be taken into account.

7.6. Miscellanea 37

while moderately minimising the difference between the validation values and the

training values.

s =

(

a

l
+

aval

lval

)

×

(

1−min

{

√

|a− aval|+ |l − lval|

4
, 1

})

(7.4)

Additionally, if neither of the two values used to pick a weight is enabled, the

weight can be picked manually.

7.6.4 JSON Configuration

In an attempt to design the system as configurable as possible, two configuration

files are provided.

The CONFIG.JSON specifies the training configuration of both neural network

systems as described in Chapter 7.4.2, while also providing general settings, such

as LOAD (boolean; states whether the configuration file is to be used. If FALSE,

the default configuration is applied.), VERBOSITY (integer v ∈ {1, 2, 3}; specifies

printed level of verbosity.), LATEST and BEST (both boolean; together, they deter-

mine which weight is loaded.), OVERWRITE (boolean; states whether to overwrite

existing extracted information or to skip the corresponding MIDI file during analy-

sis.) and RETRY (boolean; during the analysis, a CSV file is created that states its

success (evaluated using the progressions’ checksums). If an analysis was either

unsuccessful or semi-successful, the analysis can be attempted again.). While

loading, the validity of each value is verified, since the values - which receive

global access - have to be applied before the remaining initialisation of the system.

The default configuration can be found in Appendix A.

TEMPLATES.JSON defines the user’s configured piece and section templates that

can be used for automatically composing entire pieces. Whether the configuration is

semantically valid is not checked during initialisation, since the usage of templates

is optional. If a runtime exception caused by a syntax error occurs while using

invalid values from a template, the default templates, which are stored separately,

are loaded.

38 Chapter 7. Implementation

Chapter 8

Results

8.1 Information Extraction

Given the provided dataset, out of 122 MIDI files, one could not be analysed due to

it not meeting the specified requirements. The extracted information - consisting of

the piece’s chord progressions, melodies, pitched accompaniments and unpitched

accompaniments - of the remaining files was transformed into a format essential

to the ensuing program execution and stored in the respective CSV file for further

usage. Due to rounding errors, timings involving fractions (e.g. tuplets in phrases)

are converted into FRACTION objects, which are not deserializable. The amount

to be discarded eventually is quantified by the percentage of not deserializable

elements as presented in Table 8.1. As expected, only a negligible quantity of

the data is disposed of. Additionally, each strategy used in the chord estimation

algorithm saved its result as MIDI without any complications.

Type Total Not Deserializable Not Deserializable

Percentage

Progressions 197 0 0%

Melodies 4139 678 16.38%

Accompaniments 23349 617 2.64%

Percussion 10642 330 3.1%

Table 8.1: Serialization and deserialization Statistic.

To verify the viability of the generated elements, both chord progressions and

phrases are compared to the data yielded from the preceding extraction. The com-

39

40 Chapter 8. Results

(a) Dataset (b) Generated

Figure 8.1: Comparison of chord occurrences as pie charts. Although all chords are

included in the charts, only the 19 most frequent ones are represented using a distinct

colour since it is theoretically possible to represent 348 different tuples using the 12

potential root notes from the chromatic scale and the 29 defined chord type enums. The

remaining tuples are summed up and classified as "other" - the 20th class that is found at

the bottom of the legends.

parison is carried out using 10000 generated progressions consisting of 16 chords

each and 1000 short phrases, which are built on 4-chord progressions26 sampled

from the previously generated 16-chord progressions. Although differences are

expected in the comparison, few major resemblances are anticipated, as well. De-

pending on the similarities found in the data, the potential findings would imply

whether the system has successfully generated its compositions in a manner similar

to the dataset’s MIDI files.

The two pie charts in Figure 8.1 show all chords, which were recognised by

the chord estimation algorithm, using the tuple notation (r, t) as introduced in

Chapter 6.5.1. With this data, a comparison is made between the chords used

in the dataset’s progression (Figure 8.1a) and the generated chord progressions

(Figure 8.1b). As for each chord’s duration, Figure 8.2 illustrates the total count

of each occurred duration in comparison, as well. Lastly, Figure 8.3 shows the

chord changes based on a chord’s root note, disregarding the chord type, as a

two-dimensional depth map. All 12 half steps of a chromatic scale are shown in

Figures 8.3a and 8.3c, while only the 7 degrees of the diatonic scale are included in

Figures 8.3b and 8.3d. By comparing the dataset’s and the generated progressions’

charts, all previously mentioned illustrations show various levels of deviation from

each other.

26An n-chord progression is a chord progression consisting of n chords.

8.1. Information Extraction 41

(a) Dataset (b) Generated

Figure 8.2: Comparison of chord durations as bar charts. All lengths that either contain

fractions or have been rounded faultily are summed up and labelled as "other". The chords’

durations are found on the x-axis, while the respective amount is represented by the y-axis.

(a) Dataset

Chromatic

(b) Dataset

Diatonic

(c) Generated

Chromatic

(d) Generated

Diatonic

Figure 8.3: Relative depth map of the root notes from each chord change r∆ 7→ r∆+1.

The current chords’ root notes r∆ are represented on the x-axis, while the succeeding root

notes can be found on the y-axis. It is differentiated between root notes that lie within the

diatonic (seven degrees resulting in a 7× 7 map) or chromatic (twelve degrees resulting in

a 12× 12 map) scale. Inside the maps, darker colour implies more frequent chord change

occurrences, while the amount of occurrences are all relative to the most frequent chord

change of each map. This is seen at 9 7→ 9 and 5 7→ 5 for the dataset’s maps and 0 7→ 9

and 0 7→ 5 for the generated progressions’ maps, which mark the respective maxima at a

relative 100% as seen in the provided colour scale.

Similarly, the phrases will be reduced to their core elements, as well, in order

to verify if any repeating rhythmic and tonal patterns exist. Here, a pattern is

defined as a sequence that is longer than three notes. For the rhythmic parts, the

offset to the preceding note and the own duration is utilised, while the relevant

information for the tonal patterns is the pitches. The results are illustrated in com-

parison in Figure 8.4. It is immediately noticeable that considerable differences

42 Chapter 8. Results

in terms of pattern length and occurrence amount exist when comparing the phrases.

(a) Dataset Tonal Patterns (b) Dataset Rhythmic Patterns

(c) Generated Tonal Patterns (d) Generated Rhythmic Patterns

Figure 8.4: The average amount of occurrences of repeated tonal and rhythmic patterns

detected in the phrases. Here, the x-axis marks the length of any arbitrary pattern that was

found at least twice inside a phrase, while the y-axis represents the counted occurrences

associated with said pattern. Since a pattern is defined as a sequence of at least three notes,

bars only exist for x > 3.

Judging by the extracted information, barely any major similarities exist. Except

for the chords themselves - whose generated data overlaps noticeably with the

dataset -, only minor resemblances are found in the chord progressions. While the

dataset’s durations vary immensely, the generated durations are evenly distributed.

Furthermore, when it comes to chord changes, the maxima are located at different

spots, as well. Lastly, the generated phrases contain fewer patterns - both tonal and

rhythmic - of shorter lengths compared to the dataset’s phrases. Although these

results seem to suggest that the system’s compositions lack resemblance, this does

not necessarily imply an unsuccessful generation. Neither the neural networks

nor their constraints have produced any futile data. The source of this apparent

mediocrity and the implications of these findings are discussed in Chapter 9.

8.2. Element Prediction 43

8.2 Element Prediction

Depending on the number of MIDI files that are fed into the system, the required

time for the training process increases. Given the dataset, training an epoch takes

approximately one minute for the progression network, while 30 minutes are re-

quired for the phrase network using the default configuration. The training and

validation loss and accuracy throughout the networks are shown in Figures 8.5a

and 8.5b. In order to illustrate the values’ relationships to each other, the score,

which is calculated using Equation 7.4, is included, as well.

(a) Progression Network (b) Phrase Network

Figure 8.5: Trends of all utilised metrics during training. For the progression network,

the mean is calculated from all weights of the same epoch, disregarding the sequence

length i ∈ {1, ..., n− 1}. As for the phrase network, all three values from their respective

subsystems (offset, pitch and duration) are averaged. In Chapter 9, the significance of

these metrics and their consequences, as well as the abnormalities seen in the score, are

explained.

Table 8.2 presents further useful statistics in comparison. The implication of the

data is discussed and put into context in Chapter 9.

8.3 Static Element Generation

All additional elements are statically generated using the patterns that have been

saved previously in combination with the neural network’s prediction results. The

system allows for manually added key signature changes. Furthermore the user

interface enables the interactive alteration of the current piece. An initial key,

tempo and name is automatically picked, however, it is possible to overwrite this

data manually. Editing specific sections and parts is allowed, as well. Playback

44 Chapter 8. Results

Property Dataset Progres-

sions

Generated Pro-

gressions

Dataset Phrases Generated

Phrases

Total Amount of Sequences 197 Progressions 10000 Progres-

sions

3461 Phrases 1000 Phrases

Average Sequence Duration 49.0534 Measures 13.028 Measures 11.3077 Measures 3.0379 Measures

Total Amount of Items in Se-

quences

22531 Chords 160000 Chords 177374 Notes 14341 Notes

Average Amount of Items in Se-

quences

114.3706 Chords 16 Chords 51.2493 Notes 14.3410 Notes

Minimum Amount of Items in

Sequences

1 Chord 16 Chords 1 Note 3 Notes

Maximum Amount Items in Se-

quences

1880 Chords 16 Chords 1234 Notes 25 Notes

Total Amount of Chords with

Diatonic Root

21513 Chords 159992 Chords

Total Amount of Chords with

likely Duration

21289 Chords 160000 Chords

Average Amount of Rhythmic

Patterns

57.2011 Patterns 3.5653 Patterns

Average Amount of Tonal Pat-

terns

34.3735 Patterns 3.2305 Patterns

Table 8.2: Additional Statistics. Given the 4/4 Time Signature, one Measure has the

duration of one whole note (semibreve).

of either the entire piece or a particular part is also implemented. Essentially, the

static generation of elements proceeds as planned. In Appendix C, two generated

examples are shown, which make use of the majority of implemented features.

Chapter 9

Discussion

In this study, a combined approach, which uses both data-driven methods and theo-

retical principles, has been explored by successfully implementing an application

capable of generating instrumental pieces. By analysing a dataset of various MIDI

files, musical elements are either directly extracted or transformed into inputs and

outputs for artificial neural network subsystems. After learning and predicting a

composition’s fundamental elements, additional components are statically gener-

ated on top of those.

Considering the provided dataset’s size and versatility, its included information

is considered sufficient for this project. Since the MIDI file that has been left

unprocessed has an internal time signature of 3/4, this confirms the successful

application of a filter based on this specific analysis criteria. Based on the lost

information during deserialization (Table 8.1), the total resulting 4.23% of not

deserializable elements is not significant enough to affect this study in terms of

quantity. Therefore, the static generation procedure of any arbitrary elements that

make use of the extracted patterns remains completely unchanged. However, the

quality of the chord progression identification impacts not only the progression

network’s input but also the subsequent phrase classification. It hence affects the

melodies that are fed into the phrase network. Since the data is highly contextual,

this amplifies the consequences.

When it comes to occurrences of chords, the dataset (Figure 8.1a) shows a

higher versatility compared to the generated progressions (Figure 8.1b). In addition,

a disproportional ratio of chords per progression per duration is derived from the

values of Table 8.2. According to the chord estimation algorithm, the dataset’s

progressions’ durations are only approximately four times as long as the generated

ones. In contrast, the average amount of chords is more than seven times as high

in comparison, hence implying that, on average, an additional 75% of chords

are identified given any chord progression of any duration. Assuming that chord

45

46 Chapter 9. Discussion

durations shorter than an eighth note (quaver), longer than a double whole note

(breve) or part of a fraction are wrongly identified chords27, this implies that at

least 6% of all extracted progressions in Figure 8.2a are faulty, while, in reality, the

chord progressions from the dataset contain fewer chords of higher durations. On

the other hand, the generated progressions’ chord durations seen in Figure 8.2b are

very evenly distributed since each duration is statically computed, contrary to the

predicted matrices that are transformed into (r, t) tuples. Granting that the chord

recognition’s accuracy - although not verified - falls short in comparison to Scholz

and Ramalho’s system [SR08], the yielded results are nonetheless usable for the

subsequent processing. In addition, the majority of the input files’ complexity is

much higher due to the given orchestration.

The depth maps from Figure 8.3 imply the same as the chord occurrences, as

the root notes of the dataset’s chords occur outside the diatonic scale, which is

not the case for the generated progressions. In addition to existing inaccuracies

in the chord estimation, this can be explained by the implemented constraints for

the generated chords. Since static successions and substitutions are utilised, the

amount of probable elements and their successions is limited. Furthermore, the

maxima at 0 7→ 0 and 9 7→ 9 in all maps are caused by the nature of mainstream

music, in which progressions usually resolve in their scale’s first degree, while the

scale itself is either a major or minor one. The 0 7→ 9 and 9 7→ 0 successions in

the generated progressions are the consequence of the constraints, where the tuples

(0, 0) and (9, 1) are part of the potential initial chord set. Since the chord type is

discarded in the map and over 50% of all generated chords’ roots are either 0 or 9,

these peaks can be traced directly to the chord occurrences.

In comparison to the dataset’s phrases, the repeated patterns found in the gener-

ated phrases are quite rare, as seen in Figure 8.4. Due to the identified progressions

and phrases being of a greater length, the likelihood of repeating patterns increases.

Additionally, pieces will oftentimes consist of a structure that involves repetitions

of entire sections. Although the chord estimation algorithm does split pieces into

excerpts, it will not do so if all phrases inside a section are considered completely

coherent. Therefore, when it comes to the dataset, all patterns with a length of l

(with) inside a section’s phrase of length ps are counted, as well, while the gener-

ated pieces are all individually generated without any relation to each other. Since

the implemented piece generation creates a piece section by section, the repetitions

inside a full piece would increase linearly if the same pattern detection algorithm

was applied. The reason for not evaluating entire pieces is the amount of time it

would require to generate enough data, which is impossible due to the limited time

frame.

27Although these chord lengths are used in compositions, too, in the majority of modern music,

they are rather unlikely.

47

Although the predictions are altered using music theory based constraints, the

networks’ training metrics illustrated in Figures 8.5a and 8.5b have to be taken into

account, as well. During the first 30 epochs, the progression networks’ average

score steadily increases until a sudden peak in the training loss causes a short

plummet in the score. Generally, both the training accuracy and the validation

loss seem to climb throughout the epochs, while the validation accuracy stays

unchanged, indicating potential improvements for future epochs. The values of

phrase network, however, seem to converge around a certain point depending on the

metric. Although the network’s values barely change, the score abruptly plunges

at the sixth epoch, implying the existence of divergences from the values’ means

for each separate network. The exact cause is the difference in value between the

offset network’s and the other two networks’ metrics, which can not be seen in

Figure 8.5b since only the mean of all three values is used. Since the majority of

the offset outputs is 0 due to the lack of pauses in-between notes inside phrases, the

offset network would achieve relatively high scores by predicting 0 only. This does

not apply to the other two networks, which is why their scores are comparably low.

Under the assumption that the offset network’s scores are much greater than the

pitch and duration networks’ scores, any irregularities found in the offset network’s

values will cause major abnormalities in the mean. This is exactly the case for

the drop at epoch 6. Even though the decrease of the offset network’s score lies

within the expected margin of error, its impact on the mean is enormous since the

other two scores are considerably lower. These findings suggest that the networks

can be optimised by using individually built and adjusted neural networks for the

phrase network’s subnetworks to further tweak the system. The influence of a

single network on the mean can be reduced in addition by introducing a threshold

in Equation 7.4. Furthermore, the chord estimation algorithm’s accuracy - which

was the foreseen bottleneck explained in Chapter 5.5 - has to be improved in order

to provide all networks with better, more accurate input data. When it comes to

network fitting, slight underfitting is implied by the metrics, also suggesting that

the training inputs and outputs require adjustments. Again, this was anticipated due

to the experimental nature of the project and its time frame as described in Chapter

6.6. However, the utilisation of LSTM layers has evidently shown its benefits,

similar to the previous results of Mangal et al. [MMJ19] and Lyu et al. [LWZM15].

Additionally, the LSTMs’ input data contains a high level of context - computed

by the preceding analysis - that allows for contextual outputs that are eventually

capitalised on during the static element generation. Although the differences in

the MIDI results would be barely noticeable due to the fact that the current system

relies on constraints to filter out unlikely predictions, a more precise input would

allow for relaxations in the implemented constraints, which directly translate to a

higher amount of unaltered progressions and melodies.

48 Chapter 9. Discussion

Lastly, the static approach to generating orchestration is distinctly different

from Herremans and Chew’s [HC16] or Crestel and Esling’s [CE16]. However, all

statically generated elements fulfil their purpose since any pitched accompaniment

is always relative to a chord, implying that the included pitches will not alter

the existing harmony itself. Since the data fed into the neural networks is highly

contextual, this leads to outputs that can be used in a musical context, as well. Thus,

the subsequent component generation, which makes use of this context, is easily

employed. Furthermore, the unpitched accompaniments only serve as underlying

percussion, which is needed to add an additional sense of rhythm to the pieces.

Therefore, the static element generation is considered a success.

To stay within the limits of this study’s scope, the generated pieces were not

included in a survey. Thus it could not be verified whether the compositions are

considered satisfactory by the average listener. To establish this assertion, an

additional, unbiased study is needed. Nevertheless, the creation of the fundamental

chord progressions itself guarantees a certain amount of harmony, while melodic

and rhythmic patterns are found throughout the generated pieces, as well.

Chapter 10

Conclusion

By implementing a system that generates original musical compositions, the find-

ings of this thesis have indicated that the combined approach using machine

learning and static implementations of theoretical principles does have potential in

the practical field of music generation. The implemented system consists of two

main subsystems that continuously interact with each other in order to achieve the

mutual goal of automatic music generation. In the beginning, the static, theory

based system provides the data-driven system with the input data that is required

for its neural networks by extracting and transforming the information relevant

in a musical context from the MIDI dataset. Using the received information, the

networks are able to learn the elements’ interrelation inside the sequences. Later

on, after the data-driven system has generated the fundamentals of a piece, the

static system creates additional elements on top of that foundation.

Using various methods based on music theory concepts, a highly complex,

static chord estimation algorithm is implemented in the form of a strategy pattern

that attempts to identify chord progressions applied throughout a MIDI file. The re-

sult is then applied to distinguish between chord-dependent and chord-independent

phrases in order to classify these for further processing. While both the chord

progressions and melodies are subsequently fed into LSTM networks, the accom-

paniments, however, are directly stored with the purpose of being sampled into a

generated piece afterwards. The artificial neural network systems implemented can

be separated into two subsystems as follows: First, a progression network, which

consists of n− 1 networks specialising in predicting chord tuples (r, t) on a preced-

ing sequence of length i ∈ {1, ..., n− 1} in order to create a n-chord progression.

And second, a phrase network that makes use of the three main properties of a

note to create a network for the offset, pitch and duration, respectively, essentially

successively creating note triplets (o, p, d) on sequences of a fixed length m. Both

systems rely on static constraints that alter the probabilities of their prediction

matrices. With the underlying fundamentals generated, additional elements, such as

49

50 Chapter 10. Conclusion

counterpoint melodies, accompaniments and key signature changes, are statically

computed. A piece is built using sections, which are either manually created by

the user or automatically generated using a previously configured template.

In addition to this work’s successful attempt in automatic music creation, generally

implementing an abstract combination of a static, theory based and a data-driven

approach might lead to evidence supporting the application of this proposition

in other branches, as well. Lastly, the usage of LSTMs has proven itself to be a

viable approach in the context of automated music generation once again [MMJ19;

LWZM15; HHC18], while the statically constrained, theory based approach con-

firms its existing potential for chord recognition problems [SR08; WL18], as well

as music generation tasks [HC16; CE16].

For further reading, Hochreiter’s works [HS97; Hoc91] describe dynamic neural

networks focusing on LSTMs - along with their origin and application - in detail.

Furthermore, the work of Schoenberg et al. [SSS67] provides a vast collection of

music theory for an in-depth explanation and an extensive understanding of all

concepts and principles mentioned in this study.

Chapter 11

Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhi-

feng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,

Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Ma-

né, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems. 2015. URL: https:

//www.tensorflow.org/ (visited on 05/07/2022) (cited on

page 30).

[Ape69] Willi Apel. Harvard Dictionary of Music. Harvard University Press,

1969. ISBN: 9780674375017 (cited on pages 8, 9).

[Ass21] The MIDI Association. Official MIDI Specifications. 2021. URL:

https://www.midi.org/specifications/midi1-

specifications/midi- 1- addenda/midi- tuning-

updated (visited on 02/26/2022) (cited on page 9).

[BJZP20] Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan. “Gradient

amplification: An efficient way to train deep neural networks”. Big

Data Mining and Analytics 3.3 (2020), pp. 196–207. DOI: 10.265

99/BDMA.2020.9020004 (cited on page 12).

[BV22] MuseScore BV. Musescore.com. 2022. URL: https://musesco

re.com/ (visited on 04/10/2022) (cited on page 23).

51

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.midi.org/specifications/midi1-specifications/midi-1-addenda/midi-tuning-updated
https://www.midi.org/specifications/midi1-specifications/midi-1-addenda/midi-tuning-updated
https://www.midi.org/specifications/midi1-specifications/midi-1-addenda/midi-tuning-updated
https://doi.org/10.26599/BDMA.2020.9020004
https://doi.org/10.26599/BDMA.2020.9020004
https://musescore.com/
https://musescore.com/

52 Chapter 11. Bibliography

[CAHO21] Michael Cuthbert, Christopher Ariza, Benjamin Hogue, and Josiah

Wolf Oberholtzer. music21: a Toolkit for Computer-Aided Musicol-

ogy. 2021. URL: https://web.mit.edu/music21/ (visited

on 04/14/2022) (cited on pages 17, 27).

[CE16] Léopold Crestel and Philippe Esling. “Live orchestral piano, a system

for real-time orchestral music generation”. arXiv preprint arXiv:

1609.01203 (2016) (cited on pages 6, 48, 50).

[CF20] 53 Cantus Firmi by famous musicians. 2020. URL: https://4

8a396c9-e039-4167-9469-820fc5572658.filesusr.

com/ugd/cf79fa_272174fb4d9f4e24aa9ce71afc6dc

b91.pdf (visited on 05/04/2022) (cited on page 19).

[Che18] Guillaume Chevalier. “LARNN: linear attention recurrent neural net-

work”. arXiv preprint arXiv:1808.05578 (2018) (cited on page 12).

[Cho22] François Chollet. Keras: the Python deep learning API. 2022. URL:

https://keras.io/ (visited on 04/20/2022) (cited on page 30).

[Cly13] Manfred Clynes. Music, mind, and brain: The neuropsychology of

music. Springer Science & Business Media, 2013 (cited on pages 3,

8).

[Com22] Creative Commons. About the Licenses - Creative Commons. 2022.

URL: https://creativecommons.org/licenses/ (vis-

ited on 04/10/2022) (cited on page 23).

[Dan00] Roger B Dannenberg. “Artificial intelligence, machine learning,

and music understanding”. In: Proceedings of the 2000 Brazilian

symposium on computer music: arquivos do simpsio brasileiro de

computao musical (SBCM). 2000 (cited on page 5).

[For13] Allen Forte. Tonal Harmony. 3rd ed. Holt, Rinehart, and Wilson,

2013. ISBN: 0-03-020756-8 (cited on pages 4, 7).

[Fou22] Python Software Foundation. Python Release Python 3.8.0. 2022.

URL: https://www.python.org/downloads/release/

python-380/ (visited on 04/18/2022) (cited on page 27).

[HC16] Dorien Herremans and Elaine Chew. “MorpheuS: Automatic music

generation with recurrent pattern constraints and tension profiles”. In:

Proceedings of IEEE TENCON,-2016 IEEE Region 10 Conference.

IEEE. 2016, pp. 282–285 (cited on pages 4, 5, 48, 50).

[HGBC18] Jeff Heaton, Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep learning. 2018 (cited on page 10).

https://web.mit.edu/music21/
https://48a396c9-e039-4167-9469-820fc5572658.filesusr.com/ugd/cf79fa_272174fb4d9f4e24aa9ce71afc6dcb91.pdf
https://48a396c9-e039-4167-9469-820fc5572658.filesusr.com/ugd/cf79fa_272174fb4d9f4e24aa9ce71afc6dcb91.pdf
https://48a396c9-e039-4167-9469-820fc5572658.filesusr.com/ugd/cf79fa_272174fb4d9f4e24aa9ce71afc6dcb91.pdf
https://48a396c9-e039-4167-9469-820fc5572658.filesusr.com/ugd/cf79fa_272174fb4d9f4e24aa9ce71afc6dcb91.pdf
https://keras.io/
https://creativecommons.org/licenses/
https://www.python.org/downloads/release/python-380/
https://www.python.org/downloads/release/python-380/

53

[HHC18] Yongjie Huang, Xiaofeng Huang, and Qiakai Cai. “Music Generation

Based on Convolution-LSTM.” Comput. Inf. Sci. 11.3 (2018), pp. 50–

56 (cited on pages 4, 5, 21, 50).

[Hoc91] Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen Net-

zen”. Diploma, Technische Universität München 91.1 (1991) (cited

on pages 12, 50).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-

ory”. Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. ISSN:

0899-7667 (cited on pages 5, 11, 12, 50).

[HSS12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural

networks for machine learning lecture 6a overview of mini-batch

gradient descent”. Cited on 14.8 (2012), p. 2 (cited on page 32).

[Ini22] Open Source Initiative. The 3-Clause BSD License | Open Source

Initiative. 2022. URL: https://opensource.org/license

s/BSD-3-Clause (visited on 04/10/2022) (cited on page 27).

[KR88] Brian W Kernighan and Dennis M Ritchie. The C programming

language. Pearson Educación, 1988 (cited on page 27).

[Lai08] Steven Geoffrey Laitz. The complete musician: An integrated ap-

proach to tonal theory, analysis, and listening. Vol. 1. Oxford Uni-

versity Press, USA, 2008 (cited on page 19).

[LB+95] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for

images, speech, and time series”. The handbook of brain theory and

neural networks 3361.10 (1995), p. 1995 (cited on page 5).

[Loz20] Josko Lozic. “The revenue recovery of the music industry as a result

of revenue growth from streaming”. Economic and Social Develop-

ment: Book of Proceedings (2020), pp. 203–214 (cited on page 1).

[LWG22] Fei-Fei Li, Jiajun Wu, and Ruohan Gao. CS231n: Deep Learning

for Computer Vision. 2022. URL: http://cs231n.stanford.

edu/ (visited on 04/12/2022) (cited on page 10).

[LWZM15] Qi Lyu, Zhiyong Wu, Jun Zhu, and Helen Meng. “Modelling high-

dimensional sequences with lstm-rtrbm: Application to polyphonic

music generation”. In: Twenty-Fourth International Joint Conference

on Artificial Intelligence. 2015 (cited on pages 4, 5, 21, 47, 50).

https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

54 Chapter 11. Bibliography

[MH97] N. Mladenović and P. Hansen. “Variable neighborhood search”. Com-

puters & Operations Research 24.11 (1997), pp. 1097–1100. ISSN:

0305-0548. DOI: https://doi.org/10.1016/S0305-

0548(97)00031-2. URL: https://www.sciencedire

ct.com/science/article/pii/S0305054897000312

(cited on page 5).

[MMJ19] Sanidhya Mangal, Rahul Modak, and Poorva Joshi. “LSTM based

music generation system”. arXiv preprint arXiv:1908.01080 (2019)

(cited on pages 4, 5, 21, 47, 50).

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.

“Learning representations by back-propagating errors”. nature

323.6088 (1986), pp. 533–536 (cited on page 5).

[Ric98] Alan Rich. “Harmony”. Encyclopædia Britannica 15th Edition 18

(1998) (cited on pages 2, 8).

[Ron14] Xin Rong. “word2vec parameter learning explained”. arXiv preprint

arXiv:1411.2738 (2014) (cited on page 24).

[SD01] Klaus-Jürgen SACHS and Carl DAHLHAUS. Counterpoint, Grove

Music Online. 2001 (cited on page 19).

[SD10] Jon Sneyers and Danny De Schreye. “APOPCALEAPS: Automatic

music generation with CHRiSM”. In: Proceedings of 22nd Benelux

Conference on Artificial Intelligence (BNAIC’10). 2010, pp. 1–8

(cited on pages 3, 5).

[Smo86] Paul Smolensky. Information processing in dynamical systems: Fo-

undations of harmony theory. Tech. rep. Colorado Univ at Boulder

Dept of Computer Science, 1986 (cited on page 5).

[SR08] Ricardo Scholz and Geber Ramalho. “COCHONUT: Recognizing

Complex Chords from MIDI Guitar Sequences.” In: Sept. 2008

(cited on pages 4, 6, 46, 50).

[SSS67] Arnold Schoenberg, Leonard Stein, and Gerald Strang. Fundamen-

tals of musical composition. Faber & Faber London, 1967 (cited on

pages 3, 4, 50).

[Tit09] Jeff Todd Titon. Worlds of Music: An Introduction to the Music

of the World’s Peoples. 5th ed. Schirmer Books, 2009. ISBN: 978-

0534595395 (cited on page 8).

[Toc77] Ernst Toch. The shaping forces in music: an inquiry into the nature

of harmony, melody, counterpoint, form. Courier Corporation, 1977

(cited on pages 8, 19).

https://doi.org/https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/https://doi.org/10.1016/S0305-0548(97)00031-2
https://www.sciencedirect.com/science/article/pii/S0305054897000312
https://www.sciencedirect.com/science/article/pii/S0305054897000312

55

[Wil20] Victoria Williams. Counterpoint. 2020. URL: https://www.mym

usictheory.com/learn-music-theory/reference/

579-counterpoint (visited on 05/04/2022) (cited on page 19).

[WL18] Yiming Wu and Wei Li. “Automatic audio chord recognition with

MIDI-trained deep feature and BLSTM-CRF sequence decoding

model”. IEEE/ACM Transactions on Audio, Speech, and Language

Processing 27.2 (2018), pp. 355–366 (cited on pages 6, 50).

[YC11] Yi-Hsuan Yang and Homer H Chen. Music emotion recognition.

CRC Press, 2011 (cited on page 8).

https://www.mymusictheory.com/learn-music-theory/reference/579-counterpoint
https://www.mymusictheory.com/learn-music-theory/reference/579-counterpoint
https://www.mymusictheory.com/learn-music-theory/reference/579-counterpoint

56 Chapter 11. Bibliography

Appendix A

Code Excerpts

class ChordType(Enum):

MAJ = [0, 4, 7], [’Major’], ’’, 0

MIN = [0, 3, 7], [’Minor’], ’m’, 1

DIM = [0, 3, 6], [’Diminished’], ’o’, 2

MAJ7 = [0, 4, 7, 11], [’Major Seventh’], ’M7’, 3

MIN7 = [0, 3, 7, 10], [’Minor Seventh’], ’m7’, 4

MAJMIN7 = [0, 4, 7, 10], [’Major Minor Seventh’, ’Dominant Seventh’], ’7’, 5

DIM7 = [0, 3, 6, 9], [’Diminished Seventh’], ’o7’, 6

HDIM7 = [0, 3, 6, 10], [’Half-Diminished Seventh’, ’Minor Seventh Flat Five’], ’7b5’, 7

MINMAJ7 = [0, 3, 7, 11], [’Minor Major Seventh ’], ’m/M7’, 8

SUS4 = [0, 5, 7], [’Suspended Fourth’], ’sus4’, 9

SUS2 = [0, 2, 7], [’Suspended Second’], ’sus2’, 10

AUG = [0, 4, 8], [’Augmented Triad’, ’Augmented Fifth’], ’+’, 11

ADD9 = [0, 2, 4, 7], [’Added Ninth’], ’add9’, 12

ADD4 = [0, 4, 5, 7], [’Added Fourth’], ’add4’, 13

MINADD4 = [0, 3, 5, 7], [’Added Fourth’], ’madd4’, 14

MAJ6 = [0, 4, 7, 9], [’Major Sixth’], ’6’, 15

MIN6 = [0, 3, 7, 9], [’Minor Sixth’], ’m6’, 16

AUG7 = [0, 4, 8, 11], [’Augmented Major Seventh’, ’Augmented Seventh’, ’Major Seventh Sharp Five’], ’7#5

’, 17

DMAJ9 = [0, 4, 7, 10, 14], [’Dominant Ninth’, ’Dominant Major Ninth’], ’9’, 18

DMIN9 = [0, 4, 7, 10, 13], [’Dominant Minor Ninth’], ’7b9’, 19

MIN9 = [0, 3, 7, 10, 14], [’Minor Ninth’], ’m9’, 20

MAJ9 = [0, 4, 7, 11, 14], [’Major Ninth’], ’M9’, 21

P69 = [0, 4, 7, 9, 14], [’Six Add Nine’], ’6/9’, 22

M6SUS4 = [0, 5, 7, 9], [’Sixth Suspended Fourth’], ’6sus4’, 23

M6SUS2 = [0, 2, 7, 9], [’Sixth Suspended Second’], ’6sus2’, 24

MAJ11 = [0, 4, 7, 11, 14, 17], [’Major Eleventh’], ’M11’, 25

MIN11 = [0, 3, 7, 10, 14, 17], [’Minor Eleventh’], ’m11’, 26

D11 = [0, 4, 7, 10, 14, 17], [’Dominant Eleventh’], ’11’, 27

LYD = [0, 4, 7, 11, 18], [’Lydian’, ’Major Seventh Sharp Eleventh’], ’#11’, 28

def __init__(self, pitches: list, names: list, abbreviation: str, ctid: int):

self._pitches_ = pitches

self._names_ = names

self._abbreviation_ = abbreviation

self._ctid_ = ctid

Listing A.1: All defined chord type enums so far (new ones are easily added). Partial code

of SRC.MODEL.BASIC.CHORD.CHORDTYPE. Excerpt shows enums and class’ constructor.

57

58 Appendix A. Code Excerpts

{

"general": {

"load": true,

"verbosity": 2,

"latest": false,

"best": true,

"overwrite": false,

"retry": false

},

"chord_progression": {

"train": "neither",

"sequence_length": 16,

"epochs": 40,

"batch_size": 64,

"save_frequency": 5

},

"melody": {

"train": "neither",

"sequence_length": 64,

"epochs": 10,

"batch_size": 64,

"save_frequency": 2

}

}

Listing A.2: Default configuration of the system. Configuration values are validated upon

loading.

Appendix B

UML-Diagrams

Figure B.1: Initial MIDI data Handling upon data transformation. Full UML-Diagram of

class SRC.CONTROLLER.ANALYZER.ANALYZER.MIDIDATA.

59

6
0

A
p
p
en

d
ix

B
.

U
M

L
-D

ia
g
ra

m
s

Figure B.2: The Chord Estimation Algorithm as UML-Diagram.

Appendix C

Generated Examples

Figure C.1: Template used: PIANO. Full piece.

61

6
2

A
p
p
en

d
ix

C
.

G
en

er
at

ed
E

x
am

p
le

s

Figure C.2: Template used: SHORT_SONG. Only the first half of the first section is included in this screenshot.

	Introduction
	General Background
	Related Work
	Prerequisites
	Theoretical Principles
	Definitions
	Context

	Artificial Neural Network
	Formal Definition
	Long Short-Term Memory Network

	Static Approach
	Overview
	Difficulties
	Analysis
	Analysis Criteria
	Chord Estimation
	Estimation Strategies
	Merging Possibilities

	Element Extraction

	Component Generation
	Counterpoint
	Pitched Accompaniment
	Unpitched Accompaniment
	Key Signature Change

	Drawbacks

	Data-Driven Approach
	Overview
	Difficulties
	Training Data
	Correlations
	Component Generation
	Chord Prediction
	Note Prediction

	Drawbacks

	Implementation
	MIDI Handling
	Data Models
	Information Extraction
	Chord Estimation Algorithm
	Phrase Classification
	Additional Element Extraction

	Element Prediction
	Data Preparation
	Network Composition
	Training Configuration
	Chord Prediction
	Note Prediction

	Static Element Generation
	Counterpoint
	Pitched Accompaniments
	Unpitched Accompaniments
	Key Signature Change

	Miscellanea
	Path Management
	User Interface
	Model Weights
	JSON Configuration

	Results
	Information Extraction
	Element Prediction
	Static Element Generation

	Discussion
	Conclusion
	Bibliography
	Code Excerpts
	UML-Diagrams
	Generated Examples

