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Abstract: Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence 
and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of 
which is displacing these pathogens using benefcial microorganisms. Our review comprehensively 
examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate 
surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 
21 December 2021, and 143 studies were identifed examining the effects of Lactobacillaceae and Bacillus 
spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While 
the diversity of study methods limits evidence analysis, results presented by narrative synthesis 
demonstrate that several species have the potential as cells or their products or supernatants to 
displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our 
review aims to aid the development of new promising approaches to control pathogen bioflms in 
medical settings by informing researchers and policymakers about the potential of probiotics to 
combat nosocomial infections. More targeted studies are needed to assess safety and effcacy of 
different probiotic formulations, followed by large-scale studies to assess utility in infection control 
and medical practice. 
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1. Introduction 

Antimicrobial resistance (AMR) is a major global health threat, resulting in millions 
of deaths each year from antibiotic-resistant infections [1,2]. The most common causes of 
these infections are a group of bacteria known as ESKAPEE pathogens (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, 
Enterobacter species, and Escherichia coli). As patients with weakened immune systems and 
antibiotic-induced dysbiosis are at increased risk of developing these infections, hospitals 
are particularly vulnerable to the spread of ESKAPEE pathogens [3,4]. Reducing the 
transmission of these infections in hospitals is critical to addressing the overall public 
health threat posed by AMR [3,5,6]. 

To reduce the risk of hospital-acquired infections (HAIs) in hospitals and other health-
care facilities, commonly, disinfectants are used. However, the overuse and improper use 
of disinfectants favor the development and spread of AMR organisms through the selection 
pressure exerted on microbial populations [7–11]. The reduction in susceptible microor-
ganisms facilitates multiplication and overgrowth of the resistant ones. In addition, the 
widespread use of disinfectants can also lead to the emergence of cross-resistance [12,13]. 

In recent years, there has been interest in using probiotic-based cleaning formulations 
as alternative cleaning agents in hospitals and other healthcare settings [8,10,11,14–18]. 
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Unlike traditional disinfectants, which unselectively eliminate microorganisms, probiotics 
used in this context are more selective and might only target specifc microorganisms 
by directly eliminating or suppressing growth. This means that they are less likely to 
lead to the development of AMR strains of bacteria. There is some evidence to suggest 
that probiotic-based cleaning formulations may be effective at reducing the risk of HAIs 
in hospitals [8,14–16]. However, more research is needed to confrm the effectiveness of 
probiotics as a standalone cleaning agent in the hospital setting. The effectiveness of 
probiotics in reducing the risk of HAIs depends on various factors, including the specifc 
strain or strains of bacteria used, the dose and mode of application of the probiotic, and the 
patient population under study. 

In-depth analysis is needed to identify which specifc probiotic bacterial strains are 
most effective in reducing the risk of hospital-acquired infections. While Lactobacillaceae and 
Bacilli have demonstrated their potential in some studies, it is crucial to consider the unique 
properties of different probiotic strains and the specifc conditions in which they are used. 
It is also essential to consider the ways in which probiotic strains may interact with each 
other, conventional antimicrobials, and the potential for adverse effects in certain patient 
populations. In this review, we focus on the effect of probiotic Lactobacillaceae and Bacilli as 
well as their products in the direct and indirect elimination of ESKAPEE pathogens. 

2. Results 
2.1. Species Reported to Suppress ESKAPEE Pathogen Growth 

Among Lactobacillaceae, Lactiplantibacillus plantarum was the most frequently reported 
species, with 36 instances of growth inhibiting, bactericidal, or anti-biofilm properties against 
at least one ESKAPEE pathogen [19–54]. Lactobacillus fermentum [21,22,28,30,31,43,55–65] 
and Lacticaseibacillus rhamnosus [19,21,25,27,31,66–77] were both reported 17 times, Lac-
tobacillus acidophilus was reported 16 times [21,28,55,67,78–89]. The next most common 
species were Lactobacillus paracasei (11 times) [19,20,58,73,74,77,90–94], Lactobacillus casei 
(9 times) [88,95–102], Limosilactobacillus reuteri (6 times) [19,103–107], Levilactobacillus brevis 
(6 times) [19,25,29,108–110], Lactobacillus salivarius [50,111–113] and Lactobacillus helveti-
cus [40,102,114,115] (4 times), Lactobacillus delbrueckii [19,116,117] and Lactobacillus crispa-
tus [65,118,119] (3 times), Lactobacillus pentosus [26,120], Lactobacillus gasseri [119,121], and 
Lactobacillus curvatus [51,102] (2 times). Lactobacillus agilis [122], Lactobacillus caucasicus [19], 
Lactobacillus gallinarum [31], Lactobacillus gastricus [90], Lactobacillus johnsonii [24], Lacto-
bacillus kunkeei [123], Lactobacillus murinus [124], Latilactobacillus sakei [102], Lactobacillus 
vaginalis [106] and Lacticaseibacillus zeae [58] were each only reported once. Among Bacilli, 
Bacillus subtilis was the most frequently reported species (fve times) [125–129], followed 
by Bacillus velezensis (two times) [130,131]. Bacillus thuringiensis [46], Bacillus amyloliquefa-
ciens [126], Bacillus cereus [132] and Bacillus pumilus [133] were each reported once. 

2.2. Origin of the Isolates 

Among cases where information on the origin of the isolates was provided, probiotic 
bacteria were most frequently isolated from more and less fermented food 
(22 times) [20,22,26,41,43–45,48,49,74,95,102,107,109,110,128,134–139] and dairy products 
(11 times) [24,31,40,57,58,69,79,86,90,97,108,117]. Some were of human origin; these in-
cluded bacteria of vaginal origin (six times) [64,65,72,93,119,140], such isolated from infant 
GI-tracts (six times) [24,42,62,77,94], and bacteria from the oral cavity (three times) [56,58,78], 
intestine (two times) [59,141] and one from breastmilk [75]. Others were of animal origin; 
these included three of bovine origin [25,29,33], two isolated from pigs [122,142], two from 
bees [123,131], and one from poultry [106], a dog [124], a bullfrog [51] and camel milk [23], 
respectively. Two Bacillus isolates were of marine origin [127,133]. Information on the 
origin of the remaining isolates was either not available or they were derived from probiotic 
bacteria-based products or microbiological strain collections. 
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2.3. Nature of Conducted Experiments 

The vast majority of studies were based on in vitro experiments (132 times) in which 
the effects of probiotic bacteria against pathogens were mainly evaluated by agar spot 
tests, agar well tests, co-culture in liquid media and on the surface of human cell lines. The 
latter included Caco-2 [44,50,89,103], HT29 [24,89,101], HeLa 229 [65,83], vaginal epithelial 
cells [71], and uroepithelial cells [143]. Some of the in vitro experiments tested the anti-
bioflm properties of the probiotic bacteria on inert surfaces [81,93,125], most importantly 
on metals such as stainless steel [120] or titanium [28]. Other surfaces included those 
made of silicon [32], ceramics, and linoleum [144]. Six studies were based exclusively 
on in vivo experiments. These included three rat disease models, two of which were for 
wounds [53,54] and one was for surgical implants [55], two murine disease models [145], 
one of which also included a bovine disease model [130], one rabbit model knee implant 
infection [76] and one bee model [123]. Three studies were based on combined in vitro 
and in vivo experiments and exclusively included murine disease models, two intestinal 
colonization models [36,52] and one urinary tract infection model [113]. In one of the latter, 
the anti-pathogenic properties demonstrated in vitro could not be replicated in vivo [52]. 

2.4. Suppression of ESKAPEE Pathogens 

The ESKAPEE pathogens that were most frequently reported to be displaced by 
the probiotic bacteria were by far Staphylococcus aureus (77 times) and Escherichia coli 
(73 times). The next most common ESKAPEE pathogen to be described as having been 
displaced was Pseudomonas aeruginosa (30 times). These three were also by far the most 
frequently tested ESKAPEE pathogens. Table 1 displays the number of times each probi-
otic species was reported to displace these three pathogens. Less frequently tested and 
displaced were Klebsiella pneumoniae (nine times) [26,43,52,56,65,79,132,136,146], Entero-
cocci (fve times) [85,103,107,141,147], Enterobacter species (two times) [26,61] and Acine-
tobacter baumannii (once) [68]. Of the Enterococcus isolates, four were E. faecalis and one 
E. faecium. Nine reports described pathogen inhibition to be caused by direct compe-
tition between probiotic and pathogenic bacterial cells [24,29,32,40,102,108,135,143,148]. 
Nineteen studies pinned the bactericidal properties down on one or more specifc cell 
products [46,49,51,56,57,59,73,76,99,100,117,125,127,129,133,136,149–151]. Eleven studies 
ascribed the suppression of pathogens to be attributable to both, direct competition and cell 
products [27,55,61,64,72,75,77,104,116,126,152]. Five studies linked attributed bactericidal 
activity exclusively to lactic acid and pH reduction [98,119,137,138,153]. The remaining 
52 studies that identifed the inhibition mechanism narrowed it down to be the cell-free 
supernatant (CFS) or exclusively investigated the CFS of probiotic bacteria. Nigatu and 
Gashe (1994) reported inhibitory effects to be independent of pH [136], Kang et al. (2017) 
discovered that pH neutralized CFS was still effcient in killing pathogenic bacteria as 
long as it was not heat inactivated or proteinase K treated [111]. Jeyanathan et al. (2021) 
described whole cell cultures to be ineffective in preventing P. aeruginosa growth, while 
CFS signifcantly reduced adherence and viability [28]. 

Twenty-four studies described tested probiotic bacteria as having significant anti-biofilm prop-
erties. These biofilms were of S. aureus (14 reports) [22,24,25,42,59,68,81,88,95,107,108,114,130,154], E. 
coli (9 reports) [24,26,60,68,70,95,101,152,154], P. aeruginosa (7 reports) [26,42,59,113,123,153,155], 
K. pneumoniae (2 reports) [26,146], E. faecalis (1 report) [107], Enterobacter (1 report) [26] and A. 
baumannii (1 report) [68] isolates. Biofilm impairment was generally by co-aggregation [24,81,108], 
by reducing pathogen adhesion [42,60,68,101,114], or by disrupting cell metabolism or in-
terfering with quorum sensing [46,70]. Chappell and Nair (2020) determined P. aeruginosa 
inhibition to be dependent on pH reduction [153]. Koohestani et al. (2018) discovered Lact. 
acidophilus CFS to better remove S. aureus bioflms than Lact. casei CFS [88]. Five authors 
reported the probiotic bacteria capable of replacing the pathogens’ bioflms with their own, 
which subsequently prevented recolonization by the pathogenic species [25,60,68,123,152]. 
Several additional studies reported the ability of pathogens to adhere and survive on 
probiotic-covered surfaces or such covered with probiotic-products to be signifcantly 
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reduced [27,30,32,37,55,102,125,135,144,156]. Kheiri et al. (2020) discovered Lactobacillus 
CFSs, even in 1:16 dilutions, to have superior bioflm-inhibiting and -killing properties than 
supra-MIC levels of several tested antibiotics [146]. 

Table 1. List of probiotic bacteria, and number of cases in which antibacterial properties were 
attributed to them against one or more of the three most frequently tested ESKAPEE pathogens. 

S. aureus E. coli P. aeruginosa 

Lactiplantibacillus plantarum 23 16 12 
Lactobacilus fermentum 7 5 7 

Lacticaseibacillus rhamnosus 8 9 2 
Lactobacillus acidophilus 8 7 5 
Lactobacillus paracasei 5 7 3 

Lactobacillus casei 5 6 -
Limosilactobacillus reuteri 4 3 1 

Levilactobacillus brevis 5 4 1 
Lactobacillus salivarius 3 - 1 
Lactobacillus helveticus 2 3 -
Lactobacillus delbrueckii 1 2 -
Lactobacillus crispatus 1 2 2 
Lactobacillus pentosus 1 2 1 
Lactobacillus curvatus 1 1 1 

Lactobacillus caucasicus 1 1 1 
Other Lactobacillaceae 20 25 6 

Bacillus subtilis 3 2 1 
Bacillus cereus 1 1 1 

Other Bacillus spp. 4 2 1 

Among studies evaluating the activity of probiotic bacteria or their products against S. au-
reus, eight included methicillin-resistant S. aureus (MRSA) strains [21,53,75,121,126,127,131,151]. 
Kalayci Yüksek et al. (2021) detected low protective effect of Lact. acidophilus, Lact. plan-
tarum, Lact. fermentum and Lact. rhamnosus on MRSA [21]; Sürmeli et al. (2019) detected 
no therapeutic effect but good protective effect of Lact. plantarum in preventing MRSA 
colonization when applied before MRSA on wounds [53]. Algburi et al. (2021) determined 
CFS of B. subtilis and B. amyloliquefaciens to inhibit both MRSA and methicillin-susceptible 
S. aureus (MSSA) [126]. Liu et al. (2020) reported also Lact. rhamnosus to inhibit both MSSA 
and MRSA in vitro and in the murine model [75]. Kalpana et al. (2012) described the 
products of B. subtilis to inhibit MRSA but not P. aeruginosa [127]. Klimko et al. (2020) dis-
covered Lact. acidophilus to be the strongest S. aureus inhibitor among nine tested probiotic 
isolates [19]. 

Two studies evaluating the activity of probiotic bacteria or their products against 
E. coli included enterohemorrhagic (EHEC) strains [96,135], two included enteropathogenic 
EPEC strains [36,89], and one contained an extended-spectrum beta-lactamase-encoding 
E. coli [79]. All reported the tested Lactobacillales to displace the pathogens. Six studies 
included not only ESKAPEE pathogens but also other Enterobacterales that frequently cause 
HAIs, such as Proteus mirabilis [61,65,157] and Proteus vulgaris [51], Klebsiella oxytoca [61] 
and Klebsiella aerogenes [129], Citrobacter freundii [51,61], and Serratia marcescens [140] to be 
inhibited by probiotic bacteria. Scillato et al. (2021) reported Lact. fermentum and Lact. 
crispatus to displace P. mirabilis and even KPC carbapenemase-encoding K. pneumoniae, but 
not E. faecalis, vancomycin-resistant E. faecium, or Candida albicans [65]. In the meantime, 
Strus et al. (2020) only discovered a few lactobacilli able to inhibit E. faecalis [158]. De Souza 
Freitas et al. (2020) determined B. subtilis CFS to also inhibit less frequent nonfermenting 
HAI-causing pathogens Achromobacter xylosoxidans, Alcaligenes faecalis, and Pseudomonas 
alcaligenes [129]. Turkova et al. (2013) reported Lact. acidophilus, Lact. gasseri, and Lact. 
helveticus to inhibit E. coli, E. faecalis and even Clostridioides diffcile, while S. aureus was not 
inhibited by Lact. Helveticus [147]. One study reported some Lactobacillales to enhance E. 
coli growth [33]. 
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3. Discussion 

The protective effects of colonizing the human body [159–165] or food [159,166,167] 
with probiotics have been well studied. However, applying this concept to infection vector-
transmitting surfaces such as those found in hospitals through protective probiotic flms 
is a novel approach that challenges traditional infection prevention strategies centered on 
maintaining a sterile hospital environment. Probiotic cleaning formulations show promise 
as a potential solution to the proliferation of antimicrobial resistance, particularly in health-
care settings [8,10,11,14–17]. These products, which contain live microorganisms benefcial 
to the cleaned environment, may restore microbial balance and reduce selective pressure 
driving drug-resistant bacteria. They may also have a more favorable environmental profle 
due to their use of natural, biodegradable ingredients. 

Our review of the effcacy of probiotics in reducing the presence of ESKAPEE pathogens 
identifed numerous studies that analyzed the bactericidal properties of probiotic strains 
against E. coli and S. aureus, which are well-known causes of gastroenteritis [168] partic-
ularly relevant to the use of probiotics in the gastrointestinal tract. The probiotic isolates 
examined in these studies were primarily Lactobacilli, aligning with the focus on using 
probiotics in the gut. In addition, most studies simulated conditions present in the gas-
trointestinal tract. P. aeruginosa, a microorganism known to cause food spoilage [169], 
was also frequently examined for its susceptibility to probiotics. However, there were 
very few studies that investigated the effects of probiotics against the majority of other 
ESKAPEE pathogens. 

It is important to note that the greater number of studies demonstrating the bac-
tericidal effects of Lactobacillales does not necessarily indicate superior performance in 
suppressing ESKAPEE pathogens compared to Bacillus species. Rather, evaluating probi-
otics for use on hospital surfaces requires a more nuanced analysis that considers factors 
such as survivability, bioflm formation, and bactericidal activity at room temperature and 
under nutrient-poor conditions, which may instead make Bacillus species more attractive 
candidates. It is also crucial to recognize that signifcant strain-level variations within the 
same species can impact the desired properties [170,171]. 

Despite the generally recognized safety of probiotics and the fact that most were 
derived from benign edible sources some of which are even consumed in large quantities, 
the use of these microorganisms in hospitals warrants further investigation to ensure their 
safety, particularly in dysbiotic, immunocompromised, leukopenic or even agranulocytic 
patients [172–175], as these are patient groups that could particularly beneft from such 
innovative solutions [176–184]. It is desirable for these microorganisms, which may be 
transferred from the environment to the patient, to retain their protective effects in the 
patient as well. 

Conducting more targeted studies on hospital or similar surfaces and the specifc 
pathogens to be displaced provide valuable insights and aid in the development of new 
and promising approaches for preventing or eradicating bacterial bioflms in medical 
settings [185–187]. Comparison of different probiotic-based cleansing formulations should 
also be considered, as the effcacy or ineffcacy of one product may not necessarily apply to 
other products with different strains. 

4. Materials and Methods 

A systematic search was conducted using the PubMed and Web of Science databases. 
The search was performed on 21 December 2021. The search string used was the following: 

“(Probiotic-Based Cleaning OR Antagonistic Activit* OR Inhibition OR Disinfec-
tant OR Anti-infective OR Bioflm removal OR cleaning solution* OR infection 
control OR antibioflm OR biosurfactants OR Sanitation OR Surfactants OR Clean-
ing OR Bacteriostatic OR Antimicrobial OR Microbial based cleaning OR Antag-
onistic activity OR Lantibiotics OR bacteriocins OR antagonistic activity) AND 
(bioflm OR Surface OR medical device) AND (Staphylococcus aureus OR Klebsiella 
pneumoniae OR Acinetobacter baumannii OR Pseudomonas aeruginosa OR E. coli OR 
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Enterobac* OR Nonfermen* OR MRSA OR CRE OR MDR) AND (Lactobacill* OR 
Probiotics OR Bacillus OR Clostridi* OR Bacteroi*) NOT “Review” [pt]”. 

For the assessment of search results, results were imported into CITAVI Database. 
Two reviewers independently screened the titles and abstracts of the identifed studies for 
eligibility. Studies were eligible for inclusion if they examined the effects of Lactobacillus, Lac-
ticaseibacillus, Lactiplantibacillus, Limosilactobacillus, Latilactobacillus or Bacillus spp. or their 
products/supernatants on one or more ESKAPEE pathogens. ESKAPEE pathogens were de-
fned as Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli. 
Full-text articles were then obtained for all potentially eligible studies and assessed for 
inclusion based on the predefned inclusion and exclusion criteria. Any discrepancies 
between the reviewers were resolved through discussion and consensus. 

Overall, a total of 143 studies were included in the review (see Figure 1). The studies 
were conducted in a variety of settings and involved a range of bacterial strains and 
ESKAPEE pathogens. The experiments included both in vitro and in vivo studies, and a 
variety of methods were used to assess the effects of the probiotic bacteria on the growth, 
colonization, and survival of the pathogens. 
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Data were extracted from the included studies using a standardized data extraction 
form. The following data were extracted: examined bacteria, ESKAPEE pathogens they 
were tested against, environment tested in, type of experiment, and, if applicable, additional 
relevant information. The extracted data were synthesized and analyzed using a narrative 
synthesis approach. The results were organized by bacteria and pathogens tested and 
summarized in a tabular format. 

Our review aimed to provide a comprehensive overview of the available evidence 
on the effects of Lactobacilli and Bacilli or their products against ESKAPEE pathogens. By 
synthesizing and analysing the data from the included studies, we aimed to evaluate the po-
tential of these probiotic bacteria as means to combat infections caused by these pathogens. 
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5. Conclusions 

The evidence collected from the multitude of scientifc studies shows that many 
Lactobacillaceae and Bacillus species are able to suppress the proliferation of ESKAPEE 
pathogens. However, the experimental conditions under which these studies were con-
ducted do not allow conclusive assessments of the effcacy of the species in protecting 
hospital surfaces, which could contribute to the development of new promising approaches 
to prevent or eradicate bacterial bioflms in medical settings. More targeted studies on 
hospital surfaces and pathogens to be displaced are needed to understand the potential of 
each species and strain in more detail, along with their respective safety profles. Once a 
safe and effective formulation is identifed, conducting large-scale studies seems impera-
tive, given the potential they carry in tackling several issues infection control and medical 
practice in general are currently facing. 
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C.N. and M.A.S.; supervision, C.N., M.P. and M.A.S.; project administration, C.N. and M.A.S.; 
funding acquisition, M.P. and M.A.S. All authors have read and agreed to the published version of 
the manuscript. 
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