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Abstract: Indoor spaces exhibit microbial compositions that are distinctly dissimilar from one another 
and from outdoor spaces. Unique in this regard, and a topic that has only recently come into focus, is 
the microbiome of hospitals. While the benefts of knowing exactly which microorganisms propagate 
how and where in hospitals are undoubtedly benefcial for preventing hospital-acquired infections, 
there are, to date, no standardized procedures on how to best study the hospital microbiome. Our 
study aimed to investigate the microbiome of hospital sanitary facilities, outlining the extent to which 
hospital microbiome analyses differ according to sample-preparation protocol. For this purpose, ffty 
samples were collected from two separate hospitals—from three wards and one hospital laboratory— 
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hospitals. In surgical wards, patient toilets appeared to be characterized by lower species richness 
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and diversity than staff toilets. Which sampling sites are the best for which assessments should be https://doi.org/10.3390/ 
analyzed in more depth. The fact that the sample processing methods we investigated (apart from the microorganisms11010185 
choice of primers) seem to have changed the results only slightly suggests that comparing hospital 
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1. Introduction 

The fght against antibiotic-resistant pathogens has led to an ever-increasing burden 
on the healthcare system in recent decades. A lack of effective treatment inevitably leads 
to a vicious cycle of prolonged hospitalization, which in turn fosters hospital-acquired 
infections with pathogens that may also be highly resistant to therapy, and ultimately, 
to a concomitant surge in morbidity and mortality [1]. In 2021, the WHO emphasized 
the importance of global surveillance of antimicrobial resistance to effectively implement 
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strategies to combat MDR pathogens [2]. Next-generation sequencing has been widely used 
for this purpose over the past decade and shows great promise [3]. The obtained data are 
generally used to determine antimicrobial resistance, virulence patterns, and clonality [3–5]. 
In contrast, the idea of studying the totality of microorganisms in patients and their hospital 
environments is a more recent one and opens up the possibility of better understanding the 
emergence of niches of multidrug-resistant organisms in the patient and the hospital [6–8]. 

At any time, we are surrounded by microbes that can positively and negatively infu-
ence our health. The totality of microorganisms we carry in and on us is often categorized 
as our microbiome and thus distinguished by defnition from microorganisms that merely 
surround us. To what extent some should be called our own and others not remains 
part of many ongoing investigations [8–12]. Throughout modern human evolution, built 
environments—and hospitals in particular—have changed in ways that make them in-
creasingly inhospitable to microbial life, with largely dry surfaces often covered with 
antimicrobial materials [13]. While this has undoubtedly contributed to reducing the 
spread of communicable diseases, it has also changed our microbial relationship with the 
environment [13,14]. Research concerning the microbiome of indoor environments such as 
hospitals, houses, or buildings could have several implications for human health [7–14]. The 
hospital microbiome consists of complex, nested systems with a multilayered transmis-
sion of strains, plasmids, and smaller genetic elements between patients, medical staff, 
hospital surfaces, and water networks [15]. Although metagenomic analyses can be used 
beyond bacterial community relations to obtain information on non-bacterial microor-
ganisms and resistance genes, amplicon sequencing of genes such as the 16S rRNA gene 
offers the best cost–beneft ratio for assessing indoor microbiome profles to date [16]. The 
currently available data suggest that NGS bacteriome analysis (together with a similar 
assessment of the mycobiome and the resistome) provides valuable additional information 
about the microbiome contaminating the hospital environment, resulting in a subsequent 
improvement in protocols and measures to combat the increasing prevalence of antimi-
crobial resistance [13,15,17]. These molecular analyses could ideally be integrated into 
ongoing surveillance programs. Further research and technological advances are needed 
before these approaches can be routinely used for hospital surveillance; however, their 
ability to track outbreaks of multidrug-resistant bacteria and the spread of antimicrobial 
resistance, identify persistent environmental reservoirs, and assess future risks [7,8,12–17] 
is promising. 

In our study, we compared different sample collection sites in hospital-patient bath-
rooms and different sample preparation and sequencing protocols regarding the number 
and type of detected taxa. This was performed to investigate the microbiomes of hospital 
sanitary facilities and evaluate the degree to which hospital microbiome analyses vary with 
different protocols. 

2. Materials and Methods 
2.1. Sample Collection 

Two hospitals were included in this study. One is a tertiary referral and maximum-care 
facility (TCH), and the other a military hospital (MH). The two analyzed hospitals are 
approximately 60 km apart. Altogether, 50 sites were sampled. Each site was swabbed and 
preserved in 1 mL eNAT medium tubes (Copan, Brescia, Italy) and 1 mL DNA/RNA Shield 
Collection Tubes (Zymo Research Europe GmbH, Freiburg, Germany), totaling 100 samples. 
The 50 sample sites included bioflms along the water level of 24 toilets (12MH/12TCH) 
and in siphons of 14 wash basins (12MH/2TCH) and 12 showers (all MH). 

2.2. DNA Extraction 

Samples were stored for less than 14 days at 4 ◦C before highly purifed DNA was ex-
tracted using both the column-based PureLink Microbiome DNA Purifcation Kit (Thermo 
Fisher Scientifc, Waltham, MA, USA), henceforward referred to as the PMP kit, and the 
ZymoBIOMICS DNA Miniprep Kit (Zymo Research Europe GmbH, Freiburg, Germany), 



Microorganisms 2023, 11, 185 3 of 10 

henceforward referred to as the ZBM kit, according to the manufacturers’ instructions. At 
the end of the extraction process, the DNA was qualitatively and quantitatively evaluated 
using the NanoDrop OneC (Thermo Fisher Scientifc, Waltham, MA, USA). 

2.3. Library Preparation 

The 16S rRNA gene sequencing libraries were constructed using the Quick-16S NGS 
Library Prep Kit (Zymo Research Europe GmbH, Freiburg, Germany) with its included 
optimized primer pairs. All samples extracted with the PMP kit and 91 of those extracted 
with the ZBM kit were sequenced with the V1–V2 primer pairs, whereas 89 samples 
extracted with the PMP kit and 20 of those extracted with the ZBM kit were sequenced 
with the V3–V4 primer pairs. Each run included 94 samples, the positive control included 
in the kit, and a negative control. For quantitative PCR, quality control, and normalization 
purposes, the Bio-Rad CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA) was utilized. 

2.4. Sequencing 

After pooling, the DNA was quantifed with the QuantiFluor dsDNA System on the 
Quantus Fluorometer (Promega GmbH, Walldorf, Germany) and diluted strictly according 
to the Illumina protocol for MiSeq sample preparation. For the fnal library, a loading 
concentration of 10 pM was chosen and a 10% Illumina v3 PhiX spike-in control added 
before running it on the Illumina MiSeq platform. Libraries prepared using the V1–V2 
primer pair were sequenced with 500cycle v2 Illumina MiSeq Reagent Kits, and libraries 
prepared using the V3–V4 primer pair with 600cycle v3 Illumina MiSeq Reagent Kits. All 
reagents and equipment for sequencing samples were obtained from Illumina, San Diego, 
CA, USA. 

2.5. Bioinformatic Analysis 

The bioinformatics analysis included three main parts, starting with the preprocessing 
of raw paired-end reads. Following preprocessing, the sequences were assigned to tax-
onomies. Finally, a statistical and graphical evaluation was performed on the resulting taxa. 
QIIME2 (2022.8) [18] was used for both preprocessing and classifcation of the data. With 
the plugin tool DADA2 (2022.8.0) [19], forward and reverse reads were trimmed from the 
30 end at position 249, while shorter reads and low-quality reads were discarded. DADA2 
was also used to perform error correction, the merging of forward and reverse reads if there 
was an overlap of at least 12 base pairs, and chimera removal. The processed sequences 
were clustered into operational taxonomic units (OTUs) of 100% sequence identity and 
assigned to taxa using a classifer trained on full-length sequences of SILVA [20]. The 
trained classifer was provided by QIIME2 using scikit-learn 0.24.1 and the plugin tool 
q2-feature-classifer [21,22]. Based on the quantifed OTUs and taxa, different diversity 
indices were calculated using Python and the skbio.diversity library: the richness, Shannon, 
Simpson, and Fisher indices as a measurement for alpha diversity, and the Bray–Curtis and 
Jaccard indices as a measurement for beta diversity. 

All data relevant to this study are included in this article. 

3. Results 

In total, 300 sequenced hospital microbiome profles (which generated a total of 
29,774,051 reads with a mean read count of 99,247 per microbiome) passed our set minimum 
quality criteria of >4000 reads and >1400 merged reads each. At the phylum-to-species 
level, all taxa with an average prevalence of >0.3% were considered for the statistical 
analysis. These included 13 phyla, 15 classes, 34 orders, 47 families, 50 genera, and 
3 species. Swabs from 50 sites, each in 2 different storage media, yielded 100 samples. DNA 
was extracted from 92 samples using both the ZBM and PMP kits and from the remaining 8 
with only the PMP kit, which resulted in 192 extracted DNA eluates. Of these, 108 were 
sequenced with the V1–V2 and V3–V4 primer pairs. Of the remaining 84, 83 were sequenced 
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with only the V1–V2 primer pairs and 1 with only the V3–V4 primer pairs (resulting in 
300 microbiome profles). (See Figure 1.) This analysis showed, and the manufacturer 
subsequently confrmed, that 10 of the Shield tubes were affected by the contamination 
of a raw chemical during production, which ultimately limited the fnal evaluation to 
262 microbiome profles. The remaining Shield tubes belonged to another batch. 
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3.1. Present Taxa 

Altogether, 99.99% of the reads were of bacterial origin, and 0.01% were archaeal. The 
latter were only found in one toilet (with both primer pairs) and one shower (only V1–V2). 
The prevalence of the 30 most important taxa is displayed in Figure 2A. Only three taxa 
with an average prevalence of >0.3% were identifed at the species level—Acinetobacter 
ursingii, Lactobacillus iners, and Microbacterium lacticum—the frst of which was only detected 
in one hospital (MH) (t(212) = −3.33, p = 0.001). In terms of detected phyla, richness, and 
diversity, the most striking differences were observed between the two hospitals and the 
institutes/wards (see Figure 2B–E). 

3.2. Collection and Preservation Systems 

Given that among swabs obtained in surgical wards, only those collected with eNAT 
were valid and taxa and diversity differed distinctively between institutes, these wards 
were not considered for comparing the two collection and storage systems. This left 
221 microbiomes for comparison (111 Shield, 110 eNAT). No statistically signifcant differ-
ences in terms of detected phyla, classes, orders, families, or species were detected between 
the two different systems. No statistically signifcant differences were detected with respect 
to richness or any of the three diversity indices (Shannon, Fisher-alpha, Simpson). 

3.3. DNA Extraction 

Because many of the samples extracted with the PMP kit were also sequenced with the 
V3–V4 primer pair in addition to the V1–V2 primer, only samples sequenced with the latter 
were selected for a frst comparison of the two kits, resulting in an analysis that included 
164 microbiomes (82 PMP, 82 ZBM). Among the samples extracted with the PMP kit, a 
signifcantly higher prevalence of the phylum Actinobacteriota (t(162) = −2.1, p = 0.037), the 
class Actinobacteria (t(162) = −2.04, p = 0.043), the order Propionibacteriales (t(162) = −2.01, 
p = 0.046), and the family Propionibacteriaceae (t(162) = −1.99, p = 0.048) was observed. No 
statistically signifcant differences were detected concerning richness or diversity. 
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A second analysis of the two kits included samples sequenced with the V3–V4 
primer pair and extracted with both extraction kits, resulting in an analysis that included 
20 microbiomes (10 PMP, 10 ZBM). Among the samples extracted with the PMP kit, a 
signifcantly higher prevalence of the phyla Actinobacteriota (t(18) = −2.71, p = 0.014) 
and Verrucomicrobiota (t(9) = −2.38, p = 0.041), the class Actinobacteria (t(18) = −2.23, 
p = 0.039), the order Propionibacteriales (t(18) = −2.11, p = 0.049), the family Propionibacteri-
aceae (t(18) = −2.43, p = 0.026), and the genus Mycobacterium (t(9) = −2.55, p = 0.031) was 
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observed. On the contrary, a lower prevalence was observed of the order Pseudomonadales 
(t(12.29) = 2.34, p = 0.037), the family Pseudomonadaceae (t(9.45) = 2.35, p = 0.042), and the 
genus Pseudomonas (t(9.45) = 2.35, p = 0.042). 

3.4. Primer Pairs 

Of all 262 microbiomes, 172 were sequenced with V1–V2 primer pairs and 89 with 
V3–V4 primer pairs. On average, microbiomes sequenced with V1–V2 primers were found 
to be richer (t(259) = 2.09, p = 0.038) and more diverse in terms of their Shannon Diversity 
Index (t(259) = 2.4, p = 0.017). To analyze differences in the detection and prevalence of 
specifc taxa, we restricted the comparison to microbiomes sequenced with V1–V2 and 
V3–V4 primers. This left us with 181 microbiomes (92 V1–V2, 89 V3–V4), among which 
the differences in terms of richness and diversity were not confrmed. Which taxa were 
detected more or less with which primer pair is shown in Table 1. 

Table 1. Prevalence of taxa when sequenced with primer pair V1–V2 compared to V3–V4. 

Higher Prevalence Lower Prevalence 

Phylum Actinobacteriota (t(126.06) = 6.44, p = < 0.001) Bacteroidota (t(124.82) = −4.75, p = < 0.001) 
Bdellovibrionota (t(128.87) = −3.95, p = < 0.001) 

Verrucomicrobiota (t(103.03) = −5.55, p = < 0.001) 
Acidobacteriota (t(116.99) = −2.33, p = 0.021) 

Chlorofexi (t(106.62) = −3.78, p = < 0.001) 
Class Actinobacteria (t(119.62) = 6.73, p = < 0.001) Bacteroidia (t(124.82) = −4.72, p = < 0.001) 

Bdellovibrionia (t(132.42) = −3.78, p = < 0.001) 
Verrucomicrobiae (t(104.34) = −4.5, p = < 0.001) 

Plactomycetes (t(137.82) = −2.28, p = 0.024) 
Order Pseudomonadales (t(141.41) = 2.21, p = 0.029) Enterobacterales (t(108.68) = −4.71, p = < 0.001) 

Corynebacteriales (t(135.31) = 4.2, p = < 0.001) Flavobacteriales (t(161.51) = −2.59, p = 0.011) 
Propionibacteriales (t(95.63) = 4.62, p = < 0.001) Cytophagales (t(163.96) = −2.22) 

Micrococcales (t(156.14) = 2.23, p = 0.027) Chitinophagales (t(118.58) = −3.31, p = 0.001) 
Pseudonocardiales (t(91.89) = 2.48, p = 0.015) Sphingobacteriales (t(121.64) = −4.09, p = < 0.001) 

Bdellovibrionales (t(139.31) = −2.89, p = 0.005) 
Acetobacterales (t(120.77) = −3.45, p = 0.001) 

Legionellales (t(132.55) = −2.28, p = 0.024) 
Family Pseudomonaceae (t(129.75) = 2.38, p = 0.019) Enterobacteriaceae (t(108.26) = −4.64, p = < 0.001) 

Propionibacteriaceae (t(94.67) = 4.74, p = < 0.001) Chitinophagaceae (t(116.69) = −3.13, p = 0.002) 
Hyphomicrobiaceae (t(109.04) = 2.65, p = 0.009) Bdellovibrionaceae (t(139.31) = −2.89, p = 0.005) 
Microbacteriaceae (t(114.06) = 2.93, p = 0.004) Flavobacteriaceae (t(131.52) = −2.59, p = 0.011) 

Mycobacteriaceae (t(105.44) = 3.65, p = < 0.001) Sphingobacteriaceae (t(120.42) = −3.41, p = 0.001) 
Pseudonocardiaceae (t(91.89) = 2.48, p = 0.015) Acetobacteraceae (t(120.77) = −3.45, p = 0.001) 

Legionellaceae (t(132.55) = −2.28, p = 0.024) 
Genus Pseudomonas (t(130.47) = 2.31, p = 0.022) Escherichia-Shigella (t(95.52) = −5.29, p = < 0.001) 

Cutibacterium (t(92.62) = 4.66, p = < 0.001) Sphingomonas (t(179) = −2.25, p = 0.026) 
Hyphomicrobium (t(126.76) = 2.35, p = 0.02) Bdellovibrio (t(139.19) = −2.87, p = 0.005) 

Mycobacterium (t(105.44) = 3.65, p = < 0.001) Flavobacterium (t(131.16) = −2.71, p = 0.008) 
Microbacterium (t(105.42) = 3.5, p = 0.001) Legionella (t(132.46) = −2.25, p = 0.026) 
Pseudonocardia (t(91.79) = 2.43, p = 0.017) Mesorhizobium (t(88.44) = −3.09, p = 0.003) 
Ochrobactrum (t(95.55) = 2.55, p = 0.013) 
Acidovorax (t(95.7) = 3.67, p = < 0.001) 

Shinella (t(145.01) = 2.46, p = 0.015) 
Delftia (t(152.05) = 2.18, p = 0.031) 

Amaricoccus (t(112.84) = 2.28, p = 0.024) 
Ottowia (t(99.21) = 2.43, p = 0.017) 

Species Lactobacillus iners (t(92.48) = 2.61, p = 0.011) 
Microbacterium lacticum (t(91) = 2.48, p = 0.015) 

3.5. Sampling Sites 

In order to assign the prevalence of different taxa to specific swab sites (toilets/sinks/showers), 
we compared the microbiomes of different sites in the most suitable ward (COVID ward). 
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Our analysis was limited to one ward due to considerable discrepancies between the other 
wards, previously shown in Figure 1, and because it was the only ward in which toilets, 
sinks, and showers were sampled. We also limited our analysis in each case to only samples 
stored in one of the two media (eNAT), extracted by one of the two extraction methods 
(PMP), and sequenced with one of the two primer pairs (V1–V2) and then confrmed the 
results with those of the other combinations (all groups n = 34 to 36). The reported p-values 
refer to the signifcance of the analysis of variance in the group of samples stored in eNAT, 
extracted with the PMP kit, and sequenced with the V1–V2 primer pair. Where ANOVA 
found signifcant differences, a Bonferroni post hoc test was used to compare the groups in 
pairs. The results, confrmed across all groups of samples, included a signifcantly higher 
prevalence of the family Pseudomonadaceae (F = 7.79, p = 0.002) and the genus Pseudomonas 
(F = 7.64, p = 0.002) in showers; a higher prevalence of the genera Acinetobacter (F = 8.45, 
p = 0.001) and Phenylobacterium (F = 4.18, p = 0.024) in sinks; and a higher prevalence of the 
families Hyphomicrobiaceae (F = 11.58, p = < 0.001) and Beijerinckiaceae (F = 3.87, p = 0.031) and 
the genera Hyphomicrobium (F = 13.19, p = < 0.001) and Methylobacterium/Methylorubrum 
(F = 3.89, p = 0.03) in toilets. No signifcant differences were detected regarding taxa richness 
or diversity. Figure 3 depicts the differences and similarities between the samples linked to 
the sampling site. 
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3.6. Staff vs. Patient Toilets 

Almost one-tenth (9.16%, 24/262) of all microbiomes evaluated were from the staff 
sanitary inventory rather than from patients. These were exclusively samples collected 
from the TCH. They were 9.24% of those sequenced with the V1–V2 primer pair (16/172) 
and 8.99% of those sequenced with V3–V4 (8/89). In terms of species richness and diversity 
indices, large differences were evident between the two groups when limiting the analysis 
to the surgical wards. A signifcantly lower species richness (t(31.3) = −2.77, p = 0.009), and 
Shannon (t(46) = −2.53, p = 0.015) and Fisher-alpha diversity (t(32) = −2.52, p = 0.017) were 
observed across patient toilets. To confrm this observation without the bias introduced 
by quadruplication, we matched only samples stored in the same medium, extracted in 
the same way, and sequenced with the same primer pairs. The results are listed in Table 2. 
Although all analyses confrmed these results in their tendencies, only two were statistically 
signifcant. It should be considered that in all four analyses, the sample size did not 
exceed ten. 
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Table 2. Prevalence of taxa when sequenced with primer pair V1–V2 compared to V3–V4; signifcant 
differences highlighted in green. 

V1–V2 V3–V4 

ZBM n = 10 PMP n = 10 ZBM n = 10 PMP n = 10 

Richness t(3.17) = −0.95, 
p = 0.408 

t(8) = −2.39, 
p = 0.044 

t(3.02) = −1.5, 
p = 0.229 

t(3.14) = −1.74, 
p = 0.177 

Shannon 
diversity 

t(3.11) = −0.97, 
p = 0.402 

t(8)=−2.65, 
p = 0.029 

t(8) = −1.63, 
p = 0.142 

t(8) = −1.85, 
p = 0.101 

Simpson t(8) = −0.37, t(8) = −1.96, t(8) = −1.12, t(8) = −1.09, 
diversity p = 0.719 p = 0.086 p = 0.297 p = 0.308 

Fisher-alpha t(3.1) = −1.04, t(8) = −2.23, t(3.02) = −1.46, t(3.16) = −1.7, 
diversity p = 0.373 p = 0.056 p = 0.24 p = 0.183 

4. Discussion 

Any microbiome analysis intends to refect the microbial composition of the sam-
ple as faithfully as possible. The best, but not always the most practical, approach is to 
immediately process the sample or immediately freeze the sample until it is further pro-
cessed [23,24]. In practice, preservation media are often used, chemically producing the 
effect otherwise achieved by freezing. Numerous studies have compared the performance 
of different preservation media against each other, against immediate freezing, and against 
native storage at room temperature [24]. However, while the vast majority have focused on 
stool samples, to our knowledge, no environmental swabs of indoor hospital environments 
have yet been studied in this regard. Given that the intent of our study was, among other 
things, to develop a protocol for collecting and processing hospital microbiome specimens, 
we only compared two preservation media with each other since it is not considered an 
option to routinely freeze samples upon collection or store them without preservation me-
dia. However, it would certainly be useful to compare preservation media with immediate 
freezing in a follow-up study to determine the extent of any potential differences. 

It is diffcult to determine which of the extraction kits with their respective minor 
differences better refects the actual conditions [25]. A welcome discovery was that the 
results differed only slightly. Further extraction kits and extraction modalities should 
be compared. To determine which one of the two primer pairs better refects the actual 
composition of the sample, an additional metagenomic analysis should be performed. 
Currently, it would be diffcult to choose between the V1–V2 primer, which seems to better 
detect Pseudomonas, and the V3–V4 primer, which seems to better detect Escherichia-Shigella 
and Legionella. If neither performs well when compared to metagenomics, other primer 
pairs would be needed for further investigation. Full-length 16S rRNA gene amplifcation 
analyses (16S-longreads) or metagenomic analyses would certainly deliver additional 
relevant information beyond the short-reads-based 16S amplifcon analysis. Based on the 
cost–beneft ratio, it would have to be investigated in which cases they would bring more 
obvious advantages [6,26–28]. Additionally, it would be desirable to investigate which 
detected taxa are still viable [29], something for which culture-based methods are still vital 
in routine practice. 

All in all, it seems reasonably viable to compare analyses of differently processed 
samples up to a certain extent. It seems more challenging to compare microbiomes from 
different hospitals and wards. Here, which taxa or variables are predictive of what must 
be investigated in more detail. Further investigations should also clarify which sampling 
locations are best for which applications. 

Most interesting is the species richness and diversity differences observed between 
patient and staff toilets on the surgical wards despite the small sample size. It should be 
confrmed forthwith whether patient toilets in wards where large amounts of antibiotics 
are prescribed are indeed characterized by lower species richness and diversity and that 
the lower diversity does not simply derive from an altogether worse health state of patients 
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compared to staff. This would suggest that the emergence and maintenance of multidrug-
resistant monocultures in hospital wastewater are linked to excreted antibiotics [30,31]. 
In a hospital setting, where patients are often immunosuppressed, it may be good to be 
exposed to an ecosystem with minimal microbial diversity. However, it is also possible 
that the lack of a rich, diverse microbiome may negatively impact patient outcomes. With-
out a diverse microbial community, pathogens that would otherwise be displaced could 
thrive [9,12–17,32,33]. 

5. Conclusions 

The fght against antibiotic-resistant pathogens demands intensifed monitoring of 
antimicrobial resistance. Next-generation sequencing has been used extensively for this 
purpose. Amplicon sequencing of genes such as the 16S rRNA gene offers excellent 
monetary value for the study of hospital microbiome profles, leading to subsequent 
improvements in protocols. These molecular analyses could be integrated into ongoing 
surveillance programs. Our study provides evidence that protocol-related variability can 
be kept to a minimum and allows follow-up studies to address identifed challenges. 
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