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Unraveling capacity fading in lithium-ion
batteries using advanced cyclic
tests: A real-world approach

Sai Krishna Mulpuri,1 Bikash Sah,2,3,5,* and Praveen Kumar1,4
SUMMARY

Battery lifespan estimation is essential for effective battery management systems, aiding users and man-
ufacturers in strategic planning. However, accurately estimating battery capacity is complex, owing to
diverse capacity fading phenomena tied to factors such as temperature, charge-discharge rate, and
rest period duration. In this work, we present an innovative approach that integrates real-world driving
behaviors into cyclic testing. Unlike conventional methods that lack rest periods and involve fixed
charge-discharge rates, our approach involves 1000 unique test cycles tailored to specific objectives
and applications, capturing the nuanced effects of temperature, charge-discharge rate, and rest duration
on capacity fading. This yields comprehensive insights into cell-level battery degradation, unveiling
growth patterns of the solid electrolyte interface (SEI) layer and lithium plating, influenced by cyclic
test parameters. The results yield critical empirical relations for evaluating capacity fading under specific
testing conditions.

INTRODUCTION

Estimating electric vehicle (EV) battery lifespan has long been a complex and challenging task for multiple stakeholders. Consumers, auto-

mobile original equipment manufacturers (OEMs), certification agencies, and battery management system (BMS) developers all require ac-

curate algorithms, methods, and techniques for precise battery lifespan estimation. This information is essential for a variety of reasons. On

the one hand, it enables buyers to make informed decisions by providing a cost-benefit breakdown of the EV they are considering. Addition-

ally, certification agencies and insurance firms rely on accurate battery lifespan estimates to protect consumers from false warranty claims

made bymanufacturers. Furthermore, as batteries age, their states and parameters change, making it essential for an effective BMS to detect

capacity fading. This allows for accurate State of Charge (SOC) and State of Health (SOH) estimation, which is crucial for maintaining the per-

formance and safety of the EV.1,2 Automobile original equipment manufacturers (OEMs) rely on cyclic tests, which involve cycling the battery

at different operating temperatures and discharge rates, as shown in Figure 1A, to determine capacity fading and lifespan estimation.3,4 How-

ever, these tests are typically done in a continuous manner, which can lead to an optimistic lifespan estimate for the battery packs. In reality,

the usage patterns of EV batteries are closer to the cycle shown in Figure 1B, which involves intermittent rest periods. As a result, the real-

world capacity fading is usually greater than that estimated using the cycle shown in Figure 1A. The absence of rest periods in testing cycles

alters the reaction kinetics rate within the cell. It prevents the cell from reaching an equilibrium state concerning temperature, charge, and

concentration.5,6 These accelerated reaction kinetics lead to higher degradation rates, causing cyclic aging.
Literature review

The accurate measurement and prediction of LIB performance and degradation are crucial for optimizing battery design, management, and

operation. Therefore, extensive research has been conducted to investigate the testingmethods andmodels for estimating the capacity fading

and lifetimeof LIBs. Several tests havebeenproposed in the literature todetermine capacity fading. For example, tests basedon electrochemical

models,7–9 equivalent circuit models,10–14 performance-based models,15–18 an analytical model with empirical data fitting,19–23 and statistical

methods24–27 have been proposed. For example, Christensen. J and Newman J.28–30 developed a numerical model to investigate the impact

of stress caused during the intercalation of lithium in LMO batteries. The capacity fading caused by a byproduct of side reactions, the Solid

Electrolyte Interphase (SEI) layer growth, is examined with a solvent diffusion model by Ploehn et al.31 Safari et al.32,33 developed an
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Figure 1. Battery testing cycles depicting the different phases involved in it viz. Discharge period (D), Charge period (C), Rest period after discharging

(Rd), Rest period after charging (Rc) along with the level of degradation phenomenon viz. SEI layer growth (S) and Lithium plating (P) in it

(A) Standard test cycle.

(B–F) (B) Proposed test cycle; Individual test cycles illustrating the variation in the (C) Discharge capacity, (D) Discharge duration, (E) Rest period, (F) Charge rate.

Combining these four variations, an exhaustive set of experimental sets is designed.
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electrochemical model to study the impact of aging on capacity fading and impedance rise.34 and35 proposed advanced data-driven methods

for predicting the remaining useful life (RUL) and whole life cycle state of charge (SOC) of lithium-ion batteries. The introduced techniques,

namely improved feed forward-long short-term memory (FF-LSTM) and improved anti-noise adaptive long short-term memory (ANA-LSTM),

demonstrate remarkable accuracy in predicting whole-life-cycle SOC and RUL of lithium-ion batteries. However, an important limitation in these

approaches is highlighted, specifically concerning the training dataset used. The data from whole life cycle aging tests predominantly relies on

capacity tests at different discharge C-rates and accounts for temperature variations. Still, it overlooks the impact of varying rest periods and

discharge durations. Additionally, the constant charge rate used throughout the entire life cycle aging tests fails to capture the influence of

charge rates on battery degradation. Bypresenting this comparison constructively, the currentwork aims to shed light on the potential for further

advancements in estimating capacity fading techniques by considering a more comprehensive set of battery operating conditions. Another

approach is using equivalent circuit models, which provide valuable insight into the battery aging phenomenon, but they require extensive

data gathered through time-consuming tests for parameter identification. Additionally, these tests focus on understanding the fading phenom-

enon and are typically time-consuming, laborious, and suited for testing an individual cell. Furthermore, scaling up these tests for testing a bat-

tery pack is challenging compared to cyclic tests. Therefore, cyclic tests are still considered a viable solution for testing EV battery packs. Still,

there is a need to use a cycle that is more akin to real-world conditions to improve the accuracy of lifespan estimates.

One of the critical parts of the actual driving behavior is the rest period, which could be related to any time for which the vehicle is sta-

tionary. The rest period in the testing cycle plays a critical role in the battery performance. Tables 1 and 2 presents a detailed review of current
2 iScience 26, 107770, October 20, 2023



Table 1. Literature review of capacity fade studies in batteries: factors considered in previous research

Reference CR DR TCE TCT ATC ATD

Ning et al.3 No Yes No No No No

Carnovale et al.36 No No No No Yes No

Zhu et al.37 No Yes No Yes No No

Tanim et al.38 Yes No Yes Yes Yes No

Raj et al.39 Yes No No No No No

Mussa et al.40 Yes No No Yes No No

Watanabe et al.41 No No No No Yes No

Reichert et al.42 Yes Yes No No Yes No

Rashid et al.43 No No No Yes No No

Liu et al.44 Yes Yes No Yes No No

Zhu et al.45 Yes Yes No No Yes No

Severson et al.46 Yes No No No No No

Leng et al.47 No No No No Yes Partially

Keil et al.48 Yes Yes No No No No

Yang et al.49 Yes Yes No No Yes No

Impact of various factors viz. Charge rate (CR), Discharge rate (DR), Total charge exchanged (TCE), Total cycle time (TCT), Ambient Temperature on whole cycling

(ATC), Ambient temperature on individual degradation phenomenon (ATD), on capacity fade.
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literature that has conducted cyclic testing of lithium-ion batteries and analyzed capacity fade. It offers a detailed overview of the parameters

studied and limitations identified in performing capacity fade analysis. The literature has work explicitly reported, focusing on three main

points: (1) the limitations of current cycling testing methods and the importance of considering rest periods in battery testing; (2) the effect

of relaxation periods on lithium ion performance and the need to consider the dominant factor of calendar aging during rest periods; and (3)

the time dependency of degradation and the rate of solid electrolyte interface (SEI) layer growth and lithiumplating during different phases of

cycling.

The first point addresses the inadequacy of current cycling testing methods in capturing the impact of rest periods on battery degrada-

tion.3,36–40 Although some studies have included rest periods in the testing cycle,41 they often overlook the calendar aging phenomenon that

causes significant SEI layer growth. The capacity loss due to SEI layer growth is primarily time-dependent, which can be dominant during rest

periods. Therefore, it is crucial to consider both the rest period and the calendar aging effect in battery testing.

The second point focuses on the effect of relaxation periods on battery performance. Some studies have shown that more extended relax-

ation periods can improve battery capacity retention and reduce degradation.42,43 However, these studies did not consider the impact of

calendar aging during rest periods, which can significantly affect the battery’s lifetime. Therefore, it is essential to investigate the interaction

between relaxation periods, calendar aging, and battery performance to develop more accurate models for estimating battery lifetime.

The third point addresses the timedependency of degradation and the rate of SEI layer growth and Lithiumplating during different cycling

phases. Although some studies have investigated the time-dependent behavior of battery degradation,44 they often overlook the detailed

mechanismof SEI layer growth and Lithiumplating during different cycling phases. Therefore, it is necessary to investigate the rate of SEI layer

growth and Lithium plating during different stages of cycling to understand the degradation mechanism of LIBs better. By providing a

comprehensive literature review on these three points, this research article contributes unique insights into understanding lithium-ion

cell degradation and performance. The review emphasizes the need for more comprehensive testing methods that consider the impact

of rest periods and calendar aging and identifies areas where further research is needed to improve the reliability and accuracy of battery

testing.

Advanced cyclic testing methods

One of the crucial degradation phenomena, calendar aging, occurs during rest periods.50 Although a rest period limits cyclic aging to some

extent by slowing down the reaction kinetics, capacity fading caused by calendar aging is predominant during this period. Furthermore, ca-

pacity fading tests using the cycle shown in Figure 1A indicate that the higher the charge and discharge rates, the higher the capacity

fading.3,6 Despite this, if the test cycle shown in Figure 1B is used, capacity fading is not solely a function of charge and discharge rates,

but it also depends on the duration of rest periods within a cycle. This subsection presents a unique attempt that combines varying rest pe-

riods and diverse charge-discharge rates within a single cycle, aimed at investigating the intricate interplay between calendar and cyclic aging

on the performance of lithium-ion batteries. This unique methodology closely emulates real-world driving behavior, where the durations of

rest periods, charging, and discharging exhibit dynamic variations. This highlights the need for amore realistic testing cycle incorporating rest

periods to accurately estimate EV batteries’ lifespan and understand the underlying degradation mechanisms.
iScience 26, 107770, October 20, 2023 3



Table 2. Literature review of capacity fade studies in batteries

Reference

Rest period

within cycling

Calendar

aging (SEI

Layer growth)

Lithium

plating/lithium

stripping

phenomenon

Individual phases

contribution

to capacity fade

(Memory Effect)

Empirical

model for

capacity fade

estimation

Ning et al.3 No No No/No No No

Carnovale et al.36 Yes No No/No No No

Zhu et al.37 Yes Yes No/No No No

Tanim et al.38 Yes Yes No/No No No

Raj et al.39 Yes Yes Yes/No No No

Mussa et al.40 No Yes Yes/No No No

Watanabe et al.41 No No No No No

Reichert et al.42 Yes No No No No

Rashid et al.43 Yes Yes No No No

Liu et al.44 No No Yes/No No No

Zhu et al.45 No No No No No

Severson et al.46 Yes No No No No

Leng et al.47 Yes No No No No

Keil et al.48 Yes Yes Yes/Yes No No

Yang et al.49 Yes No Yes/Yes No No

Scope of various parameters investigated on capacity fade.
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All the simulation experiments are performed using the cycle shown in Figure 1B. The experiments are designed by varying the parameters

related to each phase of the cycle: the magnitude of the discharge current, discharge duration, rest period and the charge current, which are

shown individually in Figures 1C–1F. In Figure 1C, the amount of charge extracted from a battery (iD1, iD2. iDn) for a fixed duration (D) is varied

by keeping the charge rate (iC andC) and rest period duration (Rd and Rc) constant. Similarly, in Figure 1D, for a fixed discharge Ampere-hour

(Ah) (iD), the discharge duration (D1, D2.Dn) is varied by keeping charge rate (iC) and rest period duration (Rd and Rc) constant. In Figure 1D,

by keeping the charge rate (iC) and discharge rate (iD and D) constant, the rest period duration (Rd1, Rd2 . Rdn and Rc1, Rc2 . Rcn) is varied.

However, in Figures 1D and 1E, the duration of the charge period (C) depends on the battery’s internal behavior as it follows the Constant

Current Constant Voltage (CCCV) charging protocol. In Figure 1F, the charge rate (iC1, iC2, . iCn and C1, C2 . Cn) is varied by keeping

discharge rate (iD and D) and rest period duration (Rd and Rc) constant. The design of experiments is done with the intent to investigate

the dependency of capacity fading on each of these four parameters and ambient temperature. A detailed methodology for the selection

of parameters and establishment of specific testing conditions is provided in the ‘‘design of experiments’’ subsection of the ‘‘STARmethods’’

section.

This research endeavors to present test cycles more reflective of the typical usage scenarios that an EV would encounter. Additionally, an

empirical model based on qualitative and quantitative analysis is developed to estimate capacity fading accurately. This model serves as a

valuable tool for understanding the underlying degradation mechanisms and estimating EV batteries’ lifespan more realistically. A compre-

hensive analysis of the degradation of lithium-ion batteries is presented in this work, highlighting the unique insights of the work compared to

the existing literature. The proposed approach derives the impact of actual EV driving behavior onmodeling a test cycle, which is overlooked

in current literature. A total of 1000 unique test cycles relevant to real-world driving conditions were identified, and simulations were per-

formed on these test cycles at three different ambient temperatures. The analysis is used to comprehensively and accurately represent battery

performance.

The focus of this study is to understand battery degradation due to the impact of individual phases of a test cycle, viz., charge period, rest

period after discharge, discharge period, and rest period after the charge. The results presented reveal that the extent of degradation varies

significantly between different phases of the cycle., A detailed analysis of the factors contributing to the degradation in each phase is pre-

sented. The results helped to bring unique insights providing a more accurate understanding of battery degradation, which was not previ-

ously discussed in the literature.

Finally, based on the analysis, a robust empirical model is presented that precisely estimates battery capacity fade based on the testing

objectives. The proposed model considers the effect of temperature, SEI layer growth, lithium plating, cycle time, and the total charge that

went in and came out of the battery. Overall, a unique approach to battery degradation analysis, which provides unique insights into the

modeling of test cycles based on driving behavior, the impact of individual phases of a cycle, and a robust empirical model for estimating

capacity fade, is presented in this study.
4 iScience 26, 107770, October 20, 2023



Figure 2. Electrochemical Processes and Degradation Phenomena in Lithium-ion Cell

(A) Schematic of an electrochemical lithium-ion cell; Illustration of different phases of the battery operation viz.

(B) Charging phase: lithium exits the positive electrode surface by giving up the electron (which is forced through the external circuit to the negative electrode)

and becoming Li+ ion in the electrolyte.

(C) Discharging phase: lithium diffuses away from the negative electrode surface by giving up an electron (which travels through an external circuit to the positive

electrode and becomes a Li+ ion in the electrolyte, and (D) Rest phase: Neither electronic nor ionic movement takes place within the cell; (E) Schematic of cell

degradation phenomenon at anode showing; SEI layer formation, which is predominant during initial cycles and its thickness increases as the cell ages, and

lithium plating, where few Li+ ions, instead of intercalating into the anode, form a metallic reversible lithium layer and few ions undergo deposition reaction

to form dead lithium causing irreversible loss of lithium.

(F) Different experiments were performed, including the variables considered in this work.
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RESULTS

The battery pack used in an EV comprises multiple cells in which electrical energy is stored as chemical energy. The schematic of a cell is

shown in Figure 2A. The essential components of an electrochemical lithium-ion cell constitute two electrodes - anode and cathode, electro-

lyte, porous separator, and two current collectors for electrical contact - aluminum (for the cathode) and copper (for the anode) current col-

lectors. The capacity fade testing cycle of Figure 1B is similar to the scenario that a typical EV battery pack experiences. From the cell’s

perspective, the three phases in the cycle, viz., charge, discharge, and rest, are shown in Figures 2B–2D, respectively. Along with the primary

electrochemical reactions, unwanted side reactions also occur in a cell, which reduces the amount of cyclable lithium concentration over

time.50 These side reactions are the primary reasons for cell degradation. In the discharge and charge phases, capacity fading due to lithium

plating dominates (Figure 1B), whereas, in the rest period, the capacity fading is predominantly due to SEI layer formation (Figure 1B).

A schematic of these two phenomena at the cell level is shown in Figure 2B.51 It is rational that each duration - discharge, charge, and rest

periods individually impact the cell degradation rates over a cycle. Further, since this work proposes an advanced test cycle that considers the
iScience 26, 107770, October 20, 2023 5
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Figure 3. Capacity fading is expressed as Loss of Lithium Inventory (LLI) (%) after 500 cycles with altering ambient temperatures @0.5C charge rate,

0.5C discharge rate, and a rest period of 2 h

(A–D) (A) Overall capacity fading under different ambient temperatures, (B) Capacity fading due to SEI layer growth within individual phases of a cycle under

different ambient temperatures, (C) Capacity fading due to lithium plating within individual phases of a cycle under different ambient temperatures, (D) Total

capacity fading within individual phases of a cycle under different ambient temperatures.
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rest period, it is crucial to understand the impact of each duration on the overall cell degradation in a test cycle. Hence detailed simulations

are performed at different charge and discharge rates, and the duration of rest periods is shown in Figures 1C–1F. Since all the electrochem-

ical parameters of LG-M50 21700 were available in the literature,52 simulation experiments were performed on this cell. Table S4 lists all the

electrochemical parameters of this cell. It must, however, be noted that the procedure and the results apply to all lithium chemistries and are

not limited to this specific cell chemistry. The details of assumptions, the design of experiments, and the empirical modeling are presented in

the ‘‘STAR methods’’ section. This section is divided into three subsections. Each subsection focuses on understanding the impact of the ca-

pacity fade with changes in temperature, charge-discharge rates, and duration of rest periods in the proposed test cycle, respectively.

Capacity fade with temperature

The temperature significantly impacts battery degradation, as seen in Figure 3A. The higher temperatures accelerate the degradation pro-

cess, while moderate temperatures tend to be more favorable for mitigated degradation.47 Under the same ambient temperature, the pro-

posed cycle resulted in more fading, which is expected due to the rest period. However, a deeper insight into the proposed cyclic method

depicts the capacity fading rate caused by individual phases involved in a cycle while the ambient temperature varies.

Figures 3B–3D show the capacity fading within each phase under different ambient temperatures, 0�C and 25�C. Figures 3B and 3C infer

the dependency of SEI layer growth and lithium plating on temperature. Although overall fading is higher at higher temperatures (Fig-

ure 3A),47 it is interesting to notice from Figures 3C and 3D that fading within individual phases is less at higher temperatures. The negative

fading represents the reversible plating/stripping phenomenon. It can be seen from Figures 3C and 3D that lithium plating happens during

the charging phase. During lithium plating, the lithium ions are deposited onto the surface of the anode in the form of a thin layer of lithium

metal. Similarly, reversible plating or stripping happens during the discharge phase and the rest period immediately after the charging

phase.49

Figures 4A and 5C shows the impact of ambient temperature on capacity fading. During cycling, the total capacity fading in a cell is the

sum of fading caused by SEI layer growth and lithium plating, as shown in Figure 4A.51,53,54 To isolate the effect of temperature on capacity

fading, 150 unique experiment cycles out of the total 3000 cycles conducted in the study are selected (Figure 2F). These experiments were

performed with a constant charge rate of 0.1 C and a constant rest period of 2 h, which allowed us to eliminate the influence of other factors

such as charge rate and rest period on the capacity fading. These test conditions are repeated for chosen three temperatures. It can be

observed that the capacity fading increases with an increase in temperature. Under the same throughput charge and cycle time, a higher

ambient temperature resulted in a higher capacity fading.

A closer look at Figures 4B and 4C reveals that the fading due to SEI layer growth and lithium plating increases with an increase in tem-

perature.55 Figures 4D–4F show the fading due to SEI layer growth and lithium plating at ambient temperatures of 0�C, 25�C, and 50�C,
respectively. Additional results on the capacity fading phenomenon under three different temperatures at a 0.5C charging rate and 2 h

rest period are described in the supplementary section (refer to Figures S1 and S2). Figures 5A and 5B show the rate of increase in the SEI
6 iScience 26, 107770, October 20, 2023
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Figure 4. Capacity fading is expressed as LLI (%) with altering temperature

(A–F) (A) Total fading under different ambient temperatures, (B) Fading due to SEI layer growth under different ambient temperatures, (C) Fading due to lithium

plating under different ambient temperatures, (D) Individual fading at 0�C, (E) Individual fading at 25�C, (F) Individual fading at 50�C. (See also Figures S1 and S2).
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layer growth and the rate of decrease in the lithium plating, respectively, at different temperatures as the cycle progresses. A non-linear yet

continuous growth in the SEI layer is observed for 500 cycles of the experiment. However, the loss of lithium-to-lithiumplating after every cycle

will be less than the previous cycle as the availability of area on the negative electrode for plating reduces with time as the SEI layer grows

persistently with each cycle.56–58 Accelerated fading happens at elevated temperatures, predominantly caused by increased SEI layer growth

and lithium plating. The combined fading thus increases with temperature, as shown in Figure 5C.

Capacity fade with change in charge-discharge rate

Contrary to the belief that fading accelerates at faster charge conditions, Figures 6A and 6C show that slower charging results in higher

fading.59,60 Figures 6A–6C show the impact of charge rate on capacity fading. To specifically investigate the impact of charge rate on capacity

fading, 200 unique experiment cycles out of the total 3000 cycles conducted in this study are chosen (Figure 2F). This selection was made to

eliminate the influence of other factors such as rest period and temperature on the capacity fading. By keeping the rest period at 2 h and

temperature at 25�C constant across all 200 experiment cycles, we could isolate the charge rate’s effect on capacity fading and more accu-

rately analyze this specific factor. This allows us to draw a clear conclusion about the impact of charge rate on capacity fading and to compare

the results with other studies.
iScience 26, 107770, October 20, 2023 7
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Figure 5. Capacity fading is expressed as LLI (%) vs. cycle number with altering temperature

(A–C) (A) LLI (%) due to SEI layer growth vs. cycle number at different ambient temperatures, (B) LLI (%) due to lithium plating vs. cycle number at different ambient

temperatures, (C) Combined LLI (%) vs. cycle number at different ambient temperatures.
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It can be observed that the capacity fading is more at lower charging rates. Under the same throughput charge and cycle time, a lower

charging C rate (here 0.1C) resulted in higher capacity fading. The accelerated capacity fading at a slower charging rate explains the role

of the critical degradation phenomenon of calendar aging and its dominance over cyclic aging during long-term cycling conditions.

Figures S3–S5 from the Supplementary material describe the tests which are repeated for the exact charging rates under three other test

conditions: @50�C and 2 h rest period; @25�C and no rest period; @50�C and no rest period.
A

C D

B

Figure 6. Capacity fading is expressed as Loss of Lithium Inventory (LLI) (%) with altering charge and discharge rates. Battery testing cycles are

considered to analyze the impact of the rest period on lithium plating

(A–D) (A) Total fading at 0.1C charging rate, (B) Total fading under different charging rates viz. 0.5C, 0.75C, 1C. (C) Total LLI (%) under varied charge rates vs. cycle

number, (D) Total LLI (%) under varied discharge rates vs. cycle number. (See also Figures S3–S5).

8 iScience 26, 107770, October 20, 2023
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Moreover, Figure 6C shows that the degradation rates for moderate charge rates such as 0.5C, 0.75C, and 1C are similar irrespective of

discharge C-rate, temperature, and rest periods. This implies that the degradation rate is higher at a slower charging rate (0.1C) and lower at

moderate charge rates.59,60 Furthermore, the chemical degradation is dominant at slower charging rates, resulting in increased SEI layer thick-

ness at a 0.1C charge rate. Subsequently, the impact of discharge C-rate can be seen in Figure 6D. For a fixed discharge cycle duration, the

fading correspondingly increases as the amount of charge taken out from the cell increases. Faster rates for a fixed discharge duration in-

crease the capacity fading as the loss of lithium to SEI layer formation is more at higher discharge rates.

Capacity fade with change in the duration of rest period

Figure 7A shows the impact of the rest period on capacity fading. To investigate the influence of rest period on capacity fading, 250 unique

experiment cycles from the total 3000 cycles conducted in our study are selected (Figure 2F). By controlling the charge rate at 0.1C and tem-

perature at 25�Cacross all 250 experiment cycles, the impact of other factors on capacity fadingwas eliminated. This allowed us to focus solely

on the effect of rest periods and, more precisely, analyze their impact on capacity fading.

Under these test conditions, the experiments were performed for chosen four rest periods, 0.5 h–2 h on the scale of 0.5 h after each phase

of charging and discharging. The results are compared with the standard cyclic test methods in the literature, where the rest period is not

considered.3,4 It can be observed that the capacity fading increases significantly with an increase in the rest period. Under the same

throughput charge and cycle time, the longer the rest period, the more the capacity fades.

Figures 7B–7D illustrate the capacity fading for different charge rates: 0.5C, 0.75C, and 1C, respectively. As the charge rate increases, the

overall cycle time decreases, reducing the lithium lost in that particular cycle. The ambient temperature is kept constant at 25�C during all

these experiments. Figure S6 in the supplementary section describes the results of the experiments performed under 50�C ambient

temperature.

Figure 7E illustrates the impact of the rest period on capacity fading within an experiment of 500 cycles each. The increased rest periods

account for longer cycle durations and calendar aging. Irrespective of charge and discharge rates, SEI layer formation is dominated by cal-

endar aging. The capacity fading due to the substantial growth of the SEI layer on the negative electrode is primarily dependent on time, and

it is similar at different charging rates. However, it is interesting to realize the dependency of lithium plating on the rest periods provided

within a cycle. The stripping of deposited lithium metal on the anode happens during the rest period immediately after the charging phase

and during the discharging phase.49 To understand the impact of individual relaxation phases on lithium plating after the discharge and

charge process, the cell is subjected to four different cycles, as shown in Figures 8A–8D, developed by various combinations of discharge,

charge, and rest phases. From Table 3, it is clear that the lithium plating associated with the cycles having a rest period after the charging

process, i.e., (D-Rd-C-Rc) and (D-C-Rd), is lesser than the other two cycles, i.e., (D-Rd-C) andD-C. This implies the phenomenon of lithium strip-

ping, where the plated lithium tries to re-intercalate into the anode.

DISCUSSION

The discrepancy between the claimed battery life by manufacturers and the actual life observed by users is a significant issue in the EV in-

dustry. It is found that the resting period of an EV after charging or discharging the batteries has a significant role in the rate of capacity fading.

Additionally, batteries are represented using passive energy-storing elements such as capacitors in equivalent circuit diagrams, which con-

firms the presence of memory of past operations, and which would impact the future response of the batteries. Thememory effect is visible in

our results based on the experiments designed. Our results have shown that a rest period after charging can mitigate fading through strip-

ping, while a rest period after discharging contributes to fading through plating. This section will present a qualitative perspective of the re-

sults obtained with the proposed cyclic test method. The discussion will direct toward validating the results obtained from the previous

section.

The results presented in previous section reveal that a higher capacity fading is estimated using the proposed cyclic test method

compared to the standard cyclic test method. Figure 9D reveals that the SEI layer is primarily cycle-time dominant, while the relaxation period

impacts lithium plating.44 As the rest periods increase, the total cycle time increases, giving more time for the SEI layer to form, resulting in

more capacity fading. The rest period provided immediately after the charging phase will allow the plated lithiummetal to re-intercalate into

graphite (anode), eventually mitigating lithium plating.49 However, overall capacity fading, comprising fading due to both SEI layer growth

and lithium plating, increases with temperature. A closer look at Figures 9B and 9C gives two critical insights: lower charge rates result in

higher capacity fading for a fixed discharge period, discharge rate, and ambient temperature, while higher discharge rates result in higher

capacity fading for a fixed charge rate, cycle duration, and ambient temperature. Both SEI layer growth and lithium plating rates are signif-

icantly accelerated at higher temperatures above 40�C.47,61 To extend the battery life by reducing the degradation rate, the operating tem-

perature while charging and discharging must be maintained within a safe operating range. These critical insights can be used to accurately

estimate capacity fading, considering the interplay between the battery degradation mechanisms.

A study on the impact of critical parameters such as temperature, discharge C-rate, chargeC-rate, and rest period on the individual degra-

dation phenomenon of SEI layer growth and lithium plating is analyzed. The results are presented in Figures 9A–9D, which depict the capacity

fading at the end of 500 cycles. Our findings indicate that although SEI layer growth is more significant at higher discharge C-rates (Figure 9C),

the duration of the entire cycle has amore significant impact on the rate of SEI layer growth than the cycling conditions, such as rates of charge

and discharge and temperature (Figure 9D). Hence, the formation of the SEI layer increases linearly over cycles, causing significant calendar

aging.
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Figure 7. Capacity fading is expressed as LLI (%) with altering rest periods @25�C ambient temperature

(A–E) (A) Total fading at 0.1C charge rate under different rest periods, (B) Total fading at 0.5C charge rate under different rest periods, (C) Total fading at 0.75C

charge rate under different rest periods, (D) Total fading at 1C charge rate under different rest periods, (E) Total LLI (%) vs. cycle number at 0.5C charge rate under

different rest periods. (See also Figure S6).
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In contrast, capacity fading due to lithium plating is independent of the charge and discharge rates, as shown in Figures 9B and 9C. The

loss of lithium inventory to lithium plating decays exponentially over cycles. In the initial phase of degradation, the first few cycles, lithium ions

havemore scope to form a lithiummetal layer as there is more surface area for lithium ions to react with the anode. However, as the number of

cycles increases, the SEI layer becomes stable and less porous, limiting the plating of lithiummetal.56–58 Additionally, the higher temperature

raises the reaction kinetics and the electrolyte potential, accelerating the formation of lithium metal on the graphite surface by the Li+ ions

from the electrolyte. As a result, with the increase in ambient temperature, the capacity fading due to lithiumplating also increases (Figure 9A).

Furthermore, the proposed work can be extended by simulating actual drive cycles for real-world driving scenarios, instead of a constant-cur-

rent discharge period, to study their impact on capacity fading. These simulations can be run for different driving styles: mild, gentle, and

aggressive. Furthermore, other charging protocols can be employed in place of the standard CCCV method used in this study (Figure 9E).
Empirical modeling

This study presents an empirical model for estimating capacity fading in lithium-ion batteries. The model is developed by fitting simulation

results to mathematical functions and can be used to easily determine the capacity loss caused by the growth of the SEI (solid electrolyte
10 iScience 26, 107770, October 20, 2023



Figure 8. Battery testing cycles considered to analyze the impact of rest period on lithium plating

(A–D) (A) Proposed test cycle (D-Rd-C-Rc), (B) Proposed test cycle without rest period after charging (D-Rd-C), (C) Proposed test cycle without rest period after

discharging (D-C-Rc), (D) Standard test cycle (D and C).
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interphase) layer and lithiumplating. A non-linear least squaresmethod is used from the experimental results to develop the empirical model.

The loss of lithium inventory to SEI layer growth and lithium plating are individually to form the empirical model. These two degradation phe-

nomena depend on the total charge throughput (Q), the total time duration of the cycle (T), and the cell ambient temperature (tamb). From the

curve fitting, the coefficients are obtained, which can be used to determine the capacity fade mathematically for any discharge duration,

discharge capacity, charge-discharge rates, and ambient temperature. The dependency of capacity fade on all of these factors is captured

in the empirical model developed. Capacity fade due to SEI layer growth (Fs) and lithium plating phenomenon (Fp) is modeled as shown in

Equations 1 and 2, respectively, where ‘Q’ is the total charge exchanged (Ah) during the experiment, which includes both the charge and

discharge Ah, ‘T’ is the total cycle time (Hours), ‘tamb’ and ‘tnom’ are ambient and nominal temperatures respectively. The coefficients ‘a’

and ‘b’ signify the dependency of fading due to SEI layer growth onQ and T, respectively, and the coefficients ‘f’ and ‘g’ denote the depen-

dency of fading due to lithium plating on Q and T, respectively and the coefficients ‘e’ and ‘i’ includes the temperature effect on capacity

fading due to SEI layer growth and lithium plating respectively, where tamb and tnom are in Kelvin (K). The total capacity fade (F) within a

cell is then given by Equation 3.

The design of the empirical expressions is based on the underlying mechanisms and dependencies observed in the experimental results.

For the loss of lithium inventory to SEI layer growth, Equation 1 is employed. The choice of this expression is guided by the understanding that

SEI layer growth is primarily time-dependent, influenced by the total cycle time (T). Thus, the term involving ’T’ is necessary to capture the

effect of cycle duration on SEI layer growth. Moreover, it is crucial to consider the presence of calendar aging, where SEI layer growth occurs

even without energy exchange (Q= 0). Hence, theQ term is included, representing the total charge exchanged during the experiment. Addi-

tionally, the empirical expression accounts for the temperature dependence of SEI layer growth, as evident from Figure 9A. This is reflected

through the temperature-dependent exponential term (e(tamb/tnom)), where ’tamb’ and ’tnom’ represent the ambient and nominal temperatures,

respectively, measured in Kelvin (K).

Regarding the loss of lithium inventory to lithium plating, Equation 2 is employed. Lithium plating occurs during ion movement and sub-

sequent deposition of lithium ions onto the negative electrode surface as a thin lithium metal layer. As plating only occurs when there is en-

ergy exchange (Q > 0), the product term of ’Q’ and ’T’ (Qf * Tg) is introduced. This ensures that plating should be zero if there is no energy

exchange (Q = 0). Moreover, similar to the SEI layer expression, the empirical model considers the influence of cycle time (T) on plating phe-

nomena. Furthermore, the results (Figure 9A) indicate that lithium plating is temperature-dependent, hence the inclusion of the temperature-

dependent exponential term (i(tamb/tnom)) in the expression.

The interdependencies between energy exchange, cycle time, and ambient temperature are captured by choosing these empirical ex-

pressions, aligning with the observed trends. The resulting empirical models allow for the mathematical estimation of capacity fade, consid-

ering various factors such as discharge duration, discharge capacity, charge-discharge rates, and ambient temperature.

The obtained coefficients for any value of Q and T at a given tamb and under tnom of 298.15 K are as listed in Table 4. It can be seen from

Table 4 that, irrespective of the ambient temperature, charge-discharge rates, and rest periods, the coefficients of the fading equations
Table 3. Capacity fading is expressed as LLI (%) for individual degradation phenomenon for four different cycles @25�C ambient temperature, 0.5C

charge rate, 0.5C discharge rate, and a rest period of 2 h wherever considered

Degradation phenomenon D-Rd-C-Rc D-Rd-C D-C-Rc D-C

SEI layer growth 0.62 0.51 0.51 0.38

Lithium Plating 0.1118 0.1235 0.1116 0.118

Total 0.73 0.64 0.63 0.50
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Figure 9. Overall capacity fading after 500 cycles is expressed as Loss of Lithium Inventory (LLI) (%) under different operating conditions

(A–E) (A) Varying temperature @ 0.5C discharge rate, 0.5C charge rate and 2 h rest period, b) Varying charge C-rate @ 0.5C discharge rate, 25�C ambient

temperature and 2 h rest period, (C) Varying discharge C-rate @ 0.5C charge rate, 25�C ambient temperature and 2 h rest period, (D) Varying rest periods @

0.5C discharge rate, 0.5C charge rate, 25�C ambient temperature, (E) Recommended testing cycle with drive cycle dependent discharge profile and charge

rate, charge protocol dependent charging profile.
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remain the same, ensuring a robust model. The developed empirical model can easily determine the capacity loss caused by SEI layer growth

and lithium plating. The developed empirical model must be recommended to end users and OEMs in determining the impact of SEI layer

growth and lithium plating on capacity fading. This model is valid for all lithium-ion chemistries and geometries. The nature of the equation

remains the same for any lithium-ion chemistry, but the coefficients would change if the battery under test changes. The proposed empirical

model coefficients are limited for the considered LGM50 3.6V 5Ah battery cycling experiments that ran for 500 cycles. The coefficients will

change for a battery with different specifications and cycling conditions. A more generalized empirical model can be developed from the

proposed model, independent of nominal battery parameters. The accuracy of the developed model is validated using actual fading data

obtained from simulations. The results of this study provide a useful tool for predicting capacity fading in lithium-ion batteries, which can

be used in the design and optimization of battery systems.

Capacity Fade due to SEI ðFsÞð%Þ =
h
cðQaÞ + d

�
Tb

�i
e
tamb=tnom (Equation 1)
Capacity Fade due to Lithium Plating
�
Fp

� ð%Þ =
h
h
�
QfTg

�i
i
tamb=tnom (Equation 2)
Total Capacity Fade in a cell ðFÞ ð%Þ = Fs + Fp (Equation 3)
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Table 4. Coefficients of the capacity fading estimating equation

Ambient Temperature (0K) a b c d e f g h i

273.15 0.15 0.54 0.01 0.19 1.05 0.04 �0.13 0.13 1.05

298.15 0.15 0.54 0.01 0.21 1.05 0.04 �0.13 0.13 1.05

323.15 0.15 0.54 0.01 0.23 1.04 0.05 �0.13 0.13 1.05

The coefficients are derived from fitting the capacity fading data obtained after performing the 50 experiments for different charge rates, rest periods, and three

different ambient temperatures.
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Conclusion

Our work addresses the critical issue of the discrepancy between claimed battery life bymanufacturers and the actual life observed by users in

the EV industry. We have successfully identified the role of resting periods after charging or discharging in the capacity fading rate, shedding

light on thememory effect in batteries. Our advanced cyclic test methods incorporate varying rest periods and has provided valuable insights

into battery degradation mechanisms.

Our experiments and analysis demonstrated that the proposed cyclic test methods lead to higher capacity fading estimates than the stan-

dard cyclic test method. The results emphasize the influence of the SEI layer and lithium plating on overall capacity fading. We have estab-

lished that the SEI layer growth is primarily cycle-time dominant, while the relaxation period significantly impacts lithium plating. Higher tem-

peratures and longer cycle durations increase capacity fading, as SEI layer growth and lithium plating rates are accelerated under these

conditions.

The impact of critical parameters, such as temperature, discharge C-rate, charge C-rate, and rest period, on the individual degradation

phenomena of SEI layer growth and lithium plating, has been thoroughly analyzed. Our findings indicate that SEI layer growth is influenced

more by the duration of the entire cycle than by the specific cycling conditions. On the other hand, capacity fading due to lithium plating is

independent of charge and discharge rates. The decay of lithium inventory to lithium plating diminishes over cycles due to the stabilization of

the SEI layer and the limited porosity of the surface.

The comprehensive understanding gained from our work enables amore accurate estimation of capacity fading, considering the interplay

between battery degradation mechanisms. Our findings emphasize the importance of maintaining safe operating temperatures during

charging and discharging to extend battery life and reduce degradation rates. Furthermore, we propose extending our work to simulate

actual drive cycles in real-world driving scenarios and exploring alternative charging protocols.

In conclusion, our research contributes critical insights into battery degradation, addressing the disparity between claimed and observed

battery life. The proposed cyclic test method, incorporating varying rest periods, offers a more accurate evaluation of capacity fading. These

findings have implications for developing improved battery management system s, enabling manufacturers and end users to make informed

decisions and plan for battery replacements based on realistic estimations of battery lifespan.
Limitations of the study

The proposed empirical model’s coefficients’ values may vary with different cell chemistries. Moreover, for the chosen LGM50 cell, the co-

efficients are valid up to 500 cycles. Beyond 500 cycles, the validity of the empirical relation is not explored, and we leave it for future

work. It is important to consider the boundary conditions based on the battery’s life cycle, which is an area yet to be explored. However, within

the first 500 cycles of the battery’s lifetime, the model accurately predicts capacity fade, making it valid for any cycle within this range.
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METHOD DETAILS

The current work utilizes a pseudo-2Dmodel to simulate the LGM50 21700 cylindrical cell. To ensure the accuracy and reliability of the simu-

lation results, the parameters used in the model were obtained from a comprehensive set of experimental tests extensively conducted and

published by Chen et al.52 andNyman et al.62 The published results characterize the physical, chemical, and electrochemical properties of the

cell through various experimental techniques. Further, the pseudo-2D model is also validated with the experiment performed on LGM50

21700 cylindrical cells in a climate-controlled chamber. The experiments to calibrate and validation of the model are performed for a

commonly used cycle life testing method for 50 cycles and one of the proposed cycling tests for 15 cycles.

The parameters related to electrode and cell thermodynamics, kinematics, and transport properties utilized in our work were determined

fromelectrochemical tests performedon extracted electrodematerials by.52 These tests utilized a three-electrode configurationwith a lithium

metal reference electrode. This approach determines the individual electrode potentials, cell stoichiometry, and lithium content in the pos-

itive and negative electrodes. Additionally, the cells’ open circuit voltage (OCV) was determined based on data obtained from the galvano-

static intermittent titration technique (GITT) experiments.

The parameters associated with the physical properties of the cell components utilized in our work were derived from the direct measure-

ments after cell tear-down conducted by.52 The cell components include electrodes, separators, and current collectors. The work employed

ion beammilling combined with scanning electron microscopy to investigate the pore structures of the positive and negative electrodes and

the separator. This analysis provided critical information regarding particle shapes, densities, packing density, and the conductive carbon and

binder domains (CBD) distribution.

The chemical and material properties of the cell components were also determined through careful analysis.52 For the negative electrode

components, the elemental composition of SiOx and graphite was determined using energy-dispersive X-ray spectroscopy (EDS). Similarly,

the positive electrode’s NMC composition was analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES). There-

fore, the parameters associated with the chemical andmaterial properties utilized in our work were determined based on the results obtained

from these specific analytical techniques performed by.52

The parameters relevant to the mass transport phenomenon in the electrolyte, which were utilized in our work, were derived from exper-

iments conducted by.52 To characterize mass transport, various electrochemical methods were employed. A standard conductivity meter
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measured ionic conductivity, diffusivity, and transport number. Additionally, galvanostatic polarization and concentration cell experiments

were performed to determine the diffusion coefficient and thermodynamic factor of the salt.62

The simulation results presented in this work can be justified by utilizing the parameter data obtained from the comprehensive experi-

mental work conducted by52 and.62 Notably, physically conducting long cycling experiments involving thousands of cycles would be time-

consuming and resource-intensive. Therefore, using simulations backed by such accurate and experimentally validated parameter sets en-

ables accelerated cyclic testing experiments while maintaining the validity of the results.

Calibration with standard life cycle test and proposed test cycle

To further strengthen the validity of the simulation results, a cycle life experiment for 50 cycles and one of the proposed cycling tests was

conducted on the chosen LGM50 cell within our laboratory. By performing the same life cycle experiment and proposed cycling test in

the laboratory and the simulation, we compared the results to assess their agreement.

Cycle life experimentation

For the experimental cycle life test, an environmentally controlled cell testing chamber was developed in-house (Figure S7). The LGM50 cell

was subjected to the standard manufacturer-specified cycle life experiment, as explained below. The charging process involved applying a

constant current rate of 0.3C (1.44A) until the cell voltage reached 4.1V, followedby constant voltage charging at 4.1V until the current reached

240 mA. A rest period of 10 min was introduced, and then the cell was discharged at a constant current rate of 0.5C (2.4A) until the voltage

reached 2.85V, followed by a rest period of 20 min. This cycle was repeated for 50 cycles while maintaining the ambient temperature of the

chamber at 25�C.
Figure S8 illustrates the terminal voltage profiles across the cell for 200 h, obtained from experimental and simulation data. The experi-

mental and simulation voltage profiles show a close match to each other. The total energy exchange during the cycle life experiment for

50 cycles was also analyzed to verify the closeness. The experimental entire energy exchange for 50 cycles wasmeasured as 1566.63Wh, while

the simulation yielded a value of 1559.34Wh. The results and plots demonstrate a closematch between the experimental and simulation data,

providing further justification for using the pseudo-2D model.

Proposed test cycle experimental validation

In addition to comparing the simulation results with the manufacturer-specified cycle life experiment, we designed and conducted a series of

experiments for one of our proposed cyclic testing test cases for 15 cycles. Out of 1000 proposed unique test cycles, a random cycle featuring

a discharge duration of 30 min and a discharge C-rate of 0.5C, a charge C- rate of 0.3C, and a rest period of 1 h each after charge and

discharge periods is chosen, and the experiment is performed for 15 cycles at a constant ambient temperature of 25�C in the developed bat-

tery test chamber. The test cycle involved discharging the cell at a constant current rate of 0.5C (2.5A) for 30 min, followed by a resting period

of 1 h. Subsequently, the cell was charged at a constant current rate of 0.3C (1.5A) until the voltage reached 4.1V, and the cell was held at 4.1V

until the current reached 0.05C (0.25A), followed by another 1-h rest period. This proposed test cycle was also simulated, and the terminal

voltage profiles were compared. Furthermore, the total energy exchange was calculated and compared for experimental and simulation

data, resulting in respective values of 147.26 Wh and 146.5 Wh for 15 cycles. Figure S9 illustrates the closely matching voltage profiles ob-

tained fromboth experimental and simulateddata, demonstrating the accuracy and reliability of our pseudo-2Dmodel in replicating the cell’s

behavior under our proposed cyclic testing conditions.

By incorporating both the parameter data obtained from the experimentally validated ref. 52,62 and conducting cycle life experiments as

well as proposed test cycle experiments within our laboratory, we have significantly strengthened the validity of the simulation results. The

combination of accurate parameter data from52,62 ‘s comprehensive experimental work and the successful experimental validation within our

laboratory instills confidence in the reliability and applicability of the pseudo-2Dmodel. Given the extensive time and resources required for

physical capacity fade experiments on multiple cells, we opted to use simulations to expedite the process.

Further assessment of experimental results

The comparison of experimental results with existing references is a critical aspect of our study on capacity fade in lithium-ion batteries. While

we acknowledge that the cell chemistries used in various references and our ownmay differ, conducting experiments on multiple chemistries

to compare results directly would be infeasible and resource intensive. Instead, we adopted a systematic approach to address this challenge.

We specifically chose the cell (LGM50) for which an extensive set of parameters was available.52We conducted themanufactured specified

cycle life experiments and one of our proposed test cycle experiments on that cell as discussed in the previous subsection. This step further

confirmed the versatility and reliability of our pseudo-2Dmodel, as it successfully replicated both the standard cycle life testing and our pro-

posed cyclic testing scenarios with promising accuracy. This validation process reassured us that our model was calibrated correctly, thus

providing a solid foundation for drawing meaningful insights from the simulation-based capacity fading analysis.

Having established the robustness of our simulation approach, we performed comprehensive fading analyses in the simulation environ-

ment. Subsequently, wemeticulously compared our simulation-derived insights with those obtained from the existing studies,3,4,41,63 thereby

contributing to a more comprehensive understanding of capacity fade mechanisms in lithium-ion batteries3 investigated capacity fade in Li-

ion batteries cycled at different discharge rates, highlighting the correlation between higher discharge rates and increased fade. The charging
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process in this study involved applying a constant current charge (CC) to the fully charged state until the cell voltage reached its peak of

around 4.2V. Subsequently, a constant voltage charge (CV) was maintained at 4.2V until the current tapered down to a small value. A rest

period was not included, and the cell was directly discharged to a lower cut-off voltage of 2.5V. The capacity losses were estimated after

300 cycles at discharge rates of 1C, 2C, and 3C, revealing that the battery cycled at 3C discharge rate experienced the highest capacity

fade, followed by the battery cycled at 2C and 1C, respectively. However, we argue that capacity fade is not solely dependent on discharge

rates but is also influenced by charge rate, discharge duration, rest periods, and ambient temperature. Our simulations, where all these pa-

rameters were kept constant, demonstrated similar results, reinforcing the importance of considering multiple factors in battery cycling anal-

ysis. Furthermore, the absence of a rest period in3 disregards the concept of calendar aging, which we explored in our study and found to be

crucial for a comprehensive understanding of cyclic testing effects.41 studied capacity fading during accelerated calendar and cycle life tests

and proposed a relationship between depth of discharge (DOD) and capacity fade. The charging process involved a constant current charge

(CC) at a rate of 1.0C until the cell voltage reached 4.2V, followed by a constant voltage charge (CV) at 4.2V until the current reduced to 0.05C.

After each charge, a rest period of 20 min was introduced. Subsequently, the cell was discharged at a constant current rate of 1.0C until the

voltage reached 2.5V, followed by another rest period of 20 min. The authors concluded that higher depth of discharge (DOD) resulted in

higher capacity fade. We concur with their findings, but this finding is only valid while maintaining other parameters constant during exper-

iments to accurately isolate the effect of DOD. Our simulations corroborated their results, indicating that increasing DOD without changing

discharge duration, charge rate, rest periods, or ambient temperature resulted in higher capacity fade, reinforcing the interdependence of

these factors.

In contrast,4 focused on the influence of the state of charge (SOC) ranges on capacity fade in lithium-ion batteries. The cell was cycled at a

discharge current of 10A and charge current of 2.5A, with the SOC ranges tested being 5–25%, 25–45%, 45–65%, 65–85%, and 75–95%. The

authors observed that cells cycled at higher SOC ranges experienced higher active lithium loss and, consequently, capacity fade. Although

their study demonstrated a correlation between higher SOC ranges and increased active lithium loss, we argue that comprehensive judg-

ments about capacity fading require examining various other factors simultaneously. Our research considers a broader range of parameters,

shedding light on the role of SEI layer growth and lithium plating during different cycling phases, providing a more holistic understanding of

the aging process63 investigated the effects of fast charging rates and temperature on capacity fade. The cells were cycled between 20% and

80% SOC at constant current charging rates of 1C, 2C, 3C, and 4C, corresponding to 25A, 50A, 75A, and 100A, respectively. The cells were

discharged at a constant current of 1C (25A) in all cases. While a rest period of 20 min was considered after the charge and discharge phases,

the study did not account for calendar aging during these rest periods. While their results showed significant degradation under higher

charging rates and temperatures, our study complements their findings by emphasizing the importance of rest periods after charge and

discharge phases of at least 30 min (ideally 2 h) to allow lithium and electrolyte concentration gradients to normalize, thus mitigating degra-

dation. Calendar aging during rest periods can lead to SEI layer growth, impacting battery performance. Our simulations highlight the ne-

cessity of adequate rest periods to normalize lithium and electrolyte concentration gradients and mitigate degradation.

Our research presents a comprehensive analysis of capacity fade in lithium-ion batteries under various cycling conditions, encompassing

discharge rates, charge rates, rest periods, ambient temperature, and discharge durations. By comparing our results with the existing studies,

we emphasize the significance of consideringmultiple factors during cyclic testing for a realistic assessment of battery degradation. Our work

also provides insights into the cell-level degradation mechanisms, such as SEI layer growth and lithium plating, during different phases of the

cycling process, which is currently missing in the current literature. To ensure meaningful results and reduce computational time, suitable as-

sumptions and designs of experiments have been made, which are discussed in subsequent subsections.
Assumptions

To simplify the models and reduce the computation time, it is important to make certain assumptions. However, the assumptions should not

compromise the results. Hence, weighted assumptions are made, and their justifications are listed below –

1. The experiments are limited to a 1C rate considering the present fast charging rate in charging stations. Hence, particle cracking, one of

the mechanical degradation mechanisms, is not considered because it is predominant at high charge-discharge rates.59,64,65

2. The loss of lithium in the electrolyte is assumed to be negligible, and the electrolyte exhibits stability as the electrochemical processes

are expected to occur within the positive and negative electrodes.66 The total lithium concentration in the electrolyte constitutes less

than 2%of the whole lithiumpresent within a cell.53 Hence, neglecting the loss of lithium in the electrolyte does not impact the outcome

of the analysis.

3. One of the critical degradation phenomena is SEI layer growth, described using the solvent-diffusion mechanism. Most of the SEI

models developed in the existing literature are based on the work of Safari et al.67 According to this work, the SEI reaction is modeled

either using the diffusion of the solvent molecule toward the graphite surface through the existing SEI (also called diffusion-solvent

model) or the solvent reduction kinetics at the graphite surface. According to the literature, the diffusion-limited model fits better

with the experimental data.68 Hence, solvent-diffusion limited SEI growth modeling is used in this work.

4. Lithium plating on the graphite anode surface is one of the damaging phenomena among several aging mechanisms. Generally, the

lithium deposited can be both reversible and irreversible.51 During intercalation, some lithium gets deposited on the graphite surface

by electrical contact. After a charge transfer reaction with the electrolyte, this deposited lithium will eventually re-intercalate into the

anode.69,70 This lithium portion is called reversible lithium, and the process is called lithium-stripping. The residual part of lithium reacts
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with the electrolyte to form a high-impedance film, termed "dead lithium.’’ This lithium loss is irreversible.71,72 The current work as-

sumes the lithium plating to be reversible and accounts for the loss of lithium-to-lithium plating73
Design of experiments

In addition to experimental studies, mathematical models are utilized to capture various electrochemical phenomena within a cell, as they

provide a suitable replacement for time-consuming real-time experiments. This study includes understanding the electrochemical behavior

of the cell, diffusion of solutes in electrodematerial, characterizing the rates of chemical reactions, the transport properties of electrodes, cell

degradation, and capacity fade. Mathematical models are also crucial tools for designing efficient battery management systems.

TheDoyle-Fuller Newman (DFN)model developed byNewman et al. is considered a standard continuummathematical model for lithium-

ion batteries.74–76 However, this model is computationally extensive as it consists of highly complex nonlinear elliptical and parabolic partial

differential equations (PDEs). To overcome this limitation, simpler models such as the Single Particle Model (SPM) are used to gain funda-

mental insights, but they are not accurate enough in voltage prediction without correction terms.77–80 This work chose SPM with electrolyte

(SPMe) as it has better accuracy than SPM. The keymodeling and governing equations of the SPMemodel can be found in the Supplementary

information (Equations S1a–S1q) and the reader is referred to81 for detailed derivations and equations of the SPMe model. To assess the ca-

pacity fading, the chosen cylindrical cell was subjected to the experimental design described in Tables S5 and S6. The selected cell had a

nominal voltage of 3.6V and a nominal capacity of 5Ah. LGM50 cell comprises a negative electrode composed of graphite with a 10%

SiOx mass fraction, while the positive electrode comprises NMC-811. The separator used is Celgard 2325, a tri-layer polypropylene/polyeth-

ylene/polypropylene/polyolefinmembrane. The electrolyte employed is a 1 mol dm�3 LiPF6 solution in a mixture of ethylene carbonate (EC)

and ethylmethyl carbonate (EMC) in a 3:7 volume ratio. It is important to note that themodeling equations for the electrode (Equations S2 and

S3), electrolyte (Equation S4–S8), SEI layer (Equation S9–S16), and lithium plating (Equation S17–S24) and their respective parameters

(Table S1–S3) can be found in the Supplementary information, providing a detailed understanding of the interactions and behavior of these

components within the Cell LGM50 system. Other relevant cell parameters and specifications provided by the manufacturer are detailed in

Table S4.52 The capacity fade associated with the cell was estimated under specific dynamic charge-discharge profiles at different rates and

temperature conditions. Initially, the cell was subjected to a constant current discharge period followed by a rest period.

Subsequently, the cell was charged at a constant current rate until the voltage across the cell reached 4.2V, and then the cell was held at

4.2V by constant voltage charging until the current fell below 50 mA (C/100), followed by a rest period. The duration of intermediate rest pe-

riods and charging C-rates are discussed in subsequent sections. The set of experiments was performed under three different temperatures

to analyze the impact of the temperature on capacity fading.

A two-factor factorial-based experimental design technique82 is used to develop the experimental set. The effect of two parameters –

discharge period and discharge capacity, on the capacity fading is studied for different ambient temperatures (0�C, 25�C, and 50�C) and
rest periods (0.5 h, 1 h, 1.5 h, and 2 h). We chose five different discharge durations from 0.5 to 1.5 h on a scale of 0.25 h to analyze the impact

of the discharge period for a fixed discharge capacity and charge rate under constant ambient temperature. Similarly, ten discharge capac-

ities from 1 to 4.375 Ah are selected to examine the effect of discharge capacity for a fixed discharge duration and charge rate at constant

ambient temperature. With five discharge periods and ten different discharge capacities, considering a two-factor multi-level design, 50 ex-

periments were designed, each for 500 cycles. Tables S5 and S6 presents the two-factor multi-level design criteria parameters and the devel-

oped experimental set showing the discharge C-rate corresponding to the chosen discharge capacity and the duration of the discharge

period for a cycle. Furthermore, the impact of charge rate and ambient temperature on the degradation rate is investigated by performing

the designed experiments. As shown in Figure 2F, each of the 50 experiments was performed at four charge rates (0.1C, 0.5C, 0.75C, and 1C)

for 200 experiments. All 200 experiments are further performed at four rest periods (0.5 h, 1 h, 1.5 h, and 2 h) along with a standard experiment

cycle with no rest period resulting in 1000 unique experiment cycles. These 1000 experiment cycles were then repeated for three different

temperatures (0�C, 25�C, and 50�C), resulting in a total of 3000 unique experiment cycles, giving us a complete picture of how various factors,

viz. charge rates, rest periods, and temperature, affect the capacity fading of batteries.
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