
C. Wressnegger et al. (Hrsg.): SICHERHEIT 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 35

cba doi:10.18420/sicherheit2022_12

Wressnegger and Reinhardt (Hrsg.): GI Sicherheit 2022,
154 Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022

Towards Detection of Malicious Software Packages Through
Code Reuse by Malevolent Actors

Marc Ohm1, Lukas Kempf2, Felix Boes3, Michael Meier4

Abstract: Trojanized software packages used in software supply chain attacks constitute an emerging
threat. Unfortunately, there is still a lack of scalable approaches that allow automated and timely
detection of malicious software packages and thus most detections are based on manual labor and
expertise. However, it has been observed that most attack campaigns comprise multiple packages
that share the same or similar malicious code. We leverage that fact to automatically reproduce
manually identified clusters of known malicious packages that have been used in real world attacks,
thus, reducing the need for expert knowledge and manual inspection. Our approach, AST Clustering
using MCL to mimic Expertise (ACME), yields promising results with a 𝐹1 score of 0.99. Signatures
are automatically generated based on characteristic code fragments from clusters and are subsequently
used to scan the whole npm registry for unreported malicious packages. We are able to identify
and report six malicious packages that have been removed from npm consequentially. Therefore,
our approach can support the detection by reducing manual labor and hence may be employed by
maintainers of package repositories to detect possible software supply chain attacks through trojanized
software packages.

Keywords: Software Supply Chain; Malware; Abstract Syntax Tree; Markov Cluster Algorithm

1 Introduction

Modern software is developed on top of an ever-growing pool of third party tools, libraries
and packages. Hence, the integrity of software projects depend directly on the integrity of
the underlying software supply chain. Over the past few years, software supply chain attacks
that leverage trojanized software packages kept emerging [Oh20]. A central role in that
ecosystem is held by maintainers of package repositories like npm or Python Package Index
(PyPI). These platforms are repeatedly abused for the distribution of trojanized software
packages that are part of a software supply chain attack.

From the point of view of a malware author, distributing trojanized software packages
to open source package repositories is a both cost-efficient and effective for a number of
reasons. This is because open source packages are frequently used in various software
projects. However, the packages code base is unlikely to be audited by the user of the
1 University of Bonn, Institute for Computer Science 4, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany
ohm@cs.uni-bonn.de
2 University of Bonn & Hochschule Bonn-Rhein-Sieg kempf@uni-bonn.de
3 University of Bonn boes@cs.uni-bonn.de
4 University of Bonn & Fraunhofer FKIE mm@cs.uni-bonn.de

cba doi:10.18420/sicherheit2022_02

mailto:ohm@cs.uni-bonn.de
mailto:kempf@uni-bonn.de
mailto:boes@cs.uni-bonn.de
mailto:mm@cs.uni-bonn.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sicherheit2022_02

36 M. Ohm, L. Kempf, F. Boes, M. Meier Towards Detection of Malicious Software Packages 155

package. Therefore, malicious packages tend to be available for roughly 200 days before
being identified and removed [Oh20]. Clearly, an improvement of automated capabilities for
timely detection of such attacks is mandatory. It must be noted that at least npm and PyPI
are taking effort to implement the detection of malicious software packages [Ha21; Py22].

Based on a manual annotated dataset, we evaluate various automated approaches to
mimic the manual clustering of malicious packages which is typically performed by an
expert. Following the idiom “if you’ve seen one, you’ve seen them all” we automatize the
identification of related malicious packages to keep the upper hand in the arms race of
software supply chain attacks. Consequentially, we propose a timely detection of malicious
packages based on signatures derived from identified clusters. To this end, we leverage
Abstract Syntax Trees (AST) that are generated from known malicious packages that have
previously been used in real world attacks. Eventually, clusters of packages that share source
code are identified through Markov Cluster Algorithm (MCL).

Our results indicate excellent performance (𝐹1 = 0.99) on the annotated dataset and good
scalability for practical application. This way, suspicious packages are detected as soon
as they are published to a package repository. It supports the detection by notifying an
analyst about suspicious packages and giving hints about possible connections to already
known malicious packages. Thus, the contribution of this paper is the automated and
signature-based detection of possibly malicious packages which may then be analyzed by
an expert. Eventually, we were able to detect and report six incidents of malicious packages
on npm that share code with previously distributed malicious packages.

The remainder of this paper is organized as follows. Sect. 2 provides related work to frame
the academic context of our approach. The underlying methodology for our approach is
depicted in Sect. 3. Our results are presented and discussed in Sect. 4. Sect. 5 concludes the
paper and provides an outlook for future work.

2 Related Work

The detection of similar code fragments is being used for the detection of software plagiarism.
To this end, a vast majority of approaches leverage ASTs [CDR09; CJ11; DG13; NJK19;
RKC18].

The detection of source code similarity also found application in cyber security. Especially,
the detection of software vulnerabilities leverages code similarity detection in order to
identify known but currently undetected vulnerabilities in software. Known vulnerable
source code is used to generate signatures which are used to scan other source codes for
these known patterns. [Bi20; Ch20; Li16; YLR12]

In contrast to vulnerable software components, the research field of malicious software
packages is comparably new. Most often, they try to identify possible typosquatting
attacks [Ta20; Ts16; Vu20]. Nonetheless, there are approaches that try to detect malicious

Towards Detection of Malicious Software Packages 37 156 M. Ohm, L. Kempf, F. Boes, M. Meier

packages based on their source code. For instance, by looking for anomalies in a package’s
source codes compared to all other packages [Ča19; Ga19] or by leveraging heuristics [Du20;
PO17] of presumably malicious characteristics. Moreover, dynamic analysis of suspicious
packages might be considered in order to detect malicious behavior [Du20; OSM20].
Furthermore, Ohm et al. [Oh20] systematized software supply chain attacks by collecting
and analyzing a large dataset of malicious open source packages that have been used in real
world attacks.

Now,with an annotated dataset of knownmalicious packages at hand, it is possible to leverage
insights and ground truth to develop suitable detection techniques. Our contribution differs
from the approaches mentioned beforehand by leveraging evidence-based characteristics of
known malicious packages. In this work, we focus on static code analysis in order to detect
malicious packages based on automatically generated signatures.

3 Methodology

As observed by Ohm et al. [Oh20], malicious packages tend to have characteristic code
fragments in common. This might be because they are employed in the same attack campaign
or were simply copied by other malware authors. As discussed in the introduction, an
automated approach that solves the time-consuming and tedious tasks to identify and search
for said characteristic code fragments is highly anticipated. Our approach consists of three
automated steps: (1) calculation of the source code similarity between all known malicious
packages, (2) clustering based on these similarities, and (3) generation of signatures for
each cluster.

After providing our metric that measures how well the automated clustering mimics the
manual approach, we evaluate the clustering on an annotated dataset. In order to show that
our tool is efficient and feasible for practical application on the large scale, it is evaluated on
the full npm repository in Sect. 4.3. Hereby, we are able to identify and report six malicious
packages that have been removed from npm consequentially.

3.1 Embedding of Packages

Each package consists of a number of source files and each source file consists of a
number of functions. In our approach, each function is represented as Abstract Syntax Tree.
AcornJs [Ma20], a lightweight parser for JavaScript, is used to transform source code into
AST representation. Through abstraction of source code into a structural representation,
naming of identifiers is of no matter. Hereby, we treat member functions as independent
functions and group all statements in the global scope into a function. Similarity of two
ASTs, i.e., two packages, is calculated according to the Tree Edit Distance introduced by
Zhang-Shasha [ZS89] using the Python package zss [HJ13]. The similarity of two packages,

38 M. Ohm, L. Kempf, F. Boes, M. Meier Towards Detection of Malicious Software Packages 157

A and B, is the smallest Tree Edit Distance when comparing all ASTs, i.e., all functions, of
package A to all ASTs of package B. This way, we can quantify the similarity between all
malicious packages at hand which is then used to identify clusters among these.

3.2 Clustering of Packages

The defined goal is to group known malicious packages. Under the assumption that the
malicious packages mostly share the malicious code, we can now identify the relevant code
fragment for each cluster and use it as signature. To this end, we evaluate several unsupervised
clustering algorithms on the packages (using the distances between their representations)
and compare the resulting clusters with the experts clustering of malicious packages. Hereby,
unsupervised methods have been chosen to reduce the need for prior knowledge about
the dataset. We evaluate connected component (ccomp) and maximal cliques (clique)
by leveraging the Python package NetworkX [HSS08]. Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) is implemented by using the Python package
scikit-Learn [Pe11] and Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) by hdbscan [MHA17]. Last, we examineMarkov Cluster Algorithm
(MCL) [va00] for which we leverage the Python package Markov-Clustering [Al20]. We
expect the automated approach to identify the same amount of clusters containing the same
set of malicious packages as if performed manually.

All approaches are evaluated on the “Backstabber’s Knife Collection” dataset [Oh20]5 as
ground truth. This dataset contains malicious packages harvested from npm, PyPI, and
RubyGems. Furthermore, a manual clustering with expert knowledge of these was performed
that formed seven clusters comprising 109 malicious packages from npm. For sake of brevity
and with respect to the amount of npm packages in the dataset, we focus on packages written
for Node.js in JavaScript. However, our approach is transferable to all kind of programming
languages.

In order to compare the manual clustering by Ohm et al. [Oh20] with a fixed automated
clustering approach, the conceiving metrics Precision, Recall and 𝐹1-score are employed as
follows. First of all, we assume that the manual clustering is complete and accurate, i.e.,
every malicious code similarity is found and packages are clustered correctly. Then, a pair
of packages is said to be a true positive if the two packages are in the same cluster in both
approaches, a true negative if the two packages are in different clusters in both approaches,
a false positive if the two packages are in different manually generated clusters but in the
same automatically generated cluster, and a false negative if the two packages are in the
same manually generated clusters but in the different automatically generated clusters.

With this definition, the metrics Precision, Recall and 𝐹1-score are interpreted as follows.
By definition, Precision is the ratio of true positives in all positives. Therefore, the Precision

5 For reproducibility we use the version of the dataset as described in the publication.

Towards Detection of Malicious Software Packages 39 158 M. Ohm, L. Kempf, F. Boes, M. Meier

is high if the number of false positives is relatively low. Observe that this is the case if
the automated approach generates clusters that are overall finer or as fine as the manual
approach. Observe analogously that the Recall is high if the automated approach generates
clusters that are overall coarser or as coarse as the manual approach. Consequentially, the
𝐹1-score (which is the harmonic mean of Precision and Recall) measures how well the
automated clustering mimics the manual approach.

3.3 Derivation of Signatures

It turns out that AST Clustering using MCL to mimic Expertise (ACME) mimics the manual
clustering of an expert nearly perfectly with an 𝐹1-score of 0.99. Based on top of ACME, the
signature of a cluster of malicious packages is derived by constructing a so called fingerprint
from each characteristic code fragment.

Our approach leverages fingerprinting as proposed by Chilowicz et al. [CDR09]. From each
function 𝑓 represented in an AST 𝐺, we derive a so called fingerprintH 𝑓 . To this end, we
focus our attention to the subgraph 𝐺 𝑓 ⊂ 𝐺 associated to 𝑓 after all (nested) functions
that are defined inside 𝑓 are discarded. For each node 𝑣 ∈ 𝐺 𝑓 , we concentrate on its type
𝑡 (𝑣). After fixing SHA-256 as hash function 𝐶, the fingerprint of 𝑓 is defined recursively as
follows. Given an arbitrary node 𝑣 ∈ 𝐺 𝑓 with children 𝑤1, 𝑤2, . . . , we defineH(𝑣):

H(𝑣) = 𝐶 (𝑡 (𝑣) ‖ H (𝑤1) ‖ H (𝑤2) ‖ . . .) (1)

Denoting the root of 𝐺 𝑓 by 𝑟 𝑓 , the fingerprint of 𝑓 is

H 𝑓 = H(𝑟 𝑓) (2)

We remark that we leverage a different function 𝑡 than Chilowicz et al. Our 𝑡 (𝑣) solely takes
the type of node into account. Thus, our subgraph 𝐺 𝑓 is very focused on the structure of
the code fragment by discarding nonstructural information like operators. For instance the
code fragments 𝑎 + 𝑏 and 𝑎 ∗ 𝑏 result in the same fingerprint. However, 𝑎 + (𝑎 + 𝑎) and
(𝑎 + 𝑎) + 𝑎 yield different fingerprints. Let us remark further that we group code into a
dummy global function if it resides outside of functions, i.e., in global scope. Furthermore,
we treat functions inside classes as independent functions.

For each cluster 𝑐, one or more characteristic code fragment are chosen to serve as signature
𝑆𝑐 as follows. By construction, a cluster consists of a set of ASTs and to each AST, we
associate a fingerprintH . Roughly speaking, a fingerprint is simply a hash of a given AST.
Now a fingerprintH is “characteristic” if the following conditions are met: (1) The code
fragment H is unique to its cluster, i.e., H is not derived from any package in any other
cluster, (2) the code fragmentH is derived from at least two packages in its cluster, and (3)

40 M. Ohm, L. Kempf, F. Boes, M. Meier Towards Detection of Malicious Software Packages 159

the code fragment H cannot be derived from one of the most depended upon packages6
from npm.

Observe that (1) ensures that the signatures of the clusters are pairwise disjoint. This means
that a newly classified package is assigned to one cluster only. Observe further that the
condition (2) focuses signatures on common and hence descriptive code for the analyzed
cluster. Condition (3) forbids code fragments that can be found in popular and hence
supposedly benign packages.

The signature of a cluster 𝑐 comprises all characteristic code fragments, i.e., fingerprints, of
that cluster. The use of ASTs and the leveraged abstraction level are able to detect exact
clones of known malicious code by definition. By discarding identifier names, the approach
becomes resilient against obfuscation through unreadable names and renaming in general.
Now, a package 𝑝 matches the signature S𝑐 of cluster 𝑐 if at least one of 𝑝’s fingerprints
ℎ
𝑝

1 , . . . , ℎ
𝑝

𝑁
matches a fingerprint ℎ ∈ S𝑐 .

4 Results

This section summarizes our results from experiments as introduced in the previous sections.
First, we evaluate which clustering approach is suited best in combination with AST to
reproduce the results of the manual clustering in Sect. 4.1. The best approach is leveraged
in Sect. 4.2 to automatically generate and optimize signatures based on identified clusters.
These signatures are subsequently used in Sect. 4.3 to scan the whole npm registry for
unreported malicious packages that have code fragments common to known malicious
packages.

4.1 Reproduction of Clustering

Recall from Sect. 3 that we aim to automate the tedious and time-consuming task of
manually finding (variations of) recognized malicious code fragments in a given package
repository. Hereby, packages with similar malicious code fragments are clustered using
various unsupervised cluster algorithms. In this subsection, we evaluate the quality of
these approaches that attempt to reproduce the result of the manual clustering of Ohm et
al. [Oh20].

Tab. 1 displays the performance of ASTs in conjunction with all clustering algorithms. It is
noticeable that most clustering algorithms yield either high Precision or high Recall. Solely,
MCL is capable of reaching both high Precision and high Recall thus recreating the manual
cluster as similar as possible. With a Precision of 0.97 and a Recall of 1.00 the 𝐹1 score is

6 https://www.npmjs.com/browse/depended, we are limited to the 108 most depended upon packages due to
technical issues of the website.

https://www.npmjs.com/browse/depended

Towards Detection of Malicious Software Packages 41 160 M. Ohm, L. Kempf, F. Boes, M. Meier

at 0.99. Through the use of ACME we are able to recreate the manual clustering performed
by expert almost perfectly.

Having a suitable, automated, and unsupervised clustering at hand, signatures can now be
derived to describe the syntactic characteristics of malicious packages of that cluster. Using
these signatures, packages related to the same attack campaign, i.e., sharing some code
fragments, are detected and identified automatically. The upcoming subsection evaluates
the quality of the automatically generated signatures to quantify their practical suitability.

4.2 Quality of Signatures

The previous subsection shows that the experts task of manually clustering malicious code
is automated almost perfectly by combining ASTs with MCL. Using the ACME approach
described in Sect. 3.3, a signature 𝑆𝑐 is derived for each cluster 𝑐. In this subsection, we
discuss the sizes of the clusters and we demonstrate that the first two conditions yield
signatures with a promising Recall.

In Tab. 2, the resulting clusters, their sizes, and corresponding number of signatures are
shown. Our approach automatically identified seven clusters that cover 97 packages. As
stated initially, 104 packages belong to a manual created cluster in the dataset. This is because
the manual clustering by Ohm et al. also took dependency into account for clustering. Our
approach solely relies on code syntax similarity and hence may not cluster all packages as in
the dataset. However, only few clusters based on dependency exists and hence ACME was
able to reproduce the manual results almost perfectly. Nonetheless, if the manual clustering
is flawed, our approach also contains these flaws.

It is noticeable that the sizes of clusters varies heavily (𝜎2 = 230.40). The smallest ones
comprise two packages while the biggest clusters are of size 38 and 36 respectively. The
size of a signature weakly correlates with the size of the corresponding cluster (Pearson
𝑟 = 0.65, 𝑝 = 0.12). However, there are outliers. For instance cluster 1 and 5 yield very
large signature compared to their size and in contrast to that cluster 2 yields a very small
signature.

Tab. 1: Results of AST and all clustering approaches with employed parameters, sorted by 𝐹1 score.

Clustering Parameter Precision Recall 𝐹1

MCL exp = 2, inf = 2 0.9747 0.9958 0.9851
ccomp 0.6761 0.9958 0.8054
DBSCAN Y = 1,minPts = 2 0.6761 0.9958 0.8054
HDBSCAN minClst = 2 0.6580 0.9967 0.7927
clique 0.9878 0.6074 0.7522

42 M. Ohm, L. Kempf, F. Boes, M. Meier Towards Detection of Malicious Software Packages 161

In order to demonstrate that condition (3) is mandatory, we test the quality of the signatures
associated to all fingerprints satisfying only conditions (1) and (2) as follows. In a 10-fold
cross validation, we cluster the 114 packages containing malicious code with ACME and
derive the signatures associated to all fingerprints satisfying conditions (1) and (2). These
signatures are evaluated against the 10% of the split in the cross validation and against
108 benign packages. In this context, a package is positive if the automatically generated
signature matches the package. On average, the Recall is 0.88 but the number of false
positives is 46%. This is because the signatures contain too many fingerprints of benign
functions, i.e., condition (3) is mandatory to reduce the number of false positives.

In total 3,875 fingerprints satisfying only conditions (1) and (2) are derived from the
malicious packages of the seven clusters. Considering relevant fingerprints, i.e., after
applying condition (3), the seven clusters yield 3,396 (-12.36%) fingerprints in total.

4.3 Large Scale Evaluation

For large scale evaluation of our signatures, we harvest the npm repository on 25th of
September 2020. At this time, 1,396,447 packages were listed and respectively 1,396,413
are obtained in their “latest” version. In total, 20,017,543 files and 749,558,178 function are
inspected.

Tab. 2 also lists the number of matches (|M𝑐 |) our signatures produced per cluster. After
the automated removal of false positive fingerprints, the total amount of matches is reduced
from 283,887 to 136,157 (-52.04%). For manual optimization, we inspect the 50 most
matching fingerprints for each cluster. This takes roughly 10 minutes per cluster and resulted
in 133 signatures (3.92%) being removed. This further reduces the amount of matches from
136,157 to 70,432 (-48.27%).

Tab. 2: Identified clusters based on ACME sorted by size. The size of corresponding signatures S𝑐

and matches 𝑀𝑐 are based on the level of optimization: Consider all fingerprints satisfying only
conditions (1) and (2), all conditions, and all conditions plus manual optimization.

cond. (1) + (2) cond. (1), (2) + (3) cond. (1), (2), (3) + manual
No. Size |S𝑐 | |𝑀𝑐 | |S𝑐 | |𝑀𝑐 | |S𝑐 | |𝑀𝑐 |

1 38 3,752 278,473 3,282 131,842 3,232 70,228
2 36 1 1 1 1 1 1
3 14 40 1,137 34 694 2 0
4 3 3 3 3 3 3 3
5 2 75 4,191 72 3,536 22 200
6 2 2 81 2 81 1 0
7 2 2 0 2 0 2 0∑

97 3,875 283,887 3,396 136,157 3,263 70,432

Towards Detection of Malicious Software Packages 43 162 M. Ohm, L. Kempf, F. Boes, M. Meier

It must be noted that the signatures of cluster 1 are responsible for most of the matches
(99.71%). This indicates that our approach fails to choose descriptive fingerprints from
this cluster and hence produces many false positive matches. This indicates that a more
sophisticated selection of relevant fingerprints might be needed. Solely 204 suspicious
packages need manual inspection when leaving out matches from that cluster. However, for
the remaining clusters the ACME is able to pre-select a reasonable number of suspicious
packages that need further manual inspection. Furthermore, ACME gives a hint to the
analyst by stating suspicious functions of matching packages.

In addition to automatically generated signatures, we manually create signatures for packages
that did not belong to a cluster. To this end, we extract the fingerprint of malicious functions
by hand. This results in eight new pseudo-cluster with corresponding signatures. However,
this yields only one additional match.

4.3.1 Detected Packages

By the construction of the signatures, see Sect. 3.3, every match is treated as suspicious
and hence needs manual inspection to verify actual maliciousness. Eventually, we were
able to identify seven unreported but malicious packages that have code in common with
known malicious packages. We identify the packages nodetest1997, nodetest10108, and
plutov-slack-client9 based on the signature of cluster 4. All of them try to establish
a reverse shell upon installation in order to give the attacker full control of the victims’
systems.

Furthermore, ACME detects the packages revshell and node-shells that claim to be
proof of concept packages. Thus, npm security did not publish a security advisory for
revshell but nonetheless removed it from the registry. However, the package node-shells
was published by Adam Baldwin, head of security at npm, and was thus not reported by us.

The package hellhun_homelibrary which was found by a manually generated signature
was indeed not a malicious package itself. It is affected by flatmap-stream, the malicious
package that was used in the event-stream incident. Hence, npm security decided to inform
the developer about it instead of removing it.

The publication dates of the packages related to cluster 4, namely nodetest1010 (2018-08-
03), nodetest199 (2018-08-02), and plutov-slack-client (2018-03-30), fit the overall
time frame of known malicious packages from that cluster (2018-03-06, 2018-09-08,
2018-03-25). Thus, we conclude that we identified remnants of a previous attack.

However, the package npmpubman10 matches the signature of cluster 2 and it aimed at the

7 https://www.npmjs.com/package/nodetest199

8 https://www.npmjs.com/package/nodetest1010

9 https://www.npmjs.com/package/plutov-slack-client

10 https://www.npmjs.com/package/npmpubman

https://www.npmjs.com/package/nodetest199
https://www.npmjs.com/package/nodetest1010
https://www.npmjs.com/package/plutov-slack-client
https://www.npmjs.com/package/npmpubman

44 M. Ohm, L. Kempf, F. Boes, M. Meier Towards Detection of Malicious Software Packages 163

exfiltration of data about the victims’ systems. It was published on 2020-09-13 which is
way later than the average package from cluster 2. We reported it on 2020-09-28, only 15
days after it was published.

Overall, we conclude that our automated generation of signatures reduces the workload for
manual analysis drastically. However, manual optimization is still required to further boil
down the amount of matches, thus further reducing the amount of suspicious packages for
manual inspection. Nonetheless, our straight forward approach already yields feasible results.
Hence, ACME can be leveraged to search packages for variations of known malicious code.

5 Conclusion

In this paper, we examine how source code similarities of known malicious packages can
be leveraged to support the detection of software supply chain attacks. Our main goal is
to automatically detect malicious software packages that are uploaded to large package
repositories like npm. To this end, we automatize the clustering and signature generation
of known malicious packages which is typically based on expert knowledge and manual
inspection. On a dataset of 114 malicious npm packages that are used in real world attacks,
we evaluate several approaches to find and group syntactical similarities in source codes.
Based on that, clusters of packages with similar structure are identified automatically and
unsupervised.

Compared to the manual clustering of these packages at hand, our best approach yields
promising results (𝐹1 = 0.99). It leverages Abstract Syntax Trees (AST) to compare source
code of multiple packages and Markov Cluster Algorithm (MCL) to identify clusters among
these and is hence called AST Clustering using MCL to mimic Expertise (ACME). Our
approach can be used to support the detection by pre-selecting suspicious packages based
on signatures of known malicious code fragments for manual inspection. This reduces the
need for expert knowledge and manual inspection drastically.

To demonstrate the effectiveness of ACME, a scan of the whole npm registry based on all
generated signatures is performed. This revealed seven previously unreported packages in
total. A manual inspection shows that four of them are indeed malicious packages and are
therefore reported by us and subsequently removed from npm. Two of the remaining three
are proof of concept packages. The last package itself is not malicious but it contains a full
copy of the known malicious package flatmap-stream as dependency.

In conclusion, this means that our approach is feasible to automatically generate signatures
for known malicious packages which then may be used to scan packages for remnants,
variations, and imitators of knownmalicious packages. Through the use of ASTs the approach
is resilient to modifications of the source code like renaming of variables andminor structural
modifications. Furthermore, ACME is transferable to any other programming language.
However, automatically generated signatures reduce the manual work needed but still cause

Towards Detection of Malicious Software Packages 45 164 M. Ohm, L. Kempf, F. Boes, M. Meier

many false positives which may be removed manually. Nonetheless, our naive approach
already yields promising results and good scalability.

For future work we plan to optimize our signature generation and enhance support for
structural modifications of the source code. Eventually, we would like to expand our approach
to other software ecosystems like Python Package Index (PyPI) and RubyGems.

Acknowledgment

This work is funded under the SPARTA project, which has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement
No 830892.

References

[Al20] Allard, G.: Markov Clustering, 2020, url: https://github.com/GuyAllard/
markov_clustering, visited on: 10/29/2020.

[Bi20] Bilgin, Z.; Ersoy, M.A.; Soykan, E.U.; Tomur, E.; Çomak, P.; Karaçay, L.:
Vulnerability Prediction From Source Code Using Machine Learning. IEEE
Access 8/, pp. 150672–150684, 2020.

[Ča19] Čarnogursky, M.: Attacks on Package Managers, MA thesis, Masaryk Univer-
sity, Faculty of Informatics, 2019.

[CDR09] Chilowicz, M.; Duris, E.; Roussel, G.: Syntax tree fingerprinting for source
code similarity detection. In: 2009 IEEE 17th International Conference on
Program Comprehension. IEEE, pp. 243–247, 2009.

[Ch20] Chinthanet, B.; Ponta, S. E.; Plate, H.; Sabetta, A.; Kula, R.G.; Ishio, T.;
Matsumoto, K.: Code-based Vulnerability Detection in Node. js Applications:
How far are we? arXiv preprint arXiv:2008.04568/, 2020.

[CJ11] Cosma, G.; Joy, M.: An approach to source-code plagiarism detection and
investigation using latent semantic analysis. IEEE transactions on computers
61/3, pp. 379–394, 2011.

[DG13] Djurić, Z.; Gašević, D.: A source code similarity system for plagiarism detection.
The Computer Journal 56/1, pp. 70–86, 2013.

[Du20] Duan, R.; Alrawi, O.; Kasturi, R. P.; Elder, R.; Saltaformaggio, B.; Lee, W.:
Measuring and preventing supply chain attacks on package managers. arXiv
preprint arXiv:2002.01139/, 2020.

[Ga19] Garrett, K.; Ferreira, G.; Jia, L.; Sunshine, J.; Kästner, C.: Detecting suspi-
cious package updates. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE,
pp. 13–16, 2019.

https://github.com/GuyAllard/markov_clustering
https://github.com/GuyAllard/markov_clustering

46 M. Ohm, L. Kempf, F. Boes, M. Meier Towards Detection of Malicious Software Packages 165

[Ha21] Hanley, M.: GitHub’s commitment to npm ecosystem security, 2021, url:
https:/ /github.blog/ 2021- 11- 15 - githubs - commitment- to- npm-

ecosystem-security/, visited on: 01/06/2022.
[HJ13] Henderson, T.; Johnson, S.: Zhang-Shasha: Tree edit distance in Python, 2013,

url: https://pythonhosted.org/zss, visited on: 01/15/2021.
[HSS08] Hagberg, A.; Swart, P.; S Chult, D.: Exploring network structure, dynamics,

and function using NetworkX, tech. rep., Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[Li16] Li, Z.; Zou, D.; Xu, S.; Jin, H.; Qi, H.; Hu, J.: VulPecker: an automated
vulnerability detection system based on code similarity analysis. In: Proceedings
of the 32nd Annual Conference on Computer Security Applications. Pp. 201–
213, 2016.

[Ma20] Marijn Haverbeke, I. S. et al.: Acorn, 2020, url: https://github.com/
acornjs/acorn, visited on: 10/21/2020.

[MHA17] McInnes, L.; Healy, J.; Astels, S.: hdbscan: Hierarchical density based clustering.
Journal of Open Source Software 2/11, p. 205, 2017.

[NJK19] Novak, M.; Joy, M.; Kermek, D.: Source-code similarity detection and detection
tools Used in academia: a systematic review. ACM Transactions on Computing
Education (TOCE) 19/3, pp. 1–37, 2019.

[Oh20] Ohm, M.; Plate, H.; Sykosch, A.; Meier, M.: Backstabber’s Knife Collection: A
Review of Open Source Software Supply Chain Attacks. In: International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2020.

[OSM20] Ohm, M.; Sykosch, A.; Meier, M.: Towards detection of software supply
chain attacks by forensic artifacts. In: Proceedings of the 15th International
Conference on Availability, Reliability and Security. ACM, pp. 1–6, 2020.

[Pe11] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.;
Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., et al.: Scikit-learn:
Machine learning in Python. the Journal of machine Learning research 12/,
pp. 2825–2830, 2011.

[PO17] Pfretzschner, B.; ben Othmane, L.: Identification of Dependency-based Attacks
onNode. js. In: Proceedings of the 12th International Conference onAvailability,
Reliability and Security. Pp. 1–6, 2017.

[Py22] PyPI Warehouse: Malware Checks, 2022, url: https://warehouse.pypa.io/
development/malware-checks.html, visited on: 01/06/2022.

[RKC18] Ragkhitwetsagul, C.; Krinke, J.; Clark, D.: A comparison of code similarity
analysers. Empirical Software Engineering 23/4, pp. 2464–2519, 2018.

[Ta20] Taylor, M.; Vaidya, R. K.; Davidson, D.; De Carli, L.; Rastogi, V.: SpellBound:
Defending Against Package Typosquatting. arXiv preprint arXiv:2003.03471/,
2020.

https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://pythonhosted.org/zss
https://github.com/acornjs/acorn
https://github.com/acornjs/acorn
https://warehouse.pypa.io/development/malware-checks.html
https://warehouse.pypa.io/development/malware-checks.html

Towards Detection of Malicious Software Packages 47 166 M. Ohm, L. Kempf, F. Boes, M. Meier

[Ts16] Tschacher, N. P.: Typosquatting in programming language package managers,
BA thesis, Universität Hamburg, Fachbereich Informatik, 2016.

[va00] vanDongen, S.: A cluster algorithm for graphs. Information Systems [INS]/R
0010, 2000.

[Vu20] Vu, D.-L.; Pashchenko, I.; Massacci, F.; Plate, H.; Sabetta, A.: Typosquatting
and CombosquattingAttacks on the Python Ecosystem. Proc. of EuroS&PW’20/
, 2020.

[YLR12] Yamaguchi, F.; Lottmann, M.; Rieck, K.: Generalized vulnerability extrapola-
tion using abstract syntax trees. In: Proceedings of the 28th Annual Computer
Security Applications Conference. Pp. 359–368, 2012.

[ZS89] Zhang, K.; Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM journal on computing 18/6, pp. 1245–1262,
1989.

