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Abstract: Integrating physical simulation data into data ecosystems challenges the compatibility 
and interoperability of data management tools. Semantic web technologies and relational databases 
mostly use other data types, such as measurement or manufacturing design data. Standardizing 
simulation data storage and harmonizing the data structures with other domains is still a challenge, 
as current standards such as the ISO standard STEP (ISO 10303 ”Standard for the Exchange of Product 
model data”) fail to bridge the gap between design and simulation data. This challenge requires new 
methods, such as ontologies, to rethink simulation results integration. This research describes a new 
software architecture and application methodology based on the industrial standard ”Virtual Material 
Modelling in Manufacturing” (VMAP). The architecture integrates large quantities of structured 
simulation data and their analyses into a semantic data structure. It is capable of providing data 
permeability from the global digital twin level to the detailed numerical values of data entries and 
even new key indicators in a three-step approach: It represents a fle as an instance in a knowledge 
graph, queries the fle’s metadata, and fnds a semantically represented process that enables new 
metadata to be created and instantiated. 
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Simulations are used in modern engineering to model physical effects and improve a 
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different tools, most software is compatible with vendor-specifc formats. However, this is 
not the case for all vendors and is tedious to implement for specialized software developed 
by Small and Medium Enterprises (SMEs) themselves. Therefore, the industrial standard 
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are successfully used for data transfer and archiving. However, data management capabili-
ties and links to other disciplines are still lacking in this as well as other standardization 
approaches [2,5]. 

Figure 1. The simulation chain of the VMAP blow molding use case for a cubic tank. Between simu-
lation tools, data often have to be converted to use the outputs of one tool as inputs for another. Data 
are transferred in VMAP fles and translated to vendor-specifc formats using the I/O library [6,7]. 

The solution we propose is realizing interoperability by harmonizing each data 
source’s metadata schema and data access methods. Here, metadata refer to data that 
are relevant outside of the simulation domain, such as core results, numerical parameters, 
and boundary conditions, or the engineer responsible. This is where an open framework, 
especially a semantic information model, comes into play. 

This article introduces a software design for SPDM implementers based on a semantic 
information model. VMAP data are used as a proxy for semantic data management and 
automated knowledge graph population. During this research, the following were developed: 

• a set of requirements for Ontology-Based Data Access (OBDA) of bulk data; 
• mechanisms that upload metadata and automatically query additional information 

from the bulk data; 
• queries for additional metadata using semantically representing routines that process 

the bulk data and produce metadata; 
• semantic routine management that can be expanded from data processing to manufac-

turing and management processes. 

To this end, current research approaches and their relation to this work are introduced 
(Section 2), the requirements imposed by handling simulation data in digital twins are 
clarifed (Section 3), and a strategy for semantic defnitions is developed (Section 4.1). 
The results include a method for information retrieval from the semantic framework 
(Section 4.2) and a prototype of the method (Section 4.3). Finally, the capabilities and 
limitations of the presented method and implications for future research are discussed 
(Section 5). 

2. Standardization and Semantic Technologies for Simulation Data Management 

This section introduces major efforts made in the simulation data standardization and 
explores its current shortcomings. The standardized data models contain a closed-world 
assumption (CWA). Their fles are therefore implicit, i.e., require knowledge of the domain 
specifcations, and have thus no reasoning capabilities. To alleviate these shortcomings, 
semantic technologies for SPDM are used in this work and are described in this section. 
Semantic technologies keep an open-world assumption (OWA) and their fles do contain 
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explicit knowledge, making them expandable and reasonable. Table 1 compares additional 
aspects of the different methods introduced in this section. 

Table 1. The different methods considered for SPDM. 

Domain 
Knowledge Data Access Storage Logic 

STEP 
Application 
Protocol (AP) [8] 

Part21 [9] 
or binary fle [10] ASCII fle 

VMAP 
General 
Specifcations [2] 

Standard 
[3]Specifcations HDF5 fle [11] 

Data pipelines 
to knowledge graphs Ontology Mapping-based OBDA 

Relational database 
or supported proprietary 
formats 

This work Ontology 
Procedural knowledge in 
semantically represented 
access methods 

Semantic knowledge graph 
and HDF5 data 

2.1. Standardization of SPDM 
2.1.1. The ISO Standard STEP 

ISO 10303 “Standard for the Exchange of Product model data” (STEP) [12] was devel-
oped for the long-term archiving of product development data in safety-critical engineering 
disciplines such as aviation, the automotive industry, and defense. It offers a standard-
ized software-independent description of product data throughout the product life cycle, 
providing data modeling and storage defnitions for large portions of Product Lifecycle 
Management (PLM). In ISO 10303-209 [1,13], simulation data were included to allow SPDM 
to be integrated into PLM. However, it falls short in important aspects of data management: 

• The data model requires tedious and lengthy standardization processes for new 
modules due to the CWA: only defned classes are accepted. 

• The data defnition varies fundamentally due to the different granularity of design 
and simulation data. 

• Simulation data can either be referenced as a whole fle or fully stored in a STEP 
fle. Referencing, however, lacks the possibility of linking to key results within the 
model, while STEP fle formats require large amounts of storage space as described in 
Section 3. 

2.1.2. The VMAP CAE Data Interface Standard 

Contrary to the strict ISO standardization process, a standardization community from 
different industry branches recently developed the industrial standard “Virtual Material 
Modelling in Manufacturing” (VMAP) to provide data transfer between simulation tools. 
VMAP offers a vendor-neutral data format and a library of I/O routines to link chains of 
various simulation data formats [2]. 

The VMAP standard is based on Hierarchical Data Format (HDF5), a widely accepted 
implementation platform for many I/O-related applications [11]. Data were aligned into 
groups defned in the VMAP standard specifcations [3] and commonalities were identifed 
among many software packages to create the standard. Keeping this in mind, the VMAP 
storage structure defnes the four main groups that form the essence of any simulation. 
Computer Aided Engineering (CAE) data are sorted into datasets and attributes within 
four main groups [3]: 

1. GEOMETRY contains spatial information on nodes and elements. 
2. VARIABLES stores physical quantities referenced to the nodes and elements. 
3. In SYSTEM, the simulation parameters such as coordinate system and integration 

method are defned. 
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4. MATERIAL contains material information stored in different tables, which can be 
imported or shared across fles. 

Generally, data formats for SPDM must be compatible with varying material assump-
tions, boundary conditions, and numerical parameters simulation tools [14]. As VMAP is 
capable of this, it has been well-accepted within and outside of the standardization commu-
nity. However, alignment methods to other product data should be included for full SPDM 
capabilities, such as design data, measurement data, and subjective intent capturing [15,16]. 

As a consequence, semantics should be added to the VMAP standard. Currently, no 
similar research is known to the authors. 

2.2. Semantic Technologies for SPDM 

Ontologies structure concepts in terms of meaningful relations (semantics). Knowl-
edge graphs with node–edge–node structures (triples) incorporate semantic defnitions in 
data schemas called ontologies. These graphs enable additional information (inferences) 
to be derived (reasoned) from the explicitly stated (asserted) relations. Semantic technolo-
gies promise to provide the foundation for a fexible and expandable data management 
system [17,18]. 

A noteworthy alternative is the addition of links to the VMAP standard. Generally, 
the HDF5 format supports hard links (to a physical address within a fle) and symbolic links 
(a string for links within and outside of the fle) [11]. This would partially enable SPDM 
capabilities for simulation fles. It would, however, remain restricted to HDF5 fles and 
require a translation or reference method for the integration into PLM systems. Conversely, 
ontologies are already used for PLM system development [19,20]. 

Two main issues need to be addressed in order to make good use of ontologies 
for data management. First, the mapping and interrelation between all domain-specifc 
schemas need to be defned in a common ontological core framework. Second, the semantic 
resolution and a corresponding method for using the ontology within and beyond this 
resolution are necessary to achieve data permeability in practice. In the following, we relate 
our work to other research results. 

2.2.1. Ontological Core Framework 

The frst point of a common ontological core framework is provided by MpCCI On-
tologies for Digital Twins (smartMpCCI), developed by two of this paper’s authors [21,22]. 
This ontology combines process-centered descriptions with data resources from various 
disciplines to align digital twin assets with simulation models and data analytics. 

Other simulation ontologies are more restricted to a system-level perspective [23], 
which does not allow for the required integration of resolved physics. On the other hand, 
application-focused ontologies for digital twin systems often capture only the system 
or event-level [24]. Moreover, both generally struggle on a semantic level to reconcile 
simulation with the various Industry 4.0 standards (for plant planning and operation) [25]. 

Recently, Singh et al. [26] developed a central knowledge base in which databases have 
one-to-one mappings between the ontological relations and the data tables. However, this is 
only demonstrated for factory data acquisition, not simulation data, underlining that digital 
twin data management is an ongoing challenge in which simulation is seldom addressed. 

The Physics-based Simulation Ontology (PSO) by Cheong and Butscher [27] extends 
the Basic Formal Ontology (BFO) [28] to simulation data. It explicitly models the physics 
and qualities of spatiotemporal assets in both the physical domain and the simulation 
domain. Underlying physical equations, discretization, and boundary conditions can be 
related to their physical equivalents. However, the PSO falls short of addressing how to 
store and handle the corresponding simulation data resources. The schema of smartMpCCI, 
on the other hand, is comparatively limited, focusing on the digital twin context. Therefore, 
harmonizing PSO and smartMpCCI seems recommendable for future studies. 
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2.2.2. Ontological Data Integration 

This study is an original contribution to semantic resolution and corresponding inte-
gration methods. It presents a method for Ontology-Based Data Access (OBDA), which is 
novel to the authors’ best knowledge. Four key aspects of Ontology-Based Data Access 
(OBDA) are relevant to evaluate the state of the art: 

1. Bulk data must be stored in an effcient format. This may be propriety or semantic. 
2. To store data effciently, it may be integrated to different extents. 
3. Data access must be defned if data are not fully imported into the database. 
4. An ontology, i.e., a domain model, is required for full reasoning capabilities and must 

be maintained. 

OntoDB is a leading data integration system based on ontologies [29], in which data 
storage and schema are inseparable in the same database. The data are migrated into a 
performance-optimized “state table per class” structure, making the ontology the database 
schema. This does, however, not leave the resolved data in its optimal database (binary 
and distributed), which is a vital requirement of most digital twins. 

The separation of the ontology and the database was later shown to work well on 
the NoSQL database MongoDB [30] and OntoP [31]. Here, an ontology describes the 
knowledge domain, while an access interface stores the semantic concepts in a form that 
can be translated into the database queries. The database and its contents themselves are 
not semantically described, but rather the queries that can be addressed to the database. 
This approach is similar to the non-ontological Representational State Transfer (REST) 
Application Programming Interfaces (APIs) [32]. For hierarchical data, this raises the ques-
tion of how to separate database-structure-specifc semantics from the knowledge domain. 
Additionally, the data interface must be easily adapted to knowledge domain updates. This 
paper proposes such a separation using a semantic representation of extraction routines. 

The SPARQL Protocol And RDF Query Language [33] (SPARQL)-Anything project [34] 
separates the storage-specifc semantics from the knowledge domain by parsing data for-
mats to Resource Description Framework [35] (RDF) and accesses the actual data contents 
with property functions that are an extension to a SPARQL engine. While this approach 
does not contain domain-specifc mappings, Steindl et al. [36] implemented an OBDA 
method for the machine operation data standard Open Platform Communications (OPC) 
Unifed Architecture [37,38] (OPC-UA). Both methods vary from our study due to the 
complete translation of the data model to RDF-triples without semantic representation of 
the property functions themselves, thus keeping the data structure non-ontological and 
removing the OWA. However, reconciling the approaches could be a fruitful combination 
of two important types of assets for digital twins. 

Each of these data access methods uses ontologies for mappings of some sort. Numer-
ous possible mechanisms exist to create and update the joint knowledge base. With the sep-
aration between the ontology-structured metadata and the databases themselves, a knowl-
edge graph needs to be maintained. RDF mapping languages such as the RDB to RDF 
Mapping Language (R2RML) [39] express custom mappings between relational databases. 
Furthermore, Leshcheva and Begler [40] developed an automated ontology population. As 
such, these methods are restricted to semi-structured data with additional semantics in data 
source ontologies, contrary to the hierarchical VMAP format. However, the HDF5 fles may 
be translated to a relational format and thus imported into the knowledge graph. While 
this may be possible, it requires multiple mappings, creates large amounts of in the process, 
and still leaves the question of domain knowledge defnitions in an ontology. Therefore, 
this approach was not applied in this work but should be investigated in future studies. 

3. Software Requirements 

Considering the described state of the art, we require the following key features of 
modern ontology-based data management: 
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• Semantic access to simulation data is necessary due to the described digital twin 
context. Simulation data, including all data values, must be found from a semantic 
access point. 

• Simulation data are too large for a one-to-one mapping to a semantic framework, as is 
the current practice in OBDA [26,29]. Storage space is already a signifcant issue for 
SPDM, especially in dynamic simulations. Storing it in triples can be expected to take 
up a multiple amount of storage space, while the knowledge gained may be minimal. 
This is due to the clear-text nature of semantic formats and the ineffciency of RDF 
in storing ordered lists or even arrays, as structural relations would be repeatedly 
stated [18]. 
The extra space is easily demonstrated when comparing the size of a use case example 
for STEP Application Protocol 209 “Multidisciplinary analysis and design” in ISO 
10303-209:2014 (AP209) [41]. The recreated test case fle in VMAP takes up only 176 kB 
of disk space, much less than the AP209 test fle with 4278 kB. An Ontology Web 
Language [42] (OWL) instances fle (translated using ExpressToOwl [43]) requires 
43,652 kB. Therefore, the respective data must remain in its optimal storage format to 
minimize storage space while maximizing interoperability. 

• Access methods must be easily available to create new metadata without manual labor. 
Currently, the post-processing of VMAP fles requires mapping back and forth between 
vendor-specifc formats. This is computationally intensive and unnecessary for well-
defned post-processing steps and easily automatable tasks that can be bundled in a 
batch process. The requirement we impose is automating data processing to obtain the 
desired information. For this, very performative routines are available in open-source 
software packages for the binary HDF5 structure of VMAP. 

To fulfll the requirements, the following actions must be executed by the software 
solution (see also the UML® [44] activity diagram in Figure 2): 

Figure 2. The proposed UML® activity diagram to be implemented in an SPDM including binary 
data. Grey: The possible version control loop. 
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1. providing a fle and request metadata via a user interface; 
2. uploading vital information from the fle to the ontology down to a certain depth; 
3. searching the requested metadata and returning it if it is available; 
4. fnding the routine required to create the metadata if it is unavailable, executing the 

routine, and adding the metadata to the knowledge graph; 
5. returning the metadata to the user. 

Additionally, a version control loop may be added to fnd out whether the metadata 
and its routine are up to date. 

4. Software Architecture and Prototype 

The software requirements are put into practice in a prototype software architecture 
with three signifcant characteristics: 

1. All data can be accessed via the knowledge graph (see Section 4.3). A GUI is imple-
mented to show the current capabilities. 

2. The knowledge graph is populated only with such information required for new 
metadata to be queried and found or created with effcient methods (Section 4.1), thus 
signifcantly reducing the required storage space. 

3. Access methods are semantically available in the knowledge graph and can be easily 
managed (see the process ontology in Section 4.1 and the access layer in Section 4.3). 

This section presents the characteristics of the developed prototype. First, the ontolo-
gies are introduced; second, the information access from the knowledge graphs is discussed; 
third, the method implementation is presented; fnally, the method’s capabilities are shown. 
Figure 3 shows an abstract representation of the architecture. 

Figure 3. Abstract representation of the developed architecture. Two ontologies form the basis for 
two knowledge graphs. Processing routines are manually indexed. The VMAP graph is automatically 
created from a VMAP fle using the VMAP2OWL process. When metadata are requested, information 
from both knowledge graphs is used to extract new information and write it to the VMAP fle 
and graph. 

4.1. Semantic Defnitions 

Two ontologies are used: one for knowledge graph population (storage ontology) 
and one for querying the database from within the ontology (process ontology). These 
are separated here, as both ontologies may be used independently for their respective 
purposes. While the storage ontology is intended to be format-specifc, the process ontology 
uses generic classes and format-specifc classes to organize data access across formats. 
Both ontologies are publicly available at https://gitlab.scai.fraunhofer.de/vmap-onto/vio-
method/-/tree/main/vmapontologies (accessed on 26 December 2023). The RDF notations 
of both ontologies’ top-level classes are provided in Appendix B. 

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapontologies
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapontologies
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4.1.1. Storage Ontology 

An ontology of the storage structure is required to fnd and reference the desired 
information. Recently, an ontology to represent the mereology (part-of structure or stor-
age structure) of the VMAP standard specifcations [3] was developed. It is aligned with 
the smartMpCCI ontology currently being developed at Fraunhofer-Institute for Algo-
rithms and Scientifc Computing (SCAI) [21,22]. It relates storage levels (groups, attributes, 
datasets, and dataset columns) to their parent directory and contents via an isStoredIn 
and an inverse stores object property restriction. The semantic integration is capped at the 
dataset column level, for which only value type and column number or column name are 
specifed via data property restrictions. The top-level classes of the VMAP storage ontology 
are shown in Figure 4. 

Figure 4. Top-level classes of the VMAP storage ontology. The hierarchical structure is implemented 
using isStoredIn and the inverse stores relations. ‘*’ signifes an object property restriction with 
arbitrary cardinality, i.e., someValuesFrom. 

4.1.2. Process Ontology 

A Routine is a subclass of a BFO:Process [28]. It can be any data processing routine, 
from a simple line of code to a batch process. An ontology of the metadata routines 
provides information on the inputs and results of the routines, such that a routine can 
be found based on the requested metadata. The routines can be generic for HDF5 fles 
or datasets, specifc for VMAP fles or datasets, or tailored to any other specifed fle 
type. Hence, a VMAP_Routine class should be defned with a hasOutput object property 
restriction pointing to a VMAP_Metadata class and hasInput pointing to a VMAP_File or 
VMAP_Dataset class. The top-level defnitions of the VMAP routines ontology are given in 
Figure 5. 

This architecture forms the basis of querying semantically represented data. Additional 
semantics can be provided by general ontologies such as PSO, for example, understanding 
the stored quantity and thus including more profound knowledge of the metadata. Addi-
tionally, the schema can be integrated into a broader digital twin context by aligning it with 
the BFO or smartMpCCI by defning Routine subClassOf BFO:Process [28] or Routine 
subClassOf smartMpCCI:Simulation_Aspect [21]. Such linkages should be further ex-
plored in future research to fully exploit the advantages of ontological data management. 
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Figure 5. The top-level defnitions of the VMAP routines ontology. 

4.2. Querying Information in Three Steps 

The core concept of information access is demonstrated here by querying basic storage 
relations. The knowledge graph is assumed to be instantiated, containing the explicit 
metadata of a given VMAP fle, and the required processing routines have been indexed 
for automated execution. Three queries are executed to search the metadata and fnd 
the required routine. The code listings in RDF Schema [45] (RDFS), OWL, and SPARQL 
notations are given in Appendix C. 

1. Find the File 

Instead of the user providing the fle, some information about the fle can be given 
to run a SPARQL query. This can, for example, be the data property stores_variable 
“temperature” of a column within a dataset. Figure 6 demonstrates the queried graph. 

Figure 6. Schematic of the query to fnd a fle containing a dataset for a specifc variable. Oval: 
The queried instance. Rectangle: Instances and classes. ? represents a variable instance or class. 
... represents a chain of isStoredIn edges, marked by :isStoredIn+ in the listing. 

2. Find the Metadata 

Some metadata can be available within the fle or dataset. The desired metadatum can 
easily be found via a data property, as shown above, or via its type (Figure 7 demonstrates 
the queried graph). 

Figure 7. Schematic of the query to fnd a metadata instance of a specifc class type and related to a 
specifc dataset. Oval: The queried instance. Rectangle: Instances and classes. ? represents a variable 
instance or class. 

3. Find the Metadata Routine 

Individuals of Routine can have relations to Metadata, and File individuals and can 
be queried directly. Figure 8 demonstrates the knowledge graph and related SPARQL query. 
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Figure 8. Schematic of the knowledge graph (left) and query (right) using Routine instances for 
metadata routine search. Oval: The queried instance. Rectangle: Instances and classes. ? represents a 
variable instance or class. 

However, instantiating a specifc routine for each individual input and output may 
not be desirable, as it leads to new individuals for each metadata query. Instead, routine1 
should be an instance of a Routine subclass, as shown in Figure 9. As class restrictions are 
implemented by making the class a subclass of the restriction, the routine must be queried 
via the inputrestriction and outputrestriction. As the hasInput and hasOutput ob-
ject properties may be refned, any of their subproperties suffce. Therefore, the queried 
subgraph is more complex, as can be seen in Figure 10. 

Figure 9. Schematic of the knowledge graph using Routine subclasses for metadata routine search. 
Rectangle: Instances and classes. * represents an owl:someValuesFrom object property restriction. 

Figure 10. Schematic of the query using Routine subclasses for metadata routine search. Oval: The 
queried instance. Rectangle: Instances and classes. subPropertyOf* represents a chain of one or 
more edges of subPropertyOf. ? represents a variable instance or class. 

4.3. Software Design 

The database queries and data processing routines are executed by a software frame-
work described in this section. The working prototype is publicly available at https: 
//gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration (ac-
cessed on 26 December 2023), which provides the neighboring vmapontologies directory. 
Next to data (VMAP fles for testing) and tests (scripts implementing the tests described 
in Section 4.4), src houses the implemented classes. They are divided into three layers: a 
presentation layer with the user interface, an application layer for the application-specifc 

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration
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classes and methods, and a (data) access layer to load and access the fles [46,47]. The UML® 

diagram in Figure A1 in the Appendix A demonstrates the class relations. 

4.3.1. Presentation Layer 

The presentation layer handles user inputs and passes them to available methods. It 
is separated into a UserInterface class and a Control class, taking over the functions of 
View and Control in a Model–View–Control (MVC) architecture. The UserInterface class 
is loaded directly from the access point (main). Figure 11 shows the GUI implemented in 
this layer. 

Figure 11. GUI of the prototype. Only one of either data path, group, or individual is needed to fnd 
the minimum of the desired dataset. The derived SPARQL query and its results are displayed below. 

4.3.2. Application Layer 

In the application layer, two classes are implemented. 
The class VmapOwlConstructor populates the knowledge graph in the method vmap2owl. 

The method uses the sub-methods create_all_groups and create_all_attributes. The 
received and generated information is stored in felds such as vmap_file, vmap_ontology, 
vmap_instances, ID, and others. 

The class MetaData calls the method metadata_search upon initialization, using a 
SPARQL query to check whether the requested metadata already exists in the knowledge 
graph. Here, the version control mentioned above can be added. If metadata_search is 
unsuccessful, it calls the routine_search method to fnd the relevant metadata routine and 
returns the information vital to importing and executing the routine. These two methods 
use the SPARQL queries suggested in Section 4.2. 

MetaData has an exists_on_instance feld pointing to the instance to which the meta-
datum applies. The feld metadata_class is the class of which a metadatum is requested. 
During the metadata_search method, a routine_instance feld is added. After executing 
the routine, the metadata instance and its value are added to the knowledge graph as a 
triple. Accordingly, the metadata_instance and the corresponding value felds are added 
to the class. 

4.3.3. Access Layer 

The routines found by routine_search are created as separate classes in the access layer. 
These can be housed by classes or created as independent methods. They are not imported 
unless required for the metadata_search method: for example, a method VmapDatasetMini-
mum inherits the minimum calculation method from its ancestor ArrayMinimum. This can be a 
simple NumPy function or a whole batch process. 
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4.3.4. Naming Conventions and Used Packages 

The architecture requires naming conventions to be introduced throughout different 
development frameworks, as considerable amounts of information are stored as strings in 
OWL. In particular, the names of fles or dataset paths, functions, and classes should be 
automatically linked or tested regularly. 

Custom data types may be developed to achieve an integrated environment. For ex-
ample, this would enable a data property of a Metadata or VMAP_Dataset_Column instance 
to be an HDF5 dataset, which otherwise cannot be stored effciently in OWL. This can only 
be achieved using an integrated approach such as owlready2 in Python [48]. 

To realize the architecture in Python [49], four external packages are required for the 
user interface, ontologies, fle access, and numeric calculations: 

1. The classes of the prototype’s presentation layer use the tkinter package, which 
provides functions for both the user interface and the control classes [50]. 

2. To handle ontologies, owlready2 comes with SPARQL functionalities and the Pellet 
and HermiT reasoners [33,48]. 

3. The h5py package can import HDF5 fles, i.e., VMAP data [51]. 
4. NumPy uses HDF5 for storage and computing and provides effcient numerical 

methods [52]. 

4.4. Test Functions 

Several test functions for the basic required functionalities have been created. They 
are available at https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/ 
vmapintegration/tests (accessed on 26 December 2023) and briefy introduced here. 

• Requesting metadata should require a minimal amount of information about its object. 
Finding the referred dataset instance has been implemented for an owlready2 entity, 
the datapath of a dataset, the required state variable, and the HDF5 dataset itself. This 
has been tested in test00existsoninstance.py, test01existsoninstancename.py, 
test02datapath.py, test03variable.py, and test04dataset.py, respectively. 

• When instantiating a fle to the knowledge graph, duplicates must be identifed. This 
is tested in test05duplicatefile.py based on ID parameters. 

• If a metadata instance is already available, it must be found in the knowledge graph 
and directly returned, rather than repeatedly searching and executing the data process-
ing routines. In test06duplicatemetadata.py, metadata instances are found with 
the same existsOn and subClassOf specifcations as requested. 

• More complex metadata, i.e., the difference between two datasets, and translations of 
Cauchy stresses into a Von Mises criterion, are created in test08difference.py and 
test09cauchytomises.py, respectively. 

• A more complex blow molding simulation result from an industrial use case for 
VMAP [2] was instantiated and processed in test07bsimresults.py. The data for 
this test case is currently not publicly available. 

The prototype has successfully completed all test functions. 

5. Discussion and Outlook 

This paper presents an ontology-based data management method for physics-based 
simulation chains built on the VMAP standard. General strategic decisions are based on 
literature and concrete requirements for VMAP use cases. The proposed architecture can 
automatically populate a knowledge graph with storage and metadata information of a 
VMAP fle, query some simple metadata semantically, generate new metadata directly from 
the VMAP fle using effcient routines, and add the acquired data to the knowledge graph. 

The results of this research indicate a signifcant improvement of two key issues of an 
SPDM for hierarchical simulation data by the architecture suggested in this paper: 

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration/tests
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration/tests
https://test07bsimresults.py
https://test09cauchytomises.py
https://test08difference.py
https://test06duplicatemetadata.py
https://test05duplicatefile.py
https://test04dataset.py
https://test03variable.py
https://test02datapath.py
https://test01existsoninstancename.py
https://test00existsoninstance.py
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1. Without manual mapping, data can be directly analyzed on the binary VMAP fle. 
Loading only vital information into the ontology minimizes the storage space footprint 
of the stored triples, and the bulk data remains in its optimal form. 

2. New numerical methods and data analyses can be imported into the process ontol-
ogy for knowledge management of the available routines and automatic use in the 
semantic framework. 

This is achieved by separating the knowledge base from the data sources, using 
the data storage defnitions for automatic knowledge graph creation, and semantically 
representing data retrieval and processing. The architecture has been realized as a prototype 
in Python and is provided in the supplementary information of this article. 

Some limitations remain and should be considered and investigated in future research: 

1. As outlined in Section 2, a widely accepted common ontological framework for OBDA 
of simulation data is yet to be developed. Harmonizing smartMpCCI and PSO appears 
to be a promising starting point. 

2. The ontology models have, thus far, been created manually. This should be automated 
for the storage ontology to allow scalability to more formats and version updates. 
Some progress has been made regarding ontology generation from source code [53] 
or raw text [54] and should be considered. 

3. The method is currently only implemented as a prototype and is not yet being used in 
an industrial context, which is a vital prerequisite for the method’s success [5,14]. Cur-
rently, PLM methods and particularly SPDM methods lack standardized benchmarks, 
restricting the evaluation to expert assessments for individual industry scenarios [15]. 

For the method presented in this paper, at least three points should be implemented 
in an integrated framework and benchmarked against other methods: 

1. The capabilities of OBDA can be fully exploited when aligning ontologies of different 
domains. This is an open feld of research where progress has been made in recent 
years [55,56]. 

2. The computational overhead of the method depends on the search along the knowl-
edge graph. This can be minimized using effcient semantic search engines [57]. 
The method may be limited to the simple routines tested in this paper. However, APIs 
can be used to automate integrated workfows effciently. 

3. The organizational overhead of SPDM methods typically remains dependent on the 
implementation of new routines and may limit the applicability [5,14]. 

Unfortunately, this extensive in-industry testing lies outside of the scope of this re-
search paper. 

In future work, we propose frstly refning and extending the semantics, secondly 
developing industry scenarios and benchmark cases for both SPDM and OBDA, and thirdly 
testing and validating them against traditional SPDM and OBDA methods. With further 
development, the architecture could form the basis of OBDA that can be extended to 
various data formats, processing routines, and application contexts when embedded in 
or mapped to a common semantic framework. It unites the advantages of binary data 
storage, knowledge management, and semantic inferences. SPDM development remains 
a signifcant challenge within digital twin technologies, for which this research offers a 
promising approach. 

Supplementary Materials: The supplementary data are publicly available at https://gitlab.scai. 
fraunhofer.de/vmap-onto/vio-method (accessed on 26 December 2023). 

Author Contributions: Conceptualization, P.S., M.-C.M. and D.R.; data curation, P.S.; formal analysis, 
P.S.; funding acquisition, K.W. and D.R.; investigation, P.S.; methodology, M.-C.M.; project adminis-
tration, K.W.; resources, P.S.; software, P.S.; validation, P.S.; visualization, P.S.; writing—original draft, 
P.S.; writing—review & editing, M.-C.M., A.W., K.W. and D.R. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research received no external funding. 

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method


Information 2024, 15, 21 14 of 19 

Data Availability Statement: Data are contained within the supplementary material. 

Acknowledgments: We thank Olaf Bruch (Reinold Hagen Stiftung) and Martin Striezel (PROSTEP 
AG) for fruitful discussions and advice about industry use cases. We are also grateful to Andre 
Oeckerath (Fraunhofer-Institute for Algorithms and Scientifc Computing SCAI) for recreating the 
AP209 test fle. 

Conficts of Interest: Author Dr. Anna Wagner was employed by the company PROSTEP AG. The 
remaining authors declare that the research was conducted in the absence of any commercial or 
fnancial relationships that could be construed as a potential confict of interest. 

Abbreviations 
The following abbreviations are used in this manuscript: 

STEP ISO 10303 “Standard for the Exchange of Product model data” 
IoT Internet of Things 
SDM Simulation Data Management 
SPARQL SPARQL Protocol And RDF Query Language [33] 
SCAI Fraunhofer-Institute for Algorithms and Scientifc Computing 
SQL-DB Structured Query Language database 
SQL Structured Query Language 
DB database 
MpCCI Mesh-based parallel Code Coupling Interface 
HDF5 Hierarchical Data Format 
PSO Physics-based Simulation Ontology 
BFO Basic Formal Ontology 
OBDA Ontology-Based Data Access 
smartMpCCI MpCCI Ontologies for Digital Twins 
OWL Ontology Web Language [42] 
OPC-UA Open Platform Communications (OPC) Unifed Architecture [37,38] 
RDF Resource Description Framework [35] 

AP209 
STEP Application Protocol 209 “Multidisciplinary analysis and design” in 
ISO 10303-209:2014 

SPDM Simulation Process and Data Management 
RDFS RDF Schema [45] 
CAE Computer Aided Engineering 
PLM Product Lifecycle Management 
SME Small and Medium Enterprise 
API Application Programming Interface 
OWA open-world assumption 
CWA closed-world assumption 
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Appendix A. Class Diagram 

Figure A1. UML® class diagram of the proposed architecture. 
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Appendix B. RDF Notations of Semantic Defnitions 

Appendix B.1. Top-Level Classes of the Storage Ontology 

See Figure 4 for a graphical representation. 

VMAP_File subClassOf VMAP_Thing 
VMAP_Group subClassOf VMAP_Thing 
VMAP_Group isStoredIn VMAP_file 
VMAP_Group has_data_path xsd :string 
VMAP_Attribute subClassOf VMAP_Thing 
VMAP_Attribute isStoredIn VMAP_Group 
VMAP_Attribute has_value (xsd :string or xsd :int or xsd : 

float or ...) 
VMAP_Dataset subClassOf VMAP_Thing 
VMAP_Dataset isStoredIn VMAP_Group 
VMAP_Dataset hasColumns VMAP_Dataset_Column 
VMAP_Dataset stores_variable xsd :string 
VMAP_Dataset_Column subClassOf VMAP_Thing 
VMAP_Dataset_Column isStoredIn VMAP_Dataset 
VMAP_Dataset_Column has_column_number xsd :nonNegativeInteger 
VMAP_Dataset_Column has_column_name xsd :string 

Appendix B.2. Top-Level Classes of the Process Ontology 

See Figure 5 for a graphical representation. 

Routine subClassOf bfo :Process 
Routine hasInput owl :Thing 
Routine hasOutput Metadata 
VMAP_Routine subClassOf Routine 
VMAP_Metadata subClassOf Metadata 
VMAP_Routine hasInput VMAP_File or VMAP_Dataset 
VMAP_Routine hasOutput VMAP_Metadata 

Appendix C. SPARQL Notations of Semantic Queries 

Appendix C.1. Finding the File 

SELECT ?file WHERE { 
?dataset :isStoredIn + ?file 
?dataset hasColumns [ :stores_variable "temperature " ] } 

Appendix C.2. Finding the Metdata 

SELECT ?metadata WHERE { 
?metadata :existsOn mydataset 
?metadata rdf :type Minimum } 

Appendix C.3. Finding the Metadata Routine Using Routine Instances 

Knowledge graph: 

routine1 rdf :type Routine 
routine1 hasInput mydataset1 
routine1 hasOutput minimum1 

SPARQL query: 

SELECT ?routine WHERE { 
?routine :hasInput mydataset 
?routine :hasOutput minimum } 
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Appendix C.4. Finding the Metadata Routine Using Routine Subclasses 

Knowledge graph: 

Minimum subClassOf Metadata 
Dset_Min_Routine hasOutput some Minimum 
Dset_Min_Routine hasInput some VMAP_Dataset 
routine1 rdf :type Dset_Min_Routine 

SPARQL query: 

SELECT ?routineindividual WHERE { 
?routineindividual a ?routineclass . 
?routineclass rdfs :subClassOf + ?outputrestriction . 
?routineclass rdfs :subClassOf + ?inputrestriction . 
{ SELECT ?outputrestriction WHERE { 
?outputrestriction a owl :Restriction ; 

owl :onProperty [ rdfs :subPropertyOf * :hasOutput ] ; 
owl :someValuesFrom :Minimum . } } 

{ SELECT ?inputrestriction WHERE { 
?inputrestriction a owl :Restriction ; 

owl :onProperty [ rdfs :subPropertyOf * :hasInput ] ; 
owl :someValuesFrom :Minimum . } } } 
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