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Abstract. This paper presents the b-it-bots RoboCup@Work team and 
its current hardware and functional architecture for the KUKA youBot 
robot. We describe the underlying software framework and the developed 
capabilities required for operating in industrial environments including 
features such as reliable and precise navigation, fexible manipulation, 
robust object recognition and task planning. New developments include 
an approach to grasp vertical objects, placement of objects by considering 
the empty space on a workstation, and the process of porting our code 
to ROS2. 

1 Introduction 

The b-it-bots RoboCup@Work team at the Hochschule Bonn-Rhein-Sieg (H-
BRS) was established in the beginning of 2012. Participation in various inter-
national competitions has resulted in several podium positions, including frst 
place at the world championship RoboCup 2019 in Sydney and second place 
at the online RoboCup Championship in 2021. The team consists of Master of 
Science in Autonomous Systems students, who are advised by two professors. 
The results of several research and development (R&D) as well as Master’s the-
sis projects have been integrated into a highly-functional robot control software 
system. Our main research interests include mobile manipulation in industrial 
settings, omni-directional navigation in unconstrained environments, environ-
ment modeling and robot perception in general. 

2 Robot Platform 

The KUKA youBot [1] is the applied robot platform of our RoboCup@Work team 
(see Figure 1). It is equipped with a 5-DoF KUKA manipulator, a two fnger 

https://www.h-brs.de/en/a2s/b-it-bots
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Fig. 1: b-it-bots robot confguration based on the KUKA youBot [2] 

gripper and an omni-directional platform. The standard internal computer of 
the youBot has been replaced by an Intel NUC[3] with an Intel Core i7 pro-
cessor. In the front and the back of the platform, two Hokuyo URG-04LX laser 
range fnders are mounted to support robust localization, navigation and precise 
placement of the omnidirectional base. Each laser scanner is confgured with an 
opening angle of 190◦ to reduce the blind spot area to the left and right of the 
robot. 

Over the years, we have experimented with diferent sensors and sensor con-
fgurations for perception-related tasks, including placing an RGB-D or RGB 
camera on the end-efector, or mounting a fxed RGB-D camera at a height 
above the arm. Our current confguration is seen in Figure 1, which consists of 
a tower-mounted Intel Realsense D435 RGB-D camera, with the tower profle 
mounted to the metal base plate of the robot. Additionally, we may also mount 
a second camera (of the same model) between the gripper fngers. The diferent 
confgurations represent a trade-of between getting a full view of the workspace 
during perception and better close-up views of the objects during manipulation. 
But in general, this sensor information is used for vital perception tasks such 
as 3D scene segmentation, object detection and recognition and barrier tape 
detection. 

The youBot gripper has undergone further customization, where it now fea-
tures fexible fngers actuated by Dynamixel AX-12 servo motors. These motors 
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Fig. 2: Flexible-fnger gripper and teensy micro controller [4] 

ofer both position control and force-feedback information, and are controlled by 
a Teensy microcontroller which is shown in Figure 2. The robot’s new confgu-
ration is powered by 2 lightweight LiFePO4 batteries, which ofer a signifcant 
improvement compared to the previous battery system. 

All technical drawings to the previously described modifcations, as well as 
various 3D printed sensor mounts for the laser scanner and the RGB-D camera 
etc., have been made public [5]. 

3 Robot Software Framework 

The software framework of the system is based on ROS (Robot Operating Sys-
tem) [6]. Information is passed between functional components through ROS 
communication channels, specifcally using topics. The use of topics allows for 
non-blocking communication and the ability to monitor communication between 
nodes at any time. The broad range of tools ofered by ROS are employed for 
visualizing, testing, and debugging the entire system. Our development approach 
emphasizes the creation of small, lightweight, and modular components that can 
be repurposed in diferent processing pipelines, including those in diferent do-
mains or on alternative robot platforms, such as the Care-O-bot 3 [7]. We have 
also standardized our nodes with the addition of event in and event out top-
ics. Our components listen to the event in topic which expects simple command 
messages and allow for: starting, stopping or triggering (run once) of nodes. The 
components provide feedback of their status on the event out topic when they 
fnish. This allows us to coordinate and control the components with either sim-
pler state machines or task planning; in either case, the control fow and data 
fow between the components remains separated. This also allows us turn of 
computationally expensive nodes when they are not needed. 

We have begun porting our software to ROS2 [8], since the last version of 
ROS1 will reach its end-of-life by 2025. Most of our code is open source at [9]. 
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4 Navigation 

Several components have been developed and integrated to move the robot from 
one place to another in cluttered and even narrow environments. 

4.1 Map-based Navigation 

The navigation components we use are based on the ROS navigation stack 
move_base which uses an occupancy map together with a global and local path 
planner. For the local path planner a Dynamic-Window-Approach (DWA) is 
deployed which plans and executes omni-directional movements for the robot’s 
base. This enhances the maneuverability, especially in narrow environments. 

The vast amount of confguration parameters of the move_base component 
have been fne-tuned through experiments with several and diferently structured 
environments in simulation (e.g. a corridor, narrow passages, maze, etc.). 

5 Perception 

Several components have been developed for processing the image and point 
cloud data from the tower-mounted camera. 

5.1 Object Recognition 

Perception of objects relevant for industrial environments is particularly chal-
lenging. The objects are typically small and often made of refective materials 
such as metal. We use an RGB-D camera which provides both intensity and 
depth images of the environment. This enables efective scene segmentation and 
object clustering. But the spatial resolution is low even at the close range, and 
a signifcant degree of fickering corrupts the depth images. Thus, for the object 
detection and recognition task we use both 3D and 2D methods. The perception 
pipeline is outlined in Figure 3. 

For 3D perception, we capture a single point cloud and downsample it using a 
voxel grid flter in order to reduce the computational complexity. We then apply 
passthrough flters to restrict the FOV which removes irrelevant data and further 
reduces the computational burden. In order to perform plane segmentation, we 
frst calculate the surface normals of the cloud and use a sample consensus 
method to segment a single horizontal plane. The convex hull of the segmented 
plane is computed and represented as a planar polygon. The prism of points 
above the polygon are segmented and clustered to individual object pointclouds. 

For object recognition, we use a combination of features described in [10] and 
the 3D modifed Fisher vector [11] to train a random forest classifer. 
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Fig. 3: Object perception pipeline [2] 

In our approach to 2D perception, we employ YOLOv5 [12] for object detec-
tion, with the inferencing implemented in C++ using the Open Neural Network 
Exchange (ONNX) [13] model. The object pose and grasping axis are then deter-
mined by using a Principal Component Analysis (PCA) approach on the point 
cloud within the 2D bounding box. 

The results from 3D and 2D perception are combined along with information 
about the objects from the referee box to make a fnal classifcation result. 

5.2 Cavity Recognition 

For the Precision Placement Task, the robot is required to insert objects into 
cavities. The correct cavity has to be chosen and the respective object needs to 
be precisely placed into it. 
The cavities in the Precision Placement Test are detected by applying Canny 
edge detection and contour detection and classifed using a YOLOv5 [12] net-
work. 

5.3 Rotating Table Test 

For the Rotating Table Test, the 3D positions of objects are tracked using a 
nearest neighbour approach after applying 3D segmentation to the pointcloud. 
Based on the measured velocities and positions of the objects, the predicted 
arrival time of the target object is calculated and eventually grasped using back-
ground change detection with the camera pointed at the table [2]. 

Due to the inaccurate estimation of the movement of the objects on the 
table, the robot currently often misses objects. To address this problem, we 
have introduced 2D object tracking [14] to the perception pipeline. The fast and 
reliable tracking performed on each frame received from the camera would result 
in obtaining full trajectories of the objects of interest. This can be used to obtain 
a more accurate estimation of the object’s future positions. 
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Currently, we have no data available for training models for 2D object track-
ing, thus our solution is based on the concept of tracking-by-detection, where a 
dataset for training object detectors is sufcient. Two methods considered by us 
are: Tracktor [15] and DeepSORT [16]. 

Tracktor [15]1 frstly initializes the trajectory from the detection done by an 
object detector (such as Faster-RCNN or YOLOv5), secondly, the tracking is 
performed. The latter is a process that consists of two steps, namely: bounding 
box regression and bounding box initialization. The purpose of bounding box 
regression is to extend the trajectory to the new video frame. So the aim is to 
fnd the object’s new position by reusing the position of the bounding box in 
the old frame. It is assumed that a high frame rate is provided, and the target 
object moves only slightly between frames. This assumption allows performing 
bounding box regression by applying ROI pooling on the features obtained from 
the new frame and bounding box coordinates from the previous frame. After 
the regression is done, it is decided which trajectories should be deactivated. 
The choice is based on the occlusions of the tracked objects. The bounding box 
initialization is used to fnd new targets in the frame for which the trajectory 
should be created. The diference from the frst initialization (at the very begin-
ning) is that here the new trajectory, for the given object, is started only when 
the IoU (Intersection over Union) with any of the existing trajectories is smaller 
than a certain threshold. 

We have also tested another solution for the purpose of tracking objects for 
the rotating table task, which uses the DeepSORT model [16]2 (Figure 4). It is an 
improvement over the previous model, SORT [17]. Whereas the previous model 
performed associations based on the overlap of the estimated bounding box 
generated using Kalman flter and the bounding box generated by the detector 
for the next frame, DeepSORT also incorporates appearance features extracted 
from the detection using a custom CNN architecture which outputs a 128-length 
feature vector as the output. The features of two detections are then compared 
using the cosine distance of the two vectors. It then combines the information 
from the motion features and the appearance features to associate objects using 
the Hungarian algorithm. It has shown improvement over the previous approach, 
primarily in reducing the number of ID switches. The model used has YOLOv5 
detector as the backbone. More details of our approach can be found in [14], and 
the code3 and dataset4 are also available publicly. 

6 Object Manipulation 

In order to grasp objects reliably, several components have been developed and 
integrated on the robot. 

1 https://github.com/phil-bergmann/tracking_wo_bnw 
2 https://github.com/nwojke/deep_sort 
3 https://github.com/VincentSch4rf/rtt_tracking 
4 https://github.com/VincentSch4rf/RoboCup-RTT-Dataset 

https://github.com/phil-bergmann/tracking_wo_bnw
https://github.com/nwojke/deep_sort
https://github.com/VincentSch4rf/rtt_tracking
https://github.com/VincentSch4rf/RoboCup-RTT-Dataset
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Fig. 4: YOLOv5 + DeepSORT tracker architecture [16] 

From the object recognition component, the pose of the object to be grasped 
is retrieved. This pose is the input to a pre-grasp planner component which 
computes a pre-grasp confguration based on the type of grasp, a distance ofset 
and constraints imposed by the robot’s manipulator and end efector. Due to its 
kinematic constraints, the robot might not be able to reach this computed pre-
grasp confguration with its end efector. Thus, a set of poses is sampled around 
the object’s pose. An inverse kinematics solver is then used to fnd one reachable 
pre-grasp pose from the list of sampled poses. Objects laying horizontally on the 
workspace are approached from above. For vertical objects (objects with a height 
that is more than a predefned value), we developed an approach to grasp them 
from the front. The robot positions itself sufciently away from the object, such 
that the arm can approach the object from the front rather than from above. 

Once the end efector reaches the grasp pose, the gripper of the robot is closed. 
A grasp monitor checks whether the object is grasped successfully utilizing the 
force and position feedback of the two Dynamixel motors. 

6.1 Empty Space Placement 

In previous years, objects were placed on the target workstation using prede-
fned arm confgurations, without consideration for objects that may already be 
present on the workstation. We have developed a new approach which perceives 
the workstation before placement and have integrated it into the working pipeline 
of the robot. The previous method of object placement is reliable only when the 
height of the workstation is known, and no other objects are present. Our cur-
rent approach acquires this information dynamically and uses point cloud data 
from the RGB-D camera to fnd a plane for placement. Poses are sampled in the 
free space of the plane, such that a minimum distance is maintained to other 
perceived objects on the plane, and the object is placed at one of the poses based 
on their reachability. This approach allows the robot to place more objects on a 
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workstation and it also dynamically adjusts to the variations on the workstation. 
We are currently experimenting with placement on uneven surfaces. 

7 Task Planning 

Many robot application, especially in competitions, have been developed using 
fnite-state machines (FSM). But even for apparently simple tasks, such a FSM 
can be very complex and thus become easily confusing for humans. Therefore, 
our current FSMs have been replaced with a task planner. 

We test using both the Mercury 2014 planner [18] and the LAMA planner 
[19]. The LAMA planner is built on the Fast Downward planning system and uses 
PDDL. As such, it uses similar interfaces to those of the Mercury planner. The 
planners allow specifying various cost information. In terms of RoboCup@Work, 
these costs and can be, for example, distances between locations or probabilities 
of how good a particular object can be perceived or grasped. 

Small and clear state machines covering basic actions, like move-to-location, 
perceive-object, grasp-object or place-object are used as actions for the 
planner. For a particular task, the planner then generates a sequence of those 
actions in order to achieve the overall goal. Finally, this plan is being executed 
and monitored. In case of a failure during one of the actions, replanning is being 
triggered and a new plan is generated based on the current information available 
in the knowledge base. 

8 Conclusion 

In this paper we presented several modifcations applied to the standard youBot 
hardware confguration as well as the functional core components of our current 
software architecture. Besides the development of new functionality, we also focus 
on developing components in such a manner that they are robot independent 
and can be reused for a wide range of other robots with even a diferent hardware 
confguration. We applied the component-oriented development approach defned 
in BRICS [20] for creating our software which resulted in high feasibility when 
several heterogeneous components are composed into a complete system. 
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