
A Neuromorphic Approach to Obstacle
Avoidance in Robot Manipulation

Ahmed Faisal Abdelrahman

Publisher: Dean Prof. Dr. Sascha Alda

Hochschule Bonn-Rhein-Sieg Ű University of Applied Sciences,
Department of Computer Science

Sankt Augustin, Germany

November 2023

Technical Report 02-2023

ISSN 1869-5272 ISBN 978-3-96043-111-4

This work was supervised by Paul G. Plöger
Maren Bennewitz
Matias Valdenegro-Toro

We gratefully acknowledge the support
by the b-it International Center for Information Technology.

Copyright c÷ 2023, by the author(s). All rights reserved. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for proĄt or
commercial advantage and that copies bear this notice and the full citation on the
Ąrst page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speciĄc permission.

Das Urheberrecht des Autors bzw. der Autoren ist unveräußerlich. Das
Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Das Werk kann
innerhalb der engen Grenzen des Urheberrechtsgesetzes (UrhG), German copyright

law, genutzt werden. Jede weitergehende Nutzung regelt obiger englischsprachiger
Copyright-Vermerk. Die Nutzung des Werkes außerhalb des UrhG und des obigen
Copyright-Vermerks ist unzulässig und strafbar.

Digital Object Identifier https://doi.org/10.18418/978-3-96043-111-4

b

https://doi.org/10.18418/978-3-96043-111-4

This technical report is derived from the author’s Master’s thesis report. The few significant modifications

to the original text are highlighted in blue.

iii

iv

Abstract

Neuromorphic computing aims to mimic the computational principles of the brain in silico and has

motivated research into event-based vision and spiking neural networks (SNNs). Event cameras (ECs)

capture local, independent changes in brightness, and offer superior power consumption, response latencies,

and dynamic ranges compared to frame-based cameras. SNNs replicate neuronal dynamics observed

in biological neurons and propagate information in sparse sequences of ”spikes”. Apart from biological

fidelity, SNNs have demonstrated potential as an alternative to conventional artificial neural networks

(ANNs), such as in reducing energy expenditure and inference time in visual classification. Although

potentially beneficial for robotics, the novel event-driven and spike-based paradigms remain scarcely

explored outside the domain of aerial robots.

To investigate the utility of brain-inspired sensing and data processing in a robotics application, we

developed a neuromorphic approach to real-time, online obstacle avoidance on a manipulator with an

onboard camera. Our approach adapts high-level trajectory plans with reactive maneuvers by processing

emulated event data in a convolutional SNN, decoding neural activations into avoidance motions, and

adjusting plans in a dynamic motion primitive formulation. We conducted simulated and real experiments

with a Kinova Gen3 arm performing simple reaching tasks involving static and dynamic obstacles. Our

implementation was systematically tuned, validated, and tested in sets of distinct task scenarios, and

compared to a non-adaptive baseline through formalized quantitative metrics and qualitative criteria.

The neuromorphic implementation facilitated reliable avoidance of imminent collisions in most scenarios,

with 84% and 92% median success rates in simulated and real experiments, where the baseline consistently

failed. Adapted trajectories were qualitatively similar to baseline trajectories, indicating low impacts on

safety, predictability and smoothness criteria. Among notable properties of the SNN were the correlation of

processing time with the magnitude of perceived motions (captured in events) and robustness to different

event emulation methods. Preliminary tests with a DAVIS346 EC showed similar performance, validating

our experimental event emulation method. These results motivate future efforts to incorporate SNN

learning, utilize neuromorphic processors, and target other robot tasks to further explore this approach.

v

vi

Acknowledgements

I am indebted to my supervisors for their guidance throughout this thesis project. Firstly, I would like

to express my appreciation to Prof. Plöger, from whom I have learned much over the years, for stimulating

discussions, an encouraging attitude, and igniting my interest in various problems and methods. I am

grateful to Prof. Bennewitz for expressing interest in the concepts I developed in this thesis and for

undertaking my supervision. I would like to especially thank Prof. Valdenegro for his advice, suggestions,

and involvement long before the beginning of this project and to the very end. This work may have never

materialized if not for his initial support and interest in my research ideas.

My sincerest gratitude and thanks go to my family, especially my parents, to whom I owe everything,

and whose endless encouragement and support have been a primary source of motivation.

vii

viii

Contents

List of Symbols 1

List of Abbreviations 3

1 Introduction 5

1.1 Problem Statement . 10

1.2 Delimitations . 11

1.3 Contributions . 12

2 Related Work 15

2.1 Event-Based Vision . 15

2.2 Spiking Neural Networks . 18

2.3 Neuromorphic Computing . 22

2.4 Obstacle/Collision Avoidance . 25

2.5 Concluding Remarks . 30

3 Background 31

3.1 Event-Based Vision . 31

3.1.1 Event Data Representations . 33

3.2 Spiking Neural Networks . 33

3.2.1 Spiking Neuron Models . 35

3.2.2 Spiking Data Coding Schemes . 38

3.3 Dynamic Motion Primitives (DMP) . 39

4 Proposed Solution 41

4.1 Proposed Approach . 41

4.1.1 Overview . 42

4.1.2 Event Camera Emulation . 43

4.1.3 Convolutional Spiking Neural Networks . 45

4.1.4 Obstacle Avoidance Component . 48

4.1.5 Trajectory/Motion Planning and Control . 50

4.2 Implementation . 53

4.2.1 ROS Components . 53

4.2.2 Simulation . 59

4.3 Concluding Remarks . 60

ix

5 Evaluation Methodology 61

5.1 Simulation Experiments . 62

5.1.1 Evaluation Tasks . 62

5.1.2 Tuning, Validation and Testing Procedure . 67

5.1.3 Evaluation Metrics and Criteria . 69

5.1.4 Experiment Procedure . 74

5.1.5 Automated Evaluation Testing . 76

5.2 Real Robot Experiments . 79

5.2.1 Evaluation Tasks . 80

5.2.2 Evaluation Metrics and Criteria . 82

5.2.3 Experiment Procedure . 82

5.3 Concluding Remarks . 84

6 Results and Discussion 85

6.1 Simulation Experiments . 85

6.1.1 Initial Parameters (Pre-Tuning Phase) . 86

6.1.2 Tuning Results . 90

6.1.3 Validation Results . 99

6.1.4 Testing Results . 104

6.2 Real Robot Experiments . 116

6.3 Experiment Conclusions . 126

6.4 A Comparison of Event Emulation Strategies . 128

6.5 Decoding Avoidance Behaviour From Raw Event Data . 134

6.6 Random SNN Weight Initializations . 136

6.7 Real Event Camera Tests . 137

7 Conclusions 141

7.1 Limitations . 143

7.2 Future work . 145

Appendix A Comparison of Consumption-to-Computation Ratios 147

Appendix B Samples of Configuration and Metrics Files 149

Appendix C Parameter Sets 153

Appendix D Extra Visualizations 161

D.1 Tuning Phase: Trajectories Executed in Scenario 3 (Sets 1-12) 161

D.2 Testing Phase: Trajectories Executed in Scenarios 12-29 163

References 165

x

List of Symbols

Symbol Description

t Time

L(xk, tk) Intensity at pixel xk, time tk

ek Event k

pk Polarity of event k

y Position in 3D space

Y Trajectory in 3D space

ζ Estimated angular velocity

θ Event emission threshold

sBE Binary erosion filter structure size

v SNN membrane potential

S Spike train

vthresh SNN potential spiking threshold

vrest SNN resting potential

vreset SNN reset potential

Trefrac SNN refractory spiking period

τv SNN potential decay constant

W SNN weight matrix

wc SNN weight initialization constant

Tsim SNN simulation time period

K Convolutional SNN Kernel

g DMP goal position

w DMP basis function weights

τ DMP time-scale parameter

s DMP phase variable

f DMP forcing term

ψ DMP basis functions

η Constant gain (PF; Park)

p0 Obstacle radius of influence (PF;
Park)

Cδ Gradient constant factor (PF; Park)

Symbol Description

φ̃ Mean negative potential gradient
(PF)

φ Obstacle avoidance acceleration term

φmax Upper limit on φ

nφ φ history horizon

tact FST activation threshold factor

fv Motion loop frequency

Ki Controller gain

e Positional error

v(t) Applied velocity

δsafety,1 Distance tolerance (1)

γv,1 Velocity reduction factor (1)

γa,1 Acceleration reduction factor (1)

δsafety,2 Distance tolerance (2)

γv,2 Velocity reduction factor (2)

γa,2 Acceleration reduction factor (2)

δ+pos,i Upper positional limit (dimension i)

δ−pos,i Lower positional limit (dimension i)

δy Position reaching tolerance

δg Goal reaching tolerance

δobs Obstacle avoidance distance tolerance

Ns Number of scenarios per task

Npos Number of poses in a trajectory

T Task execution time

lY Trajectory Length

Ncollisions Number of collisions

dG Distance to goal

S Success

Tcomp Computation time

1

Contents

2

List of Abbreviations

Acronym Full Form

ANN Artificial Neural Network

CNN Convolutional Neural Network

C-SNN Convolutional Spiking Neural Network

DMP Dynamic Motion Primitive

DNN Deep Neural Network

DQN Deep Q-Learning

DVS Dynamic Vision Sensor

EC Event Camera

FOV Field of View

FST First-Spike-Time

H-H Hodgkin and Huxley (spiking model)

HRC Human-Robot Collaboration

LIF Leaky Integrate-and-Fire

LSTM Long Short-Term Memory

OP Optical Flow

PF Potential Field

PSP Post-synaptic Potential

RL Reinforcement Learning

RNN Recurrent Neural Network

R-STDP Reward-modulated spike-timing-dependent plasticity

SNN Spiking Neural Network

SRM Spike Response Model

STDP Spike-timing-dependent plasticity

3

Contents

4

1

Introduction

Modern autonomous systems can excel at targeted tasks, but generally lack capabilities that the

average human exemplifies, including rapidly learning for and accomplishing a range of unstructured tasks.

One potential reason is the fundamental differences in human and artificial intelligence (AI) due to their

respective physical substrates (biological vs. silicon-based) (Korteling et al. (2021)). AI systems likely have

access to superior information propagation speeds, communication bandwidths, and raw computational

power. Though this may imply a greater capacity for multi-sensory processing, robotic agents embodying

AI would still struggle with everyday tasks that our brains facilitate with relative ease. This poses the

question of whether the information propagation mechanisms and computational architectures present in

our brains could be a key factor in the advancement of reliable autonomy.

The human brain is capable of maintaining multiple, complex cognitive processes and still being

more energy-efficient than contemporary computers. It simultaneously regulates essential processes like

breathing and heart function, as well as controlling visual perception, language processing and speech,

thought, fine and coarse motor activity, etc., all while consuming ∼20W of power (similar to some

lightbulbs, Drubach (2000)). Comparable and less-capable computers require power inputs many orders

of magnitudes higher (see Appendix A for a comparison of examples). This is evident when simulating

cortical neural networks on conventional computers; at the scale of a mouse, such a simulation has been

shown to run at 40,000 more power and 9,000 times less speed, while projections from the Human Brain

Project underscore the colossal power requirement for simulating a human brain (Thakur et al. (2018)).

These and other neuroscientific studies indicate the vastly superior performance-to-efficiency ratio of

the brain, and motivates the consideration of biologically-inspired circuitry, sensors, and algorithms in

intelligent robot design.

Biological inspiration has frequently driven practical innovations, leading to IR detectors and gyroscopes

(Wicaksono (2008)), learning paradigms such as evolutionary algorithms and reinforcement learning (RL)

(Sutton et al. (1998)), swarm intelligence algorithms, and locomotion control using elementary neural

circuits (Ijspeert (2008)), to name a few. Artificial neural networks (ANNs) are based on their biological

counterparts: the earliest models by McCulloch and Pitts consisted of interconnected layers of simple

computational units with adjustable “synaptic” connections, while later convolutional neural networks

(CNNs) aimed to mimic connectivity patterns observed in animal visual cortices. CNNs have been

largely successful in specific visual processing tasks (see Goodfellow et al. (2016) for a comprehensive

5

(a) Taunyazov et
al. (2020)

(b) Sun et al. (2021) (c) Bartolozzi et al. (2022) (d) Lobov et al.
(2020)

Figure 1.1: Recent examples of neuromorphic robot design: (1.1a) an EC and neuromorphic tactile
sensor for manipulation; (1.1b) an EC onboard a quadrotor; (1.1c) the iCub robot equipped with
neuromorphic visual, auditory, and tactile sensing; (1.1d) SNNs for learning simple navigation behaviours
in a neurologically-inspired sensory-motor architecture.

review), and are commonly deployed on robots. Nevertheless, these models are crude approximations at

best. Biological neurons asynchronously aggregate inputs over time and propagate discrete, sparse spikes

(action potentials), whose precise timings are thought to encode useful information. Conversely, artificial

neurons synchronously and continuously propagate real-valued signals, abandoning an additional temporal

dimension afforded by relative spike timings. These discrepancies become relevant following observations

that deep neural networks (DNNs), despite their notable success in visual recognition, still suffer from ever-

growing numbers of parameters (requiring more computations), correspondingly sizable data requirements,

poor generalization to unobserved yet similar inputs, and catastrophic failures in response to minor

perturbations (Serre (2019)). Although unbiased comparisons of human and artificial intelligence are

not straightforward (Cowley et al. (2022), Firestone (2020)), our brain seems better-equipped to handle

an extraordinary range of problems while exhibiting superior generalization and robustness to noise and

variance than present AI models.

Apart from neuronal design, DNNs depart from biology in their primary approach to learning: the

popular back-propagation algorithm. The gradient-based synaptic adjustment rule has been instrumental

in the aforementioned success, but is largely considered biologically implausible. Next to substantial data

and computational overheads, this provides further impetus to look to the brain for inspiration. A general

reluctance towards this view may be a product of the meteoric success of CNNs and a long-standing

hesitancy to deal with the complexities of the brain (Crick (1989)). Nevertheless, recent studies have

demonstrated progress towards more biologically-plausible learning that could lead to similar results

(Illing et al. (2019)).

Aside from learning, the field of neuromorphic computing explores more biologically faithful sensors

and computational architectures.

Neuromorphic Computing

Neuromorphic engineering/computing aims to reproduce known characteristics of the brain in hardware,

particularly in analog VLSI circuits. The field was established in the 1980s by Carver Mead, who suggested

analogies between biological neuronal dynamics and the physics of sub-threshold regions of transistor

6

Chapter 1. Introduction

operation. This has given rise to various models of spiking neural networks, dedicated neuromorphic

processors1 designed to run them, such as the Intel Loihi, SpiNNaker, and IBM TrueNorth (Bouvier et al.

(2019)), and neuromorphic sensors that include event cameras. This research is motivated by the pursuit

of brain-like computation to improve efficiency, parallelization, and energy consumption (Thakur et al.

(2018)) through a fundamental paradigm shift. Neuromorphic, energy-efficient computation could benefit

various applications including autonomous vehicles, wearable devices, and IoT2 sensors (Rajendran et al.

(2019)). Naturally, this holds promise for other embodied AI agents and robotic systems as well.

Various studies provide empirical evidence of the advantages of neuromorphic computing: 10 and 1000

factor increases in speed and energy-efficiency, respectively, when learning on a neuro-processor compared

to a conventional processor (Wunderlich et al. (2019)), a four-fold increase in the energy-efficiency of a

spiking network instead of a DNN for speech recognition (Blouw & Eliasmith (2020)), better energy-per-

classification ratios for deep learning problems when comparing to a Tesla P100 GPU (Göltz et al. (2021)),

and speed and efficiency gains in various classical problems (Davies et al. (2021)). These results have

coincided with, or perhaps fostered, an ongoing interest in the field, typified by the recent establishment

of the ”Neuromorphic Computing and Engineering” journal (Indiveri (2021)).

Event Cameras

Event cameras (ECs) are a typical example of a neuromorphic sensor and are modelled after biological

retinas. ECs exclusively record per-pixel events at which the change in pixel intensity crosses a set

threshold, mimicking retinal photoreceptor cells (Posch et al. (2014)). Consequently, they only capture

significant intensity changes, often due to motion (Figure 1.2), in contrast to frame-based cameras,

whose pixels synchronously and continuously transmit absolute intensity values, much of which is often

redundant information. Therefore, similar to our retinas, ECs do not capture full images through a

periodic shutter-like mechanism as conventional camera do. The idea of only capturing signals of interest is

evidently desirable in various scenarios, such as processing speech amongst background noise in recognition

applications, or focussing on regions where changes occur in image processing (Blouw & Eliasmith (2020)).

Apart from higher biological fidelity, ECs offer lower power consumption, lower transmission latencies,

higher dynamic ranges, and more robustness to motion blur than traditional cameras (Gallego et al.

(2022), G. Chen et al. (2020)), which have been experimentally validated (Sun et al. (2021)). Equivalently,

these properties can address limitations of frame-based vision in power consumption and bandwidth due

to transmitting larger amounts of data (Dubeau et al. (2020)). External clock-driven data acquisition

naturally leads to redundant image information and the potential loss of inter-frame information (Risi et

al. (2020)). Instead, ECs selectively acquire data based on scene dynamics. ECs have most often been

deployed in applications requiring rapid reaction speeds, such as drone flight, due to characteristically

high temporal resolutions, but could be beneficial in robot navigation and manipulation.

The asynchronous nature of event-based data necessitates novel methods and algorithms; the artificial

analogs of visual cortical cells, spiking neurons, are prime candidates.

1Also known as “neuromorphic chips”, “neuromorphic emulators”, “neural emulators”, and “neural processors”
2Internet of Things

7

(a) Fast object (RGB) (b) Fast object (events) (c) Motion 1 (RGB + events) (d) Motion 2 (RGB+events)

Figure 1.2: Images captured from a DAVIS346 EC. 1.2a shows an RGB image of a fast-moving object
and 1.2b visualizes the captured events (note the relatively clear effects of motion blur in the first). 1.2c
and 1.2d show events superimposed on images captured while moving the camera, where events are most
visible at object borders.

Spiking Neural Networks

Spiking neural networks (SNNs) are a neuromorphic alternative to conventional ANNs in which com-

putational units propagate sparse sequences of spikes, instead of real-valued signals (Figure 1.3). Input

spikes to a neuron contribute to a decaying internal aggregate of past inputs: its membrane potential.

When a threshold is exceeded, the neuron emits a spike (or action potential) which resets its potential.

Spiking neurons operate asynchronously, such that information flows through the network through trains

of distinctly-timed spikes. These neuronal dynamics match those observed in biology (particularly in the

primary visual cortex; G. Chen et al. (2020)), but raise challenges concerning the encoding, decoding, and

processing of spiking data as well as learning methods, which remain open areas of research.

Similar to the event/frame-based camera dichotomy, SNNs have stimulated interest due to their

"Active" Neuron

Just spikedAll neurons
always "active"

Real value summation
and nonlinear activation

Binary spike aggregation
and sparse firing

Conventional ANN SNN

Figure 1.3: An illustration of neuronal dynamics in conventional ANNs (left) and SNNs (right). Neurons
in ANNs constantly compute and propagate real-valued signals (input summation and nonlinear activation,
such as a sigmoid function), while spiking neurons aggregate spikes and only fire at superthreshold
activation. Gray/black borders around neurons signify inactivity/activity; note that only the bottom
neuron in the SNN is ”active” at this timepoint, since it had just spiked.

8

Chapter 1. Introduction

potential advantages over ANNs. SNNs can be as, or potentially more, expressive than ANNs (Maass

(1997)), and successful applications in common visual tasks have shown that they can consume less

power and exhibit faster classification inferences (Neil et al. (2016)), as well as outperform ANNs in

energy-delay-product3 (Davies et al. (2021)). This energy-efficiency is due to neurons emitting outputs only

when significantly stimulated, as opposed to constant computations as in ANNs, though this advantage

is fully realized with dedicated neuromorphic hardware. This is also reflected in response latencies; in

classification problems, SNNs could produce a correct inference before a frame-based approach could fully

process all input pixels (Neil et al. (2016)).

Although often associated with embodied agents, SNNs have recently been applied in other areas

of research, such as for the contemporary problem of detecting Covid-19 from CT scans (Garain et al.

(2021)).

A Neuromorphic Approach to A Robotics Problem

In the pursuit of improving the intelligence and efficiency of autonomous agents, we seek to investigate

the application of biologically-inspired sensors and algorithms. This thesis project explores the utility of

incorporating neuromorphic elements: event cameras and spiking neural networks, in an approach to a

common robotics problem.

The problem we address is obstacle avoidance, which we define here as planning or reacting to prevent

collisions with obstacles interfering with a task. Avoiding obstacles is a rudimentary but essential action

for robotic as well biological agents, which organisms with relatively simple neuronal architectures such as

insects seem to perform exceptionally well (particularly in comparison to robots). Therefore, it provides an

adequate context for testing a biologically-inspired approach on a robot platform. In this context, the two

neuromorphic elements we focus on have special relevance: event-based vision is particularly appropriate

for motion-based perception and action, while SNNs are well-suited to processing the asynchronous, binary

signals produced by ECs (since events are essentially equivalent to spikes). We specifically focus on

obstacle avoidance in manipulation, for which fewer research has been conducted in comparison to the

domains of aerial and mobile robots.

Motivated by the potential merits of a neuromorphic strategy, we aim to demonstrate the viability and

utility of a neuromorphic approach through its implementation and by conducting a systematic analysis of

its results. Although we are interested in the prospects of transitioning to biologically-inspired components,

the intention is not to strictly argue that blind mimicry of biological systems is a definitive, global solution4,

but rather to work towards a better understanding of its potential, benefits and limitations in a robotics

application through methodical experimentation.

In the upcoming sections, we formally state the addressed problem, outline the delimitations, and

present the contributions of this thesis.

3A measure of energy efficiency that incorporates inference delays.
4For example, ornithopters are known to be more biologically plausible than modern aircraft, but are demonstrably

worse at flight.

9

1.1. Problem Statement

1.1 Problem Statement

The aim of this thesis is to conduct research into neuromorphic methods and develop a neuromorphic

solution that is applicable to a robotics problem. To that end, event cameras (ECs) and spiking neural

networks (SNNs) are central aspects, providing the sensor and neural circuitry, respectively, that constitute

our neuromorphic solution. Specifically, we investigate the processing of event data using SNNs to facilitate

a visuomotor skill on a robotic manipulator.

The application we target is real-time, online obstacle avoidance on a camera-equipped manipulator.

Although more commonly studied in mobile and aerial robot navigation, obstacle avoidance in manipulation

scenarios can be equally useful for increasing safety and task efficiency, especially in unconstrained human-

robot collaboration (HRC) scenarios. Ideally, adjustments of planned trajectories must be performed in

real-time (quick enough to avoid collisions) and online (during trajectory execution, not prior planning);

two properties we particularly consider. As previously expressed, ECs excel at capturing rapid motions,

while SNNs are best-suited by design to process event data, thus motivating their utilization for deriving

corrective avoidance motions.

Following a thorough experimental evaluation, we analyze the results to validate the hypothetical

merits of the approach. These include the efficacy of event data for capturing obstacle motions, and

the tendency of SNNs to propagate ”relevant” information and consequently reduce unnecessary data

processing. As a primary objective, we seek to determine the feasibility of the neuromorphic approach

and draw initial, well-grounded insights on its utility in a robotics scenario and thus assess the value of

pursuing these concepts further.

The goal is thus a contribution to answering the question: are more biologically-inspired sensors

and algorithms worth studying and applying further in the context of robotics? In the author’s view,

the potential value in neuromorphic implementations that we have outlined (and discuss further in the

literature review of section 2) warrants dedicating more research into this approach. Through our study,

we make progress towards this goal by attempting to address the following relevant questions:

❼ Are there benefits to using event camera data for obstacle avoidance on a robot?

❼ Are there benefits to using SNN processing for obstacle avoidance on a robot?

❼ Is it feasible to decode SNN outputs into obstacle avoidance behaviour on a robot?

❼ Is it possible to achieve reliable, online obstacle avoidance with the proposed neuromorphic approach

(of utilizing ECs in conjunction with SNNs)?

The first challenge in addressing these questions is the design and development of an SNN-based

obstacle avoidance method. This method should handle the transformation of visual inputs (event data),

into meaningful obstacle avoidance behaviour. We initially focus on processing emulated event data,

and design an emulation component that can be easily substituted with a real event camera. Emulating

events is convenient for obtaining initial results, particularly in the absence of an EC5; while we expect

experiment conclusions to carry over, it is important to verify this in subsequent analyses. Subsequently,

5An EC was not available in the initial stages of this project, initially making emulation a necessity.

10

Chapter 1. Introduction

we attempt to integrate a real event camera in our pipeline and conduct preliminary tests for validation.

Here, we run SNN simulations on conventional hardware, and leave the integration of neuromorphic

processors for future work.

The next challenge involves demonstrating the function of and testing this method on a robot platform.

To that end, we test on the Kinova Gen3 robotic arm in simple task scenarios involving static and

dynamic obstacles to demonstrate obstacle avoidance behaviour at the end-effector. The end-effector is

pre-equipped with a color camera, from which we emulate event data. In later tests, an event camera must

be mounted in its stead. We perform initial testing in Gazebo simulations before transferring to the real

robot. Starting in simulation enables rapid testing and evaluation during the initial stages of development.

As a consequence, we also evaluate how well our method transfers from simulation to the real world.

The third primary challenge is to conduct a thorough evaluation that is conducive to establishing

well-grounded conclusions to this study. Due to the novelty of our approach, we have no access to

appropriate benchmarks to systematically compare against. As will be shown in section 2, few similar

works exist and close examples that involve manipulator obstacle avoidance often lack results in metrics

that could quantify performance and provide opportunities for comparisons. This creates a necessity for

formulating appropriate quantitative and qualitative metrics and criteria on the basis of which we can

adequately assess the results of our proposal.

1.2 Delimitations

Certain elements of our approach and its implementation have been limited or excluded from the scope

of this thesis project due to practical considerations that include time constraints. We outline them in

this section.

We do not utilize neuromorphic hardware for running SNNs in this study, and instead simulate the

networks on conventional (digital) processors. A primary factor is the relative difficulty in acquiring

a dedicated neuro-processor at the time of writing, since they are not yet widely and commercially

available. In theory, the true potential of SNNs is limited by conventional, synchronous processors; a

clock-driven architecture can not ideally simulate the independent analog dynamics within and propagation

of spikes from each neuron. Nevertheless, these can be simulated to a level of precision that we expect are

satisfactory for the purposes of this study, including drawing conclusions on the utility of the architectural

properties of SNNs. A related factor concerns scope limitation, since neuro-processors are expected

to introduce hardware-related challenges that may prove time-consuming to address. For the initial

demonstration of our neuromorphic approach that we seek to present here, the ability to process spiking

data into useful behaviour is ultimately a sufficient outcome. Though we can not adequately investigate

them here, the power consumption and other hardware-specific advantages of SNNs can be addressed in

future extensions involving neuro-processors.

In a similar vein, we primarily rely on emulating event data from conventional camera data for the

main results of this thesis. This provides a convenient substitute for real event camera data, which

facilitates the intended evaluation of our approach, though it discards the strict asynchrony of events (see

section 4.1.2). Preliminary tests with a real event camera are conducted near the end of the study, but a

11

1.3. Contributions

more thorough evaluation is intended for future work, and the main conclusions here are drawn in the

context of emulated event data.

We do not consider SNN synaptic weight adjustments, i.e. learning, in this work. Although this

could lead to improvements in the end-to-end performance of our method, we constrain our attention to

evaluating the feasibility and success of our approach in order to draw principled conclusions on its utility

before premature optimization efforts.

In our evaluations of obstacle avoidance performance, we only consider obstacles within the end-effector

camera’s field of view (FOV). By its nature, the on-board sensor is incapable of visually perceiving

obstacles outside its FOV, just as we could not. Since we focus on evaluating how well perceived events

can be processed to produce reactive avoidance motions, we disregard obstacles the robot can not presently

perceive. We deliberately avoid the common approach of placing multiple sensors around the robot’s

workplace. Though this may partially address the issue, it adds an undesirable constraint on a robot’s

operational space by necessitating the installation of additional sensors in any environment it inhabits;

instead, we consider a self-contained solution. It is possible to utilize some form of active vision or

maintaining memories of obstacles observed in the recent past, but these functionalities are not necessary

for the focus of this thesis and could be added in future, more complete implementations.

We also exclusively consider collisions with the end-effector. Avoiding whole-body collisions may

require additional functionalities for remembering and extrapolating relative obstacle positions6, for

example, and incorporating these in future trajectory adjustments. We avoid the complexities of these

augmentations, since we can sufficiently evaluate our neuromorphic approach by only avoiding end-effector

collisions (and, as mentioned, could improve the implementation in future extensions).

1.3 Contributions

We end this introduction by discussing the main contributions of this work, which can be summarized

as follows:

❼ Providing a review of the literature on the relevant fields of research.

❼ Designing and implementing an SNN-based method for obstacle avoidance in robot manipulation.

❼ Formulating quantitative metrics and qualitative criteria for evaluating obstacle avoidance perfor-

mance and trajectory characteristics.

❼ Evaluating our approach in simulation and on the real robot through a range of task scenarios.

❼ Conducting analyses of different event emulation strategies, performance without the SNN component,

and the effects of varying SNN weights.

❼ Conducting preliminary evaluations with a real event camera.

The conceptualization and implementation of our approach is a product of the research conducted

on the central topics of this thesis. The notable findings of this research are presented in a review of

6Most collisions occurring on the rest of the robot body are likely to happen once the obstacle is outside the camera’s
FOV.

12

Chapter 1. Introduction

Figure 1.4: An illustration of the main stages of our proposed SNN-based obstacle avoidance pipeline.
The plot on the right shows a pre-planned trajectory (grey) and a resultant trajectory (green) adapted to
avoid an obstacle (blue).

the literature on event cameras, spiking neural networks, neuromorphic computing, and relevant work

on obstacle avoidance. In addition, we provide additional background information on these topics in a

dedicated chapter.

Our primary contribution is the design and implementation of a neuromorphic approach to obstacle

avoidance on a robot manipulator equipped with an on-board camera. This approach consists of a pipeline

of components that enable end-to-end processing of visual data into motion trajectory adaptations, and

which relies on event-based vision and an SNN. Within this pipeline, an event camera emulator transforms

RGB data into event data, which is in turn processed by a convolutional SNN. The SNN output is then

decoded into avoidance accelerations/velocities by an obstacle avoidance component, which employs a

potential fields (PF) approach. A motion control component generates end-effector positions to follow a

pre-planned trajectory while adapting the trajectory given the output of the obstacle avoidance component

using a dynamic motion primitive (DMP) formulation. These components, collectively referred to as an

SNN-based obstacle avoidance module, operate in a closed-loop, online procedure for transforming an

input planned trajectory into an adapted version that avoids obstacles through SNN feedback. Figure 1.4

illustrates the stages of the pipeline. By design, the EC emulator is easily substituted by a real event

camera. We implement each of these components within the ROS framework to enable synergistic data

propagation and efficient parallelization. To the author’s knowledge, this approach is unique in addressing

manipulator obstacle avoidance by utilizing event data from an on-board camera, SNN processing, and an

adaptive trajectory representation.

An integral focus of this thesis is a thorough evaluation of our approach, despite its novelty and the

relative scarcity of comparable works, proposed evaluation methodologies, and performance metrics. We

therefore formalize a set of quantitative metrics and qualitative criteria with which we can systematically

evaluate our implementation. These evaluations are instrumental during the development stage for

assessing different parameterizations as well as in the final experiments to draw well-grounded conclusions.

Following the formalization of these criteria, we conduct experiments to evaluate our approach in

simulation and on the real robot. These experiments constitute repeated executions in a range of static

and dynamic obstacle task scenarios drawn from a defined distribution. During simulation tests, we adopt

a machine-learning inspired methodology of using different task scenarios to tune, validate, and finally

13

1.3. Contributions

test sets of parameter values. The best-performing parameter set is then transferred to the real robot,

with minimal adaptations, for the final experiments involving a subset of the task scenarios. The results

demonstrate the consistent success of our approach in avoiding obstacles, which a non-adaptive baseline is

incapable of. We also analyze the statistical performance across many trials, showing that the adapted

trajectories do not drastically increase execution times, trajectory lengths, and velocities, for example,

while successfully achieving obstacle avoidance. Moreover, we assess how reliable, predictable, safe, and

natural the trajectories are in our qualitative evaluation, and find at least moderately positive results in

each. By examining differences between task scenarios, we also present interesting insights concerning

different task variables, a notable example being a difficulty with faster dynamic obstacles.

In further tests, we additionally explore certain properties of the neuromorphic elements of our pipeline

in isolation. We implement and compare different event emulation strategies, based on their event outputs,

SNN responses, and ultimate task performances; this yields the insight that the SNN exhibits favourable

robustness to variations in event data. To validate the utility of our SNN component, we test the exclusion

of the SNN and the derivation of obstacle avoidance accelerations directly from raw events, which we

show adversely affects the success of obstacle avoidance. We also investigate the effect of varying SNN

weights by sampling different random values, showing a slight variance in obstacle avoidance performance.

Finally, we show the successful integration of a real event camera, a DAVIS346, in place of the emulation

component in our pipeline, and present results of preliminary experiments on the robot. Most notably, we

find that the resultant obstacle avoidance performance is fairly similar, although the camera possesses a

large number of tunable parameters which merit further experimentation.

This thesis report is structured as follows. Chapter 2 contains the review of related work on the

aforementioned areas of research. Chapter 3 provides additional background information on event-based

vision, SNNs, and DMPs. This chapter provides supplementary information in case the reader is unfamiliar

with these topics, but is otherwise not essential for a reasonable appreciation of the proposed approach.

In chapter 4, we present our proposed approach, elaborating on the design principles and each of the

components of the pipeline, in addition to details on how this is implemented in software. Chapter 5 is

dedicated for a detailed description of the methodology we follow to evaluate our approach, including

evaluation tasks, metrics and criteria, and experiment design and procedures for both simulation and real

robot experiments. Chapter 6 contains the full results of these experiments and an exhaustive discussion

thereof. This chapter also includes the post-experiment analyses concerning the event emulation and SNN

components, as well as the preliminary real EC tests. The report ends with a final conclusion presented in

chapter 7.

14

2

Related Work

In this chapter, we conduct a review of research on topics relevant to this thesis, summarizing key

insights, investigating methods employed in similar problems, and drawing comparisons to our approach.

The objective is to provide self-contained overviews of the areas that the proposed approach lies at the

intersection of, in addition to recent examples of their applications that substantiate their advantages

and thus motivate their consideration in this work. We also focus on analyzing particularly similar

manifestations of the ideas of this thesis near the end of the chapter to highlight differences and perceived

limitations, and suggest aspects of our work that may present contributions to this line of research.

We commence with a focus on retina-inspired, event-based vision and event cameras (ECs) in section

2.1 that does not involve spiking neural networks (SNNs), including discussions of their properties,

examples of their utility in general computer vision and robotics problems, and emulators. As will

become evident, SNNs are often the choice for event-based processing due to their natural compatibility.

Section 2.2 is dedicated to SNNs and provides an introduction and a review of publications that examine

their computational power, survey the growing field in varying capacities, present and explore different

approaches to learning, demonstrate applications in AI and robotics exploiting their unique properties,

and contribute neural simulators. Both ECs and SNNs are products and constituents of research into

neuromorphic or brain-inspired computing, which is the topic of section 2.3. We briefly examine studies

that discuss the merits of mimicking biological computational models derived from neuroscience, and

practical implementations on neuromorphic processors1 that make full use of event data and SNN dynamics,

confirming substantial potential in reducing energy consumption and latency. The section closes with

a mention of the adjacent field of neurorobotics. Section 2.4 deals with obstacle or collision avoidance

methods and focuses on implementations that most closely resemble our own in their application domain,

approaches to the problem, and/or sensing modality. We discuss some limitations of said implementations

and how ours differs in comparison, before concluding with final remarks.

2.1 Event-Based Vision

Event cameras (ECs), also called silicon retinas, neuromorphic cameras, or dynamic vision sensors, are

models of biological retinas, inspired by the latter’s superior efficiency in comparison to conventional, frame-

based cameras. ECs transmit streams of spatio-temporal ”events” when light intensities in independent

1For brevity, we henceforth abbreviate the term ”neuromorphic processor” to the non-standard ”neuro-processor”.

15

2.1. Event-Based Vision

”pixels” cross a reference threshold, mimicking the behaviour observed in retinal photoreceptor cells. Each

asynchronous event encodes pixel location, change polarity, and emission time point. Therefore, EC event

streams selectively capture significant visual stimuli, mostly due to motion, in contrast to frame-based

cameras, where pixels synchronously and continuously transmit absolute intensity values. The silicon

retina was pioneered by Mahowald and Mead in the 1990s (Mahowald (1994)), and paved the way for

modern ECs including the DVS (Lichtsteiner et al. (2008)), ATiS (Posch et al. (2010)), and DAVIS

(Brandli et al. (2014))2, which have fostered research into event-based vision and facilitated demonstrating

its advantages. See Gallego et al. (2022) for an extensive overview of the field of event-based vision that

provides details exceeding the scope of this section.

Apart from their appeal in reproducing observably superior qualities of biological retinas, ECs have

demonstrated practical advantages over frame-based cameras. In their review of neuromorphic cameras,

Posch et. al. highlight the deficiencies of frame-based cameras, chief among which is an artificial, clock-

driven frame capture rate which is independent of scene dynamics (Posch et al. (2014)). This can lead to

under-sampling, where information between consecutive frames is lost, or wasteful data transmission in

the absence of inter-frame changes. On the other hand, EC pixels transmit events independent of a global

shutter and thus at very low latencies, effectively capturing high-speed dynamics. This higher temporal

resolution also mitigates the effects of motion blur, another challenge for normal cameras. (It is worth

noting that these challenges are better addressed, not wholly eliminated, by ECs, as stressed in Hu et al.

(2021).) Furthermore, ECs have high dynamic range, more than double the average 60dBs of high-end

conventional cameras, which equates to much better adaptivity to extreme lighting conditions (as our

eyes possess). These benefits are visually observable when reconstructing video from EC data such as in

Rebecq et al. (2019), where recurrent neural networks (RNNs) are trained for this purpose and produce

images at more than 5000 frames per second with high dynamic range and robustness to motion blur.

In addition, the transmission of information only at significant intensity changes inherently eliminates

redundant information. The significantly lower rate of data transmission naturally leads to higher energy

efficiency and lower power consumption, a particularly prominent characteristic of ECs (most run at about

10mW , Gallego et al. (2022)). All of these properties make ECs particularly appealing for autonomous

systems tasked with any significant visual processing in varied and unpredictable environments. This

potential has spurred research into developing and demonstrating methods and algorithms that enable

harnessing said properties for general computer vision applications.

Recent publications highlight applications of event-based vision in a variety of domains. A survey of

bio-inspired sensing in the field of autonomous driving is presented in G. Chen et al. (2020), providing a

review of EC signal processing techniques and successful implementations for relevant tasks including

segmentation, recognition, OF estimation, image reconstruction, visual odometry, and drowsiness detection.

In a more resource-constrained scenario, event-based vision has also been employed in a gesture recognition

smartphone application in Maro et al. (2020). Here, the authors process data from an ATiS EC in a “time

surface” representation to learn hierarchies of spatio-temporal features, which are sufficiently expressive

for a nearest neighbour classifier to achieve good gesture classification even for visually-impaired users.

2DVS: Dynamic Vision Sensor; ATiS: Asynchronous Time-Based Image Sensor; DAVIS: Dynamic and Active-pixel Vision
Sensor

16

Chapter 2. Related Work

An interesting method is employed to detect and dynamically suppress irrelevant background events by

leveraging the higher local activities surrounding foreground event pixels. In Dubeau et al. (2020), a novel

combination of RGB-D and EC data for DNN-based 6-DOF object tracking is shown to outperform a

state-of-the-art RGB-D-only DNN. Two networks are separately trained to estimate a given object’s pose:

one on an “event spike tensor” representation of DAVIS346 data (trained on ESIM simulator data), the

other on RGB-D frames from a Microsoft Azure sensor. Inferences from the former are then used to refine

the latter’s in a cascaded approach which, while relying on a prior initial pose and a 3D textured model of

the object, demonstrates the utility of event data in improving an existing tracking network.

In the context of robotics, ECs have most often been utilized on aerial robots, such as for high-speed

obstacle avoidance (Falanga et al. (2020)) powerline tracking (Dietsche et al. (2021)), and fault-tolerant

control (Sun et al. (2021)). UAVs particularly benefit from the aforementioned advantages of ECs on

account of frequent high-speed motions and motion blur, energy consumption constraints, and rapid

changes in illumination, which motivate these works’ consideration of event-based vision. We dedicate

attention here to applications that do not involve flight, in which ECs may similarly provide opportunities

for the improvement of robot capabilities.

Prior to the advent of modern ECs, Bečanović et. al. used precursory optical analog VLSI (aVLSI)

sensors in soccer robots, harnessing the faster reactivity properties to actively control a ball and estimate its

velocity (Becanovic et al. (2002)), and to improve robot goalkeeping (Bečanović et al. (2002)). Succeeding

silicon retinas share similar principles, such as modeling retinal cell dynamics using sub-threshold transistor

regimes, but now offer resolutions exceeding 10x10 and spike-like event streams instead of OF estimations.

The classical problem of simultaneous localization and mapping (SLAM) has been tackled in a novel

application of stereo visual odometry using DAVIS346 ECs in Y. Zhou et al. (2021). On the basis of

analyzing spatio-temporal consistencies in dual event streams and measuring distances in “time surface”

event representations, the proposed approach facilitates scene mapping and ego-motion estimation,

matching the performance of mature frame-based approaches on benchmark datasets while demonstrating

robustness in difficult lighting conditions. Others have experimented with event-driven visual frame

representations. In Arakawa & Shiba (2020), EC data arranged in a conventional image frame format was

used for visual reinforcement learning (RL) of obstacle avoidance and tracking policies. The authors train

in simulations using emulated event data and deploy the model on a real robot equipped with a DAVIS240

EC. In H. Chen et al. (2019), similar event representations are used to train DNNs for Atari gameplay

and action recognition, outperforming RGB image-based networks. While the latter works adapt DNNs

to process event frames, the present work will look into utilizing SNNs, which are naturally suited to

processing the spike-like event data.

For this work, we implement a software component that emulates event data from a stream of

conventional images in a live camera feed or a ROS topic (see section 4.1.2). This is not a novel idea,

and we conclude this brief investigation of the literature on event-based vision with a look at previous

implementations of the concept of event emulation/simulation. pydvs is a python-based DVS emulator that

can convert image intensity differences to rate- or time-encoded spikes/events, utilizing local inhibitions,

max operations, and redundant spike discarding strategies for refining the emulated data (Garćıa et al.

17

2.2. Spiking Neural Networks

(2016)). This closely resembles our emulator, but differs in not providing native ROS support, which

is particularly useful in robot applications. The prominent ESIM EC simulator of Rebecq et al. (2018)

provides a framework for simulating 3D scenes and user-defined camera motions, providing accurate

event outputs, and has been used in various works. The simulator depends on a selection of rendering

engines, including OpenGL and the Unreal engine, to simulate scenes. Microsoft’s AirSim provides an

event camera emulation component3 used in some UAV-related studies, but which is similarly coupled to

its rendering engine. Such a coupling limits applicability to the associated simulation. The v2e toolbox

(Hu et al. (2021)) was designed with the purpose of addressing some reported assumptions of the ESIM

simulator that deviate from real cameras, including the absence of temporal noise and leak events. The

tool emulates DVS events from video data, and its output has been shown to increase robustness to

lighting conditions in a car detection task. However, the implementation natively supports only video files,

and not real-time camera feeds nor ROS topic data, for example, which are requisites in the present work.

In Joubert et al. (2021), the so-called ICNS emulator is introduced for video files and Blender scenes,

and qualitatively compared to ESIM, v2e, and a real DVS. All reviewed emulators are publicly available

and provide valuable, extensible tools for research and development in event-based vision. Nevertheless,

their coupling to rendering engines and the absence of out-of-the-box support for live feed and ROS data

processing motivates the development of the event camera emulator described in section 4.1.2.

2.2 Spiking Neural Networks

SNNs represent more faithful models of biological neurons than conventional artificial neural networks

(ANNs) do, differing primarily in their information propagation mechanisms. While ANN units propagate

real-valued, constant signals, spiking neurons communicate in trains of discrete, sparse pulses or spikes,

mimicking experimentally-observed neuronal signals in living organisms. Incoming spikes contribute to

the decaying membrane potential of a neuron, which fires (generates a spike or action potential) only

when this quantity crosses a threshold. The time-varying, analog dynamics within each neuron result in

an asynchronous propagation of binary signals, not unlike the events described in section 2.1. Research

into spike-driven NNs is motivated by attempts to approach the impressive computational capability

coupled with energy efficiency of the human brain (as expressed by the majority of works reviewed in this

section), compared to the more specialized yet drastically less efficient computer systems of today (Roy

et al. (2019)). The spatio-temporal distributions of spikes are thought to efficiently encode information,

while their sparsity contributes to lower energy expenditure. The homogeneity of events from ECs and

spikes in SNNs make the latter a natural choice for processing data from the former (resembling the

processing of retinal information on its way to and within the visual cortex).

The potential of SNNs as the “third generation of neural networks” (the first two being McCulloch-

Pitts neurons and neurons with non-linear activation functions, respectively) has often been studied and

demonstrated in the past. In a rigorous study on the computational power of SNNs, Maass presents

theoretical proofs of SNNs being as, and potentially even more, expressive than first and second-generation

NNs, in addition to requiring significantly less neurons to represent some functions (Maass (1997)).

3https://microsoft.github.io/AirSim/event sim/

18

Chapter 2. Related Work

More recently, researchers have attempted to formulate models that enable systematic analysis of SNN

computational power. In Kwisthout & Donselaar (2020), a ”neuromorphic complexity theory” is presented

which encapsulates complexity classes, completeness theorems, and other elements of a formal SNN

machine learning model. These works indicate ongoing and growing efforts at formalizing a theory of SNN

computation. The authors of Neil et al. (2016) convert ANNs pre-trained for MNIST digit recognition into

SNNs, whose inputs are spike-train representations of the original images, and analyze the spiking versions’

comparative performance. The SNNs achieve comparable accuracy using significantly less computational

operations (42-58% less) and in less time, since a reliable inference could be made before observing the

complete sequences of input spikes. These results demonstrate that SNNs could be as expressive/accurate

as ANNs, while consuming less power and exhibiting faster inference.

The expansive body of recent, seminal publications on SNNs is challenging to reasonably cover

without approaching the scale of a dedicated survey. Therefore, we constrain this brief overview by firstly

highlighting a selection of particularly notable surveys that provide much more complete treatments of the

topic. We then briefly review publications that exemplify the varied approaches to learning in SNNs, and

others that present notable SNN applications, applications in the robotics domain, and neural simulators.

The recent prevalence of deep learning with ANNs has naturally ignited research into the same in

the spiking domain, not least because of prospective improvements in energy efficiency, a characteristic

challenge with conventional deep neural networks (DNNs). Pfeiffer & Pfeil (2018) and Tavanaei et al.

(2019) both provide extensive overviews of SNNs and focus on methods for training deep SNNs, drawing

comparisons to conventional DNNs, and reviewing spiking analogs of CNNs, RNNs, LSTMs4, and echo

state networks, among others. The authors of Bouvier et al. (2019) survey the literature with a focus on

hardware implementations that leverage SNN characteristics (including neuro-processors, discussed in

section 2.3) and the associated challenges, additionally reviewing approaches to SNN learning. In Jang et

al. (2019), a probabilistic view of SNNs is presented, the main advantage of which is the differentiability

of proposed spike distribution representations that facilitate gradient-based learning and other well-known

statistical methods. The authors review various learning algorithms and successful applications of the

stochastic spiking model.

As it stands, the majority of research in this field appears to be dedicated to formulating SNN learning

algorithms; due to the novelty of spike-based representations, an evident lack of consensus exists on

how best to train SNNs (as expressed by prominent researchers in recent discourse: Zenke et al. (2021)).

Taherkhani et al. (2020) reviews biologically plausible learning rules for SNNs. Spike-timing-dependent

plasticity (STDP), a leading candidate, is a variant of Hebbian learning in which local synaptic connections

are strengthened or weakened in proportion to the relative timing of pre-synaptic and post-synaptic

spikes, which may encode causal relations. STDP has been primarily used in unsupervised learning for

spatio-temporal pattern recognition. Several supervised learning rules have also been proposed until

the comprehensive review in Wang et al. (2020), and since (as some of the publications presenting

recent applications show). Naturally, most efforts involve attempts at replicating the success of the

back-propagation algorithm, but are faced with the challenge of the non-differentiability of a sequence

4 CNNs: Convolutional Neural Networks; RNNs: Recurrent Neural Networks; LSTM: Long Short-Term Memory

19

2.2. Spiking Neural Networks

of discrete spikes, as opposed to the familiar real-valued signals. Contributing novel solutions to solve

this dilemma has become the focus of much research, with many presented methods seeking to synthesize

learning signals from membrane potentials, spike times, and surrogate gradients (which are exclusively

studied in Neftci et al. (2019)). Biologically-plausible reinforcement learning has also been demonstrated

using reward-modulated STDP (R-STDP), where the aforementioned STDP rule is augmented with a

global reward signal (mimicking dopamine) to effect reward-driven or novelty-driven learning. This mode

of learning is reviewed in Frémaux & Gerstner (2016). Finally, many approaches involve converting trained

ANN models to SNNs, with the objective of reaping the benefits of spike-driven communication, including

energy efficiency, while minimizing performance loss (for an example, see Blouw & Eliasmith (2020)).

This research has produced implementations of SNNs for solving common problems in AI, particularly

involving vision. Diehl et. al. trained two-layer SNNs with STDP for MNIST digit recognition and

achieved state-of-the-art classification accuracy among unsupervised methods (95%) (Diehl & Cook (2015)).

This approach does not require labels during training: following the presentation of all training inputs,

output neurons are assigned classes according to inputs for which they selectively spike at the highest

rate. In Mirsadeghi et al. (2021), a recent supervised learning algorithm that utilizes a temporal instead

of a rate encoding of spikes, STiDi-BP, is shown to achieve an accuracy of 99.2% on MNIST. Here, a

backpropagation algorithm is enabled by approximating derivatives with the firing times of neurons and

calculating errors in the output layer between actual and desired firing times, which are selected such

that a particular output neuron consistently fires earliest for each class. For less trivial object recognition,

Spike-YOLO was created by converting a pre-trained Tiny-YOLO model to an SNN, achieving comparable

results on the PASCAL and COCO datasets, while being 2000 times more energy efficient (when quantified

by the number of 32-bit float and integer operations) (Kim et al. (2020)). Similarly, the authors of Zheng

et al. (2020) present a supervised learning algorithm, STBP-tdBN, for direct supervised training of SNNs,

achieving state-of-the-art results on the challenging CIFAR and ImageNet datasets. This work is among

the few to successfully train relatively deep SNNs (of 50 layers or more). Zhou et. al. demonstrate

object recognition from datasets of DVS (N-MNIST, DVS-CIFAR10, etc.) and LIDAR (KiTTi) data,

demonstrating the applicability of SNNs to different data modalities (S. Zhou et al. (2021)).

Various works have also successfully applied SNNs in the field of robotics. An extensive survey of

SNNs in the context of robot control is presented in Bing, Meschede, Röhrbein, et al. (2018), underscoring

significant potential for improving speeds, energy efficiency, and computational capabilities for robotics

applications. In Bing, Meschede, Huang, et al. (2018), SNNs are trained with R-STDP on DVS event data

to accomplish lane-keeping on a mobile robot, outperforming a conventional Braitenberg controller in

experimental evaluations. Zahra et. al. utilize shallow SNNs to develop a differential sensorimotor mapping

for a UR3 robot that supports reliable Cartesian control and is learned through a motor babbling-like

procedure using STDP (Zahra et al. (2021)). In one of the first fully-embedded applications of SNNs (on

an Intel Loihi neuro-processor), Dupeyroux et. al. design a neuromorphic vertical thrust controller for

landing a quadrotor (Dupeyroux et al. (2021)). The input to a 20-10-5-layer SNN is a spike representation

of OF divergence that is estimated using data from an on-board “CMOS camera” (a “position coding”,

where the input value determines which of the input neurons exclusively fires). The SNN is trained and

20

Chapter 2. Related Work

evaluated using a neural simulator, PySNN, in simulations, then on a neuromorphic chip in real-world

experiments, achieving consistent landing behaviour, and demonstrating robust ”sim-to-real” transfer. In

the present work, we similarly utilize a neural simulation tool and test in simulations before transferring

to a real robot. Instead of implementing any of the previously discussed approaches to learning, the SNN

parameters were optimized using an evolutionary algorithm, indicating prospects of applying traditional

machine learning methods in the domain of SNNs. A limitation on the generality of this approach is the

controller’s dependence on a pre-set visual pattern for OF estimation.

In a similar direction, an event-driven, SNN-based PD thrust controller was designed to achieve

high-speed orientation adjustment on a dual copter in Vitale et al. (2021). Using the task of matching the

orientation of a horizon-like line on a rotating disc in front of the flying UAV, the authors demonstrate

superior control speeds and reductions in latencies, particularly when running the SNN on a Loihi

neuro-processor instead of a CPU. In addition, the on-chip learning capabilities of the Loihi are utilized in

adjusting controller gains (synaptic weights) to adapt to changes in injected steady-state errors, using

a simple STDP-like learning rule. A more recent application of ECs and SNNs in a common robotics

problem involves a neuromorphic approach to stereo vision. In Risi et al. (2020), reliable stereo matching

of event data from two DAVIS sensors is achieved using an SNN architecture designed with neuronal

populations implementing coincidence and disparity detectors, and running on a DYNAP neuro-processor.

The neuromorphic approach is particularly favoured for the temporal dimension of asynchronous event data

and SNN spike data, which enables exploiting temporal coincidences and thus improve stereo matching.

Similar to our current approach, no learning is involved; the SNN architecture’s inherent properties are

shown to be beneficial in realizing the desired behaviour. In general, most publications in robotics address

relatively constrained navigation and flight tasks (for e.g. lane-keeping and one-dimensional thrust control).

This thesis aims to demonstrate a less common application in obstacle avoidance for manipulation.

We close this section with a brief overview of work on SNN simulators: software tools and packages

that enable creating and running SNNs outside of dedicated neuro-processors. Many publications referred

to in this report have used one to obtain cited results. The NEST (neural simulation tool, Gewaltig &

Diesmann (2007)) and BRIAN (Goodman & Brette (2008)) packages both enable constructing arbitrary

neural architectures and defining neuronal dynamics through differential equations. The NeMo platform

(Fidjeland et al. (2009)) provides tools for designing networks of Izhikevich neurons5 at a higher level

of abstraction and accelerating simulations with GPU parallelization. Neucube (Kasabov (2014)), a

MATLAB-based framework, enables similar high-level modeling of SNNs with the objective of supporting

accurate models of the brain. Unlike others in this list, it is not publicly available. Nengo (Bekolay et

al. (2014)) is a toolkit for simulating large-scale SNNs (used to implement “the most complex simulated

brain” model: SPAUN6), and has primarily been utilized in converting pre-trained ANNs to SNNs in

various works (Blouw & Eliasmith (2020), Salvatore et al. (2020), Reiter et al. (2020)). The CARLsim

library (Beyeler et al. (2015)) provides GPU-accelerated tools for simulating “biologically detailed” SNN

models. Some of the aforementioned libraries support interfacing with neuro-processors such as the Intel

Loihi. The PyNN python library offers a simulator-independent framework for specifying SNN models,

5Refer to section 3.2.1 for a description of the Izhikevich neuron model.
6Semantic Pointer Architecture Unified Network

21

2.3. Neuromorphic Computing

which can run directly on supported simulators (for e.g. NEST, BRIAN, CARLsim, and NeMo) and

neuro-processors (for e.g. SpiNNaker and BrainScaleS) (Davison et al. (2009)). The BindsNET library

provides a Pytorch-based implementation of SNNs, geared towards machine learning and reinforcement

learning applications (also integrating with OpenAI Gym environments). The library is presented in

Hazan et al. (2018), where the authors also compare their implementation to other neural simulators’.

Apart from pre-packaged neuron models, synaptic connection types, and learning rules, the package is

designed to facilitate extensions and custom implementations of each. BindsNET is used in the present

work, primarily for this extensibility and its direct interface with existing PyTorch functionalities.

2.3 Neuromorphic Computing

Having surveyed neuromorphic approaches utilizing ECs and SNNs, we briefly discuss the concepts of

neuromorphic computing as the central idea initiating research on both, neuromorphic processors that

better leverage SNN capabilities, and practical implementations demonstrating the concrete advantages

thereof.

Neuromorphic computing/engineering7 endeavours to mimic the fundamental neural architectures

and dynamics of the biological brain in silico, aiming to replicate its characteristically superior energy

efficiency, compute, and robust learning capabilities in modern computer architectures and engineered

systems, in both algorithms and hardware. Common approaches primarily incorporate brain-inspired

principals that include asynchronous event-driven communication, spike-based neural processing, analog

neuronal dynamics, and local synaptic adjustments. Although results constitute more biologically-plausible

systems (than, for example, conventional DNNs), the goal is often to reproduce functionalities at adequate

levels of fidelity and abstraction that nevertheless exclude unnecessary details (Wunderlich et al. (2019)).

Challenges include open questions in neuroscience, such as how a mode of communication that essentially

relies on ionic flow in salt water, which in theory would be much slower than communication in silicon-based

systems, leads to primitive organisms like the housefly outperforming today’s autonomous, AI-powered

vehicles (Mead (2020)). Neuromorphic computing thus serves a dual purpose: enhancing AI systems with

lessons from neuroscientific research, and advancing our understanding of the brain by experimenting

with neurologically-inspired platforms. Among the most prominent results of this research are ECs

(discussed in section 2.1) and neuro-processors designed to run the novel architectures of SNNs. A review

of neuromorphic hardware and practical applications can be found in Rajendran et al. (2019), which

highlights the role of neuro-processors in realizing the full potential of SNNs for exploiting event-based

sensing, learning and inference.

The establishment of the neuromorphic computing field is credited to Carver Mead, who proposed

studying biological systems’ more effective forms of computation to improve computing architectures

7Technically, the terms neuromorphic engineering and neuromorphic computing are not equivalent. The first predom-
inantly concerns the design of electronic components that can replicate observed neural dynamics (such as transistors
operating in sub-threshold regimes or memristors), while the second focuses on developing computing architectures and
principles that depart from the von Neumann model and approach neural models such as SNNs. However, they have been
used synergistically, if not interchangeably, in the literature in reference to the general concept of mimicking the intelligence
and efficiency produced by the nervous system through more biologically-plausible design. We similarly do not stress the
distinction here, and use neuromorphic computing to refer to this concept throughout this report.

22

Chapter 2. Related Work

and address their foreseeable limitations (Mead (1990)). As suggested more than three decades ago,

an example is conventional computers scaling up in computational power while not scaling down as

favourably in computational costs and thus remaining far less efficient than the human brain, as the

trend predicted by Moore’s law8 is halted by fundamental physical limits in transistor design (including

effects such as quantum tunneling). The proposal is thus to explore drastically different computational

paradigms, such as neuromorphic computing, that may aid in escaping this inevitability. The conventional

von Neumann architecture is also limited by the traditional segregation of processing and memory units;

computations are hampered by the transfer of information between the two at limited bandwidths, leading

to losses in energy and time (Indiveri & Liu (2015)). This problem, often termed “the von Neumann

bottleneck”, can be addressed by the co-location of memory and processing as implemented in modern

neuro-processors instead of a separate, monolithic memory unit (Rajendran et al. (2019)). Such a design

moves away from the mostly serial von Neumann information processing and towards the massively

parallelized computations of the brain, contributing to reductions in power consumption and latency.

This potential of neuromorphic processing, while still largely theoretical, could be beneficial in various

application domains, including robotics.

Research into realizing the aforementioned potential has been fostered by the development of various

CMOS-based neuro-processors since the turn of the century. These processors enable running SNNs by

often modeling membrane potential evolution using voltages across capacitors or transistor sub- or supra-

threshold dynamics, and transferring spikes via an address event representation. Furber (2016) provides a

survey of pioneering neuro-processors, namely IBM’s TrueNorth, Stanford Neurogrid, BrainScaleS and

SpiNNaker (the last two originating from the Human Brain Project), and compares their performances

across various dimensions (energy efficiency, programmability, speed, etc.). Other notable surveys describe

and provide similar statistical comparisons of these processors, in addition to the more recent Intel

Loihi, DYNAP, PARCA, Braindrop, ODIN, and Deepsouth (Bouvier et al. (2019), Thakur et al. (2018),

Rajendran et al. (2019)). The Intel Loihi and its recent applications have been extensively discussed in

Davies et al. (2021), which outlines empirical improvements over von Neumann processors and current

limitations of the Loihi and neuro-processors in general. The variety of domains the Loihi was shown

to be successfully implemented in demonstrates the general applicability of SNNs, while the quantified

gains in energy efficiency validate the benefits of the neuro-processor. In addition, the authors find

that conventional DNNs exhibit little to no benefits when run on the Loihi, but SNNs achieve orders of

magnitude less energy consumption and latency in some applications. This appears to be in part due to

the spiking neuron dynamics simulated within the Loihi contributing to SNN computational capabilities

but not being utilized by DNNs, rather only incurring some additional costs in energy and time. These

results highlight the utility of the spiking computation model, since attempts at forcing conventional

algorithms and models on the neuro-processor may nullify the supposed benefits. While much research

has been dedicated to the aforementioned neuro-processors, the recent releases of novel neuro-processor

designs (such as SPOON; Frenkel et al. (2020), and µBrain; Stuijt et al. (2021)) indicates continuing

8The observation and prediction by Gordon Moore that the number of transistors in an integrated chip doubles every
two years, thanks to advancements in transistor design. This corresponds to an increase in computational power on chips of
the same size.

23

2.3. Neuromorphic Computing

efforts in developing innovative neuromorphic architectures. An adjacent line of research pursues a class of

memristor-based processors that model dynamics differently, where the variable conductances/resistances

of memristors could encode information and model adjustable synaptic connections, for example.

Several more publications investigate the effects on speed and energy efficiency when algorithms are

run on neuro-processors. In a practical study to test the advantages of neuromorphic computation, SNNs

trained with R-STDP on a BrainScaleS2 neuro-processor were used to control an agent in playing the

game of Pong (Wunderlich et al. (2019)). The authors observed one and three orders of magnitude

improvements in speed and energy efficiency (through current measurements), respectively, when the SNN

was run on the neuro-processor compared to a NEST-based CPU simulation. The authors of Ceolini et

al. (2020) address the problem of hand-gesture recognition with a neuromorphic sensor fusion approach,

where DVS streams and EMG signals (converted to spikes/events) are used to train SNNs running on

a Loihi or ODIN neuro-processor through the spike-based SLAYER backpropagation algorithm. With

respect to a GPU-based implementation, the neuromorphic alternative is reportedly at least 30 times more

energy-efficient, though inference is 20% slower. Here, energy efficiency is quantified by the energy-delay

product (EDP): a product of average energy consumption and inference time. Taunyazov et al. (2020)

present a visual-tactile SNN (VT-SNN) which fuses data from a Prophesee event camera and a novel

spike-based tactile sensor to accomplish robot manipulation tasks requiring object classification and slip

detection. In comparison to state-of-the-art DNNs run on GPUs, the SNN classifiers running on a Loihi

performed similarly while consuming 1900 times less power and exhibiting lower latency (since reliable

inferences could be made before all spikes from the full input had been processed). In the domain of speech

recognition, Blouw et. al. convert pre-trained DNNs to SNNs, then compare their performances when

run on an “ultra low power” Movidius Neural Compute Stick and a Loihi neuro-processor, respectively

(Blouw & Eliasmith (2020)). Results show a four-fold increase in energy efficiency for the converted SNNs

compared to the DNNs. These gains are believed to be due to the amount of “synaptic operations” (SOPs)

in the SNNs being proportional to actual activity in the input, unlike the FLOPs9 in the DNNs, and

the ability to substitute the relatively expensive dot-product operations with sums of binary values. In

Göltz et al. (2021), a proposed backpropagation rule is used to train SNNs for MNIST classification on a

BrainScaleS processor and then compared to the performance of a conventional CNN running on a Nvidia

Tesla P100 GPU. Using an energy-per-classification metric, the authors show that the neuromorphic

implementation is (approx. 100 times) more energy-efficient, at the cost of a slight drop in accuracy and

the number of classifications per second (since the GPU implementation utilizes parallelization, while

individual images must be processed sequentially on the SNN). The advantages of neuro-processors in

energy efficiency are particularly evident, though further research on SNN architectures and learning may

aid in eliminating any deficiencies in performance.

A particularly interesting, related field of research is that of neurorobotics, which involves the design

of computational structures that are inspired by the human and animal nervous systems in robots (Van

Der Smagt et al. (2016)). Just as neuromorphic computing studies brain-inspired computer architectures,

the field of neurorobotics studies brain-inspired robot sensing and actuation. This encompasses replicating

9Floating point operations per second

24

Chapter 2. Related Work

distinct brain regions and their connectivity patterns, with inspiration mainly drawn from the field of

neuroethology: the study of the neural mechanisms underlying animal behavior, especially the sensorimotor

loops involved in executing complex behaviors. In a synergistic relationship (as in the case of neuromorphic

computing), neurorobotics is guided by neuroscientific findings in developing novel robot designs, which in

turn can provide useful test beds for furthering our understanding of the brain and nervous system.

A review of the field in K. Chen et al. (2020) demonstrates the utility of neurorobotics for explaining

how neural activity gives rise to intelligence, as a form of ”computational neuroethology”. The authors

survey a variety of neurorobotics applications that have been used to study aspects of biological behaviour,

including perception, navigation, memory, attention, locomotion, and social interaction. Particularly

interesting implementations, referred to as ”neuromorphic robots”, incorporate neuromorphic hardware

(TrueNorth neuro-processor, DVSs, etc.). Among examples of robot designs with high levels of neurological

inspiration is shown in Dumesnil et al. (2016), where SNNs are used to implement classical and operant

conditioning through STDP in a maze navigation task. The two biologically fundamental modes of

learning are realized in a neurologically-grounded design of a mobile robot platform, composed of a brain

(a FPGA module), a sensory system (an RGB camera and proximity sensors), a nervous system (an

Arduino microcontroller), and a body. The authors of Lobov et al. (2020) present a similar approach to

classical and operant conditioning with STDP-based SNN learning on a LEGO robot for simple obstacle

avoidance during navigation. Through self-organization of neural pathways, the robot learns associations

between certain sonar readings (conditional stimuli) and tactile sensor readings (unconditional stimuli)

following collision events, which then help in avoiding future collisions. After learning, the robot’s sense

of touch is removed, and it is able to predict and anticipate collisions only from sensor readings, due

to the learned associations. The Neurorobotics Platform (NRP) provides a framework for the design

and experimentation of neurorobotic systems in simulated environments, allowing the design of robot

bodies and brain models or “neuro-controllers”, connecting them to sensors and actuators, and running

experiments like these in simulation (Falotico et al. (2017)). Similar to general computer and engineering,

robotics could benefit from ongoing research and development efforts aimed at drawing inspiration from

the brain.

In the present work, we do not run SNNs on neuromorphic hardware, instead aiming to investigate the

feasibility and utility of an event-based SNN approach for the chosen robotics problem on conventional

hardware. Nevertheless, the reviewed research motivates such a study on the basis of exploiting the

potential gains in energy efficiency and latency, as the subsequent step; a successful realization of the

proposed approach would motivate incorporating neuromorphic hardware in future extensions. On a

broader scale, this may additionally inspire the pursuit of neuroethology-based robot designs that advance

further into the realm of biological realism.

2.4 Obstacle/Collision Avoidance

Obstacle avoidance is a critical feature for planning robot motions in evolving, dynamic environments,

where obstacles to task completion may appear in real-time and invalidate initial motion plans. This

section encompasses discussions on particularly seminal works in the domain of collision/obstacle avoidance,

25

2.4. Obstacle/Collision Avoidance

paying special attention to those employing methods relevant to this thesis, and further on approaches

tackling manipulation problems and utilizing camera sensors.

Research on the rudimentary issue of reactively computing collision-free paths has lead to a long history

of established methods, such as vector field histograms (VFH) (Borenstein et al. (1991)), the Dynamic

Window Approach (DWA) (Fox et al. (1997)), and the elastic strips framework (Brock & Khatib (2002)),

to name a few. Among the first was Khatib’s artificial potential fields (PF) method, which represents task

criteria in the form of attractive and repulsive forces acting on an agent moving within a virtual force

field (Khatib (1986)). PF techniques have been extensively applied and improved upon over the years,

and are utilized in the present work. Various categorizations of obstacle avoidance approaches have been

presented in the literature, including local vs. global methods (Rai et al. (2014), Zhang et al. (2019)),

classes of grid-based, potential field-based, sample-based, and discrete optimization methods (Feng et al.

(2020)), among others. A complete survey is not attempted here, but Minguez et al. (2016) provides a

helpful review of classical methods.

Optical flow (OF) estimation, a bio-inspired computer vision technique that is applicable to robot

obstacle avoidance, shares similarities to methods proposed in this thesis, and thus deserves mention. OF

quantifies the apparent motion of light intensity patterns observed on a sensor (biological or synthetic)

as it moves relative to observable objects, and is used by organisms, such as honeybees, for navigation

(Van Der Smagt et al. (2016)). This can provide estimates of ego- or object motion, which facilitate

tracking and collision avoidance, as demonstrated in various works. For example, in Schaub et al. (2016),

OF is computed from monocular camera data on an autonomous car and used in an optimizer to derive

maneuvers that avoid obstacles. OF estimation approaches are often split into two categories with

distinct downsides. In estimating object motion, dense OF methods track changes to every pixel between

consecutive frames and sparse OF relies on tracking identified features between frames. The former

imposes high computational and memory costs, while the latter depends on the reliability of feature

matching algorithms and may not generalize if object models have to be specified a priori (H. Lee et al.

(2021)). In comparison, the proposed approach is envisioned to eliminate unnecessary computations by

virtue of event-based processing, and be independent of specific obstacle features.

Compared to 3D sensors, IMUs, and laser sensors, cameras are less frequently utilized for obstacle

avoidance. Nevertheless, works that do employ monocular cameras offer more relevant comparisons to ours,

though most concern mobile robots and UAVs. H. Lee et al. (2021) demonstrates DNN-based obstacle

recognition and avoidance on a UAV navigating a plantation, where trees are recognized, distances are

estimated, and free regions in the image space are determined for simple heading adjustments. However,

limitations include a restriction to obstacles that the DNN is trained to recognize and the computational

expense of running the model. In Hua et al. (2019), semantic segmentation DNNs are trained to recognize

roads and obstacles a mobile robot encounters, which are then incorporated in PF-based local path

planning. More rudimentary approaches involve classical computer vision methods on RGB data, such as

detecting contours for obstacle detection (Martins et al. (2018)) or using feature extractors like SURF

to recognize known obstacles (Aguilar et al. (2017)), followed by searching for free regions and applying

corrective motions. These approaches may be susceptible to changes in lighting conditions, where ECs

26

Chapter 2. Related Work

are expected to perform better (see section 2.1). In addition, local heading adjustments characteristic

of purely reactive approaches necessitate subsequent computations of rectifying velocity commands that

return the agent to its original path. In our work, we propose using dynamic motion primitives (DMPs)

for adaptive high-level path plans that obviate the need for extra corrective computations. The significant

on-board computations associated with some of these works may also present opportunities to demonstrate

neuromorphic solutions that could impose less.

With regards to robot manipulation, obstacle detection and avoidance could be a particularly crucial

capability in safety-critical human-robot collaboration (HRC) settings. The authors of Chiriatti et al.

(2021) design a control law for a UR5 manipulator that incorporates collision cylinders instantiated

from estimates of obstacle geometries, positions and velocities, demonstrating avoidance behaviours with

different constraints placed on arm motion. The method was tested only in simulation with prior obstacle

information; extending this to real scenarios would require dedicated sensors and algorithms for estimating

the pose of every person and object with reasonable accuracy. In Safeea et al. (2019), collision bounds

on a person are incorporated in a PF approach to controlling a KUKA LBR iiwa arm. These bounds

are obtained using IMUs placed on persons in an industrial workspace. A recently proposed approach to

manipulator collision management relies on novel proximity sensors placed on the arm, which provide

time-of-flight, IMU, and gyroscope readings (Escobedo et al. (2021)). Using quadratic programming

(QP) for motion control, the authors achieve not only avoidance but also anticipation and post-contact

trajectory adaptation. While impressive and demonstrably reliable avoidance behaviours are achievable

by deploying arrays of sensors in the environment, objects/persons, or the robot itself, this may limit

generalization to different scenarios, especially when a robot is not confined to a controlled workspace

or when arbitrary sensor placement is not possible. In contrast, our approach does not rely on external

sensors placed on objects or in the workspace, in favour of a single on-board camera.

Other notable implementations in manipulation scenarios integrate vision-based sensing, leveraging

RGB-D cameras in particular. Mronga et. al. use pointcloud data to extract convex hulls of obstacles and

persons incorporated as constraints in an optimization problem whose solution leads to avoidance motions

on a KUKA LBR dual-arm system (Mronga et al. (2020)). The optimizer leads to task-compliant obstacle

avoidance, but depends on multiple RGB-D cameras covering the workspace, and several pointcloud

processing steps. This is similar to a strategy followed in Song et al. (2019), where obstacles interfering

in a bin-picking task are avoided by detecting moving objects in a pointcloud and accordingly adjusting

motions of a Techman TM5-700 arm through a PF algorithm. Here, data from two dedicated Kinect

cameras, placed in appropriate positions in the workspace, are pre-processed to remove known background

elements and the robot arm, thus limiting the approach to the environment it was designed for. These

implementations benefit from inherent depth perception that monocular RGB or event camera-based

methods do not. However, event-based processing is expected to impose a significantly lower computational

overhead than pointcloud processing, which may be a particular concern in applications that require rapid

reactivity.

A few publications are particularly relevant to this thesis for their similar approaches to obstacle

avoidance, and thus merit special consideration in the remainder of this chapter. We start with examples

27

2.4. Obstacle/Collision Avoidance

of online trajectory adaptation that utilize PFs. In Park et al. (2008), an obstacle avoidance term in the

equations of dynamic motion primitives (DMPs) is first introduced and used within a PF formulation to

enable avoidance of static and dynamic obstacles in simulation and on a real manipulator. We similarly

utilize DMPs here as online-adaptive motion planners, and draw insights from the authors’ mathematical

integration of obstacle avoidance information which informs part of the approach presented in section 4.1.

In a similar direction, Scoccia et. al. present an approach to offline planning of manipulation trajectories

along with online adjustments for obstacle avoidance, using a formulation of potential fields that operates

on the Jacobian matrices for null space control and evaluating in simulations (Scoccia et al. (2021)).

Another recent implementation of manipulator obstacle avoidance from Oussama Khatib’s group combines

PFs and elastic bands for adaptive trajectory planning on a Franka arm (Tulbure & Khatib (2020)). As

in aforementioned works, an RGB-D camera capturing the workspace provides pointcloud data which is

processed to estimate obstacle positions that affect the PF. The authors augment a PF algorithm with an

elastic bands planner, which enables adjusting a global plan with minimum deviations, thus addressing the

susceptibility of PFs to local minima solutions. This resembles our application of PFs for local velocity

corrections, while DMPs maintain an adaptive high-level plan that ensures global convergence to the goal.

In similarity to related works, pointcloud processing introduces a computational expense (the bottleneck

of the approach, as expressed by the authors) and a dependence of pre-processing procedures on the

camera position and/or robot platform, thus placing theoretical limits on generality and applicability

to different environments. Both problems may be tackled by the on-board event camera proposed in

the present work. Nevertheless, these approaches share a central idea with the present thesis: online

adaptation of pre-planned trajectories to address unpredictable environment dynamics in real-time.

An integral aspect of our work is event-based vision (to which section 2.1 is dedicated), whose utility

for obstacle avoidance has been demonstrated in several publications. Milde et al. (2015) presents a

preliminary application of event-based collision avoidance on a mobile robot by computing OF from DVS

data and deriving simple velocity commands. Here, the usage of ECs is motivated by the redundancy in

data and wastage of computations associated with processing conventional camera images, particularly

when the robot is stationary. The authors suggest extending their work with a ”neuromorphic circuit”

and SNNs to address some limitations, including a PCA-based method for computing OF from events

that requires a significant amount of data. In Sanket et al. (2020), dynamic obstacle avoidance on a

quadrotor is achieved by training CNNs on event frame data to estimate the OF of moving objects in a

semi-supervised fashion, while placing priors on obstacle shape (sphere) for tractability. The computed

flow is then used in a PID controller for avoiding flying objects while maintaining a reference position.

This differs from the type of tasks we seek to address, where the robot must avoid obstacles whilst actively

moving towards a goal. The authors also design an encoder-decoder CNN for ”deblurring” constructed

event frames for better OF estimates. In the present work, we employ SNNs, instead of DNNs, since they

are inherently better-suited to event data processing. In a navigation scenario, Yasin et. al. utilize a DVS

for car obstacle avoidance in low-light settings, demonstrating superior reaction times when compared

to standard cameras (Yasin et al. (2020)). Objects in the event image are obtained through denoising

28

Chapter 2. Related Work

(KNN10), corner detection (LC-Harris), segmentation (hough transforms) and filtering procedures, and

used in a novel re-planning algorithm. While these efforts present viable applications of event data, much

of the requisite pre-processing and processing may be obviated by utilizing SNNs: the natural complement

to event-based vision, as is pursued in the present work.

This idea of SNNs processing event data has nevertheless also been demonstrated in recent years.

Salvatore et al. (2020) demonstrates neuro-inspired UAV collision avoidance by running event data on an

SNN converted from a trained deep Q-Learning (DQN) ANN. Successful avoidance behaviour is achieved

in AirSim simulations after training the DQN agent on emulated event data, transferring learned weights

to an equivalent SNN, and further training the SNN with data from successful trials. A similar aspect

to our work is the emulation of event data from frame-based camera data to demonstrate the efficacy

of the proposed approach. The use of SNNs for processing the spatio-temporal event data is motivated

by their natural compatibility. In addition, this strategy for capturing temporal aspects of the task is

preferred over LSTM-based modules, which would reportedly impose a heavier computational burden.

Perhaps of greatest similarity to our work is the feasibility study of a neuromorphic approach to obstacle

avoidance presented in Milde et al. (2017). Their method involves processing event data from a DVS

mounted on a mobile robot in SNNs implemented on a ROLLS neuro-processor, whose output is decoded

into avoidance and target-following behaviours by aggregating responses of spiking neuron populations.

As in our approach, SNN connections are non-plastic (i.e. not adjusted through learning); the inherent

properties of the SNN architecture is shown to facilitate viable navigation behaviours. Some of the

reported challenges also apply to our work, including i) difficulties reacting to obstacles that suddenly

enter the FOV, ii) smooth surfaces producing few events, leading to limited visual saliency, and iii) event

noise filtering possibly exacerbating the perception of low-contrast objects, which would produce even less

events. The present work aims to study a similar approach but in the context of manipulation, which

presents more challenges compared to navigation.

Evidently, a significant amount of recent research on obstacle avoidance deals with UAVs, followed

by mobile robots. A relatively small segment is in the manipulation domain, and a few works take a

neuromorphic approach that involves either event-based vision or SNNs. To the best of our knowledge,

the approach proposed in this thesis is unique in addressing manipulator obstacle avoidance using event

data from an on-board camera, SNN processing, and adaptive trajectory representations. Most reviewed

solutions rely on external cameras and classical computer vision methods for filtering images, removing

background and robot, corner and line detection for object segmentation, etc. Our proposed approach

may support the argument that utilizing event data and SNN processing could eliminate the necessity of

manual operations that preclude generalization over different environments, lighting conditions, platforms,

and sensor setups. To the detriment of comparative evaluations to this approach, most related and

compelling works use RGB-D or point cloud data, and fewer exclusively utilize RGB images: the closest

analog to event data. This is compounded by the relative scarcity in quantitative metrics and results

of obstacle avoidance performance in the reviewed literature, which complicates establishing the current

state of the art and grounding metrics on which to objectively evaluate the proposed implementation.

10The K nearest neighbours algorithm

29

2.5. Concluding Remarks

Nevertheless, we formulate a list of performance metrics by drawing inspiration from publications that do

report quantitative results and suggesting our own (see section 5.1.3) in order to conduct a systematic

analysis of performance.

2.5 Concluding Remarks

The review of the literature presented in this chapter has provided notable insights on the central

topics of this thesis and a perspective on similar approaches. The stated advantages of event cameras

for visually-guided autonomous systems were substantiated by studies on applications in a variety of

contexts. Spiking neural networks were presented as a natural paradigm for processing event data by

mirroring visual cortical processing, and found to be at least as powerful as conventional networks,

compatible with different data modalities, and applicable to many problems, though most publications

address limited navigation and flight scenarios. The best method(s) to train SNNs remains a topic

of intensive research, but various studies have demonstrated success with promising candidates, while

others have even shown the inherent algorithmic utility of SNNs devoid of any learning capabilities. The

section on neuromorphic computing has exhibited implementations of event-based vision and spiking

networks on neuromorphic hardware, designed to exploit spike-driven communication, and the ongoing

development of neuro-processors, providing concrete demonstrations of the potential of brain-inspired

computing. While implementations on conventional hardware do not fully realize reported improvements

in energy efficiency and communication latency, studies such as the one conducted in this thesis investigate

and demonstrate the applicability of a neuromorphic approach, which can then be extended to utilize

neuromorphic hardware. Existing software simulators of both event cameras and SNNs, surveyed in the

respective sections, provide opportunities for the rapid development and testing of neuromorphic pipelines,

as is done in the present work. For the ubiquitous problem of obstacle avoidance in robotics, we find that

most efforts have targeted aerial and mobile robots, though a few provide encouraging demonstrations of

similar neuromorphic methods. Our novel approach to obstacle avoidance in manipulation may be a step

towards addressing limitations of the comparatively high computational expense of conventional RGB and

depth data processing, dependence on classical vision methods that hinder generalization and robustness

to varying operating conditions, and non-adaptive motion representations in goal-directed tasks, all while

contributing to the exploration of the potential of brain-inspired design.

30

3

Background

In this chapter, we provide extra background information on the topics of event-based vision, spiking

neural networks, and dynamic motion primitives. These sections serve as supplementary sources for

forming a better understanding of underlying concepts, particularly those that have not been thoroughly

discussed in chapter 2. This information may be helpful in particular to the unfamiliar reader, but is

nevertheless not vital for understanding the key elements of our approach and subsequent discussions and

analyses.

3.1 Event-Based Vision

Silicon retinas were developed and studied by Mahowald and Mead (Mahowald (1994)) with the aim

of imitating the neural architectures of biological retinas in analog VLSI circuits1. This research gave rise

to the field of neuromorphic computing, which investigates the potential in mimicking neurobiological

structures in silico for progressing the capabilities of AI systems towards the superior efficiency and efficacy

of their biological counterparts. Contemporary realizations of these sensors are known as neuromorphic

retinas, dynamic vision sensors (DVS), or event cameras (ECs), and share the same working principles.

The pixels in an EC mimic retinal ganglion cells by asynchronously emitting a binary signal, i.e. an event,

only when the incident light intensity significantly changes. Using a so-called address event representation

(AER), the pixel arrays provide streams of spatio-temporally-registered events which encode typically

interesting information, such as motion. Consequently, ECs selectively acquire information depending

on scene dynamics. By contrast, conventional frame-based cameras synchronously transmit absolute

intensities at all pixels, driven by an independent external clock. Though familiar and convenient, this

information representation can be redundant and/or wasteful.

The practical advantages of ECs are manifold:

❼ Addressing potential ”undersampling” due to fixed frame-rates, where inter-frame information is

lost (G. Chen et al. (2020))

❼ High energy efficiency and low power consumption, with ratings around 10-30mW (Dubeau et al.

(2020)) and 1-10mW (Maro et al. (2020))

❼ High dynamic ranges, facilitating better adaptivity to significant changes in luminosity

1Very large-scale integrated circuits

31

3.1. Event-Based Vision

❼ Low latencies and high temporal resolutions, leading to high effective data capture rates

❼ Mitigating effects of motion blur

These properties are primarily products of the ECs’ novel data representation and acquisition mechanism,

which result in capturing the most useful information, often in relative signal changes, and avoiding

redundancies. The exploitation of said characteristics for visual processing applications has motivated

efforts into developing event cameras and research into event-based vision. Refer to section 2.1 for a

further discussion on these properties and for demonstrations in applied research.

These relatively novel sensors are not devoid of drawbacks that limit their wide applicability. Current

ECs have relatively low resolutions, such as 128× 128 (Lichtsteiner et al. (2008)), 240× 180 (Brandli et al.

(2014)), and 346×260 in established models, though some manufacturers like iniVation provide resolutions

that reach 640× 480. Event data is reportedly often noisy (Mitrokhin et al. (2018), Milde et al. (2017))

and may require additional filtering. The principal challenge with ECs is perhaps the necessity to develop

new algorithms and methods to process the novel asynchronous event stream data and successfully solve

visual processing tasks as well as conventional methods do. While this remains a topic of ongoing research,

various adaptations of common algorithms for pose estimation, image recognition, object tracking, etc.

have been developed in addition to neuromorphic algorithms, such as those employed in spiking neural

networks (SNNs).

At present, various EC models are commercially available; we mention a notable few here. Arguably

the first practical EC, the DVS, implements pixels that respond logarithmically to light intensities and

emit events at relative changes, reportedly achieving ”orders of magnitude” lower data output rates

compared to normal camera sensors (Lichtsteiner et al. (2008)). The ATIS (Asynchronous Time-Based

Image Sensor) differs in its hardware design but implements the same concept, and is characterized by a

distinctly higher dynamic range (143 dB vs. 120 dB) and a higher resolution (304×240 vs. 128×128), but

a larger pixel area (Posch et al. (2010)). The widely-used DAVIS (Dynamic and Active-pixel Vision Sensor)

succeeded the DVS, incorporating conventional frame-based output in addition to the event output, and a

higher resolution (Brandli et al. (2014)). In one of our experiments, we use a DAVIS346; a model with a

346× 260 resolution. The most prominent manufacturers of the aforementioned ECs are iniVation and

Prophesee, though others including Samsung and CelePixel have contributed their own models.

An event can be represented as a tuple of pixel position, emission timestamp, and polarity: ek =

(xk, tk, pk). Pixels in an EC are independently monitored to compute a measure of the difference in

successive intensities, the simplest example of which is the difference in raw intensities:

∆L(xk, tk) = L(xk, tk)− L(xk, tk−1) (3.1)

When this difference crosses a pre-defined threshold, θ, event ek is emitted with a positive or negative

polarity, pk, and is thus designated an ON or OFF event, respectively:

pk =







+1, if ∆L(xk, tk) > θ

−1, if ∆L(xk, tk) < −θ
(3.2)

32

Chapter 3. Background

Facilitated by the AER and similar representations, an EC transmits a stream or vector of such ek tuples.

It follows that event data can be emulated from conventional camera data, a method often used

due to the scarce availability of or relative expense of acquiring ECs (Garćıa et al. (2016), Hu et al.

(2021), Rebecq et al. (2018)). In its simplest manifestation, this method involves subtracting RGB or

grayscale intensities in consecutive video frames to estimate ∆L(xk, tk), then deriving events using the

above equations. This concept is employed in many works, including this thesis project, to expedite the

development and evaluation of event-based algorithms. Although it forgoes the high temporal resolution

advantages of ECs, since information sampling rate is upper-bounded by the source camera’s frame-rate,

it facilitates preliminary applications of event-based processing prior to deployments with a real EC.

3.1.1 Event Data Representations

While ECs usually output events in a stream of ek tuples, a variety of event data representations

have been proposed for their practicality and suitability for addressing certain tasks. Some of these

representations have been reviewed in G. Chen et al. (2020) and Gallego et al. (2022).

Event spike tensors (ESTs) represent counts of events within uniform time intervals and pixel locations

by discretizing the temporal dimension in bins and producing T ×H ×W 2, disregarding event polarity

(Dubeau et al. (2020)) tensors. In some publications, this is referred to as a voxel grid representation.

Often, the quantities in the voxels are additionally normalized for desirable properties. This representation

is convenient for conventional convolutional algorithms, such as CNNs.

Time surfaces (TS) are a 2D map representation where every pixel location is assigned the timestamp

of its last event (Maro et al. (2020), Y. Zhou et al. (2021)). TSs are particularly used to encode motion

histories, where the intensity of each pixel is larger the more recent the last event, i.e. the motion, in

that location is. An exponential decay kernel is often applied to the time values to affect pixel intensity

according to event recency.

Several representations map events to image-like arrays, which can be achieved in myriad ways. The

most common involve an aggregate measure of events at each pixel, such as counts or averages of event

timestamps (Mitrokhin et al. (2018)). This idea is easy to extend to similar measures, such as mean event

emission rate (for e.g., by averaging event counts), but which often thus discard temporal information.

Conventional brightness images have also been reconstructed from event data , such as in Scheerlinck et al.

(2020), in which an RNN is trained to perform the reconstruction. Simpler representations could involve

marking pixels with event polarities at every event, an idea we use in our own event representation.

We refer to Gallego et al. (2022) for an excellent and recent survey on event-based vision which delves

in more detail into the topics we briefly discussed in this section.

3.2 Spiking Neural Networks

The so-called third generation of neural networks, spiking neural networks (SNN), are neuromorphic

and more biologically-plausible models in which neurons communicate via asynchronous ”spikes”, as

2T is the time period, while H and W represent the height and width of the pixel array, respectively

33

3.2. Spiking Neural Networks

Output Spikes

Spike emission at crossing threshold

Potential decay

Potential increase at input spike

Figure 3.1: An illustration of spiking neuron dynamics.

biological neurons seem to do. Also called event-driven NNs, these models present a paradigm shift in

neural processing, abandoning the synchronous propagation of real-valued signals that is characteristic of

artificial neural networks (ANNs) and attempting to replicate the complex neuronal dynamics observed in

the brain. Similar to ECs, SNNs have been conceptualized as a potential means towards realizing the

impressive capabilities and efficiency of biological intelligence, but also present practical advantages in

modern computing systems.

Figure 3.1 illustrates the dynamics of a spiking neuron. Neurons asynchronously propagate sequences

of sparse, binary signals, termed spike trains, across their synapses. Each pre-synaptic spike contributes to

the post-synaptic potential (PSP) or membrane potential, v, of a post-synaptic neuron: an internal analog

representation of neuronal activation that decays over time, and an approximation of ionic concentrations

across a nerve cell’s membrane. A neuron whose potential exceeds a threshold, vthresh, emits a spike, also

called an action potential, and enters a short refractory period in which it is inhibited from spiking for a

short duration3. Following a spike, the potential is reset to a baseline value, vreset. Individual neurons

therefore fire or are ”active” only in response to a significant aggregate of recent inputs. Information

can be contained in average spiking rates and/or the relative timings of spikes, a concept drawn from

neuroscientific evidence (Fairhall et al. (2001)). The time-varying potential signal inherent to every neuron

and the independent spiking latencies create an additional temporal dimension in spiking networks.

The now ubiquitous, second-generation NN model was devised with some inspiration from biology,

particularly in structural concepts, but nevertheless fundamentally differs in computational aspects. Here,

neurons communicate via real-valued, continuous signals computed by applying a non-linear (for e.g.,

sigmoidal) activation function to a summation of real-valued inputs. These signals can be thought of as

an approximation of the firing rate of a spiking neuron. Though algorithmically expedient, this model

necessitates that all neurons are constantly ”active” and perform these operations with no regard to the

significance of the inputs, which may be a contributing factor to the substantial power consumption of

3The refractory period is not depicted on Figure 3.1.

34

Chapter 3. Background

modern DNNs applied in complex problems that the brain can achieve with relative ease and efficiency.

In addition, this ignores the temporal dimension in relative spike timings inherent in brain signals and

which is thought to encode useful information and possibly be a critical factor in the brain’s capabilities.

While synaptic adjustment is known to drive learning in biological networks, the ANN learning approach

we rely on the most today, the popular back-propagation rule (Rumelhart et al. (1986)) is biologically

implausible. Backprop relies on real-valued neuronal signals, global error computations, and the flow of

information backwards in space and time; all of which are unlikely to occur in the brain. This observation

has been made by pioneers and prolific researchers of backprop (Ananthaswamy (2021), LeVine (2017)),

who have suggested more biologically-plausible principles as a means to advancing machine learning.

Despite the significant success of DNNs in complex, but specialized, tasks, targetting these discrepancies

holds potential for enhancing computational capabilities and addressing the growing computational, power,

and data requirements often imposed by these networks.

The neuromorphic computational principles of spiking networks may provide a solution for the

deficiencies of modern ANNs. Through a sparse representation of information and event-driven processing,

SNNs could be more efficient by processing only salient or important data, and thus lowering energy

expenditure and perhaps increasing data-efficiency. Aside from potential immediate benefits, SNNs can

facilitate exploring a novel computational paradigm, which may ultimately prove advantageous, if not

groundbreaking, for machine learning. When implemented on embodied robotic agents, SNNs may also

represent useful testbeds for neuroscientific studies (such as in the field of neurorobotics).

The novelty of this computational paradigm, however, presents the primary challenge associated with

successful, practical applications of SNNs. As in the case of ECs, we are faced with the problem of

devising algorithms that appropriately handle and usefully apply spiking data to AI problems. Moreover,

a proper implementation of SNN dynamics and response asynchrony necessitates developing specialized

neuromorphic hardware on which they can be run. These neuro-processors must abandon the familiar

digital, von Neumann computing architectures (see section 2.3), which further exacerbates software

development. Another challenge pertains to developing SNN learning algorithms. SNN spike trains

resemble a sequence of Dirac delta functions: a non-differentiable signal. This limitation, apart from the

aforementioned biological implausibility of gradient descent in the brain, motivates research into local

learning rules and other alternatives. Candidates include local spike-timing-dependent plasticity (STDP),

variations of Hebbian learning, and approximations of backprop.

Ultimately, as asserted in various studies reviewed in section 2.2, an immediate challenge is the

achievement of similar and competitive performance to DNNs in AI problems, though there is significant

ongoing research on exploring SNN formulations and learning algorithms (Pfeiffer & Pfeil (2018), Tavanaei

et al. (2019)) and various propositions for spiking models and neuronal coding strategies.

3.2.1 Spiking Neuron Models

Modeling the complex dynamics occurring at neuronal synapses to a high level of detail is a difficult

endeavour. Consequently, various mathematical approximations and convenient abstractions have been

employed in SNN research to produce a variety of neuron models at several levels of fidelity, of which we

35

3.2. Spiking Neural Networks

discuss a prominent few.

I

RNa RK RL

ENa EK EL

CM

INa IK IL

v

Figure 3.2: A schematic diagram of an elec-
trical circuit that describes the Hodgkin-
Huxley model. Adapted from Hodgkin &
Huxley (1952).

The Hodgkin-and-Huxley Model Hodgkin and Huxley

presented what is often cited as the earliest formal model of a

spiking neuron in the 1950s, which aimed to accurately model

ionic flows across neuronal membranes in terms of differential

equations describing a capacitive circuit (Hodgkin & Huxley

(1952)). Through experiments on the squid giant axon, they

found that the neuronal membrane contains voltage-gated

ion channels that modulate the flow of sodium, potassium,

and a group of less significant ions across the membrane,

giving rise to the electrical and spiking activity observed

in nerve cells. An electrical circuit approximating the H-H

model is illustrated in Figure 3.2. In essence, the membrane

is modeled by a capacitor in parallel with separate resistors,

Ri, and batteries, Ei, that define the sodium (Na), potassium

(K), and so-called leakage (L) currents: Ii
4. The batteries represent the ”equilibrium potential” of each

ion; the difference between these potentials and the membrane potential, v, is determined by the ratio of

concentrations of that ion inside and outside of the cell. The membrane potential, v, can be expressed in

terms of the sum of ionic currents and any applied current, I:

Cm

dv

dt
= I −

INa
︷ ︸︸ ︷

gNa(v − ENa)−

IK
︷ ︸︸ ︷

gK(v − EK)−

IL
︷ ︸︸ ︷

gL(v − EL) (3.3)

gNa(v, t) = ḡNam(v, t)3h(v, t) (3.4)

gK(v, t) = ḡKn(v, t)
4 (3.5)

Here, ḡ represents conductance per unit area. The authors modeled the conductance across each ionic

channel in terms of gates which must all be open for current to flow. Na channels contain three ”activation

gates” and one ”inactivation gate”, while K channels contain four ”activation gates”, whose probabilities

of being open at any time are governed by the voltage-dependent m, h, and n functions, respectively.

Distinctive forms and time constants for these functions were determined from empirical data and shown

to create the specific flow of ions that reliably produces the action potentials observed in neurons. The

H-H model is often defined by Equation 3.3 in addition to the three differential equations describing m, h,

and n. The reader is referred to the original publication for more details.

4where i ∈ {Na,K,L}

36

Chapter 3. Background

The Leaky-Integrate-and-Fire Model Other models seek to mimic these neuronal dynamics but

avoid the computational complexity associated with the H-H model, particularly for applications in large

networks. One such simplification is the leaky integrate-and-fire (LIF) model: the most commonly used

spiking model (Rajendran et al. (2019), C. Lee et al. (2020), Dupeyroux et al. (2021)). A LIF neuron

represents a leaky integrator modeled as a minimal RC circuit with an equation describing membrane

voltage that can be simplified to:

τv
dv

dt
= −(v − vrest) + I(t) (3.6)

where vrest is a resting potential, τv is a potential decay constant, and I(t) is the sum of input currents.

I(t) is formulated as the sum of input spikes, S(t), arriving from pre-synaptic neurons indexed by i,

multiplied by synaptic weights, w:

I(t) =

nl∑

i=1

wiSi(t) (3.7)

where Si(t) is simply 1 if a spike occurs at time t, and 0 otherwise5. If v exceeds vthresh, a spike is emitted

and v is reset to vreset:

v(t)← vreset, if v(t) > vthresh (3.8)

In addition, the neuron is prevented from firing again for a refractory period, Trefrac. The LIF neuron

thus maintains a decaying memory of past inputs and implements fundamental spiking and refractoriness

properties. The model is popular for its computational simplicity, although it ignores a number of neuronal

characteristics (Izhikevich (2004)). In our approach, we use a version of the LIF model presented in Diehl

& Cook (2015).

The Spike Response Model Gerstner’s spike response model (SRM) (Gerstner (1995)) is similar in

representing v as a weighted sum of input spikes, but models leakiness and refractoriness by convolving

input signals with response kernels. The evolution of v can be described with:

v(t) =

nl∑

i=1

wi(ǫ ∗ Si)(t) + (ν ∗ So)(t) (3.9)

where ǫ and ν represent spike response and refractory kernels, respectively, and So is the neuron’s output

spike train. Here, synaptic weights are multiplied by the convolution of the spike signal and ǫ, which is

often formulated to model an exponentially decaying contribution from each spike, but can incorporate

other effects, such as axonal delays (Shrestha & Orchard (2018)). As in the LIF model, a spike is generated

whenever a threshold is exceeded, whereas the refractory response following an output spike is facilitated

by ν. The SRM model essentially substitutes differential equations for convolutional filters.

The Izhikevich Model The Izhikevich model (Izhikevich (2003)) was designed to offer a compromise

between the biological realism of the H-H model and the computational simplicity of the LIF model. It

5This could be represented by a Kronecker delta function, for example.

37

3.2. Spiking Neural Networks

models neuronal dynamics through the differential equations:

dv

dt
= 0.04v2 + 5v + 140− u+ I (3.10)

du

dt
= a(bv − u) (3.11)

The membrane potential depends on synaptic input currents as well as a “membrane recovery variable”,

u, which models the behaviour of Na and K ionic channel gates. The function and constants were

selected to enable modeling the firing patterns of several known cortical neuron types, particularly through

parameters a, b, and c. These include regular spiking, bursting, and “chattering”. Spikes are emitted

when vthresh is crossed, triggering a reset of both v and u:

v(t)← vreset

u(t)← u(t) + c

}

if v(t) > vthresh (3.12)

Probabilistic Models A class of probabilistic spiking models have also been proposed as alternatives

to deterministic response characteristics, perhaps inherited from ANNs, particularly for properties that

are favourable to learning algorithms (Jang et al. (2019)). For example, by representing spike signals

through joint distributions of binary random processes, it is possible to derive surrogate gradients from

the distribution functions to enable common gradient descent. Instead of deterministically, neurons can

be set to spike with a probability proportional to the membrane potential, thus also mimicking noisy

spiking behaviour observed in the brain. Nevertheless, probabilistic SNNs remain relatively less prevalent.

3.2.2 Spiking Data Coding Schemes

The information embedded in spike trains can be interpreted through different neural coding schemes.

The concept of neural codes is inherited from neuroscientific research, in which two common problems are

the encoding of stimulus signals into the corresponding neuronal response and the reverse of decoding a

recorded response into the signal that gave rise to it. Decoding neuronal responses is of particular interest

for recovering a useful output from an SNN, such as in our present work.

The most common coding scheme is rate coding, in which a neuron’s response or level of activation is

measured by its mean firing rate over a given duration. This can include variants such as spike counts and

different methods of aggregating spike sequences. Rate codes eliminate specific spike timings and provide a

scalar value that is analogous to an ANN’s neuronal output. Despite essentially approximating conventional

ANNs under a rate coding, SNNs can still provide a better performance vs. energy consumption and

latency trade-off (Jang et al. (2019)).

With temporal coding schemes, temporal information is preserved by considering the absolute or

relative timings of spikes in some manner. For example, the time point at which an output neuron

spikes following the presentation of a stimulus can be associated with its activation level, thus potentially

requiring as few as a single spike from each neuron to determine its response (Mostafa (2017)). In the

38

Chapter 3. Background

present work, we use the so-called time-to-first-spike (TTFS) or first-spike-time (FST) coding, in which

the time at which a neuron first spikes represents the magnitude of its activation. Other approaches deal

with inter-spike intervals, assessing neuronal responses based on the durations between consecutive spikes.

Empirical observations indicate that brain computations are more likely to rely on a temporal code rather

than average firing rates due to information transmission speeds; the time required to perform visual

cortical computations seems to be significantly less than the time that would be required to accumulate

spikes to compute a reliable average (Maass (1997)).

Rank-order coding is a form of temporal coding in which information is contained in the order in

which output neurons spike, and is thus similar to FTS coding. However, most implementations of

rank-order coding allow every neuron to spike only once, resulting in an informative but efficient code

(Kheradpisheh et al. (2018), Kheradpisheh & Masquelier (2020)). This efficiency is due to signal sparsity

and can positively impact energy consumption, since energy is expended at spike emissions.

Another common scheme is population coding, in which the collective responses of a group, or population,

of neurons encodes relevant information. Evidently, the idea of aggregating responses is not orthogonal to

the concepts of rate and temporal coding, and is rather often complementary to these coding schemes.

Population coding was similarly devised from neuroscientific observations, and has been frequently applied

in practical applications (Tang et al. (2020), Milde et al. (2017), Stagsted et al. (2020)).

In section 2.2, we refer to publications that review research into SNNs and provide a more comprehensive

overview of the field.

3.3 Dynamic Motion Primitives (DMP)

Dynamic motion primitives enable capturing and reproducing discrete or rhythmic motions using a

set of differential equations that produce stable global attractor dynamics (Ijspeert et al. (2013)). For

discrete motions, DMPs model the evolution of a position variable, y, from its starting position to a goal

position, g, over time through equations describing a linear spring-damper system augmented with an

additional non-linear term:

τ ÿ = αy(βy(g − y)− ẏ) + f(s) (3.13)

τ ṡ = −αss (3.14)

where αy and βy control spring and damping characteristics and τ is a time scaling constant. The first

equation, termed the “transformation system”, describes the accelerations (and, by extension, velocities

and positions) that drive the system from the initial to the goal position. f(s) represents a non-linear

“forcing term”, which describes the shape of the trajectory through a superposition of basis functions and

depends on a phase variable, s:

f(s) =

∑

i wiψi(s)s
∑

i ψi(s)
(3.15)

where ψi are basis functions (usually of a Gaussian kernel) and wi are learnable weights that capture

the shape of the desired trajectory. A demonstrated trajectory can be learned by sampling positions,

velocities, and accelerations then solving for a least-squares solution wi using linear optimization. The

39

3.3. Dynamic Motion Primitives (DMP)

second equation models the so-called “canonical system”, which describes the evolution of phase variable

s from 1 to 0 (the start to the end of the motion). The function f depends on s instead of a time variable

in stepping through the sequence of functions that reproduce the trajectory shape, which enables scaling

the trajectory in time by modifying τ .

40

4

Proposed Solution

This chapter discusses the conceptual and technical details of the neuromorphic approach we propose

as a solution to problem of obstacle avoidance on a robot manipulator. In section 4.1, we present the

pipeline constituting our SNN-based obstacle avoidance module, describing each component and the

computations performed at each stage from the visual inputs to the trajectory adaptations that enable

real-time avoidance. After developing the theoretical foundations of these components, we describe their

software implementations in section 4.2, providing details on their integration in a unified framework,

notable functionalities, and parameters. The implementation details presented in this section may not be

necessary for a high-level understanding of our pipeline. The chapter closes with concluding remarks.

4.1 Proposed Approach

In this section, we present our approach to the problem of incorporating event-based vision and spiking

neural networks (SNNs) in adaptive motion execution for obstacle avoidance. We rely on dynamic motion

primitives (DMPs) to generate trajectory plans for moving a manipulator between arbitrary initial and

goal positions in accomplishing tasks such as reaching for an object. The DMP formulation supports

additive acceleration terms that modify position variable evolution and thus trajectory plans online,

which we utilize to inject obstacle avoidance information to adapt pre-planned trajectories and guide

the arm’s motion away from obstacles. This obstacle avoidance information is obtained by continuously

processing visual, event-based data within an SNN, then decoding output neural activation maps into

obstacle avoidance accelerations. The decoding procedure involves a potential field (PF) representation

for computing the most favourable obstacle avoidance direction. Therefore, real-time, online trajectory

adaptation is achieved by utilizing events induced by the relative motion of objects and the spatio-temporal

filtering properties of SNNs to extract reactive motions that modify high-level motion plans to react to

obstacles while maintaining progress towards the intended goal.

A core aspect of the proposed approach is the synergy between global planning and local corrections

for goal-directed, obstacle avoidance motions: an idea that has been advocated in the literature. In

the Handbook of Robotics, Minguez et. al. remark about the importance of combining ”the global

knowledge given by motion planning and the reactivity of the obstacle avoidance methods” for motion

system design (Minguez et al. (2016)). The alternative of a planner completely re-planning when obstacles

are encountered could impose higher computational expense and latencies (D’Silva & Miikkulainen (2009),

41

4.1. Proposed Approach

Feng et al. (2020))), which are particularly undesirable in dynamic environments. Instead, we utilize the

DMP as an adaptive planner, where perceived obstacles are handled by appropriately adjusting the next

waypoint during execution, and the DMP’s global attractor dynamics ensure that the trajectory gracefully

returns to the original path.

We use spiking neural networks (SNNs) to process event data. This is partially motivated by the

desire to study the more biologically-inspired form of neural networks, but also for its suitability for

event-based vision. Classical computer vision algorithms, including CNNs, are not directly applicable to

event data (G. Chen et al. (2020), Vitale et al. (2021)). On the other hand, the naturally compatible

SNNs are designed to process discrete, asynchronous, signals (Taunyazov et al. (2020), Salvatore et al.

(2020)), and may be key in achieving compelling real-world applications of ECs (Davies et al. (2021)). The

combination of events and spiking neurons holds the potential for capturing temporal information relating

to obstacle avoidance, such as through the decaying influence (neural activation) of an obstacle that has

just been observed. In Salvatore et al. (2020), the properties of SNNs allowing for a form of ”temporal

attention” are studied and contrasted to traditional LSTMs, which are considerably more computationally

expensive. The analog SNN dynamics generally induce temporal filtering properties that may negate

effects of noise and/or insignificant motions in event data (refer to the discussion on SNN spatio-temporal

filtering in section 4.1.3).

Next, an overview of the proposed approach and its main constituents is presented, followed by more

detailed discussions of each component: event camera emulation, convolutional spiking neural networks,

the obstacle avoidance components, and trajectory planning and motion control.

4.1.1 Overview

The proposed approach can be represented as a modular pipeline of specialized components. Figure

4.1 depicts the pipeline in a block diagram. The top block illustrates a high-level view of the proposed

approach: a module which is supplied with a pre-planned motion trajectory and produces an adapted

trajectory in a closed-loop, online procedure. The bottom part of the figure shows an expanded view of

the module, whose main sub-components can be divided into:

1. EC/EC Emulator: An event camera, or a camera from which event data is emulated, which

produces event data in an ”event image” representation.

2. Convolutional SNN: An SNN whose neurons are arranged in convolutional layers, and which

processes incoming ”event images” over time.

3. Obstacle Avoidance Component: A component that decodes SNN outputs (spike trains) into

obstacle avoidance velocities/acceleration, using a PF method.

4. Motion Controller (DMP): The motion controller that generates the end-effector positions (and

velocities) following a planned trajectory, and adjusts the plan according to the output of the

obstacle avoidance component.

42

Chapter 4. Proposed Solution

Event Camera /
Event Camera

Emulator

Convolutional
Spiking Neural

Network
Obstacle Avoidance

Component
Motion Planner
 and Controller

RGB Camera
Image

Events Image
Output Neuron

Activations

Obs. Avoidance
Adjustments Adapted Trajectory

Compute Potential
Field

Compute Resultant
Velocity Vector

Planned Trajectory

SNN-Based Obstacle
Avoidance ModulePlanned Trajectory Adapted Trajectory

Figure 4.1: A block diagram depicting the proposed SNN-based obstacle avoidance module (top) and a
break-down of its main components (bottom)

4.1.2 Event Camera Emulation

The primary sensory input to the obstacle avoidance module is event data. As outlined in section

2.1, ECs possess attributes that are potentially beneficial to autonomous systems in visual processing

tasks, including higher energy efficiency, low latencies, high dynamic ranges, and robustness to motion

blur. These attributes arise from the unique paradigm of pixels transmitting data independently and

asynchronously in response to exclusively significant inputs as inspired by biological retinas. Research on

ECs is still in relatively early stages and mostly involves aerial robots. This motivates the application and

study of event data in a manipulation scenario in this thesis.

In the present work, event data is derived from conventional RGB camera data through an emulation

software component: a method often used in the literature (see end of section 2.1). Following the

fundamental operating principles of an event camera, events can be generated from the thresholded

difference in intensity values at every pixel between consecutive timesteps. The resulting data resembles

the output of a real EC, such as a DVS. Section 2.1 contains a review of existing event emulation

implementations and their perceived deficits (coupling to rendering engines, no ROS support, etc.), which

motivate developing the event camera emulation component presented in this section.

Referring to section 3.1, an event ek = (xk, tk, pk) is emitted at pixel position xk at time tk with

polarity pk if the difference in intensities ∆L(xk, tk)
1 exceeds a threshold, θ.

Here, we utilize an event image representation, where an image-like frame composed of events is created

1An arbitrary difference measure: d(L(xk, tk), L(xk, tk−1)).

43

4.1. Proposed Approach

(a) RGB Image 1 (b) RGB Image 2 (c) Event Image

Figure 4.2: Emulated event image example: motion of an object on the right in consecutive RGB images.
Here, any event (ON or OFF) is indicated by a blue pixel on the ”event image”. This was captured as the
camera moved forward, thus inducing some events on the edges of distant objects.

by placing pk of every event at the respective pixel location. The resulting “event image”, Ie, matches

the shape of the source RGB images, but contains one-dimensional values, ik ∈ {+1, 0,−1}. Figure 4.2

visualizes an event image derived from two consecutive RGB images. For most purposes, the distinction

of event polarity is of little importance and OFF events are either ignored or treated the same as ON

events, as we do here (and similar to Dubeau et al. (2020) and Maro et al. (2020)). This representation is

adequate for processing in the next component of the pipeline: convolutional SNNs.

Limitations of Emulation

It is worth mentioning that the emulation of events from conventional camera data presents a limitation.

Deriving events from differences in consecutive RGB frames places an upper bound on the rate of event

generation: the camera frame rate. This diminishes the advantages of asynchrony of pixel events and the

theoretically higher transmission rates in comparison to conventional camera pixels. In addition, presumably

superior dynamic ranges and robustness to lighting conditions would not be observed. Nevertheless, this

method provides a reasonable approximation for demonstrating and presenting elementary arguments

for the approach proposed in this thesis. We verify the validity of this approximation by comparing the

output and consequent task performance of our emulator to those of a real EC in section 6.7.

Filtering Event Noise: Binary Erosion

In some cases, it is useful to apply filters on event images to eliminate undesirable or noisy events, such as

when the environment contains distracting background textures. We have found that a binary erosion

filter helps in producing cleaner event images in cases where textures or surfaces in the environment induce

too many events that may lead to over-reactive responses. Figure 4.3 depicts such a case, in which the

background (4.3a) produces a high concentration of events for small relative motions (4.3b), especially

from the rough carpet. However, applying a binary erosion filter to the image reduces the occurrences of

insignificant background events (4.3c). The filter consists of a fixed-size kernel of 1’s that scans the image

and eliminates points, i.e. events (abs(1)→ 0), if the surrounding region does not match all of the kernel’s

values. This effectively removes events for which the local region does not contain sufficiently many

44

Chapter 4. Proposed Solution

(a) RGB Image (b) Raw Event Image (c) Event Image, with binary ero-
sion

Figure 4.3: An example of a binary erosion filter applied to an event image. (a) shows a scene containing
rough textures and visual distractors that lead to high event emission rates for background textures (b).
Applying binary erosion reduces the effects of irrelevant background events.

other events, achieving a noise filtering effect2. The idea of filtering events, particularly for suppressing

background artifacts, has also been explored in Maro et al. (2020).

4.1.3 Convolutional Spiking Neural Networks

An SNN propagates spike trains instead of constant real-valued signals and is characterized by internal

analog dynamics. SNN spikes resemble EC events and suggest an intuitive relationship between event-

based vision and SNNs: the latter are naturally suited to process asynchronous binary signals. Indeed,

SNNs have been developed to mimic the information processing mechanisms observed in biological neural

networks, such as those traveling from photoreceptor cells to the visual cortex and within it. It is therefore

worth considering a neuromorphic neural network for processing neuromorphic sensor data when studying

possible directions toward mammal-like visual processing capabilities.

Input Data Encoding

We utilize a Poisson process spike generation model to induce spikes in the SNN input layer from incoming

event images. External inputs to SNNs are often encoded into spikes using one of various temporal coding

methods, such as single-spike or rank-order codes, or rate coding methods, such as random processes. A

Poisson process presents a useful stochastic approximation of biological neuron firing activity, in which

the generation of each spike is assumed to depend on some firing rate, r, and be independent of all

other spikes (Heeger et al. (2000)). In particular, the number of spikes in a given time interval, δt, is an

independent Poisson-distributed random variable. A consequent useful property of the Poisson process

is that the length of inter-spike intervals (ISIs) can be drawn from independent exponential random

variables with means 1/r. Therefore, for a given time period, T , a Poisson process can be used to compute

2Note that increasing the intensity difference threshold, θ, can reduce the instances of sporadic event emissions. In
practice, however, we have found that very high thresholds could eliminate useful event information, since all potential
events are equally suppressed. The binary erosion filter, on the other hand, exploits the local information around events,
achieving a more reliable filter in this case.

45

4.1. Proposed Approach

Event Image Patch Encoded Spike Trains

0 +1

-1-1

+1 0 +1

0

0

Figure 4.4: An illustration of the Poisson spike trains generated from events at 9 input neurons. Positive
and negative events are shown in blue and red, respectively. Note the lower spiking frequency at negative
events.

inter-spike intervals that define a Poisson-distributed sequence of spikes for a given rate, r (also referred

to as intensity) determined by the input.

Given event image Ie of size (w, h), we assign rate values according to:

I ′e(x) =







rON , if Ie(x) = +1

rOFF , if Ie(x) = −1

0, otherwise

(4.1)

where rON and rOFF are tunable parameters representing firing rates in Hz. In our experiments, these

parameters are set such that OFF events induce approximately half the stimulation that ON events do.

Subsequently, the spike train entering each input neuron across T is drawn from a Poisson process, which

determines the presence (1) or absence (0) of a spike within each discrete time interval δt. These sequences

of spikes follow the average firing rate but have random spike timings. Figure 4.4 illustrates an example

of a 3× 3 event image patch and the spike trains generated at every pixel/input neuron location. The

result is a binary matrix S of shape w × h× T , where each element sijt defines whether neuron ij receives

an input spike at timestep t3.

The stochasticity of Poisson spike trains could potentially ignore the utility of precise spike timings in

SNN processing. On the other hand, the relaxation of precise inter-spike intervals may provide a closer

analog to the stochasticity observed in biological neural dynamics, in addition to possibly demonstrating

robustness to (or even exploiting) apparent noise in propagated signals. In general, Poisson spike trains

are sufficient for the purposes of inducing input spikes in the proposed approach.

Convolutional Network Topology

The encoded spike trains, S, are then inputs to the convolutional SNN, which resembles a CNN in

architecture and weight sharing principles. Similar to CNNs, neurons in each layer are arranged in a

two-dimensional grid and information is propagated through convolution operations. Here, the input to

3Note that this assumes a constant firing rate over T .

46

Chapter 4. Proposed Solution

each neuron is a “pre-activation” (in conventional terms) computed by convolving the spiking output of

neurons in the previous layer that occupy the target neuron’s receptive field and a kernel matrix of shared

weight parameters, K. This is encapsulated in the following, where the pre-activation of a neuron in layer

k + 1, and index (i, j) at a given time-step is computed by convolving a kernel with spike trains arriving

from neurons in the previous layer, k:

acti,j,k+1
t = (K ∗ S)(i, j) =

∑

m

∑

n

S(i−m, j −m)K(m,n) (4.2)

(This formula adapts the definition of conventional convolutions provided in Goodfellow et al. (2016).)

While the tunable weights can have real values, the values S are strictly binary. The pre-activation value

adds to the membrane potential of the neuron. Figure 4.5 depicts the result of a convolution operation

involving a 3× 3 group of input neurons and a 2× 2 kernel.

The network designed by cascading convolutional layers of spiking neurons operates under the same

principles as CNNs and is similarly well-suited to inputs derived from images. However, the spatio-temporal

distributions of spikes within the network lead to novel dynamics from which interesting properties may

arise (consider, for example, the reportedly superior representational power of SNNs mentioned in section

2.2). In particular, the convolutional operator and the analog dynamics of spiking neurons create a form

of spatio-temporal filter, where signals that are especially persistent in space and time are selectively

propagated. Moreover, spiking neurons possess a form of memory in the decaying potential which reflects

recent levels of stimulation: generally, the network is more active around areas where motion had just

been observed, and the attention gradually decays with its absence over time. We use simple layers with

only convolutional operations that progressively shrink the feature space, such that the output layer’s

dimensions (i.e. the number of output neurons) are smaller than those of the input layer. The eventual

output of the network are spike trains originating from the output neurons, which are used to derive

obstacle avoidance in the next component of the pipeline.

w1

w3

w2

w4

Layer k Layer k+1

Kernel

actt0,0

5w1 + 4w3+ 2w4

actt0,1

actt1,1actt1,0

Figure 4.5: An illustration of convolving a 2× 2 kernel with a 3× 3 layer (k) of spiking neurons, whose
output spike trains are depicted within each cell. Assuming a stride of 1x1, the result is the pre-activations
of neurons in layer k+1 (see Equation 4.2. The summation resulting in act0,0,k+1

t is shown above the cell.)

47

4.1. Proposed Approach

The SNN weights are set to fixed, random values. Non-plastic SNN connections have been employed

in reviewed SNN research, such as in Risi et al. (2020) (see section 2.2) and Milde et al. (2017) (see

section 2.4), which demonstrated the achievement of desired behaviours solely due to the properties of

spiking dynamics. Similarly, we presently involve no learning capabilities, and instead investigate how

robust obstacle avoidance performance is to different random, but fixed, “features” that manifest through

the randomly sampled weight values. Future extensions will include incorporating weight adjustment

strategies through, for example, traditional SNN learning rules such as STDP and supervised variants, or

reinforcement learning. The weight values are initialized by sampling from a standard uniform distribution,

scaled by the weight factor, wc:

W ∼ U(0, wc) (4.3)

4.1.4 Obstacle Avoidance Component

The obstacle avoidance component decodes the output of the SNN into meaningful obstacle avoidance

signals. Given output spike train, S, this stage involves extracting indications of obstacle presence or

motion from spiking activity and deriving velocity/acceleration values that can be used to adapt the

planned motion trajectory. To that end, we utilize a first-spike-time representation of output spiking

activity and a potential fields method.

SNN Output Representation

The information contained in spike trains can be represented in different ways, including aforementioned

temporal and rate coding schemes. The choice of representation is important for appropriately decoding

the SNN response. We use first-spike-time (FST) temporal coding to interpret the output spiking activity

(Tuckwell & Wan (2005)), which has been applied in various works (Göltz et al. (2021), Liu et al. (2021)).

Within this scheme, the time until a neuron’s first spike after stimulus presentation fully determines the

magnitude of stimulation: the earlier a neuron first spikes, the more stimulated it is. This is intuitive,

since receiving a large number of input spikes (high stimulation) is expected to raise a neuron’s membrane

potential faster and thus lead to an earlier firing time. When applied to the output of our SNN, the FST

code provides a neural activation map, as illustrated in Figure 4.6. Significantly intense neural activation

in a given neuron is expected to indicate the persistent presence and (relative) motion of a perceived

object in regions of the input image for which that neuron is in the effective receptive field. This is a

result of the spatio-temporal filtering properties of the C-SNN and provides useful indications of promising

obstacle avoidance directions.

Other common codes include the absolute or average number of spikes in a given time period. Like

the spike count or average, time to the first spike can indicate the neuron’s level of stimulation; however,

the proposed FST representation only necessitates flagging the first spike for each neuron, as opposed to

waiting until all spikes in a given time window are accumulated. Therefore, within the present approach,

either representation may provide the same information, but the FST code has the potential of reducing

“time-to-solution” or “energy-to-solution” and could thus be more efficient (Göltz et al. (2021)). Note that

48

Chapter 4. Proposed Solution

Output Spike Trains FST Neural Activation Map

Figure 4.6: A visual depiction of the first-spike-time (FST) code applied to 25 output neurons. The
brightness of each cell in the right corresponds to that neuron’s FST and thus activation magnitude. Note,
for example, that the top-right neuron has a higher activation due to an early first spike, although the
neuron just under exhibited a higher spike count.

the FST method has been often used in classification problems in which an input stimulus is expected to

yield a single inference output, where the time point at which the input stimulus was presented is clear.

In contrast, our SNN runs continuously; therefore, the FSTs are calculated with respect to the time point

at which the last event image was presented.

Computing Obstacle Avoidance Direction Using Potential Fields

After acquiring an output neural activation map, the next step involves computing a motion vector that

is conducive to avoiding any supposed obstacles. As previously alluded to, the output activation map can

be conceptualized as a downscaled version of the original input event image, filtered in the space and

time dimensions to indicate approximate locations of persistent obstacles while removing potential noise.

Therefore, we regard regions with high activations in the map as “obstacle points”, and conceptually

project their positions to the original image space. In order to derive an avoidance motion vector, we

utilize a method that can represent and aggregate the obstacle points’ spatial influences and compute a

motion direction that maximizes movement away from these points: artificial potential fields.

Artificial potential fields (PFs) are used to create fields of attractive and repulsive “forces” overlaid

on a robot’s environment to drive goal reaching and obstacle avoidance behaviours, respectively (Khatib

(1986)). In our approach, we construct a PF on the derived neural activation map, where the obstacle

points are set to exert repulsive forces. To that end, the potential is computed using the formulation

presented in Park et al. (2008). For an arbitrary point on the field, x, the potential is determined by the

distance to an “obstacle point”, p(x) according to:

U(x) =







η
2

(
1

p(x) −
1
p0

)

, if p(x) ≤ p0

0, if p(x) > p0
(4.4)

where p0 denotes an obstacle’s radius of influence and η is a constant gain. If multiple obstacle points are

perceived, then the potential at point x is simply the aggregate of their contributions, i.e. for n obstacle

49

4.1. Proposed Approach

FST Neural Activation Map Potential Field and Avoidance Vector

(a) Converting the neural activation map to a potential field

X

0 2 4 6 8 1012141618

Y
0
2
4
6
8
10
12

U

0

1000

2000

3000

4000

5000

6000

7000

(b) 3D potential field

Figure 4.7: An illustration of the potential field computed from the SNN’s output neural activation map.
The potential field is visualized in 2D (4.7a) and 3D (4.7b), the latter showing the slope that leads to the
selected velocity vector (blue).

points: U(x) =
∑n

i=1 Ui(x). The negative potential gradient, −∇U(x), provides reliable estimates of

directions leading away from high potential regions. Figure 4.7 shows an example of a PF applied on a

neural activation map, yielding a gradient field (black arrows) which points away from the aggregated

obstacle points (red). The mean negative potential gradient, φ̃ = −∇U(x), then provides an average

motion vector that incorporates all potential across the field and estimates an optimal direction for

avoiding the perceived obstacles. In Figure 4.7a, this is visualized as a blue arrow.

The obstacle avoidance component therefore decodes the SNN output into motion vector φ̃ which

provides the information needed to most adequately adapt the current motion plan to avoid the obstacles.

4.1.5 Trajectory/Motion Planning and Control

The aforementioned components of the pipeline all operate during the motion loop governed by the

trajectory planning and control component. This component produces a planned trajectory prior to

the robot’s execution and executes the plan by controlling the robot’s velocities as it moves through

the designated waypoints. However, it is also capable of utilizing feedback from the obstacle avoidance

component to adapt the motion plan online, by deviating from the original path to avoid obstacles, while

maintaining progress towards the original goal. Therefore, it seamlessly integrates higher-level planning

and lower-level, reactive motions to simultaneously accomplish both objectives. An integral aspect of

this component is a dynamic motion primitive (DMP), which enables generating a trajectory plan (i.e.

waypoints) given a goal position and parameters describing the desired trajectory shape, and whose

formulation is conducive to online trajectory adaptation. The robot can then sequentially follow the

specified positions along the trajectory through velocity commands generated by a simple PID controller.

Dynamic Motion Primitives (DMP)

Dynamic motion primitives are useful in modelling the evolution of a point’s position over time in a set of

differential equations that produce stable global attractor dynamics (see section 3.3). In previous work, we

50

Chapter 4. Proposed Solution

utilized DMPs for reproducing learned end-effector trajectories while generalizing over starting positions

and goals (Abdelrahman et al. (2020)). DMPs have several convenient characteristics that include:

❼ Translational invariance and generalization to arbitrary initial and goal positions

❼ Stable and guaranteed convergence to the goal position as s→ 0 and f(s) vanishes

❼ The capacity to reproduce arbitrary trajectory shapes that can be learned by adjusting weights wi

❼ The extensibility of the transformation system equations by adding task-related acceleration terms

The final property is particularly important for our proposed approach. Since the trajectory of position

variable y can be altered by adding terms to Equation 3.13, an objective that is secondary to reaching

the goal position could be accomplished by adding appropriate acceleration values during the evolution

of y. The stable attractor dynamics of the DMP guarantee eventual convergence to the goal despite

perturbations, thus effectively enabling the high-level motion plan to be adjusted through deliberate

perturbations while maintaining the original task target. Indeed, we utilize this property to adapt

DMP-planned, goal-directed trajectories online through the output of the obstacle avoidance component.

In the present work, a DMP controls the positions of an end-effector, y = [x, y, z]T as it progresses

towards goal g. The shape of the trajectory is fixed a priori i.e. wi are given and not changed in our

approach. The reason is two-fold: i) the capability of generalizing a given trajectory shape to arbitrary

initial and goal positions provides sufficient adaptivity, and ii) trajectory shape adaptation is externally

achieved as a consequence of incorporating the obstacle avoidance feedback. We augment equation 3.13

with an additive obstacle avoidance acceleration term, φ:

τ ÿ = αy(βy(g − y)− ẏ) + f(s) + φ (4.5)

The instantaneous value of φ is directly derived from the obstacle avoidance component’s output, φ̃. The

latter expresses a motion vector in the image (or neural activation map) space which is transformed to

the end-effector’s operational space:

φ = T ee
cameraφ̃ (4.6)

In our case, the camera is positioned such that the image’s u-axis (horizontal) and v-axis (vertical) align

with the end-effector’s y-axis and z-axis, respectively, yielding the simple expression:

φ =








φx

φy

φz







=








0 0 1

1 0 0

0 1 0















φ̃u

φ̃v

0








(4.7)

The φ term contributes accelerations that lead to motion away from obstacles according to vector φ̃.

Note that φ̃ is computed from a camera image and is thus strictly two-dimensional; as a result, φ

inherits the same constraint. For a camera mounted at the end-effector, such that image plane is parallel

to the end-effector’s y-z plane and perpendicular to the forward-facing x-axis, the consequence of this

is that obstacle avoidance vectors are constrained to the y-z plane. This is reflective of the fact that

51

4.1. Proposed Approach

the sensor (conventional or event camera) lacks depth perception, and thus can not be used to compute

obstacle avoidance motions that are perpendicular to the image plane (through conventional means).

Nevertheless, obstacle avoidance behaviour resulting from this approach is sufficient for the class of tasks

targeted in this work, where the end-effector moves forwards towards a goal and the robot is expected to

avoid obstacles within the FOV of a forward-facing camera.

With the integration of the decoded SNN output into the adaptive DMP, the obstacle-avoiding trajectory

is then executed by following the positions integrated from Equation 4.5 with velocity commands from a

PID controller.

PID Controller

The final stage of the motion loop involves following trajectory positions y set by the DMP, which can

be accomplished using PID control. Proportional-integral-derivative (PID) control utilizes feedback to

adequately control a system’s response in moving from a current value to a setpoint by calculating the

error and applying corrective control actions based on the weighted sum of proportional, derivative, and

integral terms. Here, we design a PID controller to compute velocity commands (the control actions) that

move the robot’s end-effector from its current position to the next planned DMP position (the setpoint)

during task execution. Given current position y(t) and the target position ytarget, the error is:

e(t) = ytarget − y(t) (4.8)

The PID velocity control is then described by the following equation:

v(t) = Kpe(t) +Ki

∫

e(t)dt+Kd

de

dt
(4.9)

Kp, Kd, and Ki are constant gains which control the contributions of each term. The first term is directly

proportional to the magnitude of the absolute error. The integral term accumulates a history of past

error values and serves to apply corrections that eliminate residual errors. The derivative term exerts a

damping effect proportional to the rate of change of the error, which provides an estimate of the future

trend of the error. Figure 4.8 depicts a block diagram of the control system.

+

+
+

Robot
v(t) y(t)ytarget e(t)

+
-

Figure 4.8: A block diagram depicting our PID controller. The proportional, integral, and derivative
functions are shown in colored blocks.

52

Chapter 4. Proposed Solution

By tuning respective gains, the PID controller can be optimized to improve properties such as the

smoothness and stability of motions. These properties in turn influence metrics such as the predictability,

naturalness, and safety of the motions, and are therefore essential parameters. In addition, the tight

integration between motion and sensor-based obstacle avoidance corrections in the proposed approach

requires corrective motions to be responsive and reliable, since they otherwise risk not adequately utilizing

the feedback provided by the obstacle avoidance component.

Figure 1.4 provides a visual illustration of the full pipeline.

4.2 Implementation

This section summarizes the details of the implementation of the proposed approach. The components

described in section 4.1 are implemented as ROS nodes and communicate information asynchronously

through ROS topics. Section 4.2.1 details each ROS node’s responsibilities, functionalities, and input and

output data. We use the ROS Noetic Ninjemys distribution4 and Python 3.8 for development. In order to

initially test the implementation in simulation before transferring to a real robot, we set up and augment

a Gazebo simulation of the Kinova Gen3 arm, the details of which are discussed in section 4.2.2.

4.2.1 ROS Components

Figure 4.9 shows a graph of the ROS nodes and the main communication channels between them (in

the form of ROS topics and services) involved in running the SNN-based obstacle avoidance pipeline in

simulation. When running the pipeline on a real robot, the gazebo node is substituted by other nodes, but

the obstacle avoidance pipeline remains the same. In the following, we describe each of the nodes (depicted

in blue), including details of their implementation, functionalities, communications, and parameters.

Event Image Streamer

Our event camera emulation python package provides functionalities for generating, streaming, and

visualizing event data derived from RGB images from a camera or ROS publishers. These functionalities

are implemented within the EventCameraEmulator class whose primary functions are depicted in Listing

1. The get_events_image_rgb and get_events_image functions produce event images (as described

in section 4.1.2) from input RGB or grayscale images. These functions depend on secondary functions

such as compute_thresholded_diff_rgb_multi_channel which define different strategies for computing

events. A get_visual_events_image function enables visualizing event data in a format similar to the

output of real ECs, where ON and OFF events are represented as blue and red pixels, respectively (the

event images displayed in Figure 4.3 and elsewhere in this report have been created in this manner).

An event_image_streamer ROS node within the package handles capturing RGB image frames, creat-

ing event images, and publishing the event data. In our experiments, we use the event_image_streamer to

process the latest consecutive images published by the mounted camera in “sensor msgs/Image” messages on

the ROS topic: “/camera/color/image raw”. The node employs an instance of the EventCameraEmulator

4The latest version, at the time of writing.

53

4.2. Implementation

/gazebo/set_link_state

/gazebo_object_animator

/tf
(Various)

Kinova Gen3
Nodes

/gen3/joint_states

/camera/color/image_raw

/gazebo

/event_images

/event_image_streamer

/snn_output

/snn_simulator

/gen3/base/send_twist_command

/gazebo_object_animator/trigger

/motion_controller

/gazebo/set_model_state

Figure 4.9: A graph of the main ROS nodes and the topics/services they communicate on. Services are
depicted with dotted arrows and italics. The multiple nodes associated with the Kinova arm drivers (from
the ros kortex package) have been reduced to a single “Kinova Gen3 Nodes” block in the diagram.

class to produce event data based on specified parameter values. Table 4.1 lists the parameters that cus-

tomize the event_image_streamer’s behaviour. The node then publishes event images and a user-friendly,

visual representation on ROS topics “/events images” and “/visual events images”, respectively, in a

continuous loop. Since the emulator depends on source image inputs, the publishing rate is upper-bounded

by and often matches that of the source images.

Table 4.1: Parameters of the event_image_streamer node

Parameter Description

theta Event emission threshold, θ

compute from rgb Whether to compute events from RGB or grayscale images

rgb multi channel Whether an event is emitted when θ is exceeded in every color channel (or any
one channel)

record off events Whether to record OFF events

register off events as on Whether to treat all events as ON (discarding polarity information)

use log diff Whether to compute differences in log, instead of absolute, intensities

filtering strategy Specifies an additional filtering strategy. At the moment, only the binary
erosion filter is implemented

source type camera device or ros topic

image topic ROS topic on which source images are being published

54

Chapter 4. Proposed Solution

class EventCameraEmulator(object):

def get_events_image(image_1, image_2, ...):

...

def get_events_image_rgb(image_1, image_2, ...):

...

def compute_thresholded_diff_rgb_single_channel(image_1, image_2, theta, ...):

...

def compute_thresholded_diff_rgb_multi_channel(image_1, image_2, theta, ...):

...

def compute_thresholded_diff_salvatore_method(image_1, image_2, theta, ...):

...

def get_visual_events_image(event_frame):

...

Listing 1: EventCameraEmulator Functions

SNN Simulator

The snn_simulator node receives event data and runs it through a simulated C-SNN to produce the

neural activation maps required by the obstacle avoidance component5.

We use the open-source, pytorch-based BindsNET python package6 for running SNNs (presented in

Hazan et al. (2018)). Through preliminary testing, we have determined this implementation to be adequate

for the purposes of the presented approach. Among the package’s features are efficient implementations of

different spiking neuron models and learning rules from the literature, extensive SNN parameterization

options, and a design that allows creating novel neuron models, learning rules, and architectures. In

addition, “monitoring” tools provide access to data including spike trains running through the network

and neuronal membrane potentials over time. In order to use the FST output representation described in

section 4.1.4, we extended the implementation to incorporate the computation and recording of first spike

times.

The snn_simulator node instantiates and configures a C-SNN according to user-specified parameters.

Table 4.2 lists and describes the parameters that configure the snn_simulator. Upon receiving event

images on the “/events images” topic, the node processes the inputs by:

1. Optionally applying an event filtering strategy; we use binary erosion (see description in 4.1.2)

2. Downscaling the image (if necessary) to match the input layer size7

3. Assigning rON and rOFF rate values (Hz) to ON and OFF events, respectively, for Poisson encoding

5Note that “simulation” here refers to the fact that the SNN is simulated in software as opposed to being run on a
dedicated neuromorphic processor.

6https://github.com/BindsNET/bindsnet
7In our experiments, input images are of size 640x480 and are downscaled by a factor of ∼ 3. The resultant image size

often retains the salient event information while not being too computationally heavy to process; an important aspect for
real-time operation.

55

4.2. Implementation

std msgs/Float32MultiArray fst array
std msgs/Float32MultiArray spike counts array
uint16 input image height
uint16 input image width
uint16 snn sim time

Figure 4.10: SNNOutput ROS message specification

std msgs/Float32MultiArray fst array
std msgs/MultiArrayLayout layout

std msgs/MultiArrayDimension[] dim
- string label
uint32 size
...

float32[] data

Figure 4.11: Float32MultiArray ROS message specification (from the std msgs package)

(as presented in section 4.1.3)

4. Encoding the data into Poisson spike trains

The resulting spike data is then run through the C-SNN for a given simulation time period, Tsim, and

network “monitors” are inspected to extract statistics of interest such as membrane potentials, spike

counts, average firing rate, and the additional FSTs. For ease of transferring this information to the next

component, we define a custom ROS message SNNOutput, which contains arrays of FSTs and spike

count values in addition to meta-information, as shown in Figure 4.10. The float arrays can later be

interpreted in terms of the correct neural activation map sizes by accessing the dimensions labeled in

the MultiArrayLayout and MultiArrayDimension sub-fields of the Float32MultiArray sub-field

message type (from the std msgs package8), whose specification is shown in Figure 4.11). Finally, the

SNNOutput message is published on the “/snn output” topic.

Motion Controller

The motion_controller node encompasses the two components responsible for i) obstacle avoidance

computations and ii) trajectory planning and control. It handles instantiating and configuring the DMP

(effectively, the motion planner), running the motion loop in which velocity commands are executed by

the PID controller to follow the trajectory plan, and adapting the trajectory plan on-line by receiving the

SNN output data, decoding it into obstacle avoidance accelerations and adapting the DMP trajectory.

We use the open-source pydmps9 package to run the DMP that computes the end-effector positions of

the intended trajectory plan. Given a trajectory shape specification (pre-learned weights wi of Equation

8http://wiki.ros.org/std msgs
9https://github.com/studywolf/pydmps

56

Chapter 4. Proposed Solution

Table 4.2: Parameters of the snn_simulator node

Parameter Symbol Description

sim time Tsim Time period for which the SNN is run

snn thresh vthresh Membrane potential threshold at which a neuron spikes

snn reset vreset Membrane potential reset value following a spike

snn rest vrest Equilibrium (baseline) membrane potential value

snn refrac Trefrac Refractory period

snn decay τdecay Time constant for membrane potential decay

snn thresh increase at spike - Factor by which vthresh is increased at spikes

snn thresh decay - Time constant for potential threshold decay

init weight factor wc Initial weight constant

4.5), initial and goal positions, and other parameters, the DMP steps through end-effector positions

determined by the input parameters. The “step” function provides an “external force” argument which

supports an additive term that modifies the DMP equation and accordingly adapts the subsequent

waypoint. This provides the functionality needed to incorporate obstacle avoidance adjustments to the

planned trajectory (as described in section 4.1.5).

While the DMP generates a trajectory plan during execution, the motion_controller node listens to

messages on the “/snn output” topic and performs the decoding procedure needed to acquire the accel-

eration term, φ (see section 4.1.4). In particular, decode_snn_output and compute_potential_field

functions perform the extraction of “obstacle” points on the neural activation map and accordingly

computing the potential field representation, respectively. The negative potential gradients result in φ,

which is added, if non-zero, to the DMP “step” function. The ROS communication framework allows for

the DMP execution and the reception (and processing) of SNN outputs to run simultaneously, ensuring

that the motion is adapted with the latest possible information on sensed obstacles. In practice, we have

found that augmenting the DMP with a decaying, running average of φ (instead of instantaneous values)

leads to smoother trajectories.

Within the DMP execution cycle, an inner motion loop handles the computation and application of

velocity commands required to reach the next position in the trajectory plan. Here, we use our PID

controller to drive the end-effector from the current position to the next. The twist values computed

by the controller are then applied using functionalities from the ros kortex 10 package. In particular, an

implemented KinovaArmController class handles sending twist command requests to the Kinova arm

kortex driver (within ros kortex) which in turn executes the low-level control commands that drive the

motion. These requests are communicated through ROS services (as opposed to topic publishers and

subscribers)11. The KinovaArmController instance (which provides other functionalities such as moving

the arm to predefined joint and end-effector configurations) is the only component of the node and the

10https://github.com/Kinovarobotics/ros kortex
11This relies on a SendTwistCommandHandler within the kortex driver package, which was an experimental feature at

the time of writing and was not activated by default in the original implementation.

57

4.2. Implementation

pipeline that is specific to the Kinova arm. Therefore, the implementation described here can be adapted

to other platforms or similar applications by simply integrating the associated low-level controller and

adjusting parameters where necessary.

Apart from the aforementioned functionalities, the motion_controller node also enables visual-

izations and logging of parameters and metrics that facilitate debugging, execution monitoring and

performance evaluation. Visual outputs include RViz visualizations of planned and adapted trajectories

and obstacle avoidance vectors, as well as PF representations. In order to facilitate automated testing and

evaluation (described in section 5.1.5) the node logs the values of all parameters, including those of the

event_image_streamer and snn_simulator instances, in addition to quantitative metrics. The metrics

logged after executions include trajectory length, execution time, the number of collisions, distance to the

goal, and overall success.

Table 4.3 describes the parameters associated with the motion_controller node.

Table 4.3: Parameters of the motion_controller node

Parameter Symbol Description

goal reaching tol δg Goal reaching tolerance

position reaching tol δy Position reaching tolerance

obs avoidance dist tol δobs Obs. avoidance tolerance

goal reaching timeout - Goal reaching timeout duration

position reaching timeout - Position reaching timeout duration

pf method - PF method

p 0 p0 Obstacle radius of influence (PF; Park)

eta η Constant gain (PF; Park)

grad factor Cδ Gradient constant factor (PF; Park)

max phi φmax Maximum value of φ

aggregate phi - Whether to aggregate φ values over time

phi horizon nφ φ history horizon

K p Kp Proportional controller gain

K i Ki Integral controller gain

K d Kd Differential controller gain

motion loop frequency fv Motion loop frequency

safety strategy - Safety strategy

position limits - Position limits

fst activation threshold factor tact FST activation threshold factor. ”Obstacle points” are as-
signed at positions of neurons whose FSTs are before tact

58

Chapter 4. Proposed Solution

Gazebo Object Animator

For Gazebo simulation tests, a gazebo_object_animator node was developed to control the motions

of dynamic obstacles in the environment for some evaluation tasks (see section 5.1.1). According to

input parameters, the node animates the motion of a given object through a specified trajectory and

enables triggering the motion by publishing a boolean message to a “\gazebo object animator\trigger”

topic. During experiments, the motion_controller node is set to publish this trigger command as

motion execution starts to induce a controlled, relative motion of the object(s). This is useful in

conducting reproducible experiments when statistically evaluating the performance of the implementation

or parameter sets, as it eliminates possible variances in results that may arise due to slightly varying

testing conditions. Naturally, subsequent evaluations would involve removing this constraint to then

test for the implementation’s robustness to such variations, which are effectively unavoidable in real

robot scenarios. The gazebo_object_animator node publishes to the “/gazebo/set model state” and

“/gazebo/set link state” topics to control the positions of Gazebo objects.

4.2.2 Simulation

The implementation presented here is first evaluated in simulation before incorporating the obstacle

avoidance module in real robot task executions. We use an existing, open-source Gazebo simulation of

the Kinova Gen3 arm, and extend it to include an on-board RGB camera from which visual data can be

obtained. The simulation integrates with the same control drivers and other components that run on the

real robot, which are accessible through the ros kortex ROS package.

Starting the development cycle in simulation has several advantages. In general, simulation enables

more rapid testing and development by eliminating overhead in setting up the physical robot and

its environment, etc. This also relates to removing concerns of safety (of people, the robot, and its

surroundings) in early stages of development. In addition, the simulation allows for conducting large

numbers of trials without concerns of wear-and-tear, power consumption, time, etc., as well as automating

the execution and evaluation metric computation (as is done in the present work), greatly accelerating

iterative development. The ability to largely control the environment is also beneficial in conducting

directed tests of performance; by simulating custom environments with elements such as visual distractors,

we can evaluate our implementation in different operating conditions and identify limitations.

ros kortex is a ROS package built on the official Kortex API for interacting with Kinova robots and

contains the Gazebo simulation in a kortex gazebo sub-package. We extend the Gazebo simulation of the

7-DOF Gen3 arm with an Intel RealSense camera mounted at the top of the end-effector (see Figure

4.12). This is achieved by adding the official URDF descriptions of the Realsense camera available in

the realsense-ros package12 to the robot URDF specifications. In addition, we incorporate a Gazebo

Realsense plugin that enables configuring data capture and accessing the camera data through ROS

12https://github.com/IntelRealSense/realsense-ros

59

4.3. Concluding Remarks

topics13. (The aforementioned extensions can be found in a fork of the ros kortex repository14.) With the

RGB data from the simulation on-board camera published in a “/camera/color/image raw” topic, the

event_image_streamer can be used to emulate events as though from a camera on the real robot.

Figure 4.12: The In-
tel Realsense cam-
era added to the Ki-
nova simulation end-
effector

The Gazebo simulation provides opportunities for incorporating different back-

grounds, objects, and general environment setups. We utilize this in creating

different testing scenarios that are conducive to a thorough analysis of the perfor-

mance of the proposed approach. For example, by varying the types of objects

representing obstacles and their textures in addition to the test case (static obstacle,

dynamic obstacle, etc.) and backgrounds, we create different Gazebo “worlds” for

tuning and testing the implementation (more details are presented in chapter 5).

This is possible by customizing the XML files that launch the Gazebo simulation.

4.3 Concluding Remarks

The approach and its implementation presented in this chapter enables obstacle

avoidance on a camera-equipped manipulator through a novel method of utilizing

event-based vision, spiking neural networks, and an adaptive trajectory represen-

tation for integrating high-level planning and low-level reactive motion corrections

in reaching tasks. Its application provides not only the opportunity for conducting studies on obstacle

avoidance in the domain of manipulation (which is less prevalent in the literature, as expressed in section

2.4), but to also explore a neuromorphic approach to the problem. Unlike in other works mentioned in

section 2.4, this approach does not require a priori information on the environment nor obstacles (such as

geometric shapes or CAD models).

We end this chapter by addressing some inherent limitations of the SNN-based obstacle avoidance

module’s current design, some of which have been mentioned in the delimitations of this thesis (see section

1.2). Intuitively, the module depends on the presence of motion, either of the robot or the obstacles, to

perform as intended, since the generation of events depends on relative motion. However, this is expected

to bear no adverse effect on the objective of obstacle avoidance, since collisions normally do not occur,

and are thus not a concern, without motion. The current design does not take collisions of other robot

links with an avoided obstacle into account, since the objective has been simplified to the avoidance

of the end-effector. A holistic treatment of the robot’s body is left for future work. Using a mounted

camera for sensing places a clear constraint: the robot can not handle incoming collisions that are not

perceivable within the camera’s FOV. This stems from the choice of not deploying fixed cameras in the

workspace (as some works reviewed in section 2.4 do), for example, since i) the approach would be less

general and convenient with added requirements of setting up and calibrating a dedicated camera for every

environment the robot is deployed in, and ii) event cameras’ dependence on motion, which is naturally

present in most tasks if the camera is mounted on the robot.

13We utilize an existing implementation for this, available in https://github.com/rickstaa/realsense-ros/blob/development-
gazebo/realsense2 description/urdf/ d435.gazebo.xacro

14https://github.com/AhmedFaisal95/ros kortex/tree/kinova-obs-avoidance-features

60

5

Evaluation Methodology

In this chapter, we present the procedure with which the neuromorphic approach to manipulator

obstacle avoidance presented in chapter 4 is systematically evaluated. Our evaluation involves conducting

experiments first in a simulated and then on a real Kinova Gen3 robot. We exploit simulations to facilitate

the initial stages of development and parameter tuning, particularly in minimizing potential safety risks,

expended human time and effort, excessive wear and tear, and other physical consequences associated

with conducting a large number trials on a robot. Perhaps most importantly for a statistically thorough

evaluation, the simulation allows for a degree of test condition reproducibility that is difficult to achieve

in the physical world. By possessing more minute control over test environments and variables, we can

eliminate undesirable variations in conditions and therefore be able to draw reasonably certain conclusions

on several aspects of performance from batches of simulated trials. These controlled test scenarios are

useful for evaluating the performance of the pipeline (end-to-end) and isolated components. Ultimately,

the purpose of the experiments is to compare the outcomes of task executions with and without the

presented SNN-based obstacle avoidance module, with the aim of verifying the merits of our approach.

Following extensive evaluations in simulation, we run similar experiments on a real robot platform

for a final validation of the proposed approach. This is an integral aspect of this thesis: our approach

has been developed to work in real scenarios, as opposed to a purely simulation-based proof-of-concept.

These experiments are intended to explore the general viability of the event-based, SNN-based obstacle

avoidance module in a real setting and to assess how well the implementation and parameters optimized

in simulation transfer to the real world.

We evaluate performance through a set of formalized metrics and appropriate data visualizations.

Quantitative metrics that include numbers of collisions, trajectory lengths, velocity magnitudes, and

general success rates are defined to aid in critically assessing the various parameterizations and the final

“model”. These metrics are accompanied by 3D visualizations of pre-planned and adapted trajectories,

distributions of velocity and acceleration values, and other visual illustrations. By automating the

execution of simulated trials, the computations of metrics, and generation of supplementary plots, we

develop an efficient testing, evaluation, and iterative development procedure. In addition, qualitative

metrics such as predictability, safety, and reliability are used to further describe trajectory properties.

Section 5.1 encompasses all details of the simulation experiments, beginning with the design of the

tasks and the tuning → validation → testing procedure, which encompass the development cycle and

61

5.1. Simulation Experiments

the final evaluation experiments. This is followed by a detailed break-down of how experiment trials are

conducted, the quantitative and qualitative evaluation criteria and visualizations, and automation details.

Section 5.2 deals with how our approach is evaluated in real robot experiments and follows a similar

outline, containing descriptions of the evaluation tasks, experiment procedure, and evaluation metrics.

5.1 Simulation Experiments

As explained in section 4.2.2, we employ an adaptation of the Gazebo simulation of the Kinova Gen3

arm provided in the ros kortex software package. By controlling a variety of environmental variables

such as the background and obstacle properties, we instantiate different scenarios within a set of simple

reaching tasks to conduct experiments designed to evaluate obstacle avoidance behaviour. These are

used in a tuning → validation → testing procedure, where three sets of scenarios are designated for

initial parameter tuning, parameter set validation and selection, and experiments for the final assessment

of a selected parameter set, respectively. This procedure is intended to explore how generalizable the

presented approach is to different conditions and to identify and analyze its limitations. Experimental

trial executions, data visualizations, and quantitative metric computation are handled by an automated

evaluation implementation. These results, in addition to a set of qualitative criteria determined from the

data collected during experiments, are used to critically evaluate parameter sets and the implementation

of the proposed approach as a whole.

All simulation experiments are conducted on an HP Omen 15 laptop running the Linux Ubuntu 20.04

operating system. The system contains an octa-core AMD Ryzen 7 4800H processor, 16GB of RAM, and

an NVIDIA GeForce GTX 1660 Ti graphics card.

5.1.1 Evaluation Tasks

We formulate four simple goal-directed manipulation “tasks” to be performed by the Kinova arm

during our experiments. These tasks are designed to aid in demonstrating and evaluating obstacle

avoidance capabilities. In each task, the robot’s regular course of action (a pre-planned motion trajectory

or maintaining a set position) would lead to imminent collision, unless a deliberate avoidance action is

taken to appropriately adapt. Therefore, we address situations in which a näıve motion planning and

control approach that does not consider unexpected obstacles during execution is certain to fail, and

investigate if and how well our approach to obstacle-aware manipulation trajectories solves the problem.

Apart from the manipulator’s avoidance ability, these tasks also enable us to study characteristics of

avoidance behaviours and the arm’s motion in general. We cover instances of both static and dynamic

obstacles in the set of tasks, as the circumstances are significantly different and can provide different

insights on the strengths and limitations of the proposed approach.

The four tasks we base our simulation experiments on are described in the following:

❼ Task 1: The arm must reach a commanded goal position that lies behind a static obstacle, which

is positioned between the arm and the goal such that a nominal motion trajectory would lead the

end-effector to collide with the obstacle.

62

Chapter 5. Evaluation Methodology

❼ Task 2: The arm must reach a commanded goal position as a dynamic obstacle enters the field

of view and crosses the end-effector’s path; the trajectory of the obstacle is set to intersect with a

nominal motion trajectory and thus lead to a collision.

❼ Task 3: The arm must reach for an object on a table that is partially occluded by a static obstacle,

which is positioned between the arm and the goal such that a nominal motion trajectory would lead

the end-effector to collide with the obstacle.

❼ Task 4: The arm must maintain its initial position (set-point) as a dynamic obstacle moves directly

towards it; the trajectory of the obstacle is set to intersect with the initial end-effector position and

thus lead to a collision, and the arm is free to move but must constantly minimize distance to the

initial position.

Figures 5.1–5.4 illustrate the setups of the tasks in Gazebo. Each figure depicts the start and end of each

task, in addition to a baseline (nominal) end-effector trajectory that does not consider obstacles.

(a) Start (b) End

Figure 5.1: Task 1: reaching for a goal position behind a static obstacle. A nominal end-effector trajectory
is illustrated in green.

In all tasks, the arm always starts at the same initial position and is commanded to reach the same goal

position. This is not a necessity for our implementation, but is enforced for the uniformity of experiments

and comparability of trial results. The goal position is always within the camera’s FOV, regardless of

whether it is occluded. For the purpose of the experiments, the initial joint configuration of the arm

is immaterial, insofar as it would not obstruct nominal trajectories to the goal, or reasonably-bounded

trajectory adaptations thereof, due to, for e.g., singular configurations or self-collisions1. We use two

different arm configurations: the default configuration of the ros kortex simulation in initial development

stages (Figure 5.5a) and a configuration designed to mimic that of an existing robot platform on which

experiments are conducted (Figure 5.5b)) for the tuning ✙ validation ✙ testing procedure. This is not

expected to adversely affect the final results nor the derived conclusions, but provides some validation of

1Note that self-collisions are not a concern in of themselves due to inherent safety checks on the Kinova arm that prevent
motions leading to self-collisions. Rather, the concern is not approaching configurations that would necessitate the activation
of these safety measures.

63

5.1. Simulation Experiments

(a) Start (b) End

Figure 5.2: Task 2: reaching for a goal position in the presence of an interfering dynamic obstacle. The
obstacle’s trajectory and a nominal end-effector trajectory are illustrated in red and green, respectively.

(a) Start (b) End

Figure 5.3: Task 3: reaching for a goal position on a table behind a static obstacle. A nominal end-effector
trajectory is illustrated in green.

(a) Start (b) End

Figure 5.4: Task 4: maintaining a set position as a dynamic obstacle moves towards the end-effector. The
obstacle’s trajectory and a nominal end-effector trajectory are illustrated in red and green, respectively.

64

Chapter 5. Evaluation Methodology

the independence on arm configuration. In tasks 1, 2, and 4, the obstacle is no larger than a 0.1m3 cube,

while the static obstacle in task 3 is a cuboid with dimensions {0.1, 0.3, 0.1}.

(a) Default configura-
tion

(b) Experimental con-
figuration

Figure 5.5: The Kinova
Gen3 in the Gazebo sim-
ulation

We vary a set of environmental variables in order to instantiate different

testing scenarios for each task. These variables include the background,

obstacle type, obstacle color, and obstacle speed. Table 5.1 outlines the

variables we designate for each task and the values that they can take. Here,

we define a “scenario” as an instance of a task characterized by a unique

set of variable values. As an example, the cells highlighted in gray on Table

5.1 define a scenario where the objective is to accomplish task 4 in the

Bookstore environment (dictating the background) for a brick-pattern box

obstacle traveling at medium speed; this can be expressed with the set: {‘Task

4’, ‘Bookstore’, ‘Box’, ‘Brick Pattern’, ‘Medium’}.

Most task variables are expected to exert varying influences on the visual

input to the obstacle avoidance module and thus its ultimate performance.

An obstacle’s type and color may induce non-negligible differences in event

data and patterns. Background textures, colors and relative lighting could

also have unexpected consequences that may induce undesirable event activity

and potentially hinder the arm’s accomplishment of the task. We term any

such possibly detrimental background properties ”visual distractors” and

purposefully inject them in scenario backgrounds to investigate their effects.

Furthermore, varying obstacle speed is expected to have an influence both on

the visual saliency of events and how effective executed motions are. Since

events are generated from relative motion through light intensity differences,

motions that are slower or faster than certain thresholds may induce little to no event activity, and speed

values in the intermediate range may have significantly varying effects on event output. With regards to

motion execution, it is reasonable to assume that trajectory adaptations may be more or less capable of

achieving avoidance depending on a dynamic obstacle’s speed (with faster obstacles likely being more

challenging), due to any latencies in motion correction and physical limitations. Therefore, the objective

of testing different variable values is to examine whether these effects do manifest, how they affect the

performance of our approach if they do, and the degree to which it can cope with the consequences, if any.

The latter point is especially important for identifying limitations of selected parameter values and/or the

approach as a whole. Finally, testing in different scenarios provides some validation of how applicable

the obstacle avoidance behaviour is in different environmental conditions, before transferring to a real

robot. Figures 5.6 and 5.7 depict the different values of the background, obstacle type, and obstacle color

variables presented in Table 5.1.

The variety of scenarios we have access to through the combinations of the variables in each task is

instrumental in the systematic parameter set selection and testing procedure described next.

65

5.1. Simulation Experiments

Table 5.1: Task variables that define experimental scenarios.
Example scenario (gray cells): {Task 4, Bookstore, Brick pattern, Box, Medium}.
Approximate obstacle speeds: Low = 0.09m/s, Medium = 0.17m/s, High = 0.36m/s.

Task Variable Values

Task 1 Background Empty Office Bookstore Kitchen

Obstacle Type Box Buckyball Spiky Sphere Rock

Obstacle Color White Red Yellow-Black Brick Pattern

Task 2 Background Empty Office Bookstore Kitchen

Obstacle Type Box Buckyball Spiky Sphere Rock

Obstacle Color White Red Yellow-Black Brick Pattern

Obstacle Speed Low Medium High

Task 3 Background Empty Office Bookstore Kitchen

Obstacle Color White Red Yellow-Black Brick Pattern

Task 4 Background Empty Bookstore Kitchen

Obstacle Type Box Buckyball Spiky Sphere Rock

Obstacle Color White Red Yellow-Black Brick Pattern

Obstacle Speed Low Medium High

(a) Empty (b) Office

(c) Store (high illumination) (d) Kitchen (low illumination)

Figure 5.6: Different backgrounds (Gazebo worlds) used in task scenarios, listed in Table 5.1

66

Chapter 5. Evaluation Methodology

(a) Box: Brick Pattern (b) Spiky Sphere:
Yellow-Black Pattern

(c) Rock: White (d) Buckyball: Red

Figure 5.7: Different obstacle types used in task scenarios, listed in Table 5.1. Each obstacle also illustrates
one of the possible obstacle colors.

5.1.2 Tuning, Validation and Testing Procedure

In pursuing a principled approach to parameter tuning and selection in addition to the final evaluation,

we draw insights from a methodology often employed in machine learning (ML) research. ML practitioners

commonly optimize ML models on a ”training” set of examples and evaluate a chosen model on a “testing”

set of unseen examples, in order to rule out biases to the training examples on the final evaluation

of the model. When it is necessary to choose from different models and hyperparameter2 values, a

separate “validation” set of examples is often used to evaluate trained models on examples that have

not been observed during training to estimate how well they generalize and to select a model or set of

hyperparameter values to run on the testing set. This training, validation, and testing strategy represents

a systematic procedure for the optimization and unbiased evaluation of a given system. Although we do

not train a model in the current implementation of our proposed approach, we follow a similar strategy

for optimizing and evaluating our neuromorphic obstacle avoidance module.

In this work, our implementation and parameter selection are evaluated based on performance in

different task scenarios. We treat these scenarios as analogous to the “examples” presented to an ML

model, and sample from the set of possible scenarios to construct disjoint sets of different scenarios drawn

from the same distribution (as defined in Table 5.1). On this principle, we formulate sets of task scenarios

that fulfill the following purposes:

❼ Tuning: a small set of scenarios chosen for manually tuning parameters and instantiating candidate

parameter sets.

❼ Validation: a medium-sized set with more task variable variations used for evaluating tuned parameter

sets.

❼ Testing: a larger set of randomly-selected scenarios for evaluating a chosen parameter set, which

2In ML research, hyperparameters describe the parameters that configure the model to be trained, as opposed to internal
parameters that are tuned by the learning algorithm during training. Examples include the number of training examples
and the learning rates, as opposed to the tunable weights of a neural network model.

67

5.1. Simulation Experiments

contains even more task variable variations and unobserved variable values.

With these scenario sets, we optimize and evaluate our approach through a tuning, validation, and testing

strategy3 (depicted on Figure 5.8). During development and parameter tuning, the tuning set is used to

tune parameters to achieve adequate performance, while the validation set is used to evaluate the degree

to which a given “model” generalizes and to select between multiple candidates. Our formal experiments

involve running the final implementation and parameter set on the testing set of scenarios and comparing

to executions that do not utilize the SNN-based obstacle avoidance module.

Tuning

Validation

Testing

Figure 5.8: A depiction of
the proposed tuning→ val-
idation → testing proce-
dure.

The tunable parameters that we consider in this procedure are those that

govern the behaviour of each pipeline component outlined in section 4.2.1: the

event image streamer, SNN simulator, and motion controller nodes (see tables

4.1, 4.2, and 4.3). A specific set of values of these parameters may represent

an instance of a “model”, whose performance is to be compared to other sets.

We also consider additional modifications to component implementations to

improve performance, if any, as part of a given parameter set. In other words,

these modifications are associated to a parameter set describing a “model”

instance.

During the tuning phase, the instantiation of parameter sets to be itera-

tively optimized can be arbitrary or follow a directed approach. In particular,

the validation phase can be used to evaluate tuned parameter sets and inform

the subsequent creation of new parameter sets to be further refined on the

tuning set in a feedback loop (depicted by the dotted arrow on Figure 5.8).

As an example, one could combine the characteristics of parameter sets that

perform best on the validation set in a given iteration to create a new derivative parameter set. The

method of deriving such a combination may be manual or involve a learning or optimization algorithm

such as evolutionary optimization, SMAC4 or some form of reinforcement learning. Here, we perform this

procedure manually, but we intend to explore an automated optimization procedure in future extensions.

From the task variables and their values defined in table 5.1, we can instantiate a total of 416 scenarios.

We choose to allocate 3 in the tuning set, 8 in the validation set, and 20 in the testing set. The tuning

and validation scenarios are manually selected in order to guarantee some variation in scenario properties

(with the validation set containing more variations, some unobserved during tuning) but also to ensure

that at least one task and one background is never observed in either phase. Testing scenarios are sampled

randomly from the remaining pool of scenarios, with the only restriction being at least Ns scenarios per

task (including the unobserved task). We set Ns = 5. Therefore, the testing set is composed of novel

scenarios that include a novel task and a background/environment. In this case, these were task 2 and the

Kitchen environment (which is characterized by a dimmer ambient lighting than the other environments).

Table 5.2 lists the selected tuning and validation scenarios and randomly sampled testing scenarios.

Note the inclusion of an additional scenario at the top (Task 1, Empty, Cracker Box). This scenario is

3Note that we name the first phase “tuning”, not “training”, to make explicit the fact that we currently optimize by
manually tuning the different components’ parameters, as opposed to running a learning algorithm.

4Sequential Model-based Algorithm Configuration

68

Chapter 5. Evaluation Methodology

used to establish baseline parameter values in the first tests of the implementation, termed a pre-tuning

phase (see details in chapter 6).

5.1.3 Evaluation Metrics and Criteria

Establishing a set of metrics and criteria based on which the proposed approach can be systematically

assessed and improved is a vital aspect of a thorough evaluation procedure. The review of the literature

presented in section 2 has highlighted a scarcity in reported results of obstacle avoidance performance and

quantitative metrics thereof, which in general hinders methodical comparisons to other related approaches

and an objective evaluation of the proposed approach. This may be attributed to the general difficulty of

evaluating obstacle avoidance methods expressed in Minguez et al. (2016), where the lack of a metric to

quantitatively measure and compare performances is put forth as a primary cause. We attempt to address

this lack by defining and grounding a set of quantitative metrics and qualitative criteria for our evaluation.

Quantitative Metrics

Table 5.3 lists the quantitative metrics we use to analyze and compare the performances of different

parameter sets and to ultimately evaluate the proposed approach during the testing phase. These metrics

are designed to holistically evaluate the performance of the SNN-based obstacle avoidance module. In

addition, they enable comparisons to task executions that do not utilize the obstacle avoidance module on

the basis of task success and along other dimensions that describe trajectory properties. The task scenarios

defined in section 5.1.2 provide situations in which the performance of obstacle avoidance behaviours and

characteristics of the arm’s motion in general can be tested, and the metrics provide the tools required to

quantitatively analyze the resultant data. The metrics are discussed in further detail in the following.

The execution time, T , simply refers to how long it takes to execute the task. Relative to a nominal

trajectory5, it indicates how much more time is expended on average in obstacle avoidance maneuvers.

The trajectory length estimates the distance traveled by the end-effector, and is similarly most interesting

in comparing to nominal trajectories to assess how far obstacle avoiding trajectory adaptations tend

to deviate. The length can be estimated by summing the euclidean distances between consecutive

measurements of end-effector position during execution:

lY =

Npos∑

i=1

||yi − yi−1||2 (5.1)

Here, Npos refers to the number of recorded positions visited by the end-effector while executing the

trajectory, Y. It is generally desirable to minimize both elapsed time and traveled distance as a secondary

objective to successful obstacle avoidance and reaching the goal, In simulation, the number of collisions,

Ncollisions represents a count of the instances in which the end-effector intersects an obstacle in 3D space

(provided that physical collision effects are disabled in the simulation). Intuitively, this provides an

5The term “nominal trajectory” here is used to refer to the trajectory that would have been executed by the arm in each
task if there was no obstacle or if it was not actively in consideration (i.e. with no obstacle avoidance module).

69

5.1. Simulation Experiments

Table 5.2: List of tuning, validation, and testing scenarios

Scenario ID Set Scenario Specification

0 Pre-Tuning Task 1, Empty, Cracker box

1 Tuning Task 1, Store, Red Box

2 Tuning Task 4, Store, Brick, Rock, Medium Speed

3 Tuning Task 3, Empty, Brick

4 Validation Task 1, Office, Red, Buckyball

5 Validation Task 1, Office, Yellow-Black, Rock

6 Validation Task 1, Empty, Brick, Spiky Sphere

7 Validation Task 4, Empty, Yellow-Black, Box, Medium Speed

8 Validation Task 4, Office, Yellow-Black, Buckyball, High Speed

9 Validation Task 4, Store, White, Spiky Sphere, Low Speed

10 Validation Task 3, Office, White

11 Validation Task 3, Store, Yellow-Black

12 Testing Task 1, Empty, Yellow-Black, Spiky Sphere

13 Testing Task 1, Store, Brick, Buckyball

14 Testing Task 1, Kitchen, White, Buckyball

15 Testing Task 1, Empty, Yellow-Black, Box

16 Testing Task 1, Store, Yellow-Black, Rock

17 Testing Task 2, Office, Red, Buckyball, High Speed

18 Testing Task 2, Office, Red, Rock, Medium Speed

19 Testing Task 2, Store, Brick, Box, Medium Speed

20 Testing Task 2, Kitchen, Yellow-black, Box, High Speed

21 Testing Task 2, Empty, Red, Spiky Sphere, Medium Speed

22 Testing Task 3, Empty, Red

23 Testing Task 3, Empty, Yellow-Black

24 Testing Task 3, Kitchen, White

25 Testing Task 3, Kitchen, Red

26 Testing Task 3, Store, Red

27 Testing Task 4, Store, Yellow-Black, Buckyball, Low Speed

28 Testing Task 4, Store, Red, Buckyball, High Speed

29 Testing Task 4, Empty, Yellow-Black, Spiky Sphere, Medium Speed

30 Testing Task 4, Empty, Yellow-Black, Box, Low Speed

31 Testing Task 4, Empty, Brick, Buckyball, Low Speed

70

Chapter 5. Evaluation Methodology

Table 5.3: Quantitative Performance Metrics

Metric Symbol Description

Execution Time T Time required to complete the task

Trajectory Length lY Distance traveled by the end-effector

Number of Collisions Ncollisions No. of instances in which the EE intersects an obstacle (in simulation)

Distance to Goal dG Euclidean distance to the goal at the end of execution

Success S True iff no collisions and distance to goal < ǫ

Velocities ẏ Magnitudes of instantaneous end-effector velocities

Accelerations ÿ Magnitudes of instantaneous end-effector accelerations

Computation Time Tcomp Average time elapsing between event data transmission and trajectory
adaptation

indication of how often the end-effector collides with obstacles and the degree to which collisions are

sustained or eventually adapted for6.

The distance-to-goal metric measures how well a given execution fulfills the goal reaching aspect of the

task and is obtained from the euclidean distance of the end-effector’s final position, yT , to the commanded

goal position, g:

dG = ||yT − g||2 (5.2)

The success of an execution is captured in the binary success metric, which incorporates the number of

collisions and distance-to-goal metrics: in order to be considered a success, a given trial must i) involve no

collisions and ii) end with the end-effector close to the goal, according to a goal-reaching tolerance δg:

success =







1, if Ncollisions = 0 and dG < δg

0, otherwise
(5.3)

We also measure the magnitudes of instantaneous end-effector velocities and accelerations during executions.

These provide important insights on motion properties of adapted trajectories, relative to nominal

executions, particularly with regards to qualitative criteria that include the safety and predictability of

obstacle avoiding motions. Finally, the computation time metric measures the average time it takes to

compute and apply obstacle avoidance trajectory adaptations, from the input event (or RGB) data to the

output velocity commands. This metric evaluates the algorithmic performance of the implementation,

particularly regarding suitability to real-time operation, and provides a comparison to other works that

perform a similar analysis of computation time (such as Mronga et al. (2020)).

6Note that, strictly speaking, the average number of recorded collision instances will depend on the frequency at which
this measurement is made; if the time between measurements in run A is shorter than in run B, an identical time period
during which the end-effector intersects an obstacle will generate more collision instances in A than in B. We avoid this
obvious error by ensuring that the measurement frequency is the same across all execution runs we conduct, such that the
absolute numbers of collisions are unimportant, and the relative numbers provide a fair comparison of how often the arm is
in collision.

71

5.1. Simulation Experiments

Qualitative Criteria

Table 5.4: Qualitative Performance Criteria

Criterion How to Evaluate

Reliability Ratio of successful trials to total no. of executions in imminent collision cases

Predictability Frequency and magnitudes of changes in direction; low angular velocities indicate fewer
changes in direction i.e. more predictability

Safety Magnitudes of velocities and accelerations

Naturalness i) Magnitudes of jerk, a measure of trajectory smoothness
ii) Visual observations of trajectory shapes

Table 5.4 contains a list of qualitative criteria we propose to describe properties of the trajectories

produced by the obstacle avoidance module as well as to estimate how much their characteristics deviate

from the nominal. Ideally, adapted trajectories would succeed in avoiding obstacles while remaining

qualitatively similar to nominal trajectories. These criteria can be subjectively assessed purely from visual

observations during experiment executions. However, in order to conduct a formal qualitative evaluation,

we ground each of the criteria in terms of quantitative measures, where possible, aiming at more objective

interpretations. In the following, we define each of the criteria and how they are evaluated.

The Reliability of the proposed solution can be defined as the degree to which it produces consistently

positive results in successive trials under reasonably consistent conditions. We expect a reliable system

to repeatedly achieve similarly positive results, as opposed to significant variances and/or failure rates,

provided that the task conditions do not substantially differ from the system’s intended operating

environment. This is related to, but not the same as, repeatability, which characterizes results that

are consistent throughout repetitions, but contains no notion of the degree to which these results are

positive. One way to estimate the reliability of the SNN-based obstacle avoidance module is through

the ratio of successful trials (according to our success metric) to the total number of trials in imminent

collision situations. The task scenarios defined in section 5.1.1 provide the imminent collision situations in

consistent conditions required to test for this.

Predictability describes to what extent the system’s behaviour can be known or predicted in advance.

The behaviour of a system described as predictable can be estimated by observation with a relatively high

degree of certainty, regardless of success or performance. While a variety of aspects could be suggested for

deciding on motion predictability, we constrain our attention to one: changes in direction. The frequency

or magnitude of changes in direction within a trajectory affect its predictability: the results of a motion

controller that produces fewer directional changes are easier to intuit or predict from historical observations

(within or across executions). We can quantify the local degree of direction change at every position along

the end-effector’s trajectory from the angle between the vectors formed by connecting that positional

point to the previous and the next point, respectively, as is done in Salarpour & Khotanlou (2019). Given

trajectory positions yk, yk−1, and yk+1, and resultant vectors v1 = (yk − yk−1) and v2 = (yk+1 − yk),

72

Chapter 5. Evaluation Methodology

the direction change, ζ, at yk can be calculated from the dot product:

ζ = arccos

(
v1 · v2
|v1||v2|

)

(5.4)

We are particularly interested in the derivative, ζ̇, as the predictability measure. The magnitudes of

ζ provide an indication of path curvature, and higher values do not necessarily indicate unpredictable

motions7. On the other hand, the magnitudes of ζ̇, which could be expressed as an angular velocity, are

related to how often and how drastically the end-effector changes the direction in which it is moving. When

these are often and high in magnitude, they are likely to indicate a trajectory with sudden directional

changes which can be described as unpredictable. We therefore utilize this angular velocity metric to

assess predictability.

In general, safety refers to the degree to which the system is unlikely to cause danger, risk, or injury.

In the case of the manipulation tasks addressed here, we can examine the magnitudes of applied velocities

and accelerations of the end-effector as a measure of safety. Intuitively, higher velocities tend to increase

the risk of collisions with other objects or people in the environment, and the magnitude of potential

damage. We also examine the magnitudes of instantaneous accelerations, though velocities are more often

used in safety assessments.

The final criterion we attempt to evaluate for is naturalness, which qualifies how natural i.e. normal,

expected, ordinary, or logical8 an object in question is. To the average observer, the degree to which a

manipulator’s trajectory is natural involves how closely it resembles motions produced by a human, for

example. This is in part dictated by the trajectory smoothness, which can be quantified through jerk:

the derivative of acceleration. As described in Gasparetto et al. (2015), the optimization of manipulation

trajectories for minimum-jerk is a common approach particularly for obtaining smoother motions, and is

inspired by studies indicating that human arm motions are optimized for the same criterion9 (see also

Simon & Isik (1993), Fligge et al. (2012)). The latter fact further supports the magnitudes of jerk as a

potential indication of trajectory naturalness.

The qualitative criteria discussed in this section are assessed during the final experiments run on the

testing set. This is in contrast to the quantitative metrics, which are instrumental in selecting, evaluating,

and comparing parameter sets during tuning and validation, as well as in the testing phase.

Qualitative Evaluation Visualizations

In order to visualize trajectory executions, we utilize annotated three-dimensional spatial plots of end-

effector positions.

Figure 5.9 illustrates a plot of two Task 1 executions, the first with a pre-planned trajectory and the

second involving the obstacle avoidance module. Trajectories are color-coded: the original (pre-planned)

7As an example, a sequence of high, but relatively similar ζ values are characteristic of a curving trajectory with a
potentially small radius of curvature but a constant turning motion. In fact, the similarity of subsequent ζ values indicates
that a subsequent portion of the motion is relatively easy to predict from an earlier portion.

8This is derived from a definition in the Collins English Dictionary
9As an additional side-note, the less smooth robot arm motions are, the more potentially damaging they are to the

robot’s actuators as well.

73

5.1. Simulation Experiments

(a) Without obstacle avoidance (b) With obstacle avoidance

Figure 5.9: 3D trajectory plots for two Task 1 executions. The box depicts the obstacle to be avoided.

trajectory in gray, a successful trajectory in green, and a failed trajectory in red. An obstacle is visualized

as a blue cuboid, and instances of collisions are denoted with pink triangles and red obstacle silhouettes

at collision points. The plots are generated following executions in an interactive graphical interface, and

are convenient in examining the trajectories and determining results at a coarse level of detail.

5.1.4 Experiment Procedure

In this section, we outline the details of the procedure we follow to conduct our experiments , following

the selection of a parameter set in the tuning and validation phases. These experiments involve running

Ntrials executions in all task scenarios within the testing set (defined in section 5.1.2) in two cases:

1. Nominal executions that do not involve the obstacle avoidance module (the benchmark)

2. Executions that incorporate the SNN-based obstacle avoidance module, using the selected parameter

set

In our experiments, we run Ntrials = 40 trials in both cases for each scenario. From the data recorded

from these batches of executions, we then analyse the obstacle avoidance performance using the evaluation

metrics and criteria described in the previous section, particularly in comparison to the nominal executions.

A single run of our experiments in a given task scenario involves the following steps:

1. Start the Gazebo simulation, configured for the given task scenario, by running the

spawn_kortex_robot ROS launch file of the kortex_gazebo package, parameterized by the appro-

priate configuration file.

2. Start the event camera emulation and SNN simulation components by running the event_image_streamer

and snn_simulator nodes with the appropriate configuration files.

3. If the scenario involves a dynamic object, start the Gazebo object animator component by running

the gazebo_object_animator node with the appropriate configuration file.

74

Chapter 5. Evaluation Methodology

4. Move the arm to the initial configuration (depends on the task)10.

5. Command the arm to move to the goal position (depends on the task) by running the motion_controller

node with the appropriate configuration file, and choosing whether to use SNN feedback (activating

obstacle avoidance).

6. After task execution, record all relevant data and compute performance metrics.

In step 1, the Gazebo configuration is defined by a pre-set “*.world” configuration file which specifies

the models and properties required to create the conditions of the given scenario, including the environment,

objects and obstacles. Each scenario in Table 5.2 is defined by a configuration file. The ROS nodes

constituting the SNN-based obstacle avoidance pipeline (event_image_streamer, snn_simulator, and

motion_controller) are similarly all parameterized by YAML files listing their chosen hyper-parameters

and/or some roslaunch parameters. These parameters form a “parameter set”, as it is referred to through-

out this section, which dictates the eventual obstacle avoidance behaviour. The gazebo_object_animator

node controls the position of a given object in the simulation and was developed to execute pre-defined

dynamic obstacle trajectories for controlled experiments. These trajectories are set to start and end

at precise points in time, relative to the execution of the arm’s trajectory, in order to create the im-

minent collision cases defined in tasks 2 and 4. This is implemented through ROS messages from the

motion_controller that trigger the obstacle trajectory when execution starts. The trajectories are also

defined in a YAML configuration file and their speed can be parameterized. Appendix B contains examples

of the configuration files for each of the nodes described here.

The initial joint configuration of the arm has been chosen such that a wide range of obstacle avoidance

trajectories are reasonably possible in the context of the defined tasks, with fewer risks of limiting or

singular configurations. The arm’s base position is set to match the robot platform used to run real-world

experiments, shown in Figure 5.10a. This ensures that any interesting differences in observations between

the simulated and real robots arise from factors other than the potential constraints imposed by a different

arm joint configuration, since they would be more interesting in drawing insights about the performance

of our approach (particularly in transferring to the real world). Figure 5.10b shows the arm in RViz,

positioned in the initial joint configuration we specify for our experiments. Relative to the world frame,

the ”base link” frame at the base of the arm is located at the pose: {0.0, 0.0, 0.75, 0.0, 1.7, 0.0}11.

In each of the tasks, the arm is set to start in a configuration similar to the one just described but

with different initial end-effector poses. Similarly, each task is characterized by a different goal position.

Note that the orientation of the end-effector is not of concern in these experiments and is not explicitly

controlled for12. Nevertheless, we report the initial orientation roll, pitch and yaw angles since they affect

the field of view of the camera. Table 5.5 lists the initial and goal end-effector poses that are defined for

every task, while Table 5.6 contains the initial and final positions of the obstacle in every task13. Note

10Note: the motion_controller in step 5 is also set to start the arm in a chosen initial configuration to ensure consistent
starting conditions. It is then unnecessary to move the arm manually in step 4, if the desired initial configuration is set in
the node.

11The pose notation used here is composed of the coordinates in x, y, and z followed by the roll, pitch, and yaw euler
angles: {x, y, z, r, p, y}.

12In fact, the DMP-planned motion trajectories only define trajectory positions in x, y, and z, and thus do not actively
change the orientation of the end-effector during execution.

13The final position is not marked in tasks for which the obstacle is static.

75

5.1. Simulation Experiments

(a) On the robot platform (b) In simulation

Figure 5.10: Kinova Gen3 Arm Configuration

Table 5.5: Initial and goal poses of the end-effector in each task. Cells marked with ”-” indicate no change
in that value.

End-effector pose, relative to world frame

x (m) y (m) z (m) R (deg) P (deg) Y (deg)

Task 1 Initial 0.470 0.004 1.118 129.56 -0.07 90.20

Goal 0.900 0.000 0.960 - - -

Task 2 Initial 0.507 0.004 1.178 109.54 -0.62 91.20

Goal 0.900 0.050 1.048 - - -

Task 3 Initial 0.507 0.004 1.178 109.54 -0.62 91.20

Goal 1.000 0.050 0.948 - - -

Task 4 Initial 0.507 0.004 1.178 92.365 -0.812 92.134

Goal - - - - - -

that obstacle positions were chosen to ensure an intersection with the arm’s trajectory, i.e. an imminent

collision, in the nominal motion trajectory case.

5.1.5 Automated Evaluation Testing

An automated testing and evaluation procedure was developed to run batches of trials in simulation

and organize the resultant data, compute performance metrics, and generate visualizations for analyses and

comparisons. Such an implementation alleviates the necessity of running, monitoring, and processing data

from hundreds of task executions manually, and more completely harnesses the advantages of simulation

by enabling the execution of experiments with no supervision. This is especially valuable given that

the parameter tuning phase would involve waiting for significant periods of time for sufficiently many

executions to be run with a given parameter set before drawing conclusions and running subsequent tests.

In this section, we briefly describe the products of this automated evaluation, including visualizations

that aid in comparing results from different parameter sets or strategies.

76

Chapter 5. Evaluation Methodology

Table 5.6: Initial and final positions of the obstacle in each task. Cells marked with ”-” indicate no change
in that value.

Obstacle position, relative to world frame

x (m) y (m) z (m)

Task 1 Initial 0.470 0.004 1.118

Final - - -

Task 2 Initial 1.050 -0.350 1.050

Final 0.400 0.250 1.050

Task 3 Initial 0.676 -0.084 0.932

Final - - -

Task 4 Initial 0.891 0.007 1.178

Final -0.109 0.007 1.178

Firstly, the automated evaluation pipeline runs consecutive trials of any task by simply following the

experiment procedure outlined in the previous section. Here, the user need only specify the relevant

hyper-parameters including the configuration files of each component, the desired initial and final positions

of the end-effector and obstacle, the number of trials to be conducted, etc. The pipeline then ensures the

seamless execution of the outlined steps for multiple trials and handling any potential failures14.

The data associated with every trial is saved in a dedicated directory This data includes raw mea-

surements of the positions of the end-effector, robot joints, and objects, as well as the velocities and

accelerations of the end-effector. In addition, the quantitative metrics detailed in Table 5.3, can be easily

derived from the raw data, are computed and similarly stored. In the case of Ncollisions, we disable Gazebo

collision dynamics in order to count instances in which the end-effector’s position intersects the obstacle’s

in all three dimensions at the same time15. Finally, the plots described in section 5.1.3 are also generated

and saved.

The automated evaluation tools were also developed to enable convenient comparisons of multiple

batches of trials. Primarily, the batches to be compared belong to either i) different parameter sets in the

tuning and validation phases, or ii) executions with and without SNN-based obstacle avoidance, which

constitute the final experiments conducted in the testing phase. The aforementioned run metrics are

aggregated for a given batch, and statistics such as the mean, minimum, maximum, percentile scores,

and outliers for every quantitative metric’s values are computed. These are visualized in hybrid plots

such as the one depicted in Figure 5.11, where every column represents a metric, and every entry in

the x-axis belongs to a specific batch of trials, whose IDs are listed in the legend. As a binary metric,

14More specifically, failures that involve the repeated execution of trials, such as the arm and obstacles not being set to
the specified positions before the next run, etc.

15Here, we consider the end-effector’s position as a point. This is sufficient for the analyses conducted in our experiments,
but a better approach would consider the dimensions of the end-effector and the rest of the robot as rigid bodies, but is left
for future extensions.

77

5.1. Simulation Experiments

10

12

14

16

18

20

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.8

0.9

1.0

1.1

1.2

1.3
Ap

pr
ox

im
at

e
tra

je
ct

or
y

le
ng

th
 (m

)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

96%94%92%
98%

Success %

Case
Without SNN Feedback Params 1 Params 2 Params 3 Params 4

Figure 5.11: A plot comparing the values of the quantitative performance metrics for batches of trials
that were run with different parameter sets. This is produced using the automated evaluation tools.

x y z norm

0.0

0.1

0.2

0.3

0.4

In
st

an
ta

ne
ou

s
Ve

lo
ci

tie
s

(m
/s

)

Instantaneous Velocities

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in x (m/s)

0

5

10

15

D
en

si
ty

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in y (m/s)

0

50

100

D
en

si
ty

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in z (m/s)

0

5

10

15

20

D
en

si
ty

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in norm (m/s)

0

2

4

6

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback, Initial Parameters

(a) Velocities

x y z norm

0

2

4

6

8

10

12

14

In
st

an
ta

ne
ou

s
Ac

ce
le

ra
tio

ns
 (m

/s
2)

Instantaneous Accelerations

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in x (m/s2)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in y (m/s2)

0.00

0.25

0.50

0.75

1.00

D
en

si
ty

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in z (m/s2)

0.0

0.1

0.2

D
en

si
ty

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in norm (m/s2)

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback, Initial Parameters

(b) Accelerations

Figure 5.12: Plots of the distributions of instantaneous velocities and accelerations in each spatial dimension
and their combination, measured in two different batches of trials. The bottom curves depict the densities
of measured values in each dimension.

78

Chapter 5. Evaluation Methodology

execution success is visualized in a bar plot representing the percentage of successful executions in the given

batch, while other metrics’ distributions are visualized in box plots to highlight the median, mean (green

triangles), spread, and outliers. The magnitudes of instantaneous end-effector velocities and accelerations

from different batches are visualized in separate plots like the example shown in Figure 5.1216. The

measurements in each spatial dimension and their average17 from every run are aggregated for a given

batch and depicted in the box plots on the top. The bottom plots illustrate the densities of these values

determined using kernel density estimation. Since these measurements are often fairly noisy, particularly

at high sampling frequencies, we detect and remove outliers before aggregating the data presented in the

plots. The outliers are detected using the standard interquartile range method, where the 25th and 75th

percentiles of the data, respectively denoted Q1 and Q3, are used to determine the interquartile range,

IQR = Q3−Q1, with which outliers can be identified under the following criterion:

✶outlier(x) =







0, if Q1− (1.5× IQR) < x < Q3 + (1.5× IQR)

1, otherwise
(5.5)

Finally, we visualize the three-dimensional trajectories of a given batch of trials in a single plot of the

type presented in Figure 5.9, similarly highlighting the success/failure of every execution; an example is

shown in Figure 5.13.

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

Figure 5.13: 3D trajectory plot for a batch
of Task 1 executions (this is similar to
the plots in Figure 5.9 but incorporates
multiple trials).

The data and plots generated by the automated evaluation

tools facilitate rapid testing and evaluation by presenting

the results in forms that simplify assessing performance and

drawing comparisons. All run data and batch metrics are

saved in YAML files for later processing. Appendix B contains

samples of the YAML files containing i) the metrics computed

for a single trial, and ii) the aggregate statistics of a batch

of trials (used for the comparisons described in this section).

5.2 Real Robot Experiments

The real robot experiments are largely similar to the simu-

lation experiments and are conducted on a real Kinova Gen3

arm attached to a robot platform. Following the tuning,

validation, and final testing of parameters in the simulation

experiments and the selection of a parameter set, these ex-

periments are designed to mimic the task scenarios created

in simulation and are performed to evaluate performance in

a real setting. In particular, executions on the robot can

provide insights on how well the parameters tuned in simulation transfer to the real world and a more

16Note that we consider the absolute values of velocities and accelerations, since we are only concerned about comparing
their magnitudes, particularly in assessing the qualitative criteria described in section 5.1.3.

17The Euclidean norm of the values in [x, y, z].

79

5.2. Real Robot Experiments

(a) Start (b) End

Figure 5.14: Task 1 (real robot experiments): reaching for a goal position behind a static obstacle. A
nominal end-effector trajectory is illustrated in green.

concrete validation of the proposed approach, in general. These experiments contain fewer variations of

task scenarios from a subset of the simulation tasks defined in section 5.1.1, and share the same evaluation

metrics/criteria and experimental procedure.

5.2.1 Evaluation Tasks

For these experiments, we consider two of the tasks defined in section 5.1.118:

❼ Task 1: The arm must reach a commanded goal position that lies behind a static obstacle, which

is positioned between the arm and the goal such that a nominal motion trajectory would lead the

end-effector to collide with the obstacle.

❼ Task 2: The arm must reach a commanded goal position as a dynamic obstacle enters the field

of view and crosses the end-effector’s path; the trajectory of the obstacle is set to intersect with a

nominal motion trajectory and thus lead to a collision.

The setups of both tasks are shown in figures 5.14 and 5.15, respectively, which depict the start and end

of each as well as the nominal end-effector trajectory and the obstacle’s trajectory (for task 2).

While their definitions and conditions are essentially equivalent to tasks 1 and 2 of the simulation

experiments, the versions used in real experiments have minor differences that bear mentioning. In

simulation, the object in task 1 was suspended for simplicity; here, the object is placed on a surface.

In task 2, the simulation offers fairly accurate control of the obstacle’s motion trajectory (handled by

the gazebo_object_animator node, as described in section 5.1.4) and thus a high degree of consistency

across trials. For the real experiments, the object’s trajectory is manually controlled by the experimenter,

with steps taken to minimize the variance of trajectories, including guiding markers on the table surface

(see Figure 5.15), verification measurements of the object’s initial position at the start of every trial, etc.

18The only criteria used to select the tasks for the real robot experiments are similarity to the ones tested in simulation,
which is important for minimizing external factors when drawing conclusions on transferability from simulation to a real
setting, in addition to the inclusion of at least one static and one dynamic case.

80

Chapter 5. Evaluation Methodology

(a) Start (b) End

Figure 5.15: Task 2 (real robot experiments): reaching for a goal position in the presence of an interfering
dynamic obstacle. The obstacle’s trajectory and a nominal end-effector trajectory are illustrated in red
and green, respectively.

These steps reduce inconsistencies in trial conditions, but the manual control of the trajectory is likely to

introduce some. However, the precise reproducibility of task conditions at this level of detail is deemed

unnecessary to achieve the objective of these experiments, and is not as strictly optimized for as in the

simulation experiments. One reason is that precise repetitions of conditions are rare if not impossible

in the real world in any case. While the simulation experiments were aimed at a systematic evaluation

of the approach and its parameters based on statistical evidence, which is facilitated by controlled and

highly repeatable trials, the primary objective of real robot experimentation is to transition into real-life

conditions and investigate how well the implementation copes with these conditions. From this perspective,

the aforementioned subtle variations may in fact be conducive to a thorough evaluation. In addition,

provided that this variation in conditions is reasonably small, running multiple trials is expected to lead to

an acceptable approximation of average performance, since that is likely to diminish any noise in results

that is introduced by imprecisions. The tasks also differ slightly from the simulation versions in the initial

and final positions of the robot arm and obstacles (see section 5.2.3 for exact values); the same arguments

for the insignificance of these differences in the context of the real robot experiments can be made here19.

Although the real robot experiment tasks could be varied along the same dimensions defined from which

the simulation task scenarios were instantiated (see Table 5.1), we choose a smaller set of representative

scenarios here. Both tasks are characterized by a “Background” and “Obstacle Type” variables. The

“Obstacle Color” and “Obstacle Speed” variables are not varied during the present experiments. For the

first, “Lab Background 1” is situated in an area near a window providing a natural but dim light (see

Figure 5.14) while “Lab Background 2” contains a large table and other background objects and has a

much brighter artificial lighting (see Figure 5.15), providing some variation in background and lighting

conditions. The objects used as obstacles are a wooden block, a metal bar, and a person’s hand. A

person’s hand as an obstacle is a particularly relevant case for human-robot collaborative scenarios and is

19However, this is under the assumption that the initial configurations of the arm are still reasonably unrestrictive, as
explained in section 5.1.4.

81

5.2. Real Robot Experiments

Table 5.7: List of real robot experiment task scenarios

Scenario ID Set Scenario Specification

R1 Testing (Real) Task 1, Lab Background 1, Wooden Block

R2 Testing (Real) Task 2, Lab Background 2, Hand

R3 Testing (Real) Task 2, Lab Background 2, Metal Bar

R4 Testing (Real) Task 2, Lab Background 2, Wooden Block

thus worth testing for20. Table 5.7 lists the four scenarios we conduct our real robot experiments in.

5.2.2 Evaluation Metrics and Criteria

The performance in real experiments is evaluated using the same quantitative metrics and qualitative

criteria of the simulation experiments, described in section 5.1.3. The only difference is in the Ncollisions

quantitative metric. In simulation, it is possible to disable collision dynamics and use the number of

instances in which the end-effector intersects an obstacle model as a useful measure of collision frequency.

Since that is not possible in the real experiments, we exclude this metric. Collision instances are instead

reflected in the ”Success” metric which, as before, is true only if the end-effector never collides with the

obstacle and also reaches its designated goal. In addition, note that these instances are determined through

observation, instead of the automated collision detection implemented for the simulation experiments. For

the definitions of all other metrics and evaluation criteria, in addition to descriptions of plots and other

visualizations, refer to section 5.1.3.

5.2.3 Experiment Procedure

Similar to the evaluation metrics and criteria, the procedure followed in conducting the experiments

on the real robot is mostly the same as in the simulation experiments. We run the SNN-based obstacle

avoidance module with the parameter set that has been tuned, validated, tested, and ultimately selected

in simulation experiments. Again, this involves Ntrials execution trials on the task scenarios (defined in

Table 5.7) in two cases:

1. Nominal executions that do not involve the obstacle avoidance module (the benchmark)

2. Executions that incorporate the SNN-based obstacle avoidance module, using the selected parameter

set

The real robot experiments consist of Ntrials = 30 trials in both cases for each scenario, followed by the

same analysis of the obstacle avoidance behaviour.

The particular steps constituting a single run of the experiments resemble those enumerated in section

5.1.4, with some adjustments pertaining to the real robot platform:

20Note that the speed at which the end-effector moves poses negligible safety risks to the person. Nevertheless, the arm is
carefully monitored during execution and an emergency stop is available to interrupt the execution at any point.

82

Chapter 5. Evaluation Methodology

1. Place the robot platform in the designated starting position.

2. Launch components required to initialize the robot’s control functionalities.

3. Start the event camera emulation and SNN simulation components by running the event_image_streamer

and snn_simulator nodes with the appropriate configuration files.

4. Move the arm to the initial configuration (depends on the task).

5. Prepare the obstacle object. In static scenarios, place the obstacle in its designated position. In

dynamic scenarios, hold the object in its designated initial position in preparation for its motion.

6. Command the arm to move to the goal position (depends on the task) by running the motion_controller

node with the appropriate configuration file, and choosing whether to use SNN feedback.

7. If the scenario involves a dynamic obstacle, move the obstacle in its defined trajectory.

8. After task execution, record all relevant data and compute performance metrics.

The components are configured and run with the same configuration files described in section 5.1.4.

The end-effector’s designated initial and goal poses as well as the obstacle’s positions for each task are

marginally different from the simulation task definitions. Tables 5.8 and 5.9 specify the end-effector poses

and obstacle positions, respectively, for each task in the real robot experiments. In this case, note that

the end-effector’s poses are the same in both tasks.

Table 5.8: Initial and goal poses of the end-effector in each task in the real robot experiments. Cells
marked with ”-” indicate no change in that value.

End-effector pose, relative to world frame

x (m) y (m) z (m) R (deg) P (deg) Y (deg)

Task 1 Initial 0.494 -0.025 1.130 129.56 -0.07 90.20

Goal 1.000 0.000 0.948 - - -

Task 2 Initial 0.494 -0.025 1.130 129.56 -0.07 90.20

Goal 1.000 0.000 0.948 - - -

Table 5.9: Initial and final positions of the obstacle in each task in the real robot experiments. Cells
marked with ”-” indicate no change in that value.

Obstacle position, relative to world frame

x (m) y (m) z (m)

Task 1 Initial 0.700 0.000 0.900

Final - - -

Task 2 Initial 0.790 -0.390 0.950

Final 0.790 0.000 0.950

Finally, all measurements and data are saved, metrics and comparison statistics from multiple batches

are computed, and single-run and batch visualizations are generated in the same manner described in

83

5.3. Concluding Remarks

section 5.1.5.

5.3 Concluding Remarks

This chapter has summarized the methodology we follow for the systematic evaluation of our proposed

neuromorphic approach to obstacle avoidance. First, we interweave the iterative development and

evaluation of our implementation in the presented tuning→ validation → testing procedure in simulations.

Simulation testing facilitates the methodical selection of a parameter set and a thorough assessment of

performance and obstacle avoidance behaviour through a large number of repeatable trials. By varying

task scenarios along several dimensions and conducting experiments on different sets of scenarios, we

aim to draw well-founded conclusions and identify the properties and limitations of our approach. The

resulting implementation and parameter set are then tested in real robot experiments, particularly by

comparing outcomes in imminent collision cases to those of a näıve approach that does not incorporate our

obstacle avoidance module. Ideally, these parameters would transfer directly or with minimal adjustments

and achieve comparable performance, thus validating not only the SNN-based obstacle avoidance in

general, but the transferability of parameters tuned in simulation to the real world.

An integral aspect of our evaluation methodology is the definition and establishment of clear quantitative

metrics and qualitative criteria for a practical interpretation of results. We detail the measurements and

computations required to derive the metrics and ground a selection of qualitative criteria with which the

executed trajectories can be described in terms of quantifiable measures. Given the relative scarcity of

similar evaluation tools in the literature, we hope that the metrics and criteria defined here are applied

and refined in future work as a step towards an objective and unified methodology for evaluating obstacle

avoidance behaviour.

84

6

Results and Discussion

Following the procedure outlined in chapter 5, we conducted the experiments and analyses designed

to evaluate our neuromorphic obstacle avoidance approach and present and discuss their results in this

chapter. We first describe the selection of parameters, their evaluations, and subsequent improvements in

simulated testing, particularly in terms of the presented performance metrics and criteria. Along with

parameter adjustments, we discuss modifications to the implementation prompted by findings from initial

testing, such as incorporating safety strategies to conditionally limit arm motions. This is followed by

an evaluation of the ultimate performance of the implementation and selected parameter values in the

simulation and real robot testing scenarios. The subsequent analysis of the results provides insights on the

degree to which our SNN-based strategy succeeds in obstacle avoidance, the effects of the neuromorphic

elements of the pipeline, and the strengths and limitations of the approach in general.

We additionally explore the properties of our neuromorphic components through further experimenta-

tion. We compare different event emulation methods in terms of output events, spiking responses, and

effects on performance. To validate the utility of the SNN component, we implement and test the decoding

of obstacle avoidance behaviour from raw events, thus completely excluding the SNN. Furthermore, we

investigate the effects of SNN random weight values on performance by repeating scenario trials with

different weight initializations. Finally, we substitute our event emulator with a real EC and re-ran

experiments on the real robot for a preliminary examination of the feasibility of incorporating a real

camera in our pipeline and its effects on obstacle avoidance performance.

This chapter is divided as follows. Section 6.1 details the results of the tuning → validation → testing

procedure and simulation experiments. Section 6.2 contains a discussion of the results of real robot

experiments, and is followed by a summary of the conclusions we have drawn from both sets of experiments

in section 6.3. Our analyses of the results of different emulation methods, the exclusion of the SNN, and

varying SNN weights are presented in sections 6.4, 6.5, and 6.6 respectively. In the last section, we discuss

the results of preliminary tests with the real camera.

6.1 Simulation Experiments

The parameter tuning and evaluation in the simulation experiments was performed in the manner

outlined in section 5.1, but was preceded by first establishing an initial set of parameter values while

developing the implementation in a pre-tuning phase. Then, we tuned several variants of this initial

85

6.1. Simulation Experiments

parameter set on the tuning set of scenarios, validated their performance on the validation set, feeding back

the results to instantiate more parameter sets to tune and validate, and finally selected the best-performing

parameter set to run on the testing set. All executions were evaluated based on the quantitative metrics

and accompanying visualizations presented in section 5.1.3, which are computed and generated by the

automated evaluation tools described in section 5.1.5. The formal simulation experiments conducted by

running trials on the testing set yielded the final results with which the performance of the SNN-based

obstacle avoidance in simulation was assessed, including the qualitative criteria defined to evaluate motion

trajectory characteristics. In the following, we present the results from the pre-tuning, tuning, validation,

and testing phases and discuss interesting insights from each. Note that all parameter sets discussed in

this section are included in Appendix C.

6.1.1 Initial Parameters (Pre-Tuning Phase)

Figure 6.1: Pre-tuning sce-
nario: {Task 1, Empty,
Cracker Box}

The pre-tuning phase consisted of iteratively testing the implementation

during development and grounding parameter values that lead to acceptable

performance. Since the number of tunable parameters is considerable, a

significant number of closely monitored execution trials was conducted to

search for a promising region in the parameter space. Among others, the

main targets of this optimization were motion control parameters, such as the

PID gains, distance tolerances, and motion loop frequency, PF parameters,

SNN parameters, including the architecture, weight initialization, and SNN

dynamics variables, and event emulation options, such as using RGB vs.

grayscale images and the event emission threshold (θ). These tests were

conducted on a special task scenario that was exclusively used in the pre-

tuning phase: a variant of Task 1 containing a “Cracker Box” object excluded

from the task distribution defined in section 5.1.1 (Table 5.1). In addition, the

arm was positioned in the default configuration of the ros kortex simulation.

Otherwise, the scenario follows the formalized task specification. Figure 6.1

shows the setup at the beginning of the task scenario.

During this phase, we established stable values for various options and parameters. The event camera

emulator was configured to:

❼ derive events from RGB instead of grayscale images, thus utilizing information from all three color

channels (compute from rgb)

❼ emit events when the intensity threshold is crossed in all three channels, instead of any one (a

multi-channel instead of single-channel strategy: rgb multi channel)

❼ record OFF events as well as ON events (record off events)

❼ treat OFF events as ON, thus not considering event polarity (as done in other studies; see section

4.1.2) (register off events as on)

86

Chapter 6. Results and Discussion

Table 6.1: The SNN architecture selected during the pre-tuning phase.

Layer Type Kernel
Size

Stride Size Input Size Output
Size

Input - - - - 120 × 160

Layer 1 LIF (conv) 8 × 8 4 × 4 120 × 160 29 × 39

Layer 2 (Output) LIF (conv) 4 × 4 4 × 4 29 × 39 13 × 18

For the SNN simulator, the chosen architecture is a two-layer SNN comprising neurons of the type

presented in Diehl & Cook (2015), which are essentially leaky-integrate-and-fire (LIF) neurons and are

implemented in the BindsNET package as DiehandCookNodes. The network consists of an input layer

which simply propagates the input spike trains and two layers of characteristic spiking neurons (identified

with H and Y)1. Table 6.1 shows the specifications of each layer, including the convolutional kernel and

feature map sizes. (See Appendix B for a representation of the architecture in the SNN configuration

YAML file.) We set the parameters that govern neuronal dynamics, such as the spiking threshold (vthresh),

reset and resting potentials (vreset and vrest), refractory period (Trefrac), and potential decay time

constant (τv), to values similar to the defaults used in the original paper, which are intended to be within

biologically plausible ranges (Diehl & Cook (2015)). Most notably, we increased vreset and vrest (from

-65.0 to -62.0) in order to encourage more frequent spiking, which was more suitable in our pipeline. The

SNN simulation time (Tsim), which controls the time period of a single pass through the network, was set

to 20 (ms)2. The weight initialization factor, wc, was set to 7.0 (refer to section 4.1.3).

For the motion controller, the PID gains (Kp, Kd, Ki) and position and final goal reaching tolerances

and timeouts were tuned for motions that seemed most stable, safe and successful. A lower bound on

the motion loop iteration time of 0.03s, i.e. a maximum frequency of approximately fv = 33 Hz, also

contributed to motion stability. Other notable parameters that were tuned include the PF parameters (p0

and η of the Park method of equation 4.4, a gradient scaling constant, and the φmax limit on φ values),

the FST activation threshold factor, tact, that determines how early an output neuron must fire (within

Tsim) for its contribution to be considered when decoding the SNN response, and the aggregate phi option,

which specifies that a history of recent φ values is averaged to alleviate observed noise.

Appendix C contains the selected values of all the parameters (some of which were not mentioned

here). For descriptions of each parameter, refer to tables 4.1, 4.2, and 4.3 in section 4.2.1.

1Note that the network thus effectively contains three layers, but we only consider layers of active spiking neurons, i.e.
those that emit spikes according to tracked membrane potential traces, when categorizing the architecture. Therefore, we do
not count the input layer, which simply transmits input spikes to the main layers.

2This means that membrane potentials are updated, spikes are propagated, etc. in all neurons for input spike trains
that span a period of 20ms before reading off the spikes at the output layer. The length of spike trains is enforced during
the Poisson spike encoding of input event data described in section 4.1.3. This creates a brief time window in which the
snn simulator output is halted until this outcome is determined. In future work, we aim to explore this parameter further,
particularly by setting its value to the minimum time increment (currently 1 ms) such that the SNN runs effectively in
real-time, and outputs are read after a maximum of a single spike is propagated per neuron.

87

6.1. Simulation Experiments

Pre-Tuning Test Results

The pre-tuning parameter set was formally evaluated by running Ntrials = 30 trials and comparing to

results conducted without the obstacle avoidance module. We refer to the latter control trials as executions

“without SNN feedback”3, and use their results as a benchmark. Figure 6.2 depicts the performance

in either case based on the quantitative metrics, Figure 6.3 shows the 3D trajectories executed in both

batches, and Figure 6.4 depicts the distributions of applied velocities and accelerations.

The trajectories executed in the control case all fail by colliding with the obstacle, as is clear from

the consistent red trajectories in Figure 6.3a. This is expected, since no obstacle avoidance trajectory

adaptations are performed. On the other hand, utilizing the SNN-based obstacle avoidance leads to

trajectories that are adapted to avoid the obstacle while moving towards the goal and which often succeed

(Figure 6.3b). In particular, these executions were successful 80% of the time (as opposed to 0%) as

depicted on Figure 6.2. The obstacle avoiding trajectories tend to have higher execution times and

trajectory lengths, approximately by factors of 2 and 1.5, respectively. In addition, their values have

higher variances about the mean; this is a reflection of some differences in the executed trajectories across

trials, which can also be observed from their shapes on Figure 6.3b. Nevertheless, the obstacle avoidance

module reduces the average number of collisions from approximately 7.8 to 0.6 (a factor of 14), though a

few outliers indicate that failed executions occasionally lead to high counts of collisions. A significant

fraction of failures occur due to executions ending before the end-effector has reached the goal, i.e. with a

high dG that exceeds δg (the goal reaching tolerance). This is evident from the slightly larger mean and

the significant number of outliers in the distance-to-goal results from the “With SNN Feedback” run in

Figure 6.2, as well as a number of red trajectories in Figure 6.3b whose final positions are far from the

goal4. Clearly, the chosen parameters lead to occasional instances where the applied velocities move the

arm into singular positions that complicate returning back to the intended path.

From Figure 6.4, we can observe that velocities and accelerations applied by the obstacle avoidance

module are not significantly different from the baseline values recorded in nominal executions. The box

plots show that the overall speed is actually lower with obstacle avoidance, particularly in the x and

z dimensions. This is due to trajectory adaptations naturally slowing down the overall progression of

the end-effector, since adapting online to the reach adjusted DMP positions requires more corrective

control actions from the motion controller and thus more time. In the exceptional case of the y dimension,

obstacle-avoiding velocities and accelerations are higher, because the nominal trajectories move very little

in that direction in this task specification, while adapted trajectories often do in the course of avoiding

the obstacle. These observations are confirmed by the density plots at the bottom halves of each figure.

Having identified potential problems with this parameter set (particularly failures to reach the goal),

we transitioned to the tuning phase in which we refine derivatives of the pre-tuning parameter set.

3This is synonymous with “without the obstacle avoidance module/pipeline”.
4Note that trials are bounded by a goal reaching timeout parameter, which is set to 60 seconds by default. If a given

trial does not end by reaching the goal before the timeout, it is aborted and the position of the end-effector at that point in
time is recorded as its final position.

88

Chapter 6. Results and Discussion

6

8

10

12

14

16

18

20

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.8

1.0

1.2

1.4
Ap

pr
ox

im
at

e
tra

je
ct

or
y

le
ng

th
 (m

)

Trajectory Length

0

2

4

6

8

10

12

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

80%

Success %

Case
Without SNN Feedback With SNN Feedback, Initial Parameters

Figure 6.2: Quantitative metric results in pre-tuning trials.

x

0.1
0.2

0.3
0.4

0.5
0.6

y

0.2

0.1
0.0

0.1
0.2

z

0.3

0.4

0.5

0.6

0.7

0.8

EE Trajectory and Obstacles: Without SNN Feedback
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(a) Without SNN feedback

x

0.1
0.2

0.3
0.4

0.5
0.6

y

0.1

0.0
0.1

0.2
0.3

z

0.3

0.4

0.5

0.6

0.7

0.8

EE Trajectory and Obstacles: With SNN Feedback, Initial Parameters

Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(b) With SNN feedback: Pre-tuning Parameter Set

Figure 6.3: Trajectories executed in pre-tuning trials.

89

6.1. Simulation Experiments

x y z norm

0.0

0.1

0.2

0.3

0.4

In
st

an
ta

ne
ou

s
Ve

lo
ci

tie
s

(m
/s

)

Instantaneous Velocities

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in x (m/s)

0

5

10

15

D
en

si
ty

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in y (m/s)

0

50

100

D
en

si
ty

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in z (m/s)

0

5

10

15

20

D
en

si
ty

0.0 0.1 0.2 0.3 0.4
Instantaneous Velocities in norm (m/s)

0

2

4

6

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback, Initial Parameters

(a) Velocities

x y z norm

0

2

4

6

8

10

12

14

In
st

an
ta

ne
ou

s
Ac

ce
le

ra
tio

ns
 (m

/s
2)

Instantaneous Accelerations

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in x (m/s2)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in y (m/s2)

0.00

0.25

0.50

0.75

1.00

D
en

si
ty

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in z (m/s2)

0.0

0.1

0.2

D
en

si
ty

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instantaneous Accelerations in norm (m/s2)

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback, Initial Parameters

(b) Accelerations

Figure 6.4: Distributions of instantaneous velocities and accelerations in each spatial dimension, measured
during pre-tuning trials.

6.1.2 Tuning Results

In all subsequent scenarios, the arm in placed in the experimental configuration described in section

5.1.4 and shown on Figure 5.10b.

Given the main conclusions from the pre-tuning tests, we derived parameter sets from the pre-tuning set

that were expected to improve its results. Primarily, we aimed to address the problem of the arm reaching

singular configurations, which not only leads to failures in reaching the goal, but also to potentially unsafe

executions. We devised a safety strategy that discourages excessive motion away from the pre-planned

(nominal) motion trajectory in order to minimize similar occurrences. This is termed “Safety Strategy 1”,

and is detailed in the following.

90

Chapter 6. Results and Discussion

Safety Strategy 1: If the distance of the current end-effector position from the nearest point on

the pre-planned trajectory exceeds a safety threshold:

||y(t)− ŷref ||2 < δsafety,1 (6.1)

and the current position is further away from the trajectory point than the last recorded position

(i.e. the end-effector is currently moving further away from the nominal trajectory):

||y(t)− yref ||2 > ||y(t− 1)− yref ||2 (6.2)

then slow down motion by reducing the current commanded velocity and the φ values that define

the next commanded acceleration values:

v(t) = γv,1v(t) (6.3)

φ(t+ 1) = γa,1φ(t) (6.4)

(a) X-Z (b) Y-Z

Figure 6.5: An illustration of the bounds introduced by safety strategy 1, overlaid on a plot of a sample
failed execution from the pre-tuning batch. White points are nominal trajectory positions, the green and
red points represent a safe position and a position that violates the safety condition. Ellipses represent
the maximum distances around nominal trajectory positions, forming the safety boundary defined by the
tolerance value.

Figure 6.5 illustrates the safety boundaries that would be established by applying the safety strategy

to a sample failed execution from two perspectives. The distance tolerance, δsafety,1, effectively creates

an elliptical boundary around the nominal trajectory which encompasses any position that does not

violate 6.1 (as depicted with ellipsoids centered on trajectory positions and grey boundaries matching the

trajectory shape). Any position in the adapted trajectory that falls outside the boundary and is further

from the last recorded position (the second condition, 6.2) is subject to a reduction in velocities and

91

6.1. Simulation Experiments

accelerations (6.3 and 6.4). The second condition ensures that motions that move the end-effector back to

the bounded region are not penalized, i.e. slowed down, as well. The distance of an end-effector position

to the nominal trajectory is approximated by the Euclidean distance to the nearest known position (the

white points in the figure5) on trajectory Ŷ, ŷref
6:

ŷref = argmin
ŷj∈Ŷ

||y(t)− ŷj ||2 (6.5)

For the fundamentally different task 4, we defined a similar version of the rule: “Safety Strategy 2”.

Task 4 requires the robot to maintain the end-effector’s position, move away to avoid obstacles, and

return to that position; therefore, it does not involve a reference trajectory. Instead, we simply penalize

motions that deviate a certain distance from the set-point position (initial/goal position, y(0)) in the

same manner:

Safety Strategy 2: If the distance of the current end-effector position from the set-point position

exceeds a safety threshold: ||y(t)− y(0)||2 < δsafety,2 (6.6)

and the current position is further away from the set-point position than the last recorded position

(i.e. the end-effector is currently moving further away from the set-point):

||y(t)− y(0)||2 > ||y(t− 1)− y(0)||2 (6.7)

then slow down motion by reducing the current commanded velocity and the φ values that define

the next commanded acceleration values:

v(t) = γv,2v(t) (6.8)

φ(t+ 1) = γa,2φ(t) (6.9)

Both safety strategies are integrated in the parameter sets and tested as described in the following.

Parameter Sets 1-9

By running preliminary tests on the tuning scenarios, we tuned multiple parameter sets (derived from the

initial set) that essentially incorporate safety strategy 1 but with different parameterizations. These sets

are specified in the following with emphasis on their distinguishing characteristics:

❼ Parameter set 1: δsafety,1 = 0.4, γv,1 = 0.6, γa,1 = 0.4 (safety strategy 1)

❼ Parameter set 2: δsafety,1 = 0.4, γv,1 = 0.6, γa,1 = 0.6 (safety strategy 1)

❼ Parameter set 3: δsafety,1 = 0.2, γv,1 = 0.8, γa,1 = 0.6 (safety strategy 1)

❼ Parameter set 4: δsafety,1 = 0.2, γv,1 = 0.8, γa,1 = 0.4 (safety strategy 1)

5Note that the spacing between positions on the nominal trajectory shown on the figure does not accurately reflect the
actual resolution at which positions are spaced along the trajectory and only serves to aid in the illustration.

6ŷ refers to a position on the original, pre-planned trajectory, while the added subscript in ŷref is used to identify a
reference position on that trajectory that is nearest to the end-effector position, for the purposes of this discussion.

92

Chapter 6. Results and Discussion

During these tests, we noticed frequent failures in tuning scenario 3, an instance of task 3, when

unfortunate motions would lead the end-effector to move towards the edge of or sometimes under the

table, leading to terminal collisions. In order to address this and similar task-specific constraints, we

implemented optional positional limits on the effective “workspace” of the robot that can be specified to

prevent moving towards certain regions, as an additional safety measure. In this case, we influence the

arm’s motion at the level of planned end-effector positions; if a position produced by the DMP violates

defined limits, it is adjusted to keep the end-effector within bounds. More specifically, if the position falls

outside a specified range, if any, it is clipped to the maximum value of that range

yi = min(δ+pos,i,max(δ
−

pos,i,yi(t))), ∀i ∈ {x, y, z} (6.10)

Here, δ−pos,i and δ
+
pos,i represent the lower and upper positional limits along dimension i; by default, these

are set to −∞ and ∞, respectively. Generally, these limits could be set according to task and environment

conditions. We include a parameter set that incorporates a lower positional limit in z which we expect

could lead to better performance in scenario 3 by preventing motions that cross the table edge:

❼ Parameter set 5: δsafety,1 = 0.2, γv,1 = 0.8, γa,1 = 0.4 (safety strategy 1); δ−pos,z = 0.87

In subsequent sets, we introduced the binary erosion filter for the event data (described in section

4.1.2), which mainly necessitated adjusting the SNN initial weight factor, wc. The following sets represent

different parameterizations based on parameter set 5 that incorporate this filter, mainly varying in the

SNN initial weight factor, wc, and the size of the filter’s structuring element, sBE , which controls the

minimum size a matrix of 1’s in a binary image must be to not be filtered out:

❼ Parameter set 6: sBE = 3 (binary erosion), wc = 7.0

❼ Parameter set 7: sBE = 3 (binary erosion), wc = 15.0

❼ Parameter set 8: sBE = 5 (binary erosion), wc = 20.0

An additional parameter set was created to address limitations observed with the last three, particularly

in scenario 2 (see in results below), and to incorporate “Safety Strategy 2”. Among these changes were

re-tunings of the position reaching tolerance, δy, φmax of the PF, and the previously infinite φ history

horizon, nφ:

❼ Parameter set 9: sBE = 4 (binary erosion), wc = 20.0, δy = 0.01, φmax = 5000, nφ = 2,

δsafety,2 = 0.2, γv,2 = 0.8, γa,2 = 0.8 (safety strategy 2)

(Note that this parameter set was based on set 8.)

Furthermore, three more parameter sets were tuned to refine the significant changes introduced in set

9 further:

❼ Parameter set 10: sBE = 5 (binary erosion), wc = 20.0, δy = 0.01, δobs = 0.15, φmax = 4000,

nφ = 12, γa,2 = 0.4 (safety strategy 2)

93

6.1. Simulation Experiments

❼ Parameter set 11: sBE = 5 (binary erosion), wc = 25.0, δy = 0.01, δobs = 0.15, φmax = 4000,

nφ = 12, γa,2 = 0.4 (safety strategy 2)

❼ Parameter set 12: sBE = 5 (binary erosion), wc = 20.0, δy = 0.01, δobs = 0.15, φmax = 4000,

nφ = 12, γa,2 = 0.6 (safety strategy 2)

δobs represents the minimum distance the end-effector must be to the goal for obstacle avoidance behaviours

to remain active, the purpose of which is to explicitly prevent avoiding a goal object as an obstacle, such

as the can on the table in scenario 3. Other re-parameterizations included increasing nφ to reduce noise

in φ values by increasing the history horizon, testing different combinations of sBE and wc, and adjusting

γa,2 to experiment with different speed reduction magnitudes in cases of violated safety constraints. The

last sets were in fact tuned with feedback from the validation results (presented in the next sub-section),

but are introduced here for convenience.

Refer to Appendix C for a tabular representation of these parameter sets, particularly highlighting the

differences between each.

As in the pre-tuning phase, we ran batches of trials without SNN feedback (control case) and with

SNN feedback, the latter this time with each of the twelve parameter sets, on each of the three tuning

task scenarios (1, 2, and 3). The control case batches consisted of Ntrials = 30 trials, while the parameter

set trials consisted of Ntrials = 40 each7. The tuning phase trials amount to a total of 1530.

Scenario 1 Results

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%
Success %

Case
Without SNN Feedback
Params. 1

Params. 2
Params. 3

Params. 4
Params. 5

Params. 6
Params. 7

Params. 8
Params. 9

Params. 10
Params. 11

Params. 12

Figure 6.6: Quantitative metric results for tuning scenario 1: without SNN feedback and parameter sets
1-12. Note that the boxes/bars in each plot are arranged in the order: ”Without SNN Feedback” and
parameter sets 1-12.

7We ran less trials of the case not involving obstacle avoidance, given that we expect very little, if any, differences
between trials, since the arm simply executes the pre-planned trajectory with no adaptations.

94

Chapter 6. Results and Discussion

The results for scenario 1, plotted on Figure 6.6, indicate that the first five parameter sets perform

acceptably, achieving success rates within the range of 68-78%. Evidently, the safety strategy was successful

in reducing instances of terminal configuration, but more so for parameter sets 3-5 than 1 and 2. This can

be observed from the distribution of dG values, which is consistently at the minimum value for sets 3-5,

and from the trajectories plotted in Figure 6.7, in which the final positions are near the goal position for

all executions of these sets. Indeed, the trajectories for sets 1 and 2 appear more erratic and winding,

which is additionally reflected on their higher execution times and trajectory lengths.

Contrarily, the results from parameters 6-9 were worse on average, as can be observed through their

success rates (the middle four bars on the metrics plot). This seems to be most attributable to more

frequent collisions, likely due to narrower motions trajectories, when comparing the trajectories (shown

in Figure 6.8) to those of the first five parameter sets. The greater suppression of motions is an effect

of the added binary erosion filter; although it is expected to stabilize motions in noisier backgrounds

(such as those in the validation set), the filter does reduce the density of emitted events which may have

a detrimental effect in simpler environments such as in scenario 1. The results thus indicate that event

filtering could be improved, which was attempted in sets 10-12.

The results show that the further tuning of set 9 to create sets 10-12 has led to better performance.

On average, sets 10-12 produce less erratic trajectories than all previous parameters (see Figure 6.8),

which is evident from the relatively low mean and variances of trajectory lengths. In addition, parameter

sets 10 and 12 perform relatively well in avoiding collisions while consistently reaching the goal, with the

latter succeeding at a rate of 84%. The exception, set 11, does not perform as well, seemingly due to

multiple cases in which the end-effector does not maintain motion away from the obstacle long enough to

completely clear it.

Scenario 2 Results

Results from this scenario indicate that most parameterizations fail to achieve acceptable performance

in task 4. Among the first nine parameter, the most successful, set 8, has a success rate of 40%, while

the rest fall under 17%. The primary cause is large number of collisions, as evident from Figure 6.9,

caused by the arm not moving sufficiently away from the obstacle before colliding; this indicated that the

inputs were not sufficiently salient or did not induce a strong enough response from the obstacle avoidance

component. Essentially, this points to a trade-off in parameter tuning: increasing sensitivity to inputs at

the perceptual, motion, or intermediate levels in the pipeline may lead to excessive or oscillatory motions,

approaching singular configurations, and more dangerous motions, while decreasing sensitivity may risk

not reacting fast enough to avoid a collision8. Examples of parameters that can control this sensitivity

include:

❼ Perceptual: event emission threshold, θ (lower values increase sensitivity); binary erosion structure

size, sBE (lower values increase sensitivity)

8Here, we use the term sensitivity to qualify the extent to which the arm moves in reaction to motion observed in the
source image, which is dictated by the aggregate behaviour of multiple components in the pipeline.

95

6.1. Simulation Experiments

x

0.5
0.6

0.7
0.8

0.9

y

0.2

0.1

0.0

0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Without SNN Feedback
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(a) Without SNN feedback

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 1
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(b) Parameter Set 1

x

0.5
0.6

0.7
0.8

0.9

y

0.2

0.1

0.0

0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 2

Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(c) Parameter Set 2

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

EE Trajectory and Obstacles: Params. 3
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(d) Parameter Set 3

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 4
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(e) Parameter Set 4

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.7

0.8

0.9

1.0

1.1

EE Trajectory and Obstacles: Params. 5
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(f) Parameter Set 5

Figure 6.7: Trajectories executed in tuning scenario 1: without SNN feedback and parameter sets 1-5.

96

Chapter 6. Results and Discussion

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 6
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(a) Parameter Set 6

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 7
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(b) Parameter Set 7

x

0.5
0.6

0.7
0.8

0.9

y

0.2

0.1

0.0

0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 8
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(c) Parameter Set 8

x

0.5
0.6

0.7
0.8

0.9

y

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 9
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(d) Parameter Set 9

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 10
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(e) Parameter Set 10

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 11
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(f) Parameter Set 11

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 12
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(g) Parameter Set 12

Figure 6.8: Trajectories executed in tuning scenario 1: parameter sets 6-12.

97

6.1. Simulation Experiments

10

20

30

40

50

60

70

Ti
m

e
(s

ec
on

ds
)

Execution Time

0

2

4

6

8

10

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

Success %

Case
Without SNN Feedback
Params. 1

Params. 2
Params. 3

Params. 4
Params. 5

Params. 6
Params. 7

Params. 8
Params. 9

Params. 10
Params. 11

Params. 12

Figure 6.9: Quantitative metric results for tuning scenario 2: without SNN feedback and parameter sets
1-12.

❼ SNN: SNN weight factor, wc (higher values increase sensitivity); SNN spiking threshold, vthresh

(lower values increase sensitivity)

❼ Motion: acceleration history horizon, nφ (lower values increase sensitivity); upper bound on

acceleration, φmax (higher values increase sensitivity)

Sets 10-12 were created in attempts to further tune these parameters to address this deficiency.

As the plot indicates, the parameter values in sets 10-12 succeed in achieving significantly better

performance in scenario 2. This validates the hypothesized effects of each of the aforementioned parameters,

which we were able to tune in order to reach a satisfactory level of reactivity to accomplish the task.

Nevertheless, it is clear that the dynamic component of this task presents an added challenge.

Scenario 3 Results

Figure 6.10 shows the metrics plot for all parameter sets in the third tuning scenario. Here, the success

rate for parameter sets 1 and 2 is fairly low at ∼40%, but this improves with the subsequent re-tunings of

the safety strategy parameters in sets 3-5, which achieve 64-73%. The initial introduction of binary erosion

filter leads to a drop in success with set 6 (∼55%); however, this improves when the filter parameters

are tuned further in sets 7 and 8, which is successful 80% of the time. Parameter set 9, on the other

hand, performs much worse due to excessive motions leading to unstable trajectories that often fail in

reaching the goal (and thus have high dG values). This is likely in part due to the smaller value of nφ,

for which only the past two φ values are aggregated instead of an infinite time horizon; this increases

susceptibility to variances in consecutive accelerations. In general, most failures seem to be due to sensitive

parameterizations, since the resulting unstable motions are particularly unsuitable in a scenario that

involves other objects in the vicinity (i.e. the table and can).

98

Chapter 6. Results and Discussion

10

15

20

25

30

35

40

Ti
m

e
(s

ec
on

ds
)

Execution Time

0

1

2

3

4

5

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

5

10

15

20

25

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

Success %

Case
Without SNN Feedback
Params. 1

Params. 2
Params. 3

Params. 4
Params. 5

Params. 6
Params. 7

Params. 8
Params. 9

Params. 10
Params. 11

Params. 12

Figure 6.10: Quantitative metric results for tuning scenario 3: without SNN feedback and parameter sets
1-12.

The final three parameter sets seem to address the problem observed with set 9, with sets 11 and

12 achieving 86% and 80% success, respectively. In particular, the resultant trajectories appear much

more stable while avoiding the obstacle to successfully reach the goal (see Figure D.2 in Appendix D,

which contains all trajectories executed in scenario 3). This indicates that the higher value of nφ within

these sets is better, and that the tuning for scenario 2 has produced a better-performing combination of

parameter value for this scenario as well.

6.1.3 Validation Results

Following an analysis of the results from the tuning phase, we selected a subset of the twelve parameter

sets on the basis of best average performance across the tuning scenarios and most promising trajectory

properties: 5, 8, 10, and 12, for the validation phase tests. This phase involves the same procedure of

repeated trials, this time conducted in scenarios 4-11.

In preliminary tests, we found that the performance of all parameter sets was not satisfactory for a

special task 4 scenario in which the dynamic obstacle moved at a high speed: scenario 8. In order to

address this, we instantiated two more parameter sets before running the full validation phase tests, with

the aim of studying whether a quicker response that handles the high-speed obstacle could be achieved.

We explored the possibilities of faster real-time performance by switching to a single-layer SNN, increasing

the upper limit on motion loop frequency, fv, and adjusting various other parameters to adapt accordingly.

The following includes some of the major changes that characterize the two sets, which were based on set

12, apart from the different SNN architecture:

❼ Parameter set 13: sBE = 5 (binary erosion), wc = 2000.0, vthresh = −58.0, Trefrac = 0, Tsim = 3,

τv = 1000, φmax = 8000, η = 600, Cδ = 40000, nφ = 12, tact = 3, fv = 100

99

6.1. Simulation Experiments

❼ Parameter set 14: sBE = 5 (binary erosion), wc = 2000.0, vthresh = −58.0, Trefrac = 0, Tsim = 3,

τv = 1000, φmax = 6000, η = 600, Cδ = 10000, nφ = 12, tact = 3, fv = 100

Table 6.2 summarizes the single-layer architecture, whose YAML specification is also included in Appendix

B. These parameter sets can be found in tabular form in Appendix C.

We ran batches of Ntrials = 30 trials without SNN feedback (control case) and Ntrials = 40 with SNN

feedback, with each of the selected parameter sets, on each of the eight validation set scenarios (4-11): a

total of 2160 trials. In the following, we briefly report on the results, of the validation set trials, focussing

on the most notable insights. The quantitative results from each scenario are plotted in Figures 6.11–6.18.

From among the first three scenarios (all of task 1), the selected parameters generally perform worse

in the first two (4 and 5) and relatively better in the third (6) compared to the task 1 scenario included

in the tuning set. While not immediately evident by observing the executed trajectories, the obstacle

avoidance component seems to have more difficulties in the “Office” environment, in which scenarios 4 and

5 are situated, than “Store” or “Empty”. The two most likely causes are the relatively lower illumination,

which decreases contrasts between the background and the obstacle thus leading to less events being

generated and in turn more latency in or lower magnitudes of avoidance velocities, and the relative clutter

in the background which, despite event filtering, may produce more background events that saturate the

overall response of the SNN, instead of a response localized around the obstacle points in the feature

space. The highest success rate achieved in this task is with set 12 in scenario 6: 94%. Sets 13 and 14,

while producing relatively more erratic trajectories, were still as likely to succeed as the other sets.

The results from the task 4 scenarios (7-9) varied significantly. With the object traveling at medium

speed (scenario 7), most parameter sets perform well; in particular, set 12 was successful in every trial.

However, the high-speed obstacle of scenario 8 (traveling about twice as fast) revealed a significant

limitation in the selected sets (5, 8, 10, and 12), which exhibited very low levels of success that did not

exceed 10%. In these cases, the obstacle avoidance component would often react to the obstacle, which

was visible for a shorter amount of time than the medium-speed obstacle, but the eventual reaction would

not be effective enough to clear the obstacle before a collision occurred. This was a product of less events

being sensed, the resulting lower activation within the SNN, and the limited speed of the arm. The

aforementioned tuning of sets 13 and 14 specifically to address this yielded more positive results, with

33% and 23% more successes than the previous best performance, respectively. Nevertheless, this was still

deemed unsatisfactory, and was facilitated by stronger responses and higher instantaneous accelerations

from the “faster” parameter sets, leading to less predictable and seemingly less safe trajectories. In

Table 6.2: The single-layer SNN architecture deployed for parameter sets 13 and 14. A 2× 2 horizontal
and vertical padding is also applied to the input image.

Layer Type Kernel
Size

Stride Size Input Size Output
Size

Input - - - - 120 × 160

Layer 1 (Output) LIF (conv) 8 × 8 4 × 4 120 × 160 30 × 40

100

Chapter 6. Results and Discussion

addition, these improvements are not tangible in the medium-speed case nor the low-speed case of scenario

9, in which the original parameters outperform 13 and 14 once again (except for set 5), though overall

performance appears to be worse than in scenario 6. As hypothesized in section 5.1.1, slower obstacles

may produce less salient event activity and thus a less effective response, which may explain the worse

results. In this case, set 10 achieves the highest success at ∼93%, followed by set 12 at ∼84%.

Performance in scenarios 10 and 11 was generally similar to the tuning set task 3 scenario, with

success rates spanning an average 60%-80%, bar a couple of outliers. The final parameter sets from the

initial group each perform best at one of the scenarios: set 12 at scenario 10, and set 11 at scenario 11,

out-performing sets 13 and 14.

As expected, all selected parameter sets perform at least better than having no active obstacle

avoidance, and reasonably well in most scenarios. An exception is the high-speed task 4 scenario, where

the failures we observe may be due to a fundamental limit on how fast we can command the arm to move

before approaching dangerous speeds. As a case in point, parameter sets 13 and 14 perform better in this

scenario, but exhibit significantly higher accelerations that necessitate the sudden reactions required to

address this limitation (though their mean instantaneous velocities are within the collective average). This

is characteristic of unsafe trajectories, as described in our discussion of the safety qualitative criterion in

section 5.1.3, and presents an undesirable compromise. Instead, it may be reasonable to acknowledge a

fundamental inability to reliably react to and avoid obstacles whose speeds exceed a certain threshold

in the current design. Such insights validate the benefits of evaluating on a wide distribution of task

scenarios, as described in section 5.1.1. Finally, the results of set 12 (and, to some extent, set 10) in

comparison to the initial sets indicate that the tuning procedure was fairly successful in optimizing for

more successful obstacle avoidance, on average.

5

10

15

20

25

30

35

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.5

1.0

1.5

2.0

2.5

3.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.018

0.020

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

68%
72%

54%56%57%
62%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.11: Quantitative metric results for validation scenario 4: without SNN feedback and parameter
sets 1-12.

101

6.1. Simulation Experiments

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

70%72%74%
68%

85%

57%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.12: Quantitative metric results for validation scenario 5: without SNN feedback and parameter
sets 1-12.

6

8

10

12

14

16

18

20

22

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5
Eu

c.
 d

is
ta

nc
e

(m
)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

88%

72%

88%
94%

75%

65%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.13: Quantitative metric results for validation scenario 6: without SNN feedback and parameter
sets 1-12.

5

10

15

20

25

30

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.0

0.5

1.0

1.5

2.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

86%

70%

94%
100%

78%
72%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.14: Quantitative metric results for validation scenario 7: without SNN feedback and parameter
sets 1-12.

102

Chapter 6. Results and Discussion

0

10

20

30

40

50

60

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

1

2

3

4

5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%0%

10%
6%

2%

42%

32%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.15: Quantitative metric results for validation scenario 8: without SNN feedback and parameter
sets 1-12.

10

20

30

40

50

60

70

80

Ti
m

e
(s

ec
on

ds
)

Execution Time

0

2

4

6

8

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%
0%

12%

78%

92%
84%

62%
70%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.16: Quantitative metric results for validation scenario 9: without SNN feedback and parameter
sets 1-12.

5

10

15

20

25

30

35

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

66%68%
60%

78%

68%

57%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.17: Quantitative metric results for validation scenario 10: without SNN feedback and parameter
sets 1-12.

103

6.1. Simulation Experiments

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Ti
m

e
(s

ec
on

ds
)

Execution Time

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

60%

78%

90%

78%75%75%

Success %

Case
Without SNN Feedback Params 5 Params 8 Params 10 Params 12 Params 13 Params 14

Figure 6.18: Quantitative metric results for validation scenario 11: without SNN feedback and parameter
sets 1-12.

6.1.4 Testing Results

From the results of the validation phase we selected parameter set 12 for the ultimate simulation

experiments. This set represents the final product of the tuning and validation phases, and is selected

based on superior average performance and what we consider the best overall properties from the preceding

analysis. As mentioned, the following experiments involve running the best-performing parameter set

on all 20 randomly-sampled scenarios of the testing set. Following the same procedure in this phase, we

ran batches of Ntrials = 30 trials “without SNN feedback” (control case) and Ntrials = 40 trials “with

SNN feedback” (parameter set 12), on each scenario (12-31). Therefore, this phase consisted of 1400

trials. Figure 6.19 shows the quantitative results obtained from these batches of trials in each scenario,

comparing the SNN-based obstacle avoidance module’s performance against the benchmark control case9.

Table 6.3 contains the mean values of each metric in each scenario for the “with SNN feedback” case,

along with the task mean of each metric: the averages of these values across scenarios of the same task10.

Quantitative Metric Results

Across all task 1 scenarios (12-16), our SNN-based obstacle avoidance implementation succeeds in 92.5%

of trials on average. This performance is fairly consistent over the 5 different task conditions, with the

success rate having a low standard deviation (3.5%) and the distance-to-goal, trajectory length, and

execution time exhibiting similarly low variability, as is evident from Table 6.3. This includes the novel,

low-light setting of scenario 14, which presented no particular difficulties; obstacle avoidance was 90%

successful. The executed trajectories also validate these success rates (see Figures D.3a–D.3e in Appendix

9Some terms in the scenario specifications provided in the figure captions have been abbreviated, such as Tx for “Task
x”, Y-B for “Yellow-Black”, and Med. for “Medium” (speed).

10Note that, in the presented data, a higher average number of collisions does not necessarily translate directly to a lower
success rate, when comparing separate batches, if the large number of collisions within a given batch is concentrated in a few
trials. This is because these particular trials are considered a failure (success = 0), regardless of how many collisions have
occurred. Conversely, a low average number of collisions may cause a very low success rate if the collision instances are
spread out between trials. Therefore, the binary metric does not capture the extent of a particular failure, for which the
number of collisions is a useful measure when conducting a deeper analysis of performance.

104

Chapter 6. Results and Discussion

D). Note that the distance to the goal is consistently ∼0.027m since executions are stopped upon reaching

the goal-reaching tolerance, δg = 0.3m.

For the novel task 2, performance varied significantly more across different task conditions, with a

mean and standard deviation of success of 61% and 22.6%, respectively. Most failures were observed in

scenarios 17 and 18 (42.5% and 32.5%), which are in the “Office” environment. As expected, we see a

similar degradation in obstacle avoidance effectiveness with this background as in the validation trials, for

the reasons described in the preceding section. The relatively low mean trajectory length and execution

time in these scenarios indicate that the end-effector traveled less, probably not enough to clear the

obstacle, due to less effective neural activations. In the remaining scenarios, the arm succeeded more

often (77.5%, 85%, and 67.5%). Among these, the lowest success of scenario 21 may be attributed to the

obstacle type, “Spiky sphere”, which seems to be more challenging than the “Box” obstacle of scenarios

19 and 21. While these results may be acceptable since the task was new, performance was significantly

worse than in task 1 and may be improved with feedback from these scenarios for parameter tuning. In

general, obstacle speed did not seem to be as significant a factor here as in the task 4 validation scenarios.

The success rate in task 3 scenarios (22-26) ranged from 57.5% (23) to 85% (25), averaging at 74.5%

with a standard deviation of 11%. While the end-effector always reaches the goal, as in task 1, the numbers

of collisions seem to vary significantly across trials of a given scenario, and we find insufficient evidence

for correlations between the different task variable values, such as the particular background or obstacle

color/texture, and the frequency of failures. The difficulty in identifying patterns in the results may be

attributed to the following. Occasionally, initial trajectory adaptations would move the end-effector to a

region closer to the obstacle from which further adaptations were unlikely to have enough time to steer

it away from the obstacle before colliding, even for sufficient perceptual stimuli and neural activation.

These occurrences indicate a degree of uncertainty in the resultant trajectory which can be expected from

the cascade of non-linear operations performed within the pipeline. Although this is not apparent in

other tasks, the emergent avoidance behaviour in these executions appears to be prone to unlucky initial

motions, which may explain the inconsistent failures due to collisions. It is also worth mentioning that

this task is characterized by a larger obstacle, which is a factor in increasing the likelihood of collisions.

In task 4 experiments, the reported mean success of 66% is significantly skewed due to a complete

failure in the high-speed obstacle scenario 28; this is apparent from the median value of 92.5%. This failure

is expected from validation phase findings, in which we demonstrated some success in tuning parameters

to perform better in a high-speed scenario. However, we concluded that this improvement in performance

came at the cost of predictability and safety, and currently consider the inability to cope with very fast

obstacles a fundamental limitation in the approach. In other low to medium speed cases, we achieve

comparatively high success rates of 92.5-95%, except for scenario 29 (47.5%). Generally, instances of high

distance-to-goal values, which were observed in the initial tuning phases, have been greatly diminished

through parameter refinement. This is particularly evident from the results of this task.

Next, we analyzed the magnitudes of instantaneous accelerations and velocities, measured in executions

in all scenarios, particularly comparing the distributions of the measurements between the two cases.

Generally, we found that the values were nearly identically distributed between the different scenarios of

105

6.1. Simulation Experiments

9

10

11

12

13

14

15

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

12

14

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

95%

Success %

Case
Without SNN Feedback With SNN Feedback

(a) Scenario 12: {T1, Empty, Yellow, Spiky Sphere}

10

12

14

16

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

12

14

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.020

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

95%

Success %

Case
Without SNN Feedback With SNN Feedback

(b) Scenario 13: {T1, Store, Brick, Buckyball}

9

10

11

12

13

14

15

16

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

12

14

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100
Su

cc
es

s
%

0%

95%

Success %

Case
Without SNN Feedback With SNN Feedback

(c) Scenario 14: {T1, Kitchen, White, Buckyball}

9

10

11

12

13

14

15

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.7

0.8

0.9

1.0

1.1

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

12

14

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

90%

Success %

Case
Without SNN Feedback With SNN Feedback

(d) Scenario 15: {T1, Empty, Yellow-Black, Box}

9

10

11

12

13

14

15

16

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

12

14

16

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

88%

Success %

Case
Without SNN Feedback With SNN Feedback

(e) Scenario 16: {T1, Store, Y-B, Rock}

8

9

10

11

12

13

14

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.5

0.6

0.7

0.8

0.9

1.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.020

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

42%

Success %

Case
Without SNN Feedback With SNN Feedback

(f) Scenario 17: {T2, Office, Red, Buckyball, High}

8

9

10

11

12

13

14

15

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

1

2

3

4

5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.020

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

32%

Success %

Case
Without SNN Feedback With SNN Feedback

(g) Scenario 18: {T2, Office, Red, Rock, Med.}

8

10

12

14

16

18

20

22

24

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

1

2

3

4

5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

3%

78%

Success %

Case
Without SNN Feedback With SNN Feedback

(h) Scenario 19: {T2, Store, Brick, Box, Med.}

0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

85%

Success %

Case
Without SNN Feedback With SNN Feedback

(i) Scenario 20: {T2, Kitchen, Y-B, Box, High}

8

9

10

11

12

13

14

15

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

1

2

3

4

5

6

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

68%

Success %

Case
Without SNN Feedback With SNN Feedback

(j) Scenario 21: {T2, Empty, Red, Spiky Sphere, Med.}

Figure 6.19: Quantitative metric results without vs. with SNN feedback: testing scenarios 12-21.

106

Chapter 6. Results and Discussion

10

12

14

16

18

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.7

0.8

0.9

1.0

1.1

1.2

1.3
Ap

pr
ox

im
at

e
tra

je
ct

or
y

le
ng

th
 (m

)

Trajectory Length

0

2

4

6

8

10

12

14

16

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

70%

Success %

Case
Without SNN Feedback With SNN Feedback

(k) Scenario 22: {T3, Empty, Red}

11

12

13

14

15

16

17

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.020

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

57%

Success %

Case
Without SNN Feedback With SNN Feedback

(l) Scenario 23: {T3, Empty, Y-B}

12

14

16

18

20

22

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.8

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

82%

Success %

Case
Without SNN Feedback With SNN Feedback

(m) Scenario 24: {T3, Kitchen, White}

12

14

16

18

20

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.8

1.0

1.2

1.4

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

85%

Success %

Case
Without SNN Feedback With SNN Feedback

(n) Scenario 25: {T3, Kitchen, Red}

10

12

14

16

18

20

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.8

1.0

1.2

1.4

1.6

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

12

14

16

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.020

0.022

0.024

0.026

0.028

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

78%

Success %

Case
Without SNN Feedback With SNN Feedback

(o) Scenario 26: {T3, Store, Red}

10

20

30

40

50

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

95%

Success %

Case
Without SNN Feedback With SNN Feedback

(p) Scenario 27: {T4, Store, Y-B, Buckyball, Low}

5

10

15

20

25

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

2.0

2.2

2.4

2.6

2.8

3.0

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0% 0%

Success %

Case
Without SNN Feedback With SNN Feedback

(q) Scenario 28: {T4, Store, Red, Buckyball, High}

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.0

0.1

0.2

0.3

0.4

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

1

2

3

4

5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Eu

c.
 d

is
ta

nc
e

(m
)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

48%

Success %

Case
Without SNN Feedback With SNN Feedback

(r) Scenario 29: {T4, Empty, Y-B, Spiky Sphere, Med.}

10.1

10.2

10.3

10.4

10.5

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.0

0.1

0.2

0.3

0.4

0.5

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.002

0.004

0.006

0.008

0.010

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

95%

Success %

Case
Without SNN Feedback With SNN Feedback

(s) Scenario 30: {T4, Empty, Y-B, Box, Low}

10.050

10.075

10.100

10.125

10.150

10.175

10.200

10.225

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.002

0.004

0.006

0.008

0.010

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

92%

Success %

Case
Without SNN Feedback With SNN Feedback

(t) Scenario 31: {T4, Empty, Brick, Buckyball, Low}

Figure 6.19: Quantitative metric results without vs. with SNN feedback (cont.): testing scenarios 22-31.

107

6.1. Simulation Experiments

Table 6.3: Quantitative results of the testing phase runs, averaged over the Ntrials trials of each scenario.
The means across the scenarios of each task are reported at the bottom of each section of the table.

Results (averages over Ntrials trials)

Scenario
No.

Success (%) Collisions Dist. to
Goal (m)

Traj. Length
(m)

Execution
Time (s)

Task 1 12 0.950 0.625 0.026 0.965 12.200

13 0.950 0.175 0.027 1.008 12.875

14 0.950 0.125 0.027 0.995 12.997

15 0.900 0.225 0.027 0.936 12.297

16 0.875 0.450 0.027 0.926 12.260

Task Mean: 0.925 0.320 0.027 0.966 12.526

Task 2 17 0.425 1.175 0.027 0.665 9.524

18 0.325 1.650 0.027 0.655 9.590

19 0.775 0.425 0.076 1.061 14.546

20 0.850 0.250 0.028 1.157 14.734

21 0.675 1.500 0.027 0.713 10.063

Task Mean: 0.610 1.000 0.037 0.850 11.691

Task 3 22 0.700 3.400 0.028 1.034 13.924

23 0.575 3.825 0.028 1.010 13.670

24 0.825 1.450 0.028 1.317 16.500

25 0.850 1.725 0.028 1.247 15.690

26 0.775 1.775 0.029 1.154 14.674

Task Mean: 0.745 2.435 0.028 1.152 14.892

Task 4 27 0.950 0.250 0.016 0.901 17.547

28 0.000 2.375 0.027 0.421 7.780

29 0.475 1.875 0.028 0.359 6.865

30 0.950 0.200 0.008 0.420 10.320

31 0.925 0.425 0.007 0.433 10.179

Task Mean: 0.660 1.025 0.017 0.507 10.538

108

Chapter 6. Results and Discussion

the same task, except for a few notable differences in the dynamic tasks (2 and 4). Since results were

fairly consistent within each task type, we present in Figures 6.20 and 6.21 plots for a sample scenario

from each task11. The observed exceptions to this consistency were as follows:

❼ Task 2 (scenarios 17-21): accelerations in y were higher in scenarios 19, 20, and (to some extent) 21,

compared to 17 and 18. For example, the mean in 17 was ∼1m/s2 compared to ∼1.6m/s2 in 19

(plotted in Figure 6.20b). Similarly, but to a lesser degree, velocities in 19 and 20 were on average

higher than 17 and 18 (but less than a <0.01m/s increase). This confirms the aforementioned slight

inhibition in motion in the “Office” environment (in 17 and 18), which was hypothesized to lead to

more instances of not clearing the obstacle in time before a collision.

❼ Task 4 (scenarios 27-31): accelerations were higher in 28 and 29 compared to the other three

scenarios, with the difference mostly contributed by the component in y. For example, the overall

acceleration (norm) was ∼1.2m/s2 in 27 and ∼2m/s2 in 28. A similar trend was observed in velocity

values, with the y velocity in 28 being ∼0.015m/s higher than in 27. In this case, the two scenarios

inducing higher values contain medium to high speed obstacles, as opposed to low-speed obstacles

in the others; this shows that more rapid reactionary obstacle avoidance maneuvers are attempted,

even though they may not eventually succeed.

When comparing the “without SNN feedback” to “with SNN feedback” cases in tasks 1-3, we observe

generally similar distributions of overall accelerations and velocities. However, magnitudes are often

marginally higher when the obstacle avoidance module is used, particularly in the y dimension. This is

intuitive, since obstacle avoidance maneuvers would require additional and rapid accelerations to adapt

trajectories for successful avoidance. We can infer a preference for side-ways motions in the y direction12,

which is also expected due to the effective avoidance velocity vectors being computed from the camera’s

image space, ruling out motions in x13, as expressed in section 4.1.5; even though motions in z14 are

possible, the PF computations appear to produce vectors with smaller z components. The fact that the

input image is wider than it is high may have exerted such an influence on the PF gradient computations,

but this must be investigated further. Interestingly, accelerations and velocities in x tend to be lower

when the obstacle avoidance is utilized. This indicates that the trajectory adaptations naturally slow

down forward motion when avoiding obstacles in the tested tasks, which is a desirable effect when aiming

to safely clear an obstacle while continuing progress towards a goal. If there were no reductions in forward

velocities while executing obstacle avoidance maneuvers, we could expect more collisions simply due to

the end-effector continuing to move forward without having sufficiently moved horizontally away from the

obstacle. Note that the control case in task 4 exhibits zero magnitudes, since the end-effector simply stays

in the set-point position with no obstacle avoidance behaviours. Overall, the similarity of accelerations and

velocities to nominal executions while successfully avoiding obstacles and reaching the goal is a favourable

property of the SNN-based obstacle avoidance module.

11Task 1: Scenario 14, Task 2: Scenario 19, Task 3: Scenario 23, Task 4: Scenario 28
12Left-right axis, relative to camera and end-effector
13Front-back axis, relative to camera and end-effector
14Up-down axis, relative to camera and end-effector

109

6.1. Simulation Experiments

x y z norm

0

2

4

6

8

In
st

an
ta

ne
ou

s
Ac

ce
le

ra
tio

ns
 (m

/s
2)

Instantaneous Accelerations

0 2 4 6 8
Instantaneous Accelerations in x (m/s2)

0.0

0.1

0.2

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in y (m/s2)

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in z (m/s2)

0.0

0.1

0.2

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in norm (m/s2)

0.00

0.05

0.10

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(a) Scenario 14 (Task 1) Accelerations

x y z norm

0

2

4

6

8

In
st

an
ta

ne
ou

s
Ac

ce
le

ra
tio

ns
 (m

/s
2)

Instantaneous Accelerations

0 2 4 6 8
Instantaneous Accelerations in x (m/s2)

0.0

0.1

0.2

0.3

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in y (m/s2)

0.0

0.2

0.4

0.6

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in z (m/s2)

0.00

0.05

0.10

0.15

0.20
D

en
si

ty

0 2 4 6 8
Instantaneous Accelerations in norm (m/s2)

0.00

0.05

0.10

0.15

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(b) Scenario 19 (Task 2) Accelerations

x y z norm

0

2

4

6

8

In
st

an
ta

ne
ou

s
Ac

ce
le

ra
tio

ns
 (m

/s
2)

Instantaneous Accelerations

0 2 4 6 8
Instantaneous Accelerations in x (m/s2)

0.0

0.1

0.2

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in y (m/s2)

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in z (m/s2)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in norm (m/s2)

0.00

0.05

0.10

0.15

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(c) Scenario 23 (Task 3) Accelerations

x y z norm

0

1

2

3

4

5

6

7

8

In
st

an
ta

ne
ou

s
Ac

ce
le

ra
tio

ns
 (m

/s
2)

Instantaneous Accelerations

0 2 4 6 8
Instantaneous Accelerations in x (m/s2)

0

1

2

3

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in y (m/s2)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in z (m/s2)

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

0 2 4 6 8
Instantaneous Accelerations in norm (m/s2)

0.00

0.05

0.10

0.15

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(d) Scenario 28 (Task 4) Accelerations

Figure 6.20: Distributions of instantaneous accelerations (top) and their estimated densities (bottom) in
each spatial dimension, measured during testing set trials. The figure contains data from one scenario of
each task type.

110

Chapter 6. Results and Discussion

x y z norm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
st

an
ta

ne
ou

s
Ve

lo
ci

tie
s

(m
/s

)

Instantaneous Velocities

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Instantaneous Velocities in x (m/s)

0

5

10

15

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Instantaneous Velocities in y (m/s)

0

50

100

150

200

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Instantaneous Velocities in z (m/s)

0

5

10

15

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Instantaneous Velocities in norm (m/s)

0

2

4

6

8

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(a) Scenario 14 (Task 1) Velocities

x y z norm

0.00

0.05

0.10

0.15

0.20

0.25

In
st

an
ta

ne
ou

s
Ve

lo
ci

tie
s

(m
/s

)

Instantaneous Velocities

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in x (m/s)

0

5

10

15

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in y (m/s)

0

20

40

60

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in z (m/s)

0

5

10

15

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in norm (m/s)

0

2

4

6

8

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(b) Scenario 19 (Task 2) Velocities

x y z norm

0.00

0.05

0.10

0.15

0.20

0.25

In
st

an
ta

ne
ou

s
Ve

lo
ci

tie
s

(m
/s

)

Instantaneous Velocities

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in x (m/s)

0

5

10

15

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in y (m/s)

0

20

40

60

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in z (m/s)

0

5

10

15

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25
Instantaneous Velocities in norm (m/s)

0

2

4

6

8

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(c) Scenario 23 (Task 3) Velocities

x y z norm

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

In
st

an
ta

ne
ou

s
Ve

lo
ci

tie
s

(m
/s

)

Instantaneous Velocities

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Instantaneous Velocities in x (m/s)

0

100

200

300

400

D
en

si
ty

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Instantaneous Velocities in y (m/s)

0

5

10

15

20

D
en

si
ty

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Instantaneous Velocities in z (m/s)

0

20

40

60

D
en

si
ty

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Instantaneous Velocities in norm (m/s)

0

5

10

15

D
en

si
ty

Case
Without SNN Feedback With SNN Feedback

(d) Scenario 28 (Task 4) Velocities

Figure 6.21: Distributions of instantaneous velocities (top) and their estimated densities (bottom) in each
spatial dimension, measured during testing set trials. The figure contains data from one scenario of each
task type.

111

6.1. Simulation Experiments

Computation Time

The final quantitative performance metric, computation time, is a measure of the algorithmic performance

of the pipeline and its primary stages, which is helpful as a benchmark in comparisons and future

extensions, in addition to gaining insights about the sources of latencies, if any. For this analysis, we

divided the computational stages of the pipeline into:

1. Event emulation

2. SNN simulation

3. Computing obstacle avoidance accelerations (including decoding SNN outputs)

We computed the average time that elapses in a single iteration of each stage, by recording single

iteration durations in four trial executions (each execution yielded ∼50 measurements, i.e. approximately

50 × 4 = 200 measurements per stage) and calculating the mean for each stage. The sum of these

computation times provides an estimate of the total computation time required to produce an obstacle

avoidance velocity command (output) from the source images (input). In addition, we also measured the

computation times of the first two stages when no stimulus is presented, i.e. the arm is stationary and

no motion is induced in the image, to study the hypothesized dependence of SNN computations on the

magnitude of the input. These values are presented in Table 6.4.

It is important to note that the latencies indicated by these values are not actually observed in

executions as would be in a fully sequential pipeline. Instead, the ROS implementation is designed to

run these stages in parallel, where the message handling protocol ensures that each component processes

the most recent input, which is often available before the component finishes its preceding computation.

Nevertheless, the presented computation times provided an understanding of the time required to perform

computations.

The values in Table 6.4 indicate that most time is spent in simulating the SNN, which is primarily

handled by the external BindsNET package, while the least is expended in the decoding of SNN output

and computation of avoidance accelerations. In total, the pipeline computations require ∼0.15s in a

single pass15. While this performance was sufficient in producing successful avoidance behaviours, the

implementation has not been optimized for computation time and could be improved in future extensions.

It is also worth mentioning that this is currently implemented in Python and relies on external Python

packages (such as BindsNET and pydmps); optimized implementations of the required functionalities may

provide speed improvements. In addition, note that the event emulation stage becomes unnecessary when

switching to a real EC.

A particularly interesting observation from Table 6.4 is the reduction in SNN computation time

when no motion stimulus is present, i.e. no input spikes are induced. This indicates that the amount

of computations is positively correlated with the number of events in the image, which is effectively a

measure of new information in the scene16. If we consider the changes in the perceptual input and their

locations to be the relevant information for the intended behaviour, which holds for our obstacle avoidance

15The time it would take to react, if the implementation required sequential processing
16In a separate test, the computation time was measured during varying degrees of motion in the image. We found that

the computation time seemed to indeed be proportional to the density of events, which is in turn proportional to the amount
of motion.

112

Chapter 6. Results and Discussion

Table 6.4: Mean computation times (in seconds) of the three main stages of the SNN-based obstacle
avoidance pipeline and their total. Measurements of the first two stages when no stimuli are presented are
also included.

Stage Computation Time (s)

During
Executions

No Stimuli

Event Emulation 0.025 ± 0.001 0.025 ± 0.001

SNN Simulation 0.123 ± 0.014 0.086 ± 0.007

Avoidance Acceleration Computation 0.002 ± 0.001 -

Total 0.150 ± 0.016 0.111 ± 0.009

problem, then we can say that the SNN exhibits a property of expending computations and time only to

process relevant and salient information (in the context of the task). This is enabled by utilizing event data

as the input, since events efficiently capture this information, while the SNN for its part does not perform

unnecessary computations whenever there are no spikes (derived from events), for example by computing

or propagating spikes through the network. This provides evidence for the input-dependent computational

property of the SNNs, which is different from conventional DNNs, where every pixel intensity value in an

input image is processed and every neuron necessarily activated at every timestep, even for a completely

static input signal. In some applications, such as obstacle avoidance, this property has the potential to

provide comparatively better power and time efficiency.

Qualitative Results

As part of the final analysis in simulation experiments, (the testing phase), we evaluate executions based

on our qualitative criteria. (Refer to section 5.1.3 for detailed interpretations of each.)

We consider the extent to which our approach is reliable to be correlated with how consistently it

produces positive results in the same task conditions, which we equate to its rate of success in each

scenario (i.e., the fraction of successful trials in imminent collision scenarios). In particular, a high value

indicates that obstacle avoidance was consistently successful within Ntrials executions, while a lower value

indicates an inconsistency that shows unreliability, even though some success was achieved. From Table

6.3, we observe that success varied significantly across different task conditions. However, the overall rate

of success averaged over each of the consistent task conditions17 was about 74%, even when including the

scenario 28 outlier. This was determined to be the only outlier among the scenario success rates using

the same inter-quartile range-based outlier detection method described by equation 5.5. The median

success rate, which is not as influenced by the outlier, was 84%, and the obstacle avoidance module

had higher success rates in half of the test set scenarios. Broadly speaking, we can therefore say that

the implementation and chosen parameter set score moderately on reliability. Looking at individual

scenarios, we can more specifically conclude that the implementation is:

17The mean over all success values in the first column, i.e. 20 data points.

113

6.1. Simulation Experiments

❼ not reliable in high-speed scenarios (at least for the objects we consider, traveling at approximately

0.36m/s),

❼ very reliable in task 1 scenarios

❼ more reliable in static than dynamic obstacle scenarios

❼ seemingly less reliable in the ”Office” environment (possible due to less contrasts and more clutter)18

❼ as reliable in high (”Store”) and low (”Kitchen”) illumination conditions

We compute and plot the magnitudes of the derivatives of angles that describe directional changes of

the end-effector, ζ̇, in order to evaluate predictability. The estimated densities of these values are displayed

in Figure 6.22. Here, we randomly sampled a representative scenario from each task and computed the

results from its data. Note that, similar to the case of the velocity and acceleration plots, we used the

inter-quartile range method of Equation 5.5 to remove outliers from the recorded measurements which

may disproportionately skew the distributions19. The plots indicate that the inlying values of ζ̇ are similar

between the cases and are generally fairly low, being mostly concentrated in the [-2,2] deg/s range in the

first three tasks. This suggests that the evolution of the end-effector’s trajectory, i.e. the next positions it

would travel towards, would be generally easy to predict when observing its motion; a conclusion that has

been verified from visual observations. In task 420, the values indicate very low magnitudes of ζ̇; therefore,

motions would theoretically be even easier to predict in these scenarios. Overall, these results indicate a

high level of predictability in the motions produced by the SNN-based obstacle avoidance implementation.

It bears mentioning that some instances of high ζ̇ values were found in measurements, i.e. the filtered

outliers; however, these were infrequent to the degree that they represented significant outliers.

In order to assess how safe the executed obstacle-avoiding trajectories are, we examine the distributions

of end-effector velocities, presented in Figure 6.21. For a reference point, we refer to the ISO standard

for industrial robot safety requirements (ISO 10218-1:2011 (2011))21, which suggests a threshold for tool

speed under which a robot can be considered to operate in a safety-rated, ”reduced speed control” mode:

0.25m/s (Beckert et al. (2017)). Such a mode is intended to allow humans enough time to react to a

robot’s motion in shared workspaces, in case it is deemed potentially dangerous. This speed limit can

therefore represent a logical benchmark for evaluating the degree to which executed trajectories are safe.

The overall end-effector speeds recorded during simulation experiments had an average value of ∼0.07m/s.

From the box plots in the figure, it is evident that the end-effector occasionally approached speeds of

approximately 0.29m/s, but these instances were at the maximum, far beyond the inter-quartile range,

and thus were relatively rare. This is also visible in the density plots (bottom right in each figure), which

additionally confirm a mode of the distribution at the 0.07m/s value22. As far as the evidence provided

18However, the sampled test scenarios included only a couple with the ”Office” background, both of which were of the
same task type. Therefore, more tests may need to be conducted to conclusively isolate this background as a cause for less
reliability.

19In addition, we ensure that the number of points from each case with which the plotted densities are computed is
equal, by randomly sampling Nmin points from each, where Nmin is the minimum of i) the number of measurements in the
”Without SNN Feedback” case and ii) the number of measurements in the ”With SNN Feedback” case.

20Note that the ”Without SNN Feedback” case is not plotted, since all measurements would be 0 in this task.
21This standard is to be updated in the ISO/FDIS 10218-1 standard, which was under development at the time of writing.
22Note that the dominant mode appears to be at 0.0m/s. This is likely due to the fact that many measurements come from

114

Chapter 6. Results and Discussion

by this comparison of instantaneous velocities to the ISO standard safety rating suggests, the trajectories

produced by the obstacle avoidance module could be considered largely safe. Although an analogous

threshold for safe accelerations is not available, the distributions of values in Figure 6.20 indicate that

accelerations are not noticeably excessive, particularly when compared to nominal executions.

We focus on the smoothness property of executed trajectories in evaluating how natural they appear.

Upon visual inspection of the trajectories, such as from the plots in Appendix D (Figure D.3; particularly

visible in the first 5 scenarios) or the sample trajectory plotted in Figure 6.23, it can be determined that the

obstacle avoidance trajectories seem fairly smooth, especially given that the algorithm actively optimizes

only for the fulfillment of the obstacle avoidance criterion of the task. However, we also conducted an

analysis of the jerk profiles of executed trajectories to quantify smoothness (as mentioned in section

5.1.3). While jerk is commonly used as a trajectory optimization criterion (Gasparetto et al. (2015)), we

utilize it here as an evaluation criterion by comparing to theoretical minimum-jerk profiles that maximize

smoothness. We compare against a theoretical optimum since, to the best of the author’s knowledge, no

standardized benchmarks of acceptable jerk values or profiles have been presented in the literature. From

Fligge et al. (2012) and (originally) Flash & Hogan (1985), a uni-dimensional minimum-jerk trajectory

between positions xi and xf lasting for a duration of Td can be generated by the formula:

x(t) = xi + (xf − xi)(10

(
t

Td

)3

− 15

(
t

Td

)4

+ 6

(
t

Td

)5

) (6.11)

In our analysis, we randomly sampled a trajectory from the scenario 12 batch, shown in Figure 6.23,

and extracted a segment of the trajectory in each spatial dimension. For each segment, we generated a

theoretical minimum-jerk trajectory spanning the same position value range and time duration, using

equation 6.11. Then, we estimated the jerk in each segment by computing the third-order derivative of

the positions, and compared the jerk values obtained from the executed trajectory and the theoretical

minimum-jerk trajectory in each dimension.

In Figures 6.24–6.26, we plotted the positions and estimated jerk values of the trajectory segment

in each case for x, y, and z23. In addition, the sub-plots on the bottom right depict estimates of the

densities of jerk values in each case, along with the mean values (dotted lines) within that segment. From

the absolute jerk values, we find that the executed trajectories generally exhibit higher jerks than the

theoretical trajectories, though the difference is not extraordinary and the sample execution occasionally

had slightly lower values (particularly in y and z). The density plots also indicate that executed jerks are

on average higher and more spread out (i.e. have a larger variance). These results prove that trajectories

executed in our tests applied jerks that generally exceed a theoretical minimum, but not to the extent

that sudden accelerations occur noticeably frequently and thus produce unnaturally uneven transitions

along a trajectory. While significant jerks can be expected when reacting to unforeseen circumstances

such as the presence of obstacles, this analysis and a subjective assessment of observed executions suggests

that the current approach does not significantly compromise trajectory smoothness. A more exhaustive

portions in the trajectory where the end-effector is slowly approaching the next position (according to the PID controller),
and its speed is near zero for a relatively significant amount of time.

23The time duration between successive points in these plots is approximately 0.06 seconds.

115

6.2. Real Robot Experiments

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Estimated Angular Velocity (deg/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

Case
Without SNN Feedback
With SNN Feedback

(a) Scenario 12 (Task 1)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Estimated Angular Velocity (deg/s)

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Case
Without SNN Feedback
With SNN Feedback

(b) Scenario 17 (Task 2)

1.0 0.5 0.0 0.5 1.0
Estimated Angular Velocity (deg/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

Case
Without SNN Feedback
With SNN Feedback

(c) Scenario 24 (Task 3)

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
Estimated Angular Velocity (deg/s)

0

20

40

60

80

D
en

si
ty

Case
With SNN Feedback

(d) Scenario 27 (Task 4)

Figure 6.22: Histograms and kernel density estimates depicting the distributions of estimated angular
velocities of the end-effector measured during testing set trials. The figure contains data from one scenario
of each task type.

evaluation of naturalness could be achieved by conducting a user study to aggregate subjective evaluations

of executed trajectories to better approximate perceived naturalness, and by extending the jerk analysis

to include more trajectory samples and segments in an aggregate measure of applied jerks.

6.2 Real Robot Experiments

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Final Position
Initial Position
Goal Position
Obstacle
Trajectory: Succeeded
Trajectory: Failed

Figure 6.23: Sample trajectory
(scenario 12)

In the real robot experiments, we ran the implementation we de-

veloped in the simulation on the real Kinova Gen3 arm in the task

scenarios defined in Table 5.7. We particularly examined how well the

tuned parameter set (12) transferred to the real platform, and any

necessary adaptations. We ran Ntrials trials in each scenario with the

obstacle avoidance module, then assessed similarly assessed performance

compared to executions without the module. In these experiments,

Ntrials = 30 were executed per scenario.

From preliminary testing, we found that the parameter set we tuned

in simulation performed acceptably, but a slight degradation in motion

quality necessitated minor adaptations. In particular, the motions

executed by the arm were occasionally somewhat oscillatory and not as smooth as in the simulation. In

116

Chapter 6. Results and Discussion

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Po
si

tio
n,

 x
 (m

)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time (s)

2

0

2

4

6

8

Es
tim

at
ed

 J
er

k
(m

/s
3)

0.0 0.2 0.4 0.6 0.8
Estimated Jerk Density

2

0

2

4

6

8 T1: Mean
T2: Mean

Trajectory
Executed
Min-Jerk (Theoretical)

Figure 6.24: A comparison of estimated jerk between a section of the sample trajectory (Figure 6.23) in x
(between 2.5 and 6.5 seconds in the execution) and a minimum-jerk trajectory. The plot contains the
positions (top), jerks (bottom left), and estimated densities of jerk values (bottom right).

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4

0.15

0.16

0.17

0.18

0.19

0.20

0.21

Po
si

tio
n,

 y
 (m

)

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
Time (s)

2

0

2

4

6

8

10

Es
tim

at
ed

 J
er

k
(m

/s
3)

0.0 0.2 0.4
Estimated Jerk Density

2

0

2

4

6

8

10 T1: Mean
T2: Mean

Trajectory
Executed
Min-Jerk (Theoretical)

Figure 6.25: A comparison of estimated jerk between a section of the sample trajectory (Figure 6.23) in y
(between 5.0 and 6.4 seconds in the execution) and a minimum-jerk trajectory. The plot contains the
positions (top), jerks (bottom left), and estimated densities of jerk values (bottom right).

117

6.2. Real Robot Experiments

1.6 1.8 2.0 2.2 2.4

1.015

1.020

1.025

1.030

1.035

1.040

1.045

1.050
Po

si
tio

n,
 z

 (m
)

1.6 1.8 2.0 2.2 2.4
Time (s)

4

2

0

2

4

6

8

10

12

Es
tim

at
ed

 J
er

k
(m

/s
3)

0.0 0.2 0.4 0.6
Estimated Jerk Density

4

2

0

2

4

6

8

10

12 T1: Mean
T2: Mean

Trajectory
Executed
Min-Jerk (Theoretical)

Figure 6.26: A comparison of estimated jerk between a section of the sample trajectory (Figure 6.23) in z
(between 1.5 and 2.5 seconds in the execution) and a minimum-jerk trajectory. The plot contains the
positions (top), jerks (bottom left), and estimated densities of jerk values (bottom right).

addition, while the obstacle avoidance module was active, the arm would react somewhat drastically to

minor motions in the image or to background events caused by ego-motion (even with active filtering).

We addressed these issues by adapting the following parameters (out of an effective total of 36 which

excludes a few irrelevant parameters, like source type):

❼ Kp : 5.0→ 2.0, Kd : 10.0→ 5.0, Ki : 0.0→ 5.0

❼ δy : 0.01→ 0.02

❼ θ : 28→ 45

The controller gain values were a primary cause for non-smooth motions, which more closely resembled the

ones executed in the simulation following re-tuning. This was expected, since the values were tuned for

the physical dynamics of the simulation, and these observations confirmed the discrepancies compared to

real-world dynamics (mainly in the actuators) that necessitate adapting the motion controller. Secondarily,

slightly increasing the position reaching tolerance contributed to smoother motions by easing the criterion

that determines when a position along the trajectory is reached; as a result, transitions between positions

were less abrupt. Similarly, this highlighted a discrepancy in the actuator dynamics, such as friction effects,

between the real and simulated arms, such that the original value was satisfactory in the simulation. The

stronger reactions to motion stimuli were likely a result of significant differences in the densities of events

generated from simulation as opposed to real-world images. Even in fairly plain backgrounds and different

lighting conditions, the event camera emulator generated more events for similar motions and distances to

118

Chapter 6. Results and Discussion

other objects (compared to the simulation environments), indicating that real camera images contained

more colour variations and contrasts (i.e. richer color images) and possibly more noise. By increasing

the event emission threshold, θ, we effectively offset this naturally larger variation in RGB data and thus

produce more similar event densities and, by extension, SNN activations and resultant avoidance motions

to those observed in the simulation.

A notable constraint we had to place during the real robot experiments was to deactivate an auto-focus

feature of the RGB camera mounted on the arm. Intuitively, a variable level of focus in consecutive RGB

images presents a source of intensity variation that is external to the scene dynamics. Since we derive

events from changes in consecutive intensity values and regard this information as representative of the

motion in the image, this feature can potentially pollute the data and is thus necessary to eliminate.

Quantitative Metric Results

Figure 6.27 contains the familiar metrics plot, here depicting the quantitative results of the real experiment

scenarios. In this case, we plot together the results from each scenario (R1-R4) in addition to a single

batch of “Without SNN Feedback” trials24. Note the removal of the Ncollisions metric from consideration.

Since it depends on the possibility of counting instances of the end-effector intersecting with the obstacle,

it is only possible in simulation and loses its meaning in the real experiments. Instead, a collision simply

influences the success metric, such that any contact leads to a failure. Note that, as in the simulation

experiments, a trial is considered a failure if the end-effector touches the obstacle at all. Table 6.5

summarizes the results in terms of the mean values of each metric.

The arm was 90% successful in avoiding the wooden block in task 1, with three recorded failures

occurring when the end-effector moved too closely to the obstacle after executing an avoidance maneuver

5

6

7

8

9

10

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

90% 93%
100%

67%

Success %

Case
Without SNN Feedback
With SNN Feedback, R1

With SNN Feedback, R2 With SNN Feedback, R3 With SNN Feedback, R4

Figure 6.27: Quantitative metric results without vs. with SNN feedback (cont.): real robot experiment
scenarios R1-R4.

24Different from previous results, we aggregate “Without SNN Feedback” executions from each of the scenarios and
present the aggregate as a single case, instead of a separate case for every scenario. This is because the statistics are not
expected to differ between the scenarios when no obstacle avoidance is used, since we use the same parameter set and the
arm always executes the pre-planned motion trajectory.

119

6.2. Real Robot Experiments

Table 6.5: Quantitative results of the real robot experiment runs, averaged over the Ntrials trials of each
scenario.

Results (averages over Ntrials trials)

Scenario
ID

Success (%) Dist. to Goal
(m)

Traj. Length
(m)

Execution
Time (s)

Task 1 R1 0.900 0.026 1.151 7.885

Task 2 R2 0.933 0.024 0.915 6.482

R3 1.000 0.026 0.908 6.374

R4 0.667 0.027 0.915 6.492

Mean: 0.875 - - -

and just touching it. The results from the three task 2 scenarios showed varying levels of success. The

arm was most successful with the metal bar obstacle (R3), as it never failed the task, followed by the

hand obstacle with a success rate of 93% and finally the wooden block with 67%. As evident from the

distance-to-goal values being very close on average to tolerance δg and having a small variance (see box

plots), as well as the trajectory plots in Figure 6.28, the end-effector always reached the goal during these

experiments. It follows that all instances of failures were due to collisions. The execution times and

trajectory lengths had an expected level of variance that was generally similar to simulation executions,

and which is due to some variation in trajectory shapes across executions. Note that, even though the

initial and final end-effector poses were the same in both tasks, the task 1 scenario (R1) had consistently

higher values for both metrics. This is because, unlike in task 2 (R2-R4), the obstacle is visible from the

beginning and so avoidance maneuvers start early in the trajectory; naturally, these maneuvers tend to

lengthen the trajectory and extend the time required to reach the goal. Overall, the obstacle avoidance

module performed satisfactorily with the minimally-adapted parameter set, succeeding in 88% of all 120

trials.

Interestingly, the higher failure rate of scenario R4 was due to the visual properties of the obstacle in

relation to the background. The wooden block obstacle blended well with the table which dominated the

background of the image during executions of task 2. This can be seen in Figure 6.30a, which shows two

images captured by the onboard camera during an execution of scenario R4. As the obstacle comes into

view from the right, it generates less events and therefore less neural activation than the more contrasting

hand and metal bar obstacles. This causes the eventual trajectory adaptations to occasionally be too

weak or too late to move the end-effector sufficiently away from the obstacle before a collision. Contrarily,

the perfect success in R3 could be explained by the significantly higher contrast of the obstacle color to

that of the background (see Figure 6.30b). Intuitively, the amount of events generated in the R4 case is

less than in R3, since similar colors induce lower intensity differences (and vice-versa), therefore leading

to a less effective response from the obstacle avoidance module for less visible objects. It can be argued

that this limitation similarly applies in the biological domain, since our ability to see an object seems to

120

Chapter 6. Results and Discussion

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0
0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Without SNN Feedback
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

(a) Scenario 12

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.1

0.0

0.1
0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback, R1
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

(b) Scenario 13

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0
0.1

0.2
0.3

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback, R2
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

(c) Scenario 14

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0
0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback, R3
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

(d) Scenario 15

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.1

0.0

0.1
0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback, R4
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

(e) Scenario 16

Figure 6.28: Trajectories executed in real robot experiments without SNN Feedback and with SNN
feedback in scenarios R1-R4.

121

6.2. Real Robot Experiments

x y z norm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

In
st

an
ta

ne
ou

s
Ve

lo
ci

tie
s

(m
/s

)

Instantaneous Velocities

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Instantaneous Velocities in x (m/s)

0

1

2

3

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Instantaneous Velocities in y (m/s)

0

200

400

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Instantaneous Velocities in z (m/s)

0

1

2

3

4

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Instantaneous Velocities in norm (m/s)

0.0

0.5

1.0

1.5

D
en

si
ty

Case
Without SNN Feedback
With SNN Feedback, R1

With SNN Feedback, R2
With SNN Feedback, R3

With SNN Feedback, R4

(a) Velocities

x y z norm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
st

an
ta

ne
ou

s
Ac

ce
le

ra
tio

ns
 (m

/s
2)

Instantaneous Accelerations

0 5 10 15
Instantaneous Accelerations in x (m/s2)

0.00

0.02

0.04

0.06

D
en

si
ty

0 5 10 15
Instantaneous Accelerations in y (m/s2)

0

1

2

3

4

D
en

si
ty

0 5 10 15
Instantaneous Accelerations in z (m/s2)

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

0 5 10 15
Instantaneous Accelerations in norm (m/s2)

0.00

0.01

0.02

0.03

0.04

D
en

si
ty

Case
Without SNN Feedback
With SNN Feedback, R1

With SNN Feedback, R2
With SNN Feedback, R3

With SNN Feedback, R4

(b) Accelerations

Figure 6.29: Distributions of instantaneous velocities and accelerations in each spatial dimension, measured
during real robot experiments. The figure contains data from nominal executions (without SNN Feedback)
and scenarios R1-R4.

diminish the better it blends with the background25.

Figure 6.29 shows the distributions of velocities and accelerations recorded in each scenario. On

average, these were higher than in the simulation experiments. This is likely due to the values of the

motion controller parameters (particularly, the gains) that were selected when adapting to the real robot;

while the executed trajectories look qualitatively similar, the instantaneous speeds measured at a low

resolution appear to have increased. Moreover, it is possible that inaccuracies in position updates within

the simulation could have contributed to the discrepancy in measurements. A more relevant observation

is the similarity of velocity and acceleration magnitudes with or without the obstacle avoidance module,

and the generally higher values in y when executing avoidance maneuvers; both findings are in agreement

with simulation results. In addition, the aforementioned similarity, despite larger overall magnitudes in

comparison to simulation experiment data, further suggests that the higher velocities and accelerations

are due to the motion controller and its parameterization, and not the obstacle avoidance behaviour.

Qualitative Results

We qualitatively evaluated the trajectories executed during real robot experiments with the same criteria

and (interpretations there-of) used in the simulation experiments. The qualitative properties of the

25It is also the reason for the utility of evolutionary camouflage capabilities in organisms such as chameleons and arctic
foxes.

122

Chapter 6. Results and Discussion

(a) Scenario R4 (b) Scenario R3

Figure 6.30: Images captured by the onboard camera during an execution of scenario R3 (task 2). In each
case, the obstacle appears on the right. The wooden block significantly blends in with the background
colors of the table, while the metal bar has a higher contrast to the background

trajectories were largely similar, leading to similar conclusions that are briefly discussed in the following.

From the batches of task executions in each scenario, for which we maximize the consistency of

task conditions, we determined an overall success rate of 87.5% by averaging across scenarios. This

metric indicates a moderately high level of reliability, even though a corner case involving a problematic

obstacle texture (R4) was included in the experiments. The effect of this case in the overall estimation of

performance is less pronounced in the median overall success rate, which is approximately 91.7%. To the

extent of the coverage of these experiments, the success rates in individual scenarios indicate that the

implementation is:

❼ similarly reliable in two different backgrounds

❼ as reliable in relatively dim lighting conditions as in significantly brighter conditions

❼ less reliable the more an obstacle’s texture/color blends with the background’s texture/color

For the assessment of predictability, we estimated ζ̇, removed outliers, and plotted the values in

histograms and density estimate curves as before. A plot for scenario R2 is displayed in Figure 6.31. Once

again, we note that the distribution of ζ̇ spans low values which indicate that the end-effector does not

exhibit sudden and large changes in direction along its trajectory. Compared to the simulation results,

the case in which the obstacle avoidance module is active shows slightly larger ζ̇ values than when it is

not, though these differences seem insignificant with respect to the absolute magnitudes. These small

differences may again be attributable to the changes in controller parameters and/or discrepancies in

actuation effects in the simulation. The SNN obstacle avoidance module can therefore be said to generate

predictable motions on the real arm as well; as in the simulation; in other words, subsequent trajectory

positions can be predicted with relative ease by observing the preceding portion of the trajectory. This

conclusion has been verified through visual observations of the arm’s executions.

Along the dimension of safety, the executed trajectories on the real robot were on average fairly safe,

but to a lesser degree than in the simulation. Again, this was concluded by examining the distributions of

instantaneous velocities applied at the end-effector (Figure 6.29a) and drawing comparisons to a reference

safety threshold of 0.25m/s obtained from the ISO standard for industrial robot safety requirements

(ISO 10218-1:2011 (2011)). While the overall (normed) speed of the end-effector had a mean value of

approximately 0.13m/s, thus remaining within the safety bound, some values exceeded the threshold,

123

6.2. Real Robot Experiments

1.0 0.5 0.0 0.5 1.0
Estimated Angular Velocity (deg/s)

0

1

2

3

4

5

D
en

si
ty

Case
Without SNN Feedback
With SNN Feedback

Figure 6.31: A histogram and kernel density estimate plot depicting the distributions of estimated angular
velocities of the end-effector measured during real robot experiments in scenario R2.

with the task 1 and task 2 maximums approaching 0.5m/s and 0.55m/s, respectively. These maximum

values were higher than in the simulation experiments by ∼0.2m/s, probably due to the aforementioned

modification of controller gains. However, the speeds exceeding the threshold lie beyond the third quartile

(75th percentile) of the distribution (upper plot), and represent a relatively small region of the density

(lower plot)26. As with the reliability measure, it is reasonable to assume that this drop in safety is not an

effect of the obstacle avoidance maneuvers themselves, but rather the overall controller parameterization

(given that similar values are observed in the “Without SNN Feedback” case). The perceived safety of the

arm’s motions could be improved through more tuning of control parameters.

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

Figure 6.32: Sample trajectory
(scenario R2)

With regards to the naturalness criterion, we can observe from an

initial examination of the trajectory shapes, depicted in Figure 6.28,

that they do not appear uneven or erratic, similar to the trajectories

observed in simulations27. For a more objective measure of smoothness,

we applied the same jerk analysis procedure (refer to section 6.1.4 for

an explanation). Figure 6.32 depicts a sample trajectory from scenario

R2 executions for which the jerk profile was analyzed. Figures 6.33–6.35

show the plots of positions, estimated jerks, and estimated jerk densities

for trajectory segments and their analogous theoretically minimum-jerk

trajectory segments in x, y, and z. As in the simulation executions,

the arm produces jerks whose average is expectedly higher than the

theoretical minimum and which have a larger variance (specifically in

y and z), but the difference is not large. This verifies the conclusions on

smoothness that were drawn from visual observations: the executed trajectories are not optimally smooth,

but do not contain noticeably sudden accelerations or unusual transitions between positions that would

characterize the arm’s motions as unnatural.

26In other words, the estimated probability of observing values exceeding 0.25, which could be obtained by computing the
area under the density curve in the region >0.25, would not be large.

27Unlike in the simulation results, the 3D trajectory plots do not include the positions of the obstacles, which were readily
available from the simulation.

124

Chapter 6. Results and Discussion

3.0 3.5 4.0 4.5 5.0 5.5

0.70

0.75

0.80

0.85

0.90

0.95

Po
si

tio
n,

 x
 (m

)

3.0 3.5 4.0 4.5 5.0 5.5
Time (s)

5

0

5

10

15

20

Es
tim

at
ed

 J
er

k
(m

/s
3)

0.00 0.05 0.10 0.15
Estimated Jerk Density

5

0

5

10

15

20 T1: Mean
T2: Mean

Trajectory
Executed
Min-Jerk (Theoretical)

Figure 6.33: A comparison of estimated jerk between a section of the sample trajectory (Figure 6.32) in x
(between 3.0 and 5.5 seconds in the execution) and a minimum-jerk trajectory. The plot contains the
positions (top), jerks (bottom left), and estimated densities of jerk values (bottom right).

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Po
si

tio
n,

 y
 (m

)

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
Time (s)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Es
tim

at
ed

 J
er

k
(m

/s
3)

0.0 0.2 0.4
Estimated Jerk Density

2.5

0.0

2.5

5.0

7.5

10.0

12.5 T1: Mean
T2: Mean

Trajectory
Executed
Min-Jerk (Theoretical)

Figure 6.34: A comparison of estimated jerk between a section of the sample trajectory (Figure 6.32) in y
(between 2.0 and 3.5 seconds in the execution) and a minimum-jerk trajectory. The plot contains the
positions (top), jerks (bottom left), and estimated densities of jerk values (bottom right).

125

6.3. Experiment Conclusions

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Po
si

tio
n,

 z
 (m

)

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
Time (s)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Es
tim

at
ed

 J
er

k
(m

/s
3)

0.0 0.2 0.4
Estimated Jerk Density

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0 T1: Mean
T2: Mean

Trajectory
Executed
Min-Jerk (Theoretical)

Figure 6.35: A comparison of estimated jerk between a section of the sample trajectory (Figure 6.32) in z
(between 2.0 and 3.5 seconds in the execution) and a minimum-jerk trajectory. The plot contains the
positions (top), jerks (bottom left), and estimated densities of jerk values (bottom right).

6.3 Experiment Conclusions

Concluding this discussion of experiment results in simulation and on the real robot, we now summarize

the most relevant outcomes, notable insights from both sets of experiments, and some observed limitations

as well as possible improvements to the experiments we designed and executed.

The current implementation of our proposed approach achieved frequent success in avoiding static

and dynamic obstacles, and the conducted experimental trials provided statistically significant results

confirming and indicating the extent to which it outperformed non-adaptive nominal executions. Within

the set of designed tasks and the wide range of task conditions, the SNN-based obstacle avoidance module

demonstrated median success rates of 84% and 92% in simulated and real experiments, respectively,

involving imminent collision situations. Through the defined quantitative metrics, we analyzed the

performance of various parameter combinations in order to iteratively tune and refine our implementation.

In the final experiments, execution times, trajectory lengths, and velocity and acceleration magnitudes

indicated that adaptive, obstacle-aware trajectories were quantitatively similar to nominal executions, but

with the added capability of consistent obstacle avoidance. Furthermore, a detailed qualitative assessment

suggested that the adaptive trajectories were moderately reliable, usually predictable, adequately safe,

and likely smooth enough not to be perceived as unnatural, although they are only directly optimized for

obstacle avoidance.

The initial experiments conducted in simulation yielded a variety of practical insights. Although

success was fairly consistent in simpler scenarios, some task conditions proved to be more challenging,

126

Chapter 6. Results and Discussion

such as the cluttered, dimly-lit “Office” background. This, in addition to minor differences for different

obstacle types/shapes, could be addressed through further parameter tuning. Results in task 2 showed that

performance transferred relatively well to a novel task but exhibited some degradation compared to tasks

that were observed and tuned for, indicating that the proposed approach still relies on good parameter

tuning. Through the occasional unfortunate evolutions of some trajectories executed in task 3, which

lead to situations in which it was difficult to avoid the obstacle in time, we found a perceptible level of

uncertainty in trajectory outcomes due to the complex interactions of components and cascaded operations

within the pipeline. The degree of this uncertainty and sensitivity to subtle variations in input stimuli

would be interesting to quantify and study, but is left for future work involving deeper analyses. In task 4,

high-speed obstacles proved to be a limiting corner case for the current implementation and the chosen

parameterization, such that increasing the sensitivity and thus reactivity to fast obstacles introduces

undesirable safety implications. In spite of this fundamental limitation, the relatively higher measurements

of instantaneous velocities and accelerations in these scenarios have shown that the magnitude of the

reaction seems to correlate with the obstacle’s speed. In other words, a higher speed obstacle seems to

induce larger neural activations which translate to higher applied accelerations, demonstrating intuitively

proportional responses from the SNN-based obstacle avoidance module.

An integral aspect of our approach to development and experimentation was the tuning → validation

→ testing procedure. With a systematic method of testing on a variety of structured task environments,

we were able to draw the aforementioned conclusions and various interesting characteristics of executed

trajectories from repeated trials with reasonable degrees of certainty. More importantly, the ML-inspired

approach helped in identifying difficulties in particular scenarios and addressing them by tuning parameters.

As an example, parameter sets 10-12 were successfully tuned to mitigate issues observed in earlier sets in

task 4, significantly improving performance in that task and task 3. The ability to accomplish this is also

evidence that the parameters of our pipeline are adequately interpretable, such that we could identify and

predict the effects of each and then tune them to achieve the desired modifications of behaviour.

The computation time analysis showed that the SNN computation time depended on the amount of

motion in the image, which validates two concepts that are central to our application of SNNs in this

project. Firstly, this verifies the property of only processing relevant information in SNNs, which has the

potential of saving energy and time, particularly when compared to conventional DNN image processing,

where all RGB values are constantly processed even for a completely stationary scene. Secondly, this

highlights the homogeneity of EC data and SNNs postulated at the beginning of this study; since the

relevant information for the problem we address (and perhaps many others) is the relative change in

the input data, events efficiently distill this information and the SNN selectively performs computations

only on those portions of the inputs represented by the events and, by extension, derived spikes. This is

possible due to the established property of the SNNs, but which is only fully realized with the kind of

data provided by ECs.

Among the primary outcomes of real robot experiments is a validation of the transferability of our

approach and implementation to a real setting. In particular, we were able to achieve comparable

performance in addition to quantitatively and qualitatively matching behaviour on the real robot, only

127

6.4. A Comparison of Event Emulation Strategies

requiring slight, intuitive adaptations to tuned parameter values. These adaptations amounted to controller

gains and the event camera emulation threshold, which were necessary due to discrepancies between

actuation effects and the quality of RGB camera images in the simulation in comparison to the real setting.

While we may expect the results of simulation experiments to exhibit some variance due to simulation

latency effects if run on different machines, the real experiments serve to diminish this source of uncertainty.

Experiment results verified that our neuromorphic approach to obstacle avoidance achieved fairly reliable

behaviours in imminent collision scenarios that necessitated real-time processing and reactivity.

As we demonstrated during the parameter tuning phase, our implementation is conducive to extensions

that enforce desirable task constraints, such as the positional workspace limits and the safety strategies.

Similarly, the implementation could be improved further with novel safety strategies and features such as

velocity reductions in specified conditions, should the need arise.

6.4 A Comparison of Event Emulation Strategies

We conducted an analysis of the results of different event emulation methods and their effects on the

performance of our obstacle avoidance pipeline. This analysis involved investigating differences in the

derived events, their effects on SNN activations, and the resulting obstacle avoidance performance.

As described in section 4.1.2, our default event emulation strategy involves computing the differences

in absolute intensities at every pixel and emitting an event wherever this quantity exceeds θ. This is

repeated in the following equations, which describe the intensity difference calculation (6.12), and the

polarity of event an ek that is emitted when either condition is fulfilled (6.13):

∆Labs(xk, tk) = L(xk, tk)− L(xk, tk−1) (6.12)

pk =







+1, if ∆Labs,c(xk, tk) > θ, ∀c ∈ {R,G,B}

−1, if ∆Labs,c(xk, tk) < −θ, ∀c ∈ {R,G,B}
(6.13)

Here, we make explicit the condition that the intensity difference must exceed θ in all three color channels

to trigger an event, which we term a “multi-channel” condition. This method is identified as M1.

The second method (M2) differs from the first in blurring the source RGB images before computing

the same absolute intensity differences. This is similarly applied in Zahra et al. (2021) for the purpose of

removing high-frequency noise; here, we aim to investigate its effects particularly in derived events. We

apply blur by convolving an image with a low-pass filter represented by a normalized 5× 5 box kernel, i.e.

an array of 1’s normalized by 1
25

28.

In M3, we modify the conditions of M1 to compute the differences in log intensities:

∆Llog(xk, tk) = log(L(xk, tk))− log(L(xk, tk−1)) (6.14)

This mimics how most real event cameras measure irradiance changes, resulting in their characteristically

high dynamic ranges (Rebecq et al. (2019), Gallego et al. (2022)), and is often used in event data emulation

28We utilize OpenCV’s existing blur function.

128

Chapter 6. Results and Discussion

(Rebecq et al. (2018)). The multi-channel event emission condition of Equation 6.13 remains the same,

except for a necessary change in the θ value to adapt to the difference in magnitudes.

The fourth method (M4) is based on an emulation strategy employed in Salvatore et al. (2020), termed

the “Salvatore” method, where the log of a sum of weighted channel intensity values is used to compare

the difference:

∆L(xk, tk) = log(0.299LR(xk, tk) + 0.587LG(xk, tk) + 0.114LB(xk, tk))

− log(0.299LR(xk, tk−1) + 0.587LG(xk, tk−1) + 0.114LB(xk, tk−1)) (6.15)

Note that L is in this case a scalar and the event emission condition is modified accordingly:

pk =







+1, if ∆L(xk, tk) > θ

−1, if ∆L(xk, tk) < −θ
(6.16)

Finally, method M5 mimics the emulation strategy implemented in the open-source pyDVS emulator

(Garćıa et al. (2016)), which encodes pixel intensities using Gamma functions, instead of using absolute

or log values, and incorporates additional operations that refine the resulting event data. We modi-

fied the open-source implementation29 to integrate and run within our pipeline as a substitute to the

event_image_streamer ROS node in a dedicated pydvs_event_image_streamer node.

In summary, we considered the following event camera emulation methods in our analysis:

❼ M1: Multi-channel RGB absolute differences

❼ M2: Multi-channel RGB absolute differences, with blur

❼ M3: Multi-channel RGB log differences

❼ M4: “Salvatore” method

❼ M5: “pydvs” method

While all methods can be run interchangeably within the pipeline, it was necessary to adjust the

θ value in some cases to produce sensible outputs. These adjusted values were empirically determined

through experimentation and observations of the resultant event data. For M1 and M2, we use the θ

value from the final parameter set in our experiments (set 12): 28. For the log-based difference measure of

M3, we set θM3 = 1.0, which is more suitable for the significantly smaller range of values spanned by the

differences in log-intensities in comparison to absolute intensities. For M4 and M5, we set the threshold

values to θM4 = 0.5 and θM5 = 70, respectively.

Firstly, we compared the visual qualities of the event data generated by each method and the outputs

of the SNN in response to each. To that end, we extracted sample images from a scenario R3 trial executed

during the real robot experiments to emulate event data from. In particular, we sampled three pairs of

consecutive images, shown in Figure 6.36. The visual representations of the event data (“event images”)

produced by each method are illustrated in Figure 6.38. These data were used as inputs to the SNN, from

29https://github.com/chanokin/pyDVS

129

6.4. A Comparison of Event Emulation Strategies

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 6.36: Source images sampled from a scenario R3 execution on the real robot. Each column shows
a pair of consecutive images from which event images are derived.

which we recorded the spike trains output in a period of 40ms (simulation time, Tsim) as a result of each

input. In Figure 6.39, each sub-plot depicts the recorded spike trains (left) and the total count of spikes

(right) across Tsim at each output neuron. Note that the shared y-axes contain the indices of the flattened

array of output neurons.

(a) Absolute Intensities

(b) Log Intensities

Figure 6.37: ∆L1
log >

∆L2
log, since i

1 intensities
have lower absolute values
(6.37b), whereas ∆L1

abs =
∆L2

abs (6.37a).

Figure 6.38 shows subtle variations in the emulated event data. We

observe that the blurring applied in M2 leads to mostly similar event images

but additionally eliminates some spurious events, seemingly caused by noise

or insignificant intensity changes, such as in the top regions of samples 1 and

2. This indicates that blurring source images could have an effect of retaining

the most significant events while reducing undesirable noise.

As expected, the distributions of ON and OFF events appear notably

different in M3. For instance, darker regions, such as in the interior of the

metal bar, produce significantly more events than brighter regions, such as

on the outer surface. This is likely a result of the higher sensitivity of the

log-based difference measure for darker colors; since the slope of the log

function is significantly steeper at lower values, two lower intensities produce

a larger ∆Llog than two higher intensities that are equally different (unlike

the default, linear measure, ∆Labs), and are therefore more likely to cross

the emission threshold (see Figure 6.37 for an illustration).

The fourth method, which also compares intensities in the log space but

through a specifically weighted sum of RGB values, tends to produce events

with a lower contrast between dark and bright regions. The resulting event

data is denser in the most relevant regions (containing obstacle motion), as it

seems to adequately combine the bright region events from M1 and M2 and

the dark region events from M3. Results from the Gamma-based measure of

130

Chapter 6. Results and Discussion

Figure 6.38: Event images produced by each emulation strategy for each of the three sample source shown
in Figure 6.36

M5 look fairly similar to those of M2 except for a slight reduction in apparent noise (in this case, this

may be more attributable to the selected θ values rather than the two methods themselves). Similar to

the first two methods, M5 is susceptible to reacting strongly to reflective surfaces, such as the one present

near the center of the image, which produce high and unstable intensities; the log-based measures do not

suffer from this problem.

Interestingly, the SNN responses visualized in Figure 6.39 seem to reflect the input events, confirming

that the output activation map is essentially a spatio-temporally-filtered, down-scaled version of the input

131

6.4. A Comparison of Event Emulation Strategies

Figure 6.39: SNN responses to input events from each emulation strategy for each sample. The plots show
the spike trains (left) and spike counts (right) for each output neuron.

132

Chapter 6. Results and Discussion

events representation, as mentioned in section 4.1.4. Note that, as depicted in Figure 6.40, the spikes

plots are indexed by a row-major re-ordering of the indices of the output neurons, which are originally

arranged in a two-dimensional grid, where the first and last indices are in the top-left and right-bottom

positions, respectively.

215

0 1 17. . .
19 20 35. . .

233

...

. . .215

...
.

.
.

233
232

0
1

...

Figure 6.40: An illustration of
the row-major re-ordering of
output neuron indices defining
the vertical axes of Figure 6.39.

For sample 1, the first four methods have significant spike counts

in the first few neurons (near the bottom), which correspond to upper

regions of the image. Indeed, the events visualized in Figure 6.38 show

that they all have strong event activity at the top, except for M5. M4 and

M5 have almost no spiking activity in neurons corresponding to lower

regions of the image, except for sample 3, which is similarly apparent

from their event images. Although the blurring strategy of M2 produces

less noisy events than M1, this distinction is not apparent from the

spike plots, which show very similar spike distributions. A likely reason

is that the SNN’s dynamics would filter out spurious inputs anyway,

which explains the very similar responses and indicates that the SNN could obviate the need for such

a denoising operation. The different effects of the log-based methods (M3 and M4) can be observed in

their similar spike trains and distributions, in comparison to M1 and M2, which is especially apparent in

sample 1. Generally, the SNN’s responses are similar across methods, showing a degree of robustness to

variations in events (see, for example, the spike trains concentrated in the top and bottom regions of the

plots for sample 3 across methods). Only the responses to M5 input data seem to slightly dissimilar to the

others. Indeed, the ultimate obstacle avoidance response would also be similar due to our first-spike-time

decoding strategy (refer to section 4.1.4): we consider neurons that fire before tact (depicted as a yellow

line in the Figure) “active” and indicative of “obstacle points”, and neurons that spike first are generally

around similar positions between methods.

Next, we repeated Ntrials executions of one of the testing set scenarios (30) for each method in order

to compare the resultant obstacle avoidance performance through our quantitative metrics. Figure 6.41

contains a plot of the results.

Evidently, the results of the SNN-based obstacle avoidance module do not significantly change between

the presented methods. The largest difference in results is observed with M5, whose success rate of

85% deviates the most from the mean (94%). These results verify that the ultimate obstacle avoidance

behaviours are fairly similar, as we would expect from the similarity in SNN responses to each method.

In this analysis, we have examined the properties of a selection of event emulation methods and their

effects on our approach. Though we have concentrated on this set, other methods could be explored in

future analyses, such as operating in the HSV or grayscale color spaces, single-channel methods, etc. The

spiking responses and obstacle avoidance performance we showed indicate that our SNN is robust to

differences in the event data from the tested methods, since they inherently act as spatio-temporal filters

that are tolerant to some noise or variance. A different SNN output decoding strategy that, for example,

considers more than neurons’ first spike times may result in more nuanced and varied responses and

behaviors between the EC emulation methods and is thus worth exploring in future work. Nevertheless,

133

6.5. Decoding Avoidance Behaviour From Raw Event Data

10.1

10.2

10.3

10.4

10.5

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

95%
100%98%

92%
85%

Success %

Case
Without SNN Feedback M1 M2 M3 M4 M5

Figure 6.41: Quantitative metric results for testing scenario 30: without SNN feedback and four batches
with parameter set 12, each with a different event emulation method: M1 (default) to M5.

our basic implementation of event emulation currently performs as well as others from the literature (such

as M4 and M5) for our problem, in which some inexactness in spike locations is acceptable. Finally, it

is worth noting that the results presented here are partially dependent on the selected values of θ, and

further independent tuning for each method may provide more insights.

6.5 Decoding Avoidance Behaviour From Raw Event Data

Previous results, such as of the analysis presented in the last section, have provided validations of the

merits and utility of the SNN in our neuromorphic approach. In an additional experiment, we further

investigated this utility by completely removing the SNN component from the pipeline and studying

the resulting obstacle avoidance behaviour. To achieve this, we decoded obstacle avoidance trajectory

adaptations directly from raw events, instead of the spikes output by the SNN in response to events.

Further, we also evaluated performance resulting from decoding completely random events, in order to

verify that the presented results are indeed due to the information in the event data and subsequent SNN

processing.

The decoding of raw events into obstacle avoidance velocities was possible due to the homogeneity of

event and spike data. In the original implementation, the first-spike-times of output neurons, particularly

those that do not exceed tact, define the neural activation map which contains the “obstacle points” in

the output feature space. Instead, we resize the event images output by the event_image_streamer

to match the SNN’s output feature space30, and designate events within this space as the “obstacle

points”. The potential fields-based decoding procedure that follows (described in section 4.1.4) is otherwise

identical, resulting in the φ accelerations that in turn dictate trajectory adaptations. In the pipeline,

we substituted the snn_simulator node with an event_output_generator node, which handles the

transformation of the event data into the same format of the SNN output which can be processed by the

motion_controller.

30The resizing is done using bilinear interpolation, which is available in the OpenCV software package.

134

Chapter 6. Results and Discussion

10

20

30

40

50

60

Ti
m

e
(s

ec
on

ds
)

Execution Time

1

2

3

4

5

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

85%

0% 0%

Success %

Case
Without SNN Feedback With SNN Feedback From Raw Events From Random Events

Figure 6.42: Quantitative metric results for testing scenario 25: without SNN feedback, with SNN Feedback
(parameter set 12), and decoding obstacle avoidance behaviour from raw or random events. Note that all
except the second batch have zero success.

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1
0.0

0.1
0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(a) From SNN neural activations

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2
0.1

0.0
0.1

0.2
0.3

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: From Raw Events
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(b) From raw events

Figure 6.43: A comparison of trajectories executed in simulation testing scenario 25 between decoding
SNN outputs (default) and raw event data.

We selected scenario 25 from the testing set of the simulation experiments to quantitatively evaluate

the effects on obstacle avoidance performance. As before, we ran Ntrials = 40 executions, this time with i)

decoding from raw events and ii) decoding from random events.

In both cases, the robot failed in all executions of the task, despite subsequent efforts to tune parameters

for stable obstacle avoidance accelerations. We illustrate the metric results for each case in Figure 6.42

and show the trajectories executed when decoding from raw events in comparison to the SNN outputs

in Figure 6.43. During these trials, the arm would oscillate due to the accelerations induced by the raw

events and ultimately never reach the goal.

These results provide further evidence of the importance of the SNN within our neuromorphic obstacle

135

6.6. Random SNN Weight Initializations

avoidance approach. More specifically, the inadequacy of raw event data for producing successful obstacle

avoidance trajectory adaptations indicate that the neural dynamics of the SNN are integral for processing

that data to achieve the desired outcome. Furthermore, the similar negative results obtained from totally

random events or the raw events additionally confirm the insufficiency of just the event data in our

approach and validates the utility of the SNN.

6.6 Random SNN Weight Initializations

In all tests discussed in this chapter, we constrained the SNN weights to a set of random but fixed

values in order to draw conclusions on the effects of various parameter values and methods from statistical

comparisons of the results by eliminating variance due to the synaptic weights. In this section, we

present results of an analysis of performance with different random weight initializations, with the aim of

investigating the dependence on SNN weight values.

As in the previous analyses, we selected a scenario from the testing set (31) and ran eight batches of

Ntrials trials in simulation, parameterizing the SNN with a different set of random weights in each batch.

In each case, the weights are sampled from the same uniform distribution (see Equation 4.3 in section

4.1.3) but with a different random seed. For this analysis, we run a larger number of Ntrials = 60 trials

per batch, in order to further minimize variances.

Figure 6.44 shows the metrics plot for these runs (note that “Seed 1” refers to the batch executed

during the original experiments). The rate of success was found to somewhat vary around a mean of 90.5%

with a standard deviation of 3.5%. This indicates that the weight values have a non-negligible, albeit

not excessive, effect on obstacle avoidance performance. With the exception of occasional outliers, the

distributions of the other metrics are mostly similar across the weight initializations. Besides statistical

comparisons, no differences between the trajectories produced in each case were perceptible from visual

observations of the trials.

Therefore, we observe some variation in the ultimate results of the SNN-based obstacle avoidance

10.0

10.5

11.0

11.5

12.0

12.5

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0

2

4

6

8

10

N
um

be
r o

f C
ol

lis
io

ns

Number of Collisions

0.005

0.010

0.015

0.020

0.025

0.030

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

92%
97%

90%
85%

90%93%90%87%

Success %

Case
Seed 1
Seed 2

Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8

Figure 6.44: Quantitative metric results for testing scenario 31 with parameter set 12, repeated with eight
random (but fixed) SNN weight initializations.

136

Chapter 6. Results and Discussion

module with different sets of randomly-sampled weights, which shows a degree of sensitivity to SNN weight

values. This variation in results is not significant enough to invalidate previously established conclusions

and, in fact, has positive implications for future applications of learning. In particular, the observed

relevance of the weight values suggests the possibility of searching for a set of values that improve obstacle

avoidance performance. This insight motivates the application of optimization and learning algorithms

to tune SNN weights in the pursuit of further improving obstacle avoidance performance; an interesting

avenue for future work.

6.7 Real Event Camera Tests

Figure 6.45: The iniVation
DAVIS346

For this thesis project, we developed and utilized event emulation

within our neuromorphic pipeline as a substitute for a real EC, aim-

ing to draw conclusions about the feasibility and effectiveness of the

neuromorphic approach, with the hypothesis that the conclusions we

arrive at can be extended to a system equipped with an EC. In order

to facilitate incorporating ECs in future extensions, the emulated event

representation and the pipeline components were intentionally designed

such that emulated or real event data can be processed interchangeably.

As an initial step towards this objective, we integrated an EC within

our pipeline and conducted preliminary tests on the real robot. In this

section, we present and discuss the results of these tests.

We used the DAVIS346 EC31, pictured in Figure 6.45, which contains

a dynamic vision sensor (DVS) and active pixel sensor (APS) that enable capturing event and conventional

RGB data, respectively, in addition to an IMU. The DAVIS346 has a relatively large pixel size of 18.5µm2

and a correspondingly small resolution of 346x260 32. By comparison, the Omnivision OV5640 color sensor

mounted on the Kinova arm has a pixel size of 1.4µm2 and a resolution that ranges from 320x240 to

2592x1944 (with a decreasing frame rate). However, the DAVIS has a significantly higher dynamic range

than the OV5640 (120dB in contrast to 68dB), and thus supports a wider range of illumination levels. In

addition, the OV5640 consumes ∼700mW while the DAVIS consumes only 10-30mW to transmit event

data and an additional 140mW if the APS is active, for a 5V DC supply33. The DAVIS was attached to

the top of the end-effector to run our tests.

Firstly, we examined the event images obtained from the DAVIS’s event streams in comparison to

those we emulate. We recorded the EC’s events and color frames for a simple hand motion, then used the

color frames as inputs to our emulator to generate emulated event data from approximately the same

visual input. Figure 6.46 depicts the events generated for four frames of the motion by the emulator

and the DAVIS. Evidently, the emulated events are spatio-temporally similar to those of the DAVIS, but

the latter is more sensitive to minute motions and produces significantly more salient events. Note, for

31The DAVIS346 is supplied by iniVation.
32This is characteristic of current event cameras, which significantly lag behind conventional cameras in pixel size and

resolution. See Gallego et al. (2022).
33The OV5640’s power consumption was derived from reported consumption in mA and usual voltage supply rating,

since a figure in mW was not provided in the specifications.

137

6.7. Real Event Camera Tests

Figure 6.46: A comparison of events generated by our emulator and the DAVIS346. Note RGB images
captued by the DAVIS346 were used to generate the emulated event images.

example, the DAVIS’s superior ability to capture events at borders in the image. On the other hand, the

DAVIS’s output is notably noisier; this is commonly observed in EC data (Milde et al. (2017)) but may

be alleviated with careful tuning of the camera’s parameters (just as more tuning of our emulator may

refine the outcome). It is important to note that, with the default settings, the color frames obtained

from the DAVIS appear to have lower color quality and contrasts and are captured at a relatively low rate

compared to the OV5640 (∼12Hz as opposed to ∼30Hz). As would be expected, these factors have an

effect on the emulation efficacy and seem to contribute to the comparatively lower sparsity of the emulated

events and the blurring effect which had not been observed in previous event images (see Figure 6.38).

For an evaluation of the DAVIS’s performance within our SNN-based obstacle avoidance module, we

incorporated the camera instead of the emulator and repeated executions of scenario R3 of the previous

experiments. We utilized the functionalities implemented in the open-source rpg dvs ros34 for configuring

the camera and publishing the data in ROS topics. An additional dvs_events_data_converter node

was developed to transform the event data, which is transmitted in an array of tuples, to the same events

image representation produced by the event_image_streamer node, which it replaces.

The DAVIS can be configured through a relatively large set of hardware and software parameters,

including voltage thresholds, exposure gains, special noise removal options, and emission thresholds

for ON and OFF events (resembling our θ parameter). These parameters, particularly the emission

thresholds, were moderately adjusted to induce SNN responses of similar magnitudes to those induced by

the emulator. However, the DAVIS was found to still produce denser and noisier event data on average,

34https://github.com/uzh-rpg/rpg dvs ros

138

Chapter 6. Results and Discussion

which necessitated diminishing the sensitivity to the event data elsewhere in the pipeline. To that end, we

modified the values of two parameters (of parameter set 12): φmax from 4000 to 2000, and sBE from 5 to

3. The former reduces the limit on instantaneous avoidance accelerations computed from the PF, thus

damping avoidance velocities, while the latter reduces the effects of binary erosion filtering (which lead to

better results following the change to φmax).

Due to the Kinova arm’s design, the DAVIS had to be placed atop the integrated camera module,

resulting in a vertical displacement in the FOV with respect to the original scenario R3 executions. The

scenario specification, including the obstacle type (metal bar) and its trajectory, was adhered to except

for slightly increasing the height at which the obstacle traveled (i.e. z coordinate) in order to adapt to

this discrepancy. As in the original experiments, Ntrials = 30 were executed and then compared to the

previous results.

Figure 6.47 illustrates the quantitative results of scenario R3 with event emulation (presented in section

6.2 and with the DAVIS346 camera. Most significantly, we observe a similarly high rate of success with the

event camera in this scenario, despite three observed failures. As in the original experiments, even light

touches of the obstacle following its avoidance are considered failures; this was the case in two of these

instances. Figure 6.48 shows the trajectories executed in each case, which mostly appear similar, though

the EC executions seemed more inhibited. Ultimately, the minimal tuning of the DAVIS’s parameters

lead to generally similar results.

In this section, we have shown through a preliminary analysis that our obstacle avoidance pipeline

supports the seamless substitution of the event emulator with an EC. In addition, we achieved reasonably

similar task performance in the tested scenario following minimal parameter adjustments, which was

verified through executions on a Kinova arm equipped with a DAVIS346 camera. These results, in addition

to the relative similarity in output event data, indicate that conclusions arrived at in this chapter could

be extended to a system incorporating a real EC, and provides some validation for using event camera

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Ti
m

e
(s

ec
on

ds
)

Execution Time

0.7

0.8

0.9

1.0

Ap
pr

ox
im

at
e

tra
je

ct
or

y
le

ng
th

 (m
)

Trajectory Length

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Eu
c.

 d
is

ta
nc

e
(m

)

Distance to goal

0

20

40

60

80

100

Su
cc

es
s

%

0%

100%

90%

Success %

Case
Without SNN Feedback With SNN Feedback; Event Emulation With SNN Feedback; Event Camera

Figure 6.47: Quantitative metric results for real robot testing scenario R3 with parameter set 12 with
results when using the event emulation (obtained during the experiments discussed in section 6.2) and the
real event camera.

139

6.7. Real Event Camera Tests

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0
0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback; Event Emulation
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

(a) With the event camera emulator

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0
0.1

0.2
0.3

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback; Event Camera
Final Position
Initial Position
Goal Position
Trajectory: Succeeded
Trajectory: Failed

(b) With the DAVIS346 event camera

Figure 6.48: A comparison of trajectories executed on the robot in scenario R3 with the event camera
emulator and the DAVIS346 event camera.

emulation as a substitute for real cameras in research and development in general. Nevertheless, more

extensive and varied tests and analyses should be performed to further validate this proposition. For

example, testing on more scenarios and even more tasks may yield more insights, especially since the

relatively large number of parameters specifying the camera’s behaviour have not been fully explored here.

The small decrease in obstacle avoidance performance may in fact be due to a sub-optimal tuning of the

DAVIS parameters, in contrast to the emulator’s parameters, which underwent a more rigorous refinement

process during our tuning phase (section 6.1.2). With regards to our emulation strategy, the processing of

the DAVIS’s color frames also revealed a degradation in performance due to lower frame rates and lower

quality colors, which motivate future analyses of its limitations and subsequent improvements.

140

7

Conclusions

In this thesis, we proposed, designed, implemented, and extensively evaluated a neuromorphic approach

to obstacle avoidance on a robot manipulator with a single on-board camera. Our pipeline transforms

visual inputs into corrective obstacle avoidance maneuvers, combining high-level trajectory planning and

low-level reactive adjustments using dynamic motion primitives. We utilize event-based vision and spiking

neural networks, which provide the neuromorphic sensing and processing in our approach. Simulated and

real robot experiments provided evidence that our approach is largely successful in achieving the targeted

real-time, online obstacle avoidance behaviour across a variety of task scenarios, clearly proving its utility

over a baseline, non-adaptive trajectory planning approach. Additionally, we have gained various notable

insights through our experimentation and analyses in this work, which we discuss in this closing chapter.

Firstly, we revisit the questions posed in the introduction of this report and address them in the

following.

Are there benefits to using event camera data for obstacle avoidance on a robot? Event-

based vision provides the relevant task data, i.e. due to motion, for our SNN to process, which in turn

facilitates the derivation of the stable obstacle avoidance maneuvers observed in our experiments. Event

data is therefore a key aspect of our approach to obstacle avoidance. This strategy discards irrelevant

information about the scene, including colors and stationary objects in the background, thus intuitively

reducing wasted bandwidth. Although we mainly operated with emulated event data, we argue that

these findings similarly apply to real event data. This was supported by results from preliminary tests

with a real event camera, in which similarly successful obstacle avoidance was achieved. Nevertheless,

this question could be addressed more fully through comparative evaluations of the event camera with a

normal camera, in order to gain insights on hardware-specific advantages of event-based vision, such as

reduced power consumption and latencies.

Are there benefits to using SNN processing for obstacle avoidance on a robot? The SNN is

the principal component in our pipeline. Its importance is underscored by the results presented in section

6.5, which verify that our approach fails if the SNN is excluded and avoidance behaviour is derived directly

from raw events instead. Through the computation time analysis of section 6.1.4, we have shown the

dependence of SNN computations on the amount of perceived motion. This result highlights the SNN’s

141

property of performing computations only at relevant inputs and thus the potential savings in energy and

time compared to conventional algorithms such as DNNs, in addition to confirming the aforementioned

importance of event-based data. Furthermore, the analysis presented in section 6.4 has confirmed the

SNN’s robustness to differences in event data produced by different methods that is evident from its

relatively consistent responses. These responses were fairly similar even for methods containing noisier

event data, suggesting that the SNN performs noise filtering that obviates the need for additional noise

removal (such as by blurring source images when emulating events). Although these findings confirm the

utility of the SNN, a dedicated comparison to a DNN may provide further validation and insights.

Is it feasible to decode SNN outputs into obstacle avoidance behaviour on a robot? Our

first challenge was in determining the feasibility of this approach, prior to evaluating its success. From

initial results in simulation tests, we were able to confirm that our method of decoding output spiking

neuron activations into avoidance accelerations produced the intended trajectory adjustments. The key

aspects in this regard were the potential fields approach to deriving acceleration values, in addition to the

DMP formulation which facilitated online trajectory adaptations by incorporating these values.

Is it possible to achieve reliable, online obstacle avoidance with the proposed neuromorphic

approach? The results presented in simulation experiments indicated that the arm could successfully

avoid obstacles in different scenarios and this conclusion was reaffirmed in real robot experiments. Our

approach enabled online corrective actions such that the robot could adapt its trajectories and still

reach its goal, exhibiting high reliability through consistent task success in all but a few challenging

scenarios of imminent collision cases. From a quantitative assessment, the resultant obstacle-aware

trajectories minimally deviated from baseline, non-adaptive trajectories while succeeding in obstacle

avoidance. Qualitatively, the trajectories were also often predictable, safe, and reasonably smooth to not

appear unnatural, despite no explicit optimization of these criteria. Results with different SNN weight

values (presented in 6.6) have shown the potential of further optimizations through learning. Therefore,

our findings ultimately confirm the success of the proposed approach in achieving obstacle avoidance, and

encourage future improvements.

From our experiments, we have observed an adequate handling of unseen tasks and task conditions,

such as a particuarly dimly lit environment, both in simulation and real scenarios. However, we have

also noted that low contrasts between an obstacle and the background could lead to degradations in

performance, such as with the well-concealed wooden block compared to the metal bar object in the real

experiments. This is not surprising, since we expect visual salience to similarly affect humans’ or other

animals’ ability to perceive an object.

Through our transitioning from simulated to real robot experiments, we have found that our approach

transfers well, only requiring the adjustment of a few parameters. These parameters: the motion controller

gains and event emission threshold, are expected to require modifications since they depend on the fidelity

of the Gazebo simulation’s actuation dynamics and visual output, which are sure to deviate from the real

world to some degree.

142

Chapter 7. Conclusions

From the preceding discussion on SNNs, we can conclude that the structural properties of SNNs have

been instrumental in our approach, even with no synaptic weight adjustments. This matches findings

from other works which we have discussed in our literature review concerning the algorithmic utility of

SNNs. An interesting interpretation of our results is that the obstacle avoidance performance we observe

is due to random, fixed “features” extracted by the SNN from the event data due to the random weight

values we sample. These features are able to produce sufficiently robust behaviour.

A principled evaluation methodology and highly interpretable parameters were key to the gradual

improvement and final assessment of our implementation. The tuning → validation → testing procedure

and the coverage of our task scenario distribution were especially useful for obtaining statistically significant

results with which we could improve the performance of our approach. As initially postulated, the utility

of simulations for the initial tuning and testing was clear, since the large number of trials would have

been impractical to run on the robot (not counting the pre-tuning phase, a total of 5090 simulated trials

were executed during the tuning → validation → testing process). The advantages of the simulation were

fully realized by automating trial execution, data collection, metric computations, and batch comparisons.

The interpretability of our parameters was demonstrated by the successful re-tuning of select parameters

to achieve desired characteristics and thus address observed failures in particular scenarios (such as the

instantiation of sets 10-12 to improve performance in scenario 2).

The adaptive trajectory representation afforded by the DMPs is evidently an integral part of our

pipeline. By using a DMP as an adaptive planner, we address a limitation of purely reactive obstacle

avoidance approaches (some of which we have reviewed), which do not actively compensate for avoidance

maneuvers in order to return an agent to its original, intended path. Our approach ensures that the arm

maintains progress towards its goal throughout its execution, regardless of avoidance maneuvers.

Our event camera emulation strategy has shown that we can successfully mimic event-based vision

for the purposes of conducting preliminary evaluations of a pipeline incorporating neuromorphic sensing.

Emulation is thus a viable and useful research tool in the absence of a real camera, as evidenced by our

preliminary comparisons to the DAVIS346.

The implementation of our pipeline was designed with modularity and generality as core principles.

As a result, it can easily be run on a different robot platform, essentially by substituting the Kinova’s

low-level controller component and adjusting associated parameters. The design therefore promotes future

applications of this neuromorphic approach to other problems.

Although we have not used dedicated neuro-processors to run SNNs, this project has provided initial

insights on the feasibility and utility of an event-based SNN approach to obstacle avoidance. The results

motivate further research on neuromorphic approaches in intelligent robot design.

We draw attention to the limitations of our approach and opportunities for future work in sections 7.1

and 7.2, respectively.

7.1 Limitations

Despite the high success rate and reliability we achieve in obstacle avoidance across task scenarios, the

performance of our approach was observed to degrade in two task conditions that bear mentioning.

143

7.1. Limitations

Firstly, we noted a limited capability of avoiding high-speed obstacles collisions, which could be

addressed by increasing sensitivity but at the cost of compromising safety. In particular, a more acute

SNN response could be attained by reacting more strongly to the fewer events induced by a fast obstacle

such that the arm is driven faster to avoid it. However, the resultant increases in arm velocities and

accelerations, if even physically feasible, introduce undesirable safety risks. Therefore, we presently

acknowledge a fundamental limitation in reliably reacting to fast obstacles due to physical constraints.

Specific bounds on admissible obstacle speeds can be determined through further dedicated studies.

The second task condition that presented a challenge was the dimmer and more cluttered background of

the simulated ”Office” environment, in which success rate was noticeably affected. The lower illumination

levels, though handled well in other backgrounds, are thought to lead to less contrasts between objects

(for e.g., the obstacle and the background), which in turn lead to less events in response to motions and

consequently lower avoidance velocities. Clutter, on the other hand, may contribute to relatively more

background events that saturate the SNN response, possibly overwhelming the localized responses at

obstacle positions. Both factors seem to contribute to the failures observed in this environment. However,

a more complete understanding of these effects requires further investigation.

We have observed a noteworthy degree of variance in avoidance trajectories in one of the tasks (3), in

which some failures were caused by an unfortunate motion direction at the beginning of the trajectory

from which subsequent corrections were unlikely to prevent collisions. This motivates further analyses to

quantify and study the sensitivity to variations in input stimuli as well as the uncertainties associated

with the trajectories produced by our approach. At present, the resultant avoidance maneuvers are fairly

consistent but nevertheless exhibit occasional variations in some cases.

Although we have presented a set of well-formulated qualitative evaluation criteria, we have selected

specific quantitative measures to evaluate each, such as the estimated angular velocity for predictability.

Since the concept of predictability, for example, can be interpreted in myriad ways, a better approach

could involve an aggregate of measures for evaluating each of these criteria. In addition, our analysis lacks

dedicated user studies for gathering and aggregating subjective opinions on each of these criteria, which

may be useful for drawing more general conclusions.

Our real robot experiments consisted of fewer task scenarios than the simulation experiments. This

is in part due to the relative ease in conducting large batches of automated trials in simulation (in

comparison to real trials), but also due to our methodology of developing and tuning initially in simulation.

Nevertheless, we emphasize the fewer real robot experiments conducted in this study and the importance

of further experimentation, particularly with a larger variety of scenarios and tasks.

Finally, we note a limitation of the procedure followed in the real robot experiments involving dynamic

obstacles, which were manually moved. Although multiple precautions were taken to maximize the

repeatability of task conditions (such as measuring the initial and final positions at every trial), a margin

of error is expected. As mentioned, any such variations could in fact be beneficial in testing for robustness

in a real-life setting, in which precisely, repeated conditions are unlikely. In addition, from the perspective

of a quantitative evaluation, the large numbers of trials conducted in these scenarios is likely sufficient

for eliminating variances in the performance metrics. For more controlled settings, we could construct

144

Chapter 7. Conclusions

mechanisms for automating obstacle motions, which could potentially minimize positional errors.

7.2 Future work

We have mentioned various possible avenues of future work and extensions throughout this report,

which we summarize and elaborate on in this section.

Given the success of our approach with emulated event data and the preliminary results with the

DAVIS346, a next step is to further explore and utilize the capabilities of a real event camera. Dedicated

experiments could be run to analyse the camera’s properties in relation to a conventional camera as a

component of our pipeline. These can include robustness to lighting variations, latencies, responses to

motion blur, etc.

Other potential experiments concerning event data can apply to both real cameras and emulators. An

example is to study the dependence between the distance of objects from the camera and the event activity

they induce. A more complete understanding of this relationship could useful in developing or improving

methods for filtering irrelevant event data, especially from far away background objects. Another example

concerns testing more approaches to event noise filtering; in this work, we have exclusively tested binary

erosion filtering. Although we have identified the SNN’s noise filtering properties, these event filtering

methods could be useful tools for further refining the SNN input data in some cases.

With regards to our neural network, there are various hyperparameters, architectural alternatives, and

data representation methods to explore. Chief among these are different architectures and spiking neuron

models, which may yield interesting results in our SNN processing pipeline. In addition, we can explore

different methods of decoding the output of the SNN; though we have used the first-spike-time temporal

code, various other rate, temporal, and population codes (discussed in our background section) can be

applied instead. In order to further validate the benefits of the SNN in our pipeline, we could also build

and test an ANN-based implementation of our obstacle avoidance pipeline and examine the differences in

results.

The potential fields method that we use to decode SNN output neural activations can be implemented

in a variety ways which may be worth testing in future experiments. For example, some formulations

consider dynamic obstacle velocities, in addition to positions, such as in Park et al. (2008), while others

present modifications to the potential field equations (Hua et al. (2019), Mronga et al. (2020)).

A particularly promising extension of this work is to incorporate learning in two areas: adjusting the

SNN weights and optimizing the hyperparameters of the pipeline. Given the results of our random weights

analysis, we expect that synaptic weight tuning can have a positive impact on obstacle avoidance behaviour.

A significant challenge would be the selection of an appropriate learning algorithm. As discussed in

our literature review, the best method to train an SNN remains very much an open question, but we

could consider STDP and its variants or surrogate gradient methods, for example. Other interesting

approaches to SNN learning include liquid-state machines (LSMs) (Ponghiran et al. (2019)) and the

general concept of applying a simple rule such as linear regression on a representation of output spiking

activity (Michaelis et al. (2020)). Our manual hyperparameter tuning procedure could be substituted by a

learning or optimization algorithm, such as reinforcement learning or evolutionary optimization. Such an

145

7.2. Future work

approach avoids the tedium of manual tuning and could potentially yield more optimal parameter values.

As mentioned in the previous section, the qualitative evaluation we have performed can be improved

in future extensions. Primarily for the more subjective criteria, such as naturalness, we can conduct user

studies in which executions are evaluated by näıve subjects through questionnaires designed to elucidate

the general perception of the robot’s behaviour.

We also noted the uncertainty in trajectory outcomes of our approach, observed in one of the simulation

tasks, as a possible target for future investigations. The slight variations in results that lead to this

uncertainty are due to the complex interactions and data flow within the several stages of our pipeline.

In order to better understand these interactions, we can formulate experiments designed to quantify the

effects of input variations, the results of which may explain the observed differences in trajectories.

As explained in the introduction, we have deliberately only considered collisions with the robot’s

end-effector throughout this work. Future extensions could include somehow augmenting our trajectory

adaptation approach to incorporate avoidance of collisions with the rest of the robot’s body.

In our implementation, the DMP is currently a part of the motion control component, and it can be

separated and implemented in a dedicated component in future modifications. One of the advantages to

this modification is the possibility of incorporating and testing different approaches to planning adapted

trajectories instead of the DMP, if any.

As previously discussed, the full extent to which the SNN in our approach provides processing

speed, power consumption, and other improvements can be studied only when the networks are run on

neuromorphic hardware. Naturally, a potential extension of our work is thus to explore the integration of

a neuromorphic processor as a next step towards a more fully neuromorphic processing approach.

Finally, we have demonstrated our approach here in the domain of robot manipulation. In future

work, we can apply our implementation to a navigation scenario, for example, in which the avoidance of

obstacles is also a relevant problem. In that case, the navigation planner may significantly differ from

the DMP and thus necessitate adapting the relevant aspects of the pipeline. The results of experiments

in a different application domain can provide further validation of the neuromorphic concept we have

developed and evaluated in this thesis.

146

A

Comparison of Consumption-to-Computation

Ratios

The following table lists two supercomputers whose processing power (in FLOPS) is reportedly

comparable to that of the human brain, the processor in the laptop used to write this, and the current

most powerful GPU. Given estimations of consumption (in W) and computing power (in petaFLOPS),

the ratio of the two is calculated to show the human brain’s relative efficiency (the smallest ratio).

In the following, we compare the ratio of power consumption to computational power of the human

brain with two supercomputers whose processing power is reportedly comparable to that of the human

brain, the processor powering the laptop used to write this report, and the current most powerful GPU (at

the time of writing). This ratio is a measure of efficiency and is used to show the human brain’s superior

efficiency (since it has the smallest ratio). The computational power is expressed in terms of FLOPS1.

We compute the ratio by dividing the power rating (in W) by the computational power (in

petaFLOPS)2.

The results are shown in Table A.1. Table A.2 lists the sources consulted for the statistics of all

devices.

Table A.1: A comparison of the human brain and various computers based on estimates of computational
power and power consumption. (References in Table A.2.)

Device Computing power
(FLOPS)

Power Consumption
(W)

Consumption-to-
Computation Ratio
(W/petaFLOPS)

Human Brain [20.0− 38.0]× 1015 20.0 0.5-1.0

IBM’s Sequoia 16.3× 1015 7.9× 106 484068.6

Tianhe-2 (TH-2) 33.0× 1015 17.9× 106 539393.94

AMD Ryzen 7 4800H 244.5× 109 45.0 184049.1

NVIDIA Titan V 0.1× 1015 600.0 6000.0

1Floating-point operations per second
2Unit magnitudes are chosen for representational convenience.

147

Table A.2: Sources for the statistics presented in Table A.1

Device Source

Human brain

- Dharmendra Modha, Director of DARPA’s SyNAPSE Project:

https://blogs.scientificamerican.com/news-blog/computers-have-a-lot-to-learn

-from-2009-03-10/

- Ray Kurzweil’s book: Kurzweil, R. (2000). The age of spiritual

machines: When computers exceed human intelligence. Penguin.

IBM’s Sequoia https://arstechnica.com/information-technology/2012/06/with-16-petaflops-and-
1-6m-cores-doe-supercomputer-is-worlds-fastest/

Tianhe-2 (TH-2) https://top500.org/news/china-tops-supercomputer-rankings-with-new-93-
petaflop-machine/

AMD Ryzen 7 4800H
- https://www.amd.com/en/products/apu/amd-ryzen-7-4800h

- https://gadgetversus.com/processor/amd-ryzen-7-4800h-gflops-performance/

NVIDIA Titan V
GPU

https://www.nvidia.com/en-us/titan/titan-v/

148

B

Samples of Configuration and Metrics Files

149

motion_controller:

model_state_read_frequency: 10

goal_reaching_tol: 0.03

position_reaching_tol: 0.02

per_dim_reaching_tol: 0.005

goal_reaching_timeout: 60.0

position_reaching_timeout: 10.0

obs_avoidance_dist_tol: 0.1

pf_method: park

method_params:

p_0: 20

eta: 300

grad_factor: 1500

max_phi: 4000

fst_activation_threshold_factor: 14

K_p: 5.0

K_d: 10.0

K_i: 0.0

aggregate_phi: true

obstacle_dims:

x: 0.1

y: 0.1

z: 0.1

...

event_image_streamer:

theta: 30.0

compute_from_rgb: true

record_off_events: true

register_off_events_as_on: true

source_type: ros_topic

image_topic: /camera/color/image_raw

snn_simulator:

sim_time: 20

snn_thresh: -52.0

snn_reset: -62.0

snn_rest: -62.0

snn_refrac: 5

snn_decay: 20

snn_thresh_increase_at_spike: 0.05

snn_thresh_decay: 10000000

init_weight_factor: 7.0

input_shape:

- 1

- 120

- 160

layers:

layer_1:

type: "DiehlAndCookNodesModded"

name: "H"

kernel_size:

- 8

- 8

stride_size:

- 4

- 4

padding_size:

- 0

- 0

output_tensor_shape:

- 1

- 29

- 39

layer_2:

type: "DiehlAndCookNodesModded"

name: "Y"

kernel_size:

- 4

- 4

stride_size:

- 2

- 2

padding_size:

- 0

- 0

output_tensor_shape:

- 1

- 13

- 18

Listing 3: Samples of configuration files for the motion_controller, event_image_streamer, and
snn_simulator

150

Appendix B. Samples of Configuration and Metrics Files

snn_simulator:

...

input_shape:

- 1

- 120

- 160

layers:

layer_1:

type: "DiehlAndCookNodesModded"

name: "Y"

kernel_size:

- 8

- 8

stride_size:

- 4

- 4

padding_size:

- 2

- 2

output_tensor_shape:

- 1

- 30

- 40

Listing 4: A portion of the snn_simulator parameters in set 13, which depicts the one-layer SNN
specification.

- model_name: box

link_name: box_link

start:

- 1.05

- -0.35

- 1.05

end:

- 0.4

- 0.25

- 1.05

delta: 0.002

Listing 5: A sample of a gazebo_object_animator configuration file. This file defines the trajectory
followed by a dynamic obstacle (in this case, a box) in a given task scenario.

151

execution_time: 11.72734

trajectory_length: 0.93867

nominal_trajectory_length: 0.52835

collisions: 0

dist_to_goal: 0.02379

success: 1

Params. 1:

num_trials: 50

statistics:

execution_time:

num_data_points: 50

Mean: 16.598157439231873

Min: 8.006410121917725

Q1: 12.371076822280884

Median: 16.69411051273346

Q3: 19.563407063484192

Max: 28.73162293434143

Std: 5.2464288076647065

Outliers: []

collisions:

num_data_points: 50

Mean: 0.38

Min: 0

Q1: 0.0

Median: 0.0

Q3: 0.0

Max: 12

Std: 1.8170395298565254

Outliers:

- 4

- 12

- 3

success:

num_data_points: 50

Mean: 0.4

Min: 0

Q1: 0.0

Median: 0.0

Q3: 1.0

Max: 1

Std: 0.49487165930539356

Outliers: []

Params. 2:

...

Listing 6: Samples of YAML files produced by our automated evaluation pipeline for: i) a single trial
metrics (left) and ii) aggregate metrics for batches of trials from associated with different parameter sets
(right). (Note that we omitted some quantitative metrics from the batch statistics example and only
included one parameter set for brevity.)

152

C

Parameter Sets

The tables in this appendix contain the parameter values of every parameter set described in section

6.1, which are organized as follows. The first two tables provide the values chosen for all parameters in

the pre-tuning phase; table C.1 contains the parameters that are then fixed, while table C.2 contains the

subset of the parameters that are tuned in the next phase.

Tables Tables C.3–C.16 contain sets 1-13. For brevity, each table lists the parameters that have been

changed up until that point in the tuning phase. Parameter values that were changed in a given set

compared to the last are in boldface.

Table C.1: The subset of parameters that have been fixed before the tuning, validation, and testing
procedure. These values have been chosen at the initial pre-tuning phase.

Component Parameter Value

event image streamer compute from rgb True

rgb multi channel True

record off events True

register off events as on True

source type ros topic

image topic /camera/color/image raw

snn simulator snn reset -62.0

snn rest -62.0

snn thresh increase at spike 0.05

snn thresh decay 10000000

motion controller model state read frequency 10

goal reaching tol 0.03

goal reaching timeout 60.0

position reaching timeout 10.0

pf method park

p 0 30

aggregate phi true

Kp 5.0

Ki 10.0

Kd 0.0

153

Table C.2: The subset of parameters that were tuned during the tuning phase. These values have been
chosen after the initial pre-tuning phase.

Component Parameter Value

event image streamer theta 30

filtering strategy None

snn simulator init weight factor 7.0

sim time 20

snn thresh -52.0

snn refrac 5

snn decay 20

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (Park) 4000

eta (Park) 300

grad factor (Park) 1500

phi horizon Inf

safety strategy None

position limits None

motion loop frequency 33

fst activation threshold factor 14

Table C.3: Parameter Set 1

Component Parameter Value

event image streamer theta 30

filtering strategy None

snn simulator init weight factor 7.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.4

vel reduction factor 0.6

phi reduction factor 0.2

position limits None

154

Appendix C. Parameter Sets

Table C.4: Parameter Set 2

Component Parameter Value

event image streamer theta 30

filtering strategy None

snn simulator init weight factor 7.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.4

vel reduction factor 0.6

phi reduction factor 0.6

position limits None

Table C.5: Parameter Set 3

Component Parameter Value

event image streamer theta 30

filtering strategy None

snn simulator init weight factor 7.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.6

position limits None

Table C.6: Parameter Set 4

Component Parameter Value

event image streamer theta 30

filtering strategy None

snn simulator init weight factor 7.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

position limits None

155

Table C.7: Parameter Set 5

Component Parameter Value

event image streamer theta 30

filtering strategy None

snn simulator init weight factor 7.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

position limits: z [0.87, Inf]

Table C.8: Parameter Set 6

Component Parameter Value

event image streamer theta 30

filtering strategy binary erosion

structure size (3, 3)

snn simulator init weight factor 7.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

position limits: z [0.87, Inf]

Table C.9: Parameter Set 7

Component Parameter Value

event image streamer theta 30

filtering strategy binary erosion

structure size (3, 3)

snn simulator init weight factor 15.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

position limits: z [0.87, Inf]

156

Appendix C. Parameter Sets

Table C.10: Parameter Set 8

Component Parameter Value

event image streamer theta 30

filtering strategy binary erosion

structure size (5, 5)

snn simulator init weight factor 20.0

motion controller position reaching tol 0.02

obs avoidance dist tol 0.1

max phi (park) 4000

phi horizon Inf

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

position limits: z [0.87, Inf]

Table C.11: Parameter Set 9

Component Parameter Value

event image streamer theta 30

filtering strategy binary erosion

structure size (4, 4)

snn simulator init weight factor 20.0

motion controller position reaching tol 0.01

obs avoidance dist tol 0.1

max phi (park) 5000

phi horizon 2

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

safety strategy 2

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.8

position limits: z [0.87, Inf]

157

Table C.12: Parameter Set 10

Component Parameter Value

event image streamer theta 28

filtering strategy binary erosion

structure size (5, 5)

snn simulator init weight factor 20.0

motion controller position reaching tol 0.01

obs avoidance dist tol 0.15

max phi (park) 4000

phi horizon 12

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

safety strategy 2

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

position limits: z [0.87, Inf]

Table C.13: Parameter Set 11

Component Parameter Value

event image streamer theta 28

filtering strategy binary erosion

structure size (5, 5)

snn simulator init weight factor 25.0

motion controller position reaching tol 0.01

obs avoidance dist tol 0.15

max phi (park) 4000

phi horizon 12

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

safety strategy 2

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

position limits: z [0.87, Inf]

158

Appendix C. Parameter Sets

Table C.14: Parameter Set 12

Component Parameter Value

event image streamer theta 28

filtering strategy binary erosion

structure size (5, 5)

snn simulator init weight factor 20.0

motion controller position reaching tol 0.01

obs avoidance dist tol 0.15

max phi (park) 4000

phi horizon 12

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

safety strategy 2

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.6

position limits: z [0.87, Inf]

Table C.15: Parameter Set 13

Component Parameter Value

event image streamer theta 28

filtering strategy binary erosion

structure size (5, 5)

snn simulator init weight factor 2000.0

sim time 3

snn thresh -58.0

snn refrac 0

snn decay 1000

motion controller position reaching tol 0.01

obs avoidance dist tol 0.15

max phi (park) 8000

eta (Park) 600

grad factor (Park) 40000

phi horizon 12

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

safety strategy 2

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.6

position limits: z [0.87, Inf]

159

Table C.16: Parameter Set 14

Component Parameter Value

event image streamer theta 28

filtering strategy binary erosion

structure size (5, 5)

snn simulator init weight factor 2000.0

sim time 3

snn thresh -58.0

snn refrac 0

snn decay 1000

motion controller position reaching tol 0.01

obs avoidance dist tol 0.15

max phi (park) 6000

eta (Park) 600

grad factor (Park) 10000

phi horizon 12

safety strategy 1

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.4

safety strategy 2

safety tol 0.2

vel reduction factor 0.8

phi reduction factor 0.6

position limits: z [0.87, Inf]

160

D

Extra Visualizations

D.1 Tuning Phase: Trajectories Executed in Scenario 3 (Sets 1-12)

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.3

0.2

0.1

0.0
0.1

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Without SNN Feedback
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(a) Without SNN feedback

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.3

0.2

0.1

0.0
0.1

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Without SNN Feedback
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(b) Parameter Set 1

x

0.5
0.6

0.7
0.8

0.9
1.0

1.1

y

0.3
0.2

0.1
0.0

0.1
0.2

0.3

z

0.7

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 2
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(c) Parameter Set 2

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 3
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(d) Parameter Set 3

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 4
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(e) Parameter Set 4

x

0.5
0.6

0.7
0.8

0.9
1.0

1.1

y

0.3
0.2

0.1
0.0

0.1
0.2

z

0.7

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 5
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(f) Parameter Set 5

Figure D.1: Trajectories executed in tuning scenario 3: without SNN feedback and parameter sets 1-5.

161

D.1. Tuning Phase: Trajectories Executed in Scenario 3 (Sets 1-12)

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 6
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(a) Parameter Set 6

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 7
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(b) Parameter Set 7

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 8
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(c) Parameter Set 8

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.3

0.2

0.1

0.0
0.1

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 9
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(d) Parameter Set 9

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0
0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: Params. 10
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(e) Parameter Set 10

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 11
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(f) Parameter Set 11

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: Params. 12
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(g) Parameter Set 12

Figure D.2: Trajectories executed in tuning scenario 3: parameter sets 6-12.

162

Appendix D. Extra Visualizations

D.2 Testing Phase: Trajectories Executed in Scenarios 12-29

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(a) Scenario 12

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(b) Scenario 13

x

0.5
0.6

0.7
0.8

0.9

y

0.2

0.1

0.0

0.1

0.2

z

0.7

0.8

0.9

1.0

1.1

EE Trajectory and Obstacles: With SNN Feedback

Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(c) Scenario 14

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(d) Scenario 15

x

0.5
0.6

0.7
0.8

0.9

y

0.1

0.0

0.1

0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(e) Scenario 16

x

0.4
0.6

0.8
1.0

1.2
1.4

y

0.8
0.6

0.4
0.2

0.0
0.2

0.4

z

0.6

0.8

1.0

1.2

1.4

1.6

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Collision points
Obstacle: Initial
Obstacle: Final
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(f) Scenario 17

x

0.4 0.5 0.6
0.7

0.8
0.9

1.0
1.1

y

0.4
0.3

0.2
0.1

0.0
0.1

0.2
0.3

z

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

EE Trajectory and Obstacles: With SNN Feedback

Original Trajectory
Final Position
Initial Position
Goal Position
Collision points
Obstacle: Initial
Obstacle: Final
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(g) Scenario 18

x

0.4 0.5 0.6
0.7

0.8
0.9

1.0
1.1

y

0.4
0.3

0.2
0.1

0.0
0.1

0.2
0.3

z

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

EE Trajectory and Obstacles: With SNN Feedback

Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle: Initial
Obstacle: Final
Collision points
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(h) Scenario 19

x

0.4
0.6

0.8
1.0

1.2
1.4

y

0.8
0.6

0.4
0.2

0.0
0.2

0.4

z

0.6

0.8

1.0

1.2

1.4

1.6

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle: Initial
Obstacle: Final
Collision points
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(i) Scenario 20

Figure D.3: Trajectories executed in testing scenarios, with SNN feedback: testing scenarios 12-20.

163

D.2. Testing Phase: Trajectories Executed in Scenarios 12-29

x

0.4 0.5 0.6
0.7

0.8
0.9

1.0
1.1

y

0.4
0.3

0.2
0.1

0.0
0.1

0.2
0.3

z

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

EE Trajectory and Obstacles: With SNN Feedback

Original Trajectory
Final Position
Initial Position
Goal Position
Collision points
Obstacle: Initial
Obstacle: Final
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(j) Scenario 21

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(k) Scenario 22

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(l) Scenario 23

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Collision points
Obstacle
Trajectory: Succeeded
Trajectory: Failed

(m) Scenario 24

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1
0.0

0.1
0.2

0.3

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(n) Scenario 25

x

0.5
0.6

0.7
0.8

0.9
1.0

y

0.2

0.1

0.0

0.1
0.2

z

0.8

0.9

1.0

1.1

1.2

1.3

EE Trajectory and Obstacles: With SNN Feedback
Original Trajectory
Final Position
Initial Position
Goal Position
Obstacle
Collision points
Trajectory: Succeeded
Trajectory: Failed

(o) Scenario 26

x

0.2
0.0

0.2
0.4

0.6
0.8

y

0.4
0.2

0.0
0.2

0.4
0.6

z

0.6

0.8

1.0

1.2

1.4

1.6

EE Trajectory and Obstacles: With SNN Feedback
Final Position
Initial Position
Goal Position
Obstacle: Initial
Obstacle: Final
Collision points
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(p) Scenario 27

x

0.2
0.0

0.2
0.4

0.6
0.8

y

0.4
0.2

0.0
0.2

0.4
0.6

z

0.6

0.8

1.0

1.2

1.4

1.6

EE Trajectory and Obstacles: With SNN Feedback
Final Position
Initial Position
Goal Position
Collision points
Obstacle: Initial
Obstacle: Final
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(q) Scenario 28

x

0.2
0.0

0.2
0.4

0.6
0.8

y

0.4
0.2

0.0
0.2

0.4
0.6

z

0.6

0.8

1.0

1.2

1.4

1.6

EE Trajectory and Obstacles: With SNN Feedback
Final Position
Initial Position
Goal Position
Collision points
Obstacle: Initial
Obstacle: Final
Obstacle: Collision Point
Trajectory: Succeeded
Trajectory: Failed

(r) Scenario 29

Figure D.3: Trajectories executed in testing scenarios, with SNN feedback (cont.): testing scenarios 21-29.

164

References

Abdelrahman, A. F., Mitrevski, A., & Plöger, P. G. (2020). Context-aware task execution using

apprenticeship learning. In 2020 ieee international conference on robotics and automation (icra)

(pp. 1329–1335).

Aguilar, W. G., Casaliglla, V. P., & Pólit, J. L. (2017). Obstacle avoidance based-visual navigation for

micro aerial vehicles. Electronics, 6 (1), 10.

Ananthaswamy, A. (2021). Artificial Neural Nets Finally Yield Clues to How Brains Learn.

Retrieved from https://www.quantamagazine.org/artificial-neural-nets-finally-yield

-clues-to-how-brains-learn-20210218/

Arakawa, R., & Shiba, S. (2020). Exploration of reinforcement learning for event camera using car-like

robots. arXiv preprint arXiv:2004.00801 .

Bartolozzi, C., Indiveri, G., & Donati, E. (2022). Embodied neuromorphic intelligence. Nature communi-

cations, 13 (1), 1–14.

Becanovic, V., Bredenfeld, A., & Ploger, P. G. (2002). Reactive robot control using optical analog vlsi

sensors. In Proceedings 2002 ieee international conference on robotics and automation (cat. no.

02ch37292) (Vol. 2, pp. 1223–1228).

Bečanović, V., Indiveri, G., Kobialka, H.-U., Plöger, P. G., & Stocker, A. (2002). Silicon retina sensing

guided by omni-directional vision. In Proc. ninth ieee conf. on mechatronics and machine vision in

practice (m2vip) (pp. 10–12).

Beckert, D., Pereira, A., & Althoff, M. (2017). Online verification of multiple safety criteria for a robot

trajectory. In 2017 ieee 56th annual conference on decision and control (cdc) (pp. 6454–6461).

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D., . . . Eliasmith,

C. (2014). Nengo: a python tool for building large-scale functional brain models. Frontiers in

neuroinformatics, 7 , 48.

Beyeler, M., Carlson, K. D., Chou, T.-S., Dutt, N., & Krichmar, J. L. (2015). Carlsim 3: A user-friendly

and highly optimized library for the creation of neurobiologically detailed spiking neural networks.

In 2015 international joint conference on neural networks (ijcnn) (pp. 1–8).

Bing, Z., Meschede, C., Huang, K., Chen, G., Rohrbein, F., Akl, M., & Knoll, A. (2018). End to

end learning of spiking neural network based on r-stdp for a lane keeping vehicle. In 2018 ieee

international conference on robotics and automation (icra) (pp. 4725–4732).

Bing, Z., Meschede, C., Röhrbein, F., Huang, K., & Knoll, A. C. (2018). A survey of robotics control

based on learning-inspired spiking neural networks. Frontiers in neurorobotics , 12 , 35.

Blouw, P., & Eliasmith, C. (2020). Event-driven signal processing with neuromorphic computing systems.

In Icassp 2020-2020 ieee international conference on acoustics, speech and signal processing (icassp)

(pp. 8534–8538).

Borenstein, J., Koren, Y., et al. (1991). The vector field histogram-fast obstacle avoidance for mobile

robots. IEEE transactions on robotics and automation, 7 (3), 278–288.

165

https://www.quantamagazine.org/artificial-neural-nets-finally-yield-clues-to-how-brains-learn-20210218/
https://www.quantamagazine.org/artificial-neural-nets-finally-yield-clues-to-how-brains-learn-20210218/

References

Bouvier, M., Valentian, A., Mesquida, T., Rummens, F., Reyboz, M., Vianello, E., & Beigne, E. (2019).

Spiking neural networks hardware implementations and challenges: A survey. ACM Journal on

Emerging Technologies in Computing Systems (JETC), 15 (2), 1–35.

Brandli, C., Berner, R., Yang, M., Liu, S.-C., & Delbruck, T. (2014). A 240x180 130 db 3us latency global

shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 49 (10), 2333–2341.

Brock, O., & Khatib, O. (2002). Elastic strips: A framework for motion generation in human environments.

The International Journal of Robotics Research, 21 (12), 1031–1052.

Ceolini, E., Frenkel, C., Shrestha, S. B., Taverni, G., Khacef, L., Payvand, M., & Donati, E. (2020).

Hand-gesture recognition based on emg and event-based camera sensor fusion: A benchmark in

neuromorphic computing. Frontiers in neuroscience, 14 , 637.

Chen, G., Cao, H., Conradt, J., Tang, H., Rohrbein, F., & Knoll, A. (2020). Event-based neuromorphic

vision for autonomous driving: a paradigm shift for bio-inspired visual sensing and perception. IEEE

Signal Processing Magazine, 37 (4), 34–49.

Chen, H., Liu, W., Goel, R., Lua, R. C., Mittal, S., Huang, Y., . . . Patel, A. B. (2019). Fast retinomorphic

event-driven representations for video gameplay and action recognition. IEEE Transactions on

Computational Imaging , 6 , 276–290.

Chen, K., Hwu, T., Kashyap, H. J., Krichmar, J. L., Stewart, K., Xing, J., & Zou, X. (2020). Neurorobots

as a means toward neuroethology and explainable ai. Frontiers in Neurorobotics , 70.

Chiriatti, G., Palmieri, G., Scoccia, C., Palpacelli, M. C., & Callegari, M. (2021). Adaptive obstacle

avoidance for a class of collaborative robots. Machines, 9 (6), 113.

Cowley, H. P., Natter, M., Gray-Roncal, K., Rhodes, R. E., Johnson, E. C., Drenkow, N., . . . Gray-Roncal,

W. (2022). A framework for rigorous evaluation of human performance in human and machine

learning comparison studies. Scientific Reports, 12 (1), 1–11.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337 (6203), 129–132.

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P., . . . Risbud, S. R.

(2021). Advancing neuromorphic computing with loihi: A survey of results and outlook. Proceedings

of the IEEE , 109 (5), 911–934.

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., . . . Yger, P. (2009).

Pynn: a common interface for neuronal network simulators. Frontiers in neuroinformatics , 2 , 11.

Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent

plasticity. Frontiers in computational neuroscience, 9 , 99.

Dietsche, A., Cioffi, G., Hidalgo-Carrió, J., & Scaramuzza, D. (2021). Powerline tracking with event

cameras. In 2021 ieee/rsj international conference on intelligent robots and systems (iros) (pp.

6990–6997).

Drubach, D. (2000). The brain explained. Pearson.

Dubeau, E., Garon, M., Debaque, B., de Charette, R., & Lalonde, J.-F. (2020). Rgb-de: Event camera

calibration for fast 6-dof object tracking. In 2020 ieee international symposium on mixed and

augmented reality (ismar) (pp. 127–135).

Dumesnil, E., Beaulieu, P.-O., & Boukadoum, M. (2016). Robotic implementation of classical and operant

166

References

conditioning as a single stdp learning process. In 2016 international joint conference on neural

networks (ijcnn) (pp. 5241–5247).

Dupeyroux, J., Hagenaars, J. J., Paredes-Vallés, F., & de Croon, G. C. (2021). Neuromorphic control for

optic-flow-based landing of mavs using the loihi processor. In 2021 ieee international conference on

robotics and automation (icra) (pp. 96–102).

D’Silva, T., & Miikkulainen, R. (2009). Learning dynamic obstacle avoidance for a robot arm using

neuroevolution. Neural processing letters, 30 (1), 59–69.

Escobedo, C., Strong, M., West, M., Aramburu, A., & Roncone, A. (2021). Contact anticipation for

physical human–robot interaction with robotic manipulators using onboard proximity sensors. In

2021 ieee/rsj international conference on intelligent robots and systems (iros) (pp. 7255–7262).

Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter van Steveninck, R. R. (2001). Efficiency and

ambiguity in an adaptive neural code. Nature, 412 (6849), 787–792.

Falanga, D., Kleber, K., & Scaramuzza, D. (2020). Dynamic obstacle avoidance for quadrotors with event

cameras. Science Robotics, 5 (40), eaaz9712.

Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez Tieck, J. C., . . . others (2017).

Connecting artificial brains to robots in a comprehensive simulation framework: the neurorobotics

platform. Frontiers in neurorobotics , 11 , 2.

Feng, P., Zou, J., Li, H., & Gao, S. (2020). An obstacle avoidance method for autonomous vehicle

in straight road based on expanded circle. In 2020 asia-pacific conference on image processing,

electronics and computers (ipec) (pp. 43–46).

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., & Luk, W. (2009). Nemo: a platform for neural modelling

of spiking neurons using gpus. In 2009 20th ieee international conference on application-specific

systems, architectures and processors (pp. 137–144).

Firestone, C. (2020). Performance vs. competence in human–machine comparisons. Proceedings of the

National Academy of Sciences, 117 (43), 26562–26571.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed

mathematical model. Journal of neuroscience, 5 (7), 1688–1703.

Fligge, N., McIntyre, J., & van der Smagt, P. (2012). Minimum jerk for human catching movements in 3d.

In 2012 4th ieee ras & embs international conference on biomedical robotics and biomechatronics

(biorob) (pp. 581–586).

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE

Robotics & Automation Magazine, 4 (1), 23–33.

Frémaux, N., & Gerstner, W. (2016). Neuromodulated spike-timing-dependent plasticity, and theory of

three-factor learning rules. Frontiers in neural circuits, 9 , 85.

Frenkel, C., Legat, J.-D., & Bol, D. (2020). A 28-nm convolutional neuromorphic processor enabling online

learning with spike-based retinas. In 2020 ieee international symposium on circuits and systems

(iscas) (pp. 1–5).

Furber, S. (2016). Large-scale neuromorphic computing systems. Journal of neural engineering , 13 (5),

051001.

167

References

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., . . . Scaramuzza, D. (2022,

jan). Event-based vision: A survey. IEEE Transactions on Pattern Analysis & Machine Intelligence,

44 (01), 154-180. doi: 10.1109/TPAMI.2020.3008413

Garain, A., Basu, A., Giampaolo, F., Velasquez, J. D., & Sarkar, R. (2021). Detection of covid-19 from

ct scan images: A spiking neural network-based approach. Neural Computing and Applications,

33 (19), 12591–12604.

Garćıa, G. P., Camilleri, P., Liu, Q., & Furber, S. (2016). pydvs: An extensible, real-time dynamic

vision sensor emulator using off-the-shelf hardware. In 2016 ieee symposium series on computational

intelligence (ssci) (pp. 1–7).

Gasparetto, A., Boscariol, P., Lanzutti, A., & Vidoni, R. (2015). Path planning and trajectory planning

algorithms: A general overview. Motion and operation planning of robotic systems , 3–27.

Gerstner, W. (1995). Time structure of the activity in neural network models. Physical review E , 51 (1),

738.

Gewaltig, M.-O., & Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia, 2 (4), 1430.

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., . . . others (2021). Fast

and energy-efficient neuromorphic deep learning with first-spike times. Nature machine intelligence,

3 (9), 823–835.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Goodman, D. F., & Brette, R. (2008). Brian: a simulator for spiking neural networks in python. Frontiers

in neuroinformatics, 2 , 5.

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T., & Kozma, R. (2018).

Bindsnet: A machine learning-oriented spiking neural networks library in python. Frontiers in

neuroinformatics, 89.

Heeger, D., et al. (2000). Poisson model of spike generation. Handout, University of Standford , 5 (1-13),

76.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application

to conduction and excitation in nerve. The Journal of physiology , 117 (4), 500.

Hu, Y., Liu, S.-C., & Delbruck, T. (2021). v2e: From video frames to realistic dvs events. In Proceedings

of the ieee/cvf conference on computer vision and pattern recognition (pp. 1312–1321).

Hua, M., Nan, Y., & Lian, S. (2019). Small obstacle avoidance based on rgb-d semantic segmentation. In

Proceedings of the ieee/cvf international conference on computer vision workshops (pp. 0–0).

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review.

Neural networks, 21 (4), 642–653.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement

primitives: learning attractor models for motor behaviors. Neural computation, 25 (2), 328–373.

Illing, B., Gerstner, W., & Brea, J. (2019). Biologically plausible deep learning—but how far can we go

with shallow networks? Neural Networks, 118 , 90–101.

Indiveri, G. (2021). Introducing ‘neuromorphic computing and engineering’. Neuromorphic Computing

and Engineering , 1 (1), 010401.

168

References

Indiveri, G., & Liu, S.-C. (2015). Memory and information processing in neuromorphic systems. Proceedings

of the IEEE , 103 (8), 1379–1397.

ISO 10218-1:2011. (2011). Robots and robotic devices - safety requirements for industrial robots - part 1:

Robots. International Organization for Standardization.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on neural networks , 14 (6),

1569–1572.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural

networks , 15 (5), 1063–1070.

Jang, H., Simeone, O., Gardner, B., & Gruning, A. (2019). An introduction to probabilistic spiking neural

networks: Probabilistic models, learning rules, and applications. IEEE Signal Processing Magazine,

36 (6), 64–77.

Joubert, D., Marcireau, A., Ralph, N., Jolley, A., van Schaik, A., & Cohen, G. (2021). Event camera

simulator improvements via characterized parameters. Frontiers in Neuroscience, 910.

Kasabov, N. K. (2014). Neucube: A spiking neural network architecture for mapping, learning and

understanding of spatio-temporal brain data. Neural Networks, 52 , 62–76.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous

robot vehicles (pp. 396–404). Springer.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., & Masquelier, T. (2018). Stdp-based spiking deep

convolutional neural networks for object recognition. Neural Networks, 99 , 56–67.

Kheradpisheh, S. R., & Masquelier, T. (2020). Temporal backpropagation for spiking neural networks

with one spike per neuron. International Journal of Neural Systems, 30 (06), 2050027.

Kim, S., Park, S., Na, B., & Yoon, S. (2020). Spiking-yolo: spiking neural network for energy-efficient object

detection. In Proceedings of the aaai conference on artificial intelligence (Vol. 34, pp. 11270–11277).

Korteling, J. H., van de Boer-Visschedijk, G., Blankendaal, R. A., Boonekamp, R., & Eikelboom, A.

(2021). Human-versus artificial intelligence. Frontiers in artificial intelligence, 4 , 622364.

Kwisthout, J., & Donselaar, N. (2020). On the computational power and complexity of spiking neural

networks. In Proceedings of the neuro-inspired computational elements workshop (pp. 1–7).

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., & Roy, K. (2020). Enabling spike-based backpropagation

for training deep neural network architectures. Frontiers in neuroscience, 119.

Lee, H., Ho, H., & Zhou, Y. (2021). Deep learning-based monocular obstacle avoidance for unmanned

aerial vehicle navigation in tree plantations. Journal of Intelligent & Robotic Systems , 101 (1), 1–18.

LeVine, S. (2017). Artificial intelligence pioneer says we need to start over. Retrieved from https://

www.axios.com/ai-pioneer-advocates-starting-over-2485537027.html

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128x128 120 db 15us latency asynchronous temporal

contrast vision sensor. IEEE journal of solid-state circuits, 43 (2), 566–576.

Liu, F., Zhao, W., Chen, Y., Wang, Z., Yang, T., & Jiang, L. (2021). Sstdp: Supervised spike timing

dependent plasticity for efficient spiking neural network training. Frontiers in Neuroscience, 15 .

Lobov, S. A., Mikhaylov, A. N., Shamshin, M., Makarov, V. A., & Kazantsev, V. B. (2020). Spatial

properties of stdp in a self-learning spiking neural network enable controlling a mobile robot. Frontiers

169

https://www.axios.com/ai-pioneer-advocates-starting-over-2485537027.html
https://www.axios.com/ai-pioneer-advocates-starting-over-2485537027.html

References

in neuroscience, 14 , 88.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural

networks, 10 (9), 1659–1671.

Mahowald, M. (1994). The silicon retina. In An analog vlsi system for stereoscopic vision (pp. 4–65).

Springer.

Maro, J.-M., Ieng, S.-H., & Benosman, R. (2020). Event-based gesture recognition with dynamic

background suppression using smartphone computational capabilities. Frontiers in neuroscience,

14 , 275.

Martins, W. M., Braga, R. G., Ramos, A. C. B., & Mora-Camino, F. (2018). A computer vision

based algorithm for obstacle avoidance. In Information technology-new generations (pp. 569–575).

Springer.

Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE , 78 (10), 1629–1636.

Mead, C. (2020). How we created neuromorphic engineering. Nature Electronics , 3 (7), 434–435.

Michaelis, C., Lehr, A. B., & Tetzlaff, C. (2020). Robust trajectory generation for robotic control on the

neuromorphic research chip loihi. Frontiers in neurorobotics , 14 , 589532.

Milde, M. B., Bertrand, O. J., Benosmanz, R., Egelhaaf, M., & Chicca, E. (2015). Bioinspired event-driven

collision avoidance algorithm based on optic flow. In 2015 international conference on event-based

control, communication, and signal processing (ebccsp) (pp. 1–7).

Milde, M. B., Blum, H., Dietmüller, A., Sumislawska, D., Conradt, J., Indiveri, G., & Sandamirskaya,

Y. (2017). Obstacle avoidance and target acquisition for robot navigation using a mixed signal

analog/digital neuromorphic processing system. Frontiers in neurorobotics , 11 , 28.

Minguez, J., Lamiraux, F., & Laumond, J.-P. (2016). Motion planning and obstacle avoidance. In Springer

handbook of robotics (pp. 1177–1202). Springer.

Mirsadeghi, M., Shalchian, M., Kheradpisheh, S. R., & Masquelier, T. (2021). Stidi-bp: Spike time

displacement based error backpropagation in multilayer spiking neural networks. Neurocomputing ,

427 , 131–140.

Mitrokhin, A., Fermüller, C., Parameshwara, C., & Aloimonos, Y. (2018). Event-based moving object

detection and tracking. In 2018 ieee/rsj international conference on intelligent robots and systems

(iros) (pp. 1–9).

Mostafa, H. (2017). Supervised learning based on temporal coding in spiking neural networks. IEEE

transactions on neural networks and learning systems , 29 (7), 3227–3235.

Mronga, D., Knobloch, T., de Gea Fernández, J., & Kirchner, F. (2020). A constraint-based approach for

human–robot collision avoidance. Advanced Robotics , 34 (5), 265–281.

Neftci, E. O., Mostafa, H., & Zenke, F. (2019). Surrogate gradient learning in spiking neural networks:

Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing

Magazine, 36 (6), 51–63.

Neil, D., Pfeiffer, M., & Liu, S.-C. (2016). Learning to be efficient: Algorithms for training low-latency,

low-compute deep spiking neural networks. In Proceedings of the 31st annual acm symposium on

applied computing (pp. 293–298).

170

References

Park, D.-H., Hoffmann, H., Pastor, P., & Schaal, S. (2008). Movement reproduction and obstacle

avoidance with dynamic movement primitives and potential fields. In Humanoids 2008-8th ieee-ras

international conference on humanoid robots (pp. 91–98).

Pfeiffer, M., & Pfeil, T. (2018). Deep learning with spiking neurons: opportunities and challenges.

Frontiers in neuroscience, 774.

Ponghiran, W., Srinivasan, G., & Roy, K. (2019). Reinforcement learning with low-complexity liquid

state machines. Frontiers in Neuroscience, 13 , 883.

Posch, C., Matolin, D., & Wohlgenannt, R. (2010). A qvga 143 db dynamic range frame-free pwm image

sensor with lossless pixel-level video compression and time-domain cds. IEEE Journal of Solid-State

Circuits, 46 (1), 259–275.

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., & Delbruck, T. (2014). Retinomorphic

event-based vision sensors: bioinspired cameras with spiking output. Proceedings of the IEEE ,

102 (10), 1470–1484.

Rai, A., Meier, F., Ijspeert, A., & Schaal, S. (2014). Learning coupling terms for obstacle avoidance. In

2014 ieee-ras international conference on humanoid robots (pp. 512–518).

Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N., & Eleftheriou, E. (2019). Low-power

neuromorphic hardware for signal processing applications: A review of architectural and system-level

design approaches. IEEE Signal Processing Magazine, 36 (6), 97–110.

Rebecq, H., Gehrig, D., & Scaramuzza, D. (2018). Esim: an open event camera simulator. In Conference

on robot learning (pp. 969–982).

Rebecq, H., Ranftl, R., Koltun, V., & Scaramuzza, D. (2019). High speed and high dynamic range

video with an event camera. IEEE transactions on pattern analysis and machine intelligence, 43 (6),

1964–1980.

Reiter, P., Jose, G. R., Bizmpikis, S., & Ĉırjilă, I.-A. (2020). Neuromorphic processing and sensing:

Evolutionary progression of ai to spiking. arXiv preprint arXiv:2007.05606 .

Risi, N., Aimar, A., Donati, E., Solinas, S., & Indiveri, G. (2020). A spike-based neuromorphic architecture

of stereo vision. Frontiers in neurorobotics , 93.

Roy, K., Jaiswal, A., & Panda, P. (2019). Towards spike-based machine intelligence with neuromorphic

computing. Nature, 575 (7784), 607–617.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating

errors. nature, 323 (6088), 533–536.

Safeea, M., Neto, P., & Bearee, R. (2019). On-line collision avoidance for collaborative robot manipulators

by adjusting off-line generated paths: An industrial use case. Robotics and Autonomous Systems,

119 , 278–288.

Salarpour, A., & Khotanlou, H. (2019). Direction-based similarity measure to trajectory clustering. IET

Signal Processing , 13 (1), 70–76.

Salvatore, N., Mian, S., Abidi, C., & George, A. D. (2020). A neuro-inspired approach to intelligent

collision avoidance and navigation. In 2020 aiaa/ieee 39th digital avionics systems conference (dasc)

(pp. 1–9).

171

References

Sanket, N. J., Parameshwara, C. M., Singh, C. D., Kuruttukulam, A. V., Fermüller, C., Scaramuzza, D.,

& Aloimonos, Y. (2020). Evdodgenet: Deep dynamic obstacle dodging with event cameras. In 2020

ieee international conference on robotics and automation (icra) (pp. 10651–10657).

Schaub, A., Baumgartner, D., & Burschka, D. (2016). Reactive obstacle avoidance for highly maneuverable

vehicles based on a two-stage optical flow clustering. IEEE Transactions on Intelligent Transportation

Systems, 18 (8), 2137–2152.

Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R., & Scaramuzza, D. (2020). Fast image

reconstruction with an event camera. In Proceedings of the ieee/cvf winter conference on applications

of computer vision (pp. 156–163).

Scoccia, C., Palmieri, G., Palpacelli, M. C., & Callegari, M. (2021). A collision avoidance strategy for

redundant manipulators in dynamically variable environments: on-line perturbations of off-line

generated trajectories. Machines, 9 (2), 30.

Serre, T. (2019). Deep learning: the good, the bad, and the ugly. Annual review of vision science, 5 (1),

399–426.

Shrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer error reassignment in time. Advances in neural

information processing systems, 31 .

Simon, D., & Isik, C. (1993). A trigonometric trajectory generator for robotic arms. International Journal

of Control , 57 (3), 505–517.

Song, K.-T., Chang, Y.-H., & Chen, J.-H. (2019). 3d vision for object grasp and obstacle avoidance of a

collaborative robot. In 2019 ieee/asme international conference on advanced intelligent mechatronics

(aim) (pp. 254–258).

Stagsted, R., Vitale, A., Binz, J., Bonde Larsen, L., Sandamirskaya, Y., et al. (2020). Towards neuromorphic

control: A spiking neural network based pid controller for uav..

Stuijt, J., Sifalakis, M., Yousefzadeh, A., & Corradi, F. (2021). µbrain: An event-driven and fully

synthesizable architecture for spiking neural networks. Frontiers in neuroscience, 15 , 538.

Sun, S., Cioffi, G., De Visser, C., & Scaramuzza, D. (2021). Autonomous quadrotor flight despite rotor

failure with onboard vision sensors: Frames vs. events. IEEE Robotics and Automation Letters,

6 (2), 580–587.

Sutton, R. S., Barto, A. G., & Others. (1998). Introduction to reinforcement learning (Vol. 135). MIT

press Cambridge.

Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L. P., & McGinnity, T. M. (2020). A review

of learning in biologically plausible spiking neural networks. Neural Networks, 122 , 253–272.

Tang, G., Kumar, N., Yoo, R., & Michmizos, K. P. (2020). Deep reinforcement learning with population-

coded spiking neural network for continuous control. arXiv preprint arXiv:2010.09635 .

Taunyazov, T., Sng, W., See, H. H., Lim, B., Kuan, J., Ansari, A. F., . . . Soh, H. (2020). Event-driven

visual-tactile sensing and learning for robots. arXiv preprint arXiv:2009.07083 .

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019). Deep learning in

spiking neural networks. Neural networks, 111 , 47–63.

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., . . . others (2018).

172

References

Large-scale neuromorphic spiking array processors: A quest to mimic the brain. Frontiers in

neuroscience, 891.

Tuckwell, H. C., & Wan, F. Y. (2005). Time to first spike in stochastic hodgkin–huxley systems. Physica

A: Statistical Mechanics and its Applications , 351 (2-4), 427–438.

Tulbure, A., & Khatib, O. (2020). Closing the loop: Real-time perception and control for robust collision

avoidance with occluded obstacles. In 2020 ieee/rsj international conference on intelligent robots

and systems (iros) (pp. 5700–5707).

Van Der Smagt, P., Arbib, M. A., & Metta, G. (2016). Neurorobotics: From vision to action. In Springer

handbook of robotics (pp. 2069–2094). Springer.

Vitale, A., Renner, A., Nauer, C., Scaramuzza, D., & Sandamirskaya, Y. (2021). Event-driven vision

and control for uavs on a neuromorphic chip. In 2021 ieee international conference on robotics and

automation (icra) (pp. 103–109).

Wang, X., Lin, X., & Dang, X. (2020). Supervised learning in spiking neural networks: A review of

algorithms and evaluations. Neural Networks, 125 , 258–280.

Wicaksono, D. H. (2008). Learning from nature: biologically-inspired sensors. TU Delft, Delft University

of Technology.

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A., . . . others (2019).

Demonstrating advantages of neuromorphic computation: a pilot study. Frontiers in neuroscience,

13 , 260.

Yasin, J. N., Mohamed, S. A., Haghbayan, M.-h., Heikkonen, J., Tenhunen, H., Yasin, M. M., & Plosila, J.

(2020). Night vision obstacle detection and avoidance based on bio-inspired vision sensors. In 2020

ieee sensors (pp. 1–4).

Zahra, O., Tolu, S., & Navarro-Alarcon, D. (2021). Differential mapping spiking neural network for

sensor-based robot control. Bioinspiration & Biomimetics , 16 (3), 036008.

Zenke, F., Bohté, S. M., Clopath, C., Comşa, I. M., Göltz, J., Maass, W., . . . others (2021). Visualizing a

joint future of neuroscience and neuromorphic engineering. Neuron, 109 (4), 571–575.

Zhang, H., Jin, H., Liu, Z., Liu, Y., Zhu, Y., & Zhao, J. (2019). Real-time kinematic control for redundant

manipulators in a time-varying environment: Multiple-dynamic obstacle avoidance and fast tracking

of a moving object. IEEE Transactions on Industrial Informatics , 16 (1), 28–41.

Zheng, H., Wu, Y., Deng, L., Hu, Y., & Li, G. (2020). Going deeper with directly-trained larger spiking

neural networks. arXiv preprint arXiv:2011.05280 .

Zhou, S., Wang, W., Li, X., & Jin, Z. (2021). A spike learning system for event-driven object recognition.

arXiv preprint arXiv:2101.08850 .

Zhou, Y., Gallego, G., & Shen, S. (2021). Event-based stereo visual odometry. IEEE Transactions on

Robotics, 37 (5), 1433–1450.

173

	List of Symbols
	List of Abbreviations
	Introduction
	Problem Statement
	Delimitations
	Contributions

	Related Work
	Event-Based Vision
	Spiking Neural Networks
	Neuromorphic Computing
	Obstacle/Collision Avoidance
	Concluding Remarks

	Background
	Event-Based Vision
	Event Data Representations

	Spiking Neural Networks
	Spiking Neuron Models
	Spiking Data Coding Schemes

	Dynamic Motion Primitives (DMP)

	Proposed Solution
	Proposed Approach
	Overview
	Event Camera Emulation
	Convolutional Spiking Neural Networks
	Obstacle Avoidance Component
	Trajectory/Motion Planning and Control

	Implementation
	ROS Components
	Simulation

	Concluding Remarks

	Evaluation Methodology
	Simulation Experiments
	Evaluation Tasks
	Tuning, Validation and Testing Procedure
	Evaluation Metrics and Criteria
	Experiment Procedure
	Automated Evaluation Testing

	Real Robot Experiments
	Evaluation Tasks
	Evaluation Metrics and Criteria
	Experiment Procedure

	Concluding Remarks

	Results and Discussion
	Simulation Experiments
	Initial Parameters (Pre-Tuning Phase)
	Tuning Results
	Validation Results
	Testing Results

	Real Robot Experiments
	Experiment Conclusions
	A Comparison of Event Emulation Strategies
	Decoding Avoidance Behaviour From Raw Event Data
	Random SNN Weight Initializations
	Real Event Camera Tests

	Conclusions
	Limitations
	Future work

	Appendix Comparison of Consumption-to-Computation Ratios
	Appendix Samples of Configuration and Metrics Files
	Appendix Parameter Sets
	Appendix Extra Visualizations
	Tuning Phase: Trajectories Executed in Scenario 3 (Sets 1-12)
	Testing Phase: Trajectories Executed in Scenarios 12-29

	References

