
 information

Article

A Methodology for Integrating Hierarchical VMAP-Data
Structures into an Ontology Using Semantically
Represented Analyses
Philipp Spelten 1,2 , Morten-Christian Meyer 1 , Anna Wagner 2 , Klaus Wolf 1 and Dirk Reith 1,3,∗

1 Fraunhofer-Institute for Algorithms and Scientifc Computing SCAI, Schloss Birlinghoven,
53757 Sankt Augustin, Germany; philipp.spelten@phd.h-brs.de (P.S.); klaus.wolf@scai.fraunhofer.de (K.W.)

2 PROSTEP AG, Dolivostr. 11, 64293 Darmstadt, Germany; anna.wagner@prostep.com
3 Institute of Technology, Resource and Energy-Effcient Engineering (TREE), Bonn-Rhein-Sieg University of

Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
* Correspondence: dirk.reith@h-brs.de

Abstract: Integrating physical simulation data into data ecosystems challenges the compatibility
and interoperability of data management tools. Semantic web technologies and relational databases
mostly use other data types, such as measurement or manufacturing design data. Standardizing
simulation data storage and harmonizing the data structures with other domains is still a challenge,
as current standards such as the ISO standard STEP (ISO 10303 ”Standard for the Exchange of Product
model data”) fail to bridge the gap between design and simulation data. This challenge requires new
methods, such as ontologies, to rethink simulation results integration. This research describes a new
software architecture and application methodology based on the industrial standard ”Virtual Material
Modelling in Manufacturing” (VMAP). The architecture integrates large quantities of structured
simulation data and their analyses into a semantic data structure. It is capable of providing data
permeability from the global digital twin level to the detailed numerical values of data entries and
even new key indicators in a three-step approach: It represents a fle as an instance in a knowledge
graph, queries the fle’s metadata, and fnds a semantically represented process that enables new
metadata to be created and instantiated.

Citation: Spelten, P.; Meyer, M.-C.;

Wagner, A.; Wolf, K.; Reith, D. A Keywords: ontology; simulation process; data management; CAE metadata structures; semantic
Methodology for Integrating technologies
Hierarchical VMAP-Data Structures

into an Ontology Using Semantically

Represented Analyses. Information

2024, 15, 21. https://doi.org/ 1. Introduction
10.3390/info15010021

Simulations are used in modern engineering to model physical effects and improve a
Academic Editor: Katsuhide Fujita product or machine. Simulation Process and Data Management (SPDM) requires (a) archiv-

ing the accruing data, (b) linking various simulation types implemented by different Received: 13 November 2023

Revised: 21 December 2023 software vendors, and (c) transferring data between the simulation and design domains.
Accepted: 27 December 2023 Standardized data formats, such as the ISO 10303 “Standard for the Exchange of
Published: 29 December 2023 Product model data” (STEP), play a major role in archiving [1]. To transfer data between

different tools, most software is compatible with vendor-specifc formats. However, this is
not the case for all vendors and is tedious to implement for specialized software developed
by Small and Medium Enterprises (SMEs) themselves. Therefore, the industrial standard

Copyright: © 2023 by the authors. “Virtual Material Modelling in Manufacturing” (VMAP) offers a vendor-neutral format and
Licensee MDPI, Basel, Switzerland. an I/O library to link simulation chains, including modeling information [2,3].
This article is an open access article

On the other hand, linking data between disciplines, particularly linking simulation
distributed under the terms and

data to design or measurement data, remains a challenge for SPDM due to the lack of
conditions of the Creative Commons

data formats and integration methods. A proxy for this challenge is the simulation chain
Attribution (CC BY) license (https://

modeling a blow molding process. The process is shown in Figure 1 [2,4]. Here, VMAP data creativecommons.org/licenses/by/

4.0/).

Information 2024, 15, 21. https://doi.org/10.3390/info15010021 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15010021
https://doi.org/10.3390/info15010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-9403-8824
https://orcid.org/0000-0003-1141-261X
https://orcid.org/0000-0001-6941-7144
https://orcid.org/0000-0003-1480-6745
https://doi.org/10.3390/info15010021
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15010021?type=check_update&version=2
mailto:dirk.reith@h-brs.de
mailto:anna.wagner@prostep.com
mailto:klaus.wolf@scai.fraunhofer.de
mailto:philipp.spelten@phd.h-brs.de

Information 2024, 15, 21 2 of 19

are successfully used for data transfer and archiving. However, data management capabili-
ties and links to other disciplines are still lacking in this as well as other standardization
approaches [2,5].

Figure 1. The simulation chain of the VMAP blow molding use case for a cubic tank. Between simu-
lation tools, data often have to be converted to use the outputs of one tool as inputs for another. Data
are transferred in VMAP fles and translated to vendor-specifc formats using the I/O library [6,7].

The solution we propose is realizing interoperability by harmonizing each data
source’s metadata schema and data access methods. Here, metadata refer to data that
are relevant outside of the simulation domain, such as core results, numerical parameters,
and boundary conditions, or the engineer responsible. This is where an open framework,
especially a semantic information model, comes into play.

This article introduces a software design for SPDM implementers based on a semantic
information model. VMAP data are used as a proxy for semantic data management and
automated knowledge graph population. During this research, the following were developed:

• a set of requirements for Ontology-Based Data Access (OBDA) of bulk data;
• mechanisms that upload metadata and automatically query additional information

from the bulk data;
• queries for additional metadata using semantically representing routines that process

the bulk data and produce metadata;
• semantic routine management that can be expanded from data processing to manufac-

turing and management processes.

To this end, current research approaches and their relation to this work are introduced
(Section 2), the requirements imposed by handling simulation data in digital twins are
clarifed (Section 3), and a strategy for semantic defnitions is developed (Section 4.1).
The results include a method for information retrieval from the semantic framework
(Section 4.2) and a prototype of the method (Section 4.3). Finally, the capabilities and
limitations of the presented method and implications for future research are discussed
(Section 5).

2. Standardization and Semantic Technologies for Simulation Data Management

This section introduces major efforts made in the simulation data standardization and
explores its current shortcomings. The standardized data models contain a closed-world
assumption (CWA). Their fles are therefore implicit, i.e., require knowledge of the domain
specifcations, and have thus no reasoning capabilities. To alleviate these shortcomings,
semantic technologies for SPDM are used in this work and are described in this section.
Semantic technologies keep an open-world assumption (OWA) and their fles do contain

Information 2024, 15, 21 3 of 19

explicit knowledge, making them expandable and reasonable. Table 1 compares additional
aspects of the different methods introduced in this section.

Table 1. The different methods considered for SPDM.

Domain
Knowledge Data Access Storage Logic

STEP
Application
Protocol (AP) [8]

Part21 [9]
or binary fle [10] ASCII fle

VMAP
General
Specifcations [2]

Standard
[3]Specifcations HDF5 fle [11]

Data pipelines
to knowledge graphs Ontology Mapping-based OBDA

Relational database
or supported proprietary
formats

This work Ontology
Procedural knowledge in
semantically represented
access methods

Semantic knowledge graph
and HDF5 data

2.1. Standardization of SPDM
2.1.1. The ISO Standard STEP

ISO 10303 “Standard for the Exchange of Product model data” (STEP) [12] was devel-
oped for the long-term archiving of product development data in safety-critical engineering
disciplines such as aviation, the automotive industry, and defense. It offers a standard-
ized software-independent description of product data throughout the product life cycle,
providing data modeling and storage defnitions for large portions of Product Lifecycle
Management (PLM). In ISO 10303-209 [1,13], simulation data were included to allow SPDM
to be integrated into PLM. However, it falls short in important aspects of data management:

• The data model requires tedious and lengthy standardization processes for new
modules due to the CWA: only defned classes are accepted.

• The data defnition varies fundamentally due to the different granularity of design
and simulation data.

• Simulation data can either be referenced as a whole fle or fully stored in a STEP
fle. Referencing, however, lacks the possibility of linking to key results within the
model, while STEP fle formats require large amounts of storage space as described in
Section 3.

2.1.2. The VMAP CAE Data Interface Standard

Contrary to the strict ISO standardization process, a standardization community from
different industry branches recently developed the industrial standard “Virtual Material
Modelling in Manufacturing” (VMAP) to provide data transfer between simulation tools.
VMAP offers a vendor-neutral data format and a library of I/O routines to link chains of
various simulation data formats [2].

The VMAP standard is based on Hierarchical Data Format (HDF5), a widely accepted
implementation platform for many I/O-related applications [11]. Data were aligned into
groups defned in the VMAP standard specifcations [3] and commonalities were identifed
among many software packages to create the standard. Keeping this in mind, the VMAP
storage structure defnes the four main groups that form the essence of any simulation.
Computer Aided Engineering (CAE) data are sorted into datasets and attributes within
four main groups [3]:

1. GEOMETRY contains spatial information on nodes and elements.
2. VARIABLES stores physical quantities referenced to the nodes and elements.
3. In SYSTEM, the simulation parameters such as coordinate system and integration

method are defned.

Information 2024, 15, 21 4 of 19

4. MATERIAL contains material information stored in different tables, which can be
imported or shared across fles.

Generally, data formats for SPDM must be compatible with varying material assump-
tions, boundary conditions, and numerical parameters simulation tools [14]. As VMAP is
capable of this, it has been well-accepted within and outside of the standardization commu-
nity. However, alignment methods to other product data should be included for full SPDM
capabilities, such as design data, measurement data, and subjective intent capturing [15,16].

As a consequence, semantics should be added to the VMAP standard. Currently, no
similar research is known to the authors.

2.2. Semantic Technologies for SPDM

Ontologies structure concepts in terms of meaningful relations (semantics). Knowl-
edge graphs with node–edge–node structures (triples) incorporate semantic defnitions in
data schemas called ontologies. These graphs enable additional information (inferences)
to be derived (reasoned) from the explicitly stated (asserted) relations. Semantic technolo-
gies promise to provide the foundation for a fexible and expandable data management
system [17,18].

A noteworthy alternative is the addition of links to the VMAP standard. Generally,
the HDF5 format supports hard links (to a physical address within a fle) and symbolic links
(a string for links within and outside of the fle) [11]. This would partially enable SPDM
capabilities for simulation fles. It would, however, remain restricted to HDF5 fles and
require a translation or reference method for the integration into PLM systems. Conversely,
ontologies are already used for PLM system development [19,20].

Two main issues need to be addressed in order to make good use of ontologies
for data management. First, the mapping and interrelation between all domain-specifc
schemas need to be defned in a common ontological core framework. Second, the semantic
resolution and a corresponding method for using the ontology within and beyond this
resolution are necessary to achieve data permeability in practice. In the following, we relate
our work to other research results.

2.2.1. Ontological Core Framework

The frst point of a common ontological core framework is provided by MpCCI On-
tologies for Digital Twins (smartMpCCI), developed by two of this paper’s authors [21,22].
This ontology combines process-centered descriptions with data resources from various
disciplines to align digital twin assets with simulation models and data analytics.

Other simulation ontologies are more restricted to a system-level perspective [23],
which does not allow for the required integration of resolved physics. On the other hand,
application-focused ontologies for digital twin systems often capture only the system
or event-level [24]. Moreover, both generally struggle on a semantic level to reconcile
simulation with the various Industry 4.0 standards (for plant planning and operation) [25].

Recently, Singh et al. [26] developed a central knowledge base in which databases have
one-to-one mappings between the ontological relations and the data tables. However, this is
only demonstrated for factory data acquisition, not simulation data, underlining that digital
twin data management is an ongoing challenge in which simulation is seldom addressed.

The Physics-based Simulation Ontology (PSO) by Cheong and Butscher [27] extends
the Basic Formal Ontology (BFO) [28] to simulation data. It explicitly models the physics
and qualities of spatiotemporal assets in both the physical domain and the simulation
domain. Underlying physical equations, discretization, and boundary conditions can be
related to their physical equivalents. However, the PSO falls short of addressing how to
store and handle the corresponding simulation data resources. The schema of smartMpCCI,
on the other hand, is comparatively limited, focusing on the digital twin context. Therefore,
harmonizing PSO and smartMpCCI seems recommendable for future studies.

Information 2024, 15, 21 5 of 19

2.2.2. Ontological Data Integration

This study is an original contribution to semantic resolution and corresponding inte-
gration methods. It presents a method for Ontology-Based Data Access (OBDA), which is
novel to the authors’ best knowledge. Four key aspects of Ontology-Based Data Access
(OBDA) are relevant to evaluate the state of the art:

1. Bulk data must be stored in an effcient format. This may be propriety or semantic.
2. To store data effciently, it may be integrated to different extents.
3. Data access must be defned if data are not fully imported into the database.
4. An ontology, i.e., a domain model, is required for full reasoning capabilities and must

be maintained.

OntoDB is a leading data integration system based on ontologies [29], in which data
storage and schema are inseparable in the same database. The data are migrated into a
performance-optimized “state table per class” structure, making the ontology the database
schema. This does, however, not leave the resolved data in its optimal database (binary
and distributed), which is a vital requirement of most digital twins.

The separation of the ontology and the database was later shown to work well on
the NoSQL database MongoDB [30] and OntoP [31]. Here, an ontology describes the
knowledge domain, while an access interface stores the semantic concepts in a form that
can be translated into the database queries. The database and its contents themselves are
not semantically described, but rather the queries that can be addressed to the database.
This approach is similar to the non-ontological Representational State Transfer (REST)
Application Programming Interfaces (APIs) [32]. For hierarchical data, this raises the ques-
tion of how to separate database-structure-specifc semantics from the knowledge domain.
Additionally, the data interface must be easily adapted to knowledge domain updates. This
paper proposes such a separation using a semantic representation of extraction routines.

The SPARQL Protocol And RDF Query Language [33] (SPARQL)-Anything project [34]
separates the storage-specifc semantics from the knowledge domain by parsing data for-
mats to Resource Description Framework [35] (RDF) and accesses the actual data contents
with property functions that are an extension to a SPARQL engine. While this approach
does not contain domain-specifc mappings, Steindl et al. [36] implemented an OBDA
method for the machine operation data standard Open Platform Communications (OPC)
Unifed Architecture [37,38] (OPC-UA). Both methods vary from our study due to the
complete translation of the data model to RDF-triples without semantic representation of
the property functions themselves, thus keeping the data structure non-ontological and
removing the OWA. However, reconciling the approaches could be a fruitful combination
of two important types of assets for digital twins.

Each of these data access methods uses ontologies for mappings of some sort. Numer-
ous possible mechanisms exist to create and update the joint knowledge base. With the sep-
aration between the ontology-structured metadata and the databases themselves, a knowl-
edge graph needs to be maintained. RDF mapping languages such as the RDB to RDF
Mapping Language (R2RML) [39] express custom mappings between relational databases.
Furthermore, Leshcheva and Begler [40] developed an automated ontology population. As
such, these methods are restricted to semi-structured data with additional semantics in data
source ontologies, contrary to the hierarchical VMAP format. However, the HDF5 fles may
be translated to a relational format and thus imported into the knowledge graph. While
this may be possible, it requires multiple mappings, creates large amounts of in the process,
and still leaves the question of domain knowledge defnitions in an ontology. Therefore,
this approach was not applied in this work but should be investigated in future studies.

3. Software Requirements

Considering the described state of the art, we require the following key features of
modern ontology-based data management:

Information 2024, 15, 21 6 of 19

• Semantic access to simulation data is necessary due to the described digital twin
context. Simulation data, including all data values, must be found from a semantic
access point.

• Simulation data are too large for a one-to-one mapping to a semantic framework, as is
the current practice in OBDA [26,29]. Storage space is already a signifcant issue for
SPDM, especially in dynamic simulations. Storing it in triples can be expected to take
up a multiple amount of storage space, while the knowledge gained may be minimal.
This is due to the clear-text nature of semantic formats and the ineffciency of RDF
in storing ordered lists or even arrays, as structural relations would be repeatedly
stated [18].
The extra space is easily demonstrated when comparing the size of a use case example
for STEP Application Protocol 209 “Multidisciplinary analysis and design” in ISO
10303-209:2014 (AP209) [41]. The recreated test case fle in VMAP takes up only 176 kB
of disk space, much less than the AP209 test fle with 4278 kB. An Ontology Web
Language [42] (OWL) instances fle (translated using ExpressToOwl [43]) requires
43,652 kB. Therefore, the respective data must remain in its optimal storage format to
minimize storage space while maximizing interoperability.

• Access methods must be easily available to create new metadata without manual labor.
Currently, the post-processing of VMAP fles requires mapping back and forth between
vendor-specifc formats. This is computationally intensive and unnecessary for well-
defned post-processing steps and easily automatable tasks that can be bundled in a
batch process. The requirement we impose is automating data processing to obtain the
desired information. For this, very performative routines are available in open-source
software packages for the binary HDF5 structure of VMAP.

To fulfll the requirements, the following actions must be executed by the software
solution (see also the UML® [44] activity diagram in Figure 2):

Figure 2. The proposed UML® activity diagram to be implemented in an SPDM including binary
data. Grey: The possible version control loop.

Information 2024, 15, 21 7 of 19

1. providing a fle and request metadata via a user interface;
2. uploading vital information from the fle to the ontology down to a certain depth;
3. searching the requested metadata and returning it if it is available;
4. fnding the routine required to create the metadata if it is unavailable, executing the

routine, and adding the metadata to the knowledge graph;
5. returning the metadata to the user.

Additionally, a version control loop may be added to fnd out whether the metadata
and its routine are up to date.

4. Software Architecture and Prototype

The software requirements are put into practice in a prototype software architecture
with three signifcant characteristics:

1. All data can be accessed via the knowledge graph (see Section 4.3). A GUI is imple-
mented to show the current capabilities.

2. The knowledge graph is populated only with such information required for new
metadata to be queried and found or created with effcient methods (Section 4.1), thus
signifcantly reducing the required storage space.

3. Access methods are semantically available in the knowledge graph and can be easily
managed (see the process ontology in Section 4.1 and the access layer in Section 4.3).

This section presents the characteristics of the developed prototype. First, the ontolo-
gies are introduced; second, the information access from the knowledge graphs is discussed;
third, the method implementation is presented; fnally, the method’s capabilities are shown.
Figure 3 shows an abstract representation of the architecture.

Figure 3. Abstract representation of the developed architecture. Two ontologies form the basis for
two knowledge graphs. Processing routines are manually indexed. The VMAP graph is automatically
created from a VMAP fle using the VMAP2OWL process. When metadata are requested, information
from both knowledge graphs is used to extract new information and write it to the VMAP fle
and graph.

4.1. Semantic Defnitions

Two ontologies are used: one for knowledge graph population (storage ontology)
and one for querying the database from within the ontology (process ontology). These
are separated here, as both ontologies may be used independently for their respective
purposes. While the storage ontology is intended to be format-specifc, the process ontology
uses generic classes and format-specifc classes to organize data access across formats.
Both ontologies are publicly available at https://gitlab.scai.fraunhofer.de/vmap-onto/vio-
method/-/tree/main/vmapontologies (accessed on 26 December 2023). The RDF notations
of both ontologies’ top-level classes are provided in Appendix B.

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapontologies
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapontologies

Information 2024, 15, 21 8 of 19

4.1.1. Storage Ontology

An ontology of the storage structure is required to fnd and reference the desired
information. Recently, an ontology to represent the mereology (part-of structure or stor-
age structure) of the VMAP standard specifcations [3] was developed. It is aligned with
the smartMpCCI ontology currently being developed at Fraunhofer-Institute for Algo-
rithms and Scientifc Computing (SCAI) [21,22]. It relates storage levels (groups, attributes,
datasets, and dataset columns) to their parent directory and contents via an isStoredIn
and an inverse stores object property restriction. The semantic integration is capped at the
dataset column level, for which only value type and column number or column name are
specifed via data property restrictions. The top-level classes of the VMAP storage ontology
are shown in Figure 4.

Figure 4. Top-level classes of the VMAP storage ontology. The hierarchical structure is implemented
using isStoredIn and the inverse stores relations. ‘*’ signifes an object property restriction with
arbitrary cardinality, i.e., someValuesFrom.

4.1.2. Process Ontology

A Routine is a subclass of a BFO:Process [28]. It can be any data processing routine,
from a simple line of code to a batch process. An ontology of the metadata routines
provides information on the inputs and results of the routines, such that a routine can
be found based on the requested metadata. The routines can be generic for HDF5 fles
or datasets, specifc for VMAP fles or datasets, or tailored to any other specifed fle
type. Hence, a VMAP_Routine class should be defned with a hasOutput object property
restriction pointing to a VMAP_Metadata class and hasInput pointing to a VMAP_File or
VMAP_Dataset class. The top-level defnitions of the VMAP routines ontology are given in
Figure 5.

This architecture forms the basis of querying semantically represented data. Additional
semantics can be provided by general ontologies such as PSO, for example, understanding
the stored quantity and thus including more profound knowledge of the metadata. Addi-
tionally, the schema can be integrated into a broader digital twin context by aligning it with
the BFO or smartMpCCI by defning Routine subClassOf BFO:Process [28] or Routine
subClassOf smartMpCCI:Simulation_Aspect [21]. Such linkages should be further ex-
plored in future research to fully exploit the advantages of ontological data management.

Information 2024, 15, 21 9 of 19

Figure 5. The top-level defnitions of the VMAP routines ontology.

4.2. Querying Information in Three Steps

The core concept of information access is demonstrated here by querying basic storage
relations. The knowledge graph is assumed to be instantiated, containing the explicit
metadata of a given VMAP fle, and the required processing routines have been indexed
for automated execution. Three queries are executed to search the metadata and fnd
the required routine. The code listings in RDF Schema [45] (RDFS), OWL, and SPARQL
notations are given in Appendix C.

1. Find the File

Instead of the user providing the fle, some information about the fle can be given
to run a SPARQL query. This can, for example, be the data property stores_variable
“temperature” of a column within a dataset. Figure 6 demonstrates the queried graph.

Figure 6. Schematic of the query to fnd a fle containing a dataset for a specifc variable. Oval:
The queried instance. Rectangle: Instances and classes. ? represents a variable instance or class.
... represents a chain of isStoredIn edges, marked by :isStoredIn+ in the listing.

2. Find the Metadata

Some metadata can be available within the fle or dataset. The desired metadatum can
easily be found via a data property, as shown above, or via its type (Figure 7 demonstrates
the queried graph).

Figure 7. Schematic of the query to fnd a metadata instance of a specifc class type and related to a
specifc dataset. Oval: The queried instance. Rectangle: Instances and classes. ? represents a variable
instance or class.

3. Find the Metadata Routine

Individuals of Routine can have relations to Metadata, and File individuals and can
be queried directly. Figure 8 demonstrates the knowledge graph and related SPARQL query.

Information 2024, 15, 21 10 of 19

Figure 8. Schematic of the knowledge graph (left) and query (right) using Routine instances for
metadata routine search. Oval: The queried instance. Rectangle: Instances and classes. ? represents a
variable instance or class.

However, instantiating a specifc routine for each individual input and output may
not be desirable, as it leads to new individuals for each metadata query. Instead, routine1
should be an instance of a Routine subclass, as shown in Figure 9. As class restrictions are
implemented by making the class a subclass of the restriction, the routine must be queried
via the inputrestriction and outputrestriction. As the hasInput and hasOutput ob-
ject properties may be refned, any of their subproperties suffce. Therefore, the queried
subgraph is more complex, as can be seen in Figure 10.

Figure 9. Schematic of the knowledge graph using Routine subclasses for metadata routine search.
Rectangle: Instances and classes. * represents an owl:someValuesFrom object property restriction.

Figure 10. Schematic of the query using Routine subclasses for metadata routine search. Oval: The
queried instance. Rectangle: Instances and classes. subPropertyOf* represents a chain of one or
more edges of subPropertyOf. ? represents a variable instance or class.

4.3. Software Design

The database queries and data processing routines are executed by a software frame-
work described in this section. The working prototype is publicly available at https:
//gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration (ac-
cessed on 26 December 2023), which provides the neighboring vmapontologies directory.
Next to data (VMAP fles for testing) and tests (scripts implementing the tests described
in Section 4.4), src houses the implemented classes. They are divided into three layers: a
presentation layer with the user interface, an application layer for the application-specifc

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration

Information 2024, 15, 21 11 of 19

classes and methods, and a (data) access layer to load and access the fles [46,47]. The UML®

diagram in Figure A1 in the Appendix A demonstrates the class relations.

4.3.1. Presentation Layer

The presentation layer handles user inputs and passes them to available methods. It
is separated into a UserInterface class and a Control class, taking over the functions of
View and Control in a Model–View–Control (MVC) architecture. The UserInterface class
is loaded directly from the access point (main). Figure 11 shows the GUI implemented in
this layer.

Figure 11. GUI of the prototype. Only one of either data path, group, or individual is needed to fnd
the minimum of the desired dataset. The derived SPARQL query and its results are displayed below.

4.3.2. Application Layer

In the application layer, two classes are implemented.
The class VmapOwlConstructor populates the knowledge graph in the method vmap2owl.

The method uses the sub-methods create_all_groups and create_all_attributes. The
received and generated information is stored in felds such as vmap_file, vmap_ontology,
vmap_instances, ID, and others.

The class MetaData calls the method metadata_search upon initialization, using a
SPARQL query to check whether the requested metadata already exists in the knowledge
graph. Here, the version control mentioned above can be added. If metadata_search is
unsuccessful, it calls the routine_search method to fnd the relevant metadata routine and
returns the information vital to importing and executing the routine. These two methods
use the SPARQL queries suggested in Section 4.2.

MetaData has an exists_on_instance feld pointing to the instance to which the meta-
datum applies. The feld metadata_class is the class of which a metadatum is requested.
During the metadata_search method, a routine_instance feld is added. After executing
the routine, the metadata instance and its value are added to the knowledge graph as a
triple. Accordingly, the metadata_instance and the corresponding value felds are added
to the class.

4.3.3. Access Layer

The routines found by routine_search are created as separate classes in the access layer.
These can be housed by classes or created as independent methods. They are not imported
unless required for the metadata_search method: for example, a method VmapDatasetMini-
mum inherits the minimum calculation method from its ancestor ArrayMinimum. This can be a
simple NumPy function or a whole batch process.

Information 2024, 15, 21 12 of 19

4.3.4. Naming Conventions and Used Packages

The architecture requires naming conventions to be introduced throughout different
development frameworks, as considerable amounts of information are stored as strings in
OWL. In particular, the names of fles or dataset paths, functions, and classes should be
automatically linked or tested regularly.

Custom data types may be developed to achieve an integrated environment. For ex-
ample, this would enable a data property of a Metadata or VMAP_Dataset_Column instance
to be an HDF5 dataset, which otherwise cannot be stored effciently in OWL. This can only
be achieved using an integrated approach such as owlready2 in Python [48].

To realize the architecture in Python [49], four external packages are required for the
user interface, ontologies, fle access, and numeric calculations:

1. The classes of the prototype’s presentation layer use the tkinter package, which
provides functions for both the user interface and the control classes [50].

2. To handle ontologies, owlready2 comes with SPARQL functionalities and the Pellet
and HermiT reasoners [33,48].

3. The h5py package can import HDF5 fles, i.e., VMAP data [51].
4. NumPy uses HDF5 for storage and computing and provides effcient numerical

methods [52].

4.4. Test Functions

Several test functions for the basic required functionalities have been created. They
are available at https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/
vmapintegration/tests (accessed on 26 December 2023) and briefy introduced here.

• Requesting metadata should require a minimal amount of information about its object.
Finding the referred dataset instance has been implemented for an owlready2 entity,
the datapath of a dataset, the required state variable, and the HDF5 dataset itself. This
has been tested in test00existsoninstance.py, test01existsoninstancename.py,
test02datapath.py, test03variable.py, and test04dataset.py, respectively.

• When instantiating a fle to the knowledge graph, duplicates must be identifed. This
is tested in test05duplicatefile.py based on ID parameters.

• If a metadata instance is already available, it must be found in the knowledge graph
and directly returned, rather than repeatedly searching and executing the data process-
ing routines. In test06duplicatemetadata.py, metadata instances are found with
the same existsOn and subClassOf specifcations as requested.

• More complex metadata, i.e., the difference between two datasets, and translations of
Cauchy stresses into a Von Mises criterion, are created in test08difference.py and
test09cauchytomises.py, respectively.

• A more complex blow molding simulation result from an industrial use case for
VMAP [2] was instantiated and processed in test07bsimresults.py. The data for
this test case is currently not publicly available.

The prototype has successfully completed all test functions.

5. Discussion and Outlook

This paper presents an ontology-based data management method for physics-based
simulation chains built on the VMAP standard. General strategic decisions are based on
literature and concrete requirements for VMAP use cases. The proposed architecture can
automatically populate a knowledge graph with storage and metadata information of a
VMAP fle, query some simple metadata semantically, generate new metadata directly from
the VMAP fle using effcient routines, and add the acquired data to the knowledge graph.

The results of this research indicate a signifcant improvement of two key issues of an
SPDM for hierarchical simulation data by the architecture suggested in this paper:

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration/tests
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method/-/tree/main/vmapintegration/tests
https://test07bsimresults.py
https://test09cauchytomises.py
https://test08difference.py
https://test06duplicatemetadata.py
https://test05duplicatefile.py
https://test04dataset.py
https://test03variable.py
https://test02datapath.py
https://test01existsoninstancename.py
https://test00existsoninstance.py

Information 2024, 15, 21 13 of 19

1. Without manual mapping, data can be directly analyzed on the binary VMAP fle.
Loading only vital information into the ontology minimizes the storage space footprint
of the stored triples, and the bulk data remains in its optimal form.

2. New numerical methods and data analyses can be imported into the process ontol-
ogy for knowledge management of the available routines and automatic use in the
semantic framework.

This is achieved by separating the knowledge base from the data sources, using
the data storage defnitions for automatic knowledge graph creation, and semantically
representing data retrieval and processing. The architecture has been realized as a prototype
in Python and is provided in the supplementary information of this article.

Some limitations remain and should be considered and investigated in future research:

1. As outlined in Section 2, a widely accepted common ontological framework for OBDA
of simulation data is yet to be developed. Harmonizing smartMpCCI and PSO appears
to be a promising starting point.

2. The ontology models have, thus far, been created manually. This should be automated
for the storage ontology to allow scalability to more formats and version updates.
Some progress has been made regarding ontology generation from source code [53]
or raw text [54] and should be considered.

3. The method is currently only implemented as a prototype and is not yet being used in
an industrial context, which is a vital prerequisite for the method’s success [5,14]. Cur-
rently, PLM methods and particularly SPDM methods lack standardized benchmarks,
restricting the evaluation to expert assessments for individual industry scenarios [15].

For the method presented in this paper, at least three points should be implemented
in an integrated framework and benchmarked against other methods:

1. The capabilities of OBDA can be fully exploited when aligning ontologies of different
domains. This is an open feld of research where progress has been made in recent
years [55,56].

2. The computational overhead of the method depends on the search along the knowl-
edge graph. This can be minimized using effcient semantic search engines [57].
The method may be limited to the simple routines tested in this paper. However, APIs
can be used to automate integrated workfows effciently.

3. The organizational overhead of SPDM methods typically remains dependent on the
implementation of new routines and may limit the applicability [5,14].

Unfortunately, this extensive in-industry testing lies outside of the scope of this re-
search paper.

In future work, we propose frstly refning and extending the semantics, secondly
developing industry scenarios and benchmark cases for both SPDM and OBDA, and thirdly
testing and validating them against traditional SPDM and OBDA methods. With further
development, the architecture could form the basis of OBDA that can be extended to
various data formats, processing routines, and application contexts when embedded in
or mapped to a common semantic framework. It unites the advantages of binary data
storage, knowledge management, and semantic inferences. SPDM development remains
a signifcant challenge within digital twin technologies, for which this research offers a
promising approach.

Supplementary Materials: The supplementary data are publicly available at https://gitlab.scai.
fraunhofer.de/vmap-onto/vio-method (accessed on 26 December 2023).

Author Contributions: Conceptualization, P.S., M.-C.M. and D.R.; data curation, P.S.; formal analysis,
P.S.; funding acquisition, K.W. and D.R.; investigation, P.S.; methodology, M.-C.M.; project adminis-
tration, K.W.; resources, P.S.; software, P.S.; validation, P.S.; visualization, P.S.; writing—original draft,
P.S.; writing—review & editing, M.-C.M., A.W., K.W. and D.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method
https://gitlab.scai.fraunhofer.de/vmap-onto/vio-method

Information 2024, 15, 21 14 of 19

Data Availability Statement: Data are contained within the supplementary material.

Acknowledgments: We thank Olaf Bruch (Reinold Hagen Stiftung) and Martin Striezel (PROSTEP
AG) for fruitful discussions and advice about industry use cases. We are also grateful to Andre
Oeckerath (Fraunhofer-Institute for Algorithms and Scientifc Computing SCAI) for recreating the
AP209 test fle.

Conficts of Interest: Author Dr. Anna Wagner was employed by the company PROSTEP AG. The
remaining authors declare that the research was conducted in the absence of any commercial or
fnancial relationships that could be construed as a potential confict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

STEP ISO 10303 “Standard for the Exchange of Product model data”
IoT Internet of Things
SDM Simulation Data Management
SPARQL SPARQL Protocol And RDF Query Language [33]
SCAI Fraunhofer-Institute for Algorithms and Scientifc Computing
SQL-DB Structured Query Language database
SQL Structured Query Language
DB database
MpCCI Mesh-based parallel Code Coupling Interface
HDF5 Hierarchical Data Format
PSO Physics-based Simulation Ontology
BFO Basic Formal Ontology
OBDA Ontology-Based Data Access
smartMpCCI MpCCI Ontologies for Digital Twins
OWL Ontology Web Language [42]
OPC-UA Open Platform Communications (OPC) Unifed Architecture [37,38]
RDF Resource Description Framework [35]

AP209
STEP Application Protocol 209 “Multidisciplinary analysis and design” in
ISO 10303-209:2014

SPDM Simulation Process and Data Management
RDFS RDF Schema [45]
CAE Computer Aided Engineering
PLM Product Lifecycle Management
SME Small and Medium Enterprise
API Application Programming Interface
OWA open-world assumption
CWA closed-world assumption

Information 2024, 15, 21 15 of 19

Appendix A. Class Diagram

Figure A1. UML® class diagram of the proposed architecture.

Information 2024, 15, 21 16 of 19

Appendix B. RDF Notations of Semantic Defnitions

Appendix B.1. Top-Level Classes of the Storage Ontology

See Figure 4 for a graphical representation.

VMAP_File subClassOf VMAP_Thing
VMAP_Group subClassOf VMAP_Thing
VMAP_Group isStoredIn VMAP_file
VMAP_Group has_data_path xsd :string
VMAP_Attribute subClassOf VMAP_Thing
VMAP_Attribute isStoredIn VMAP_Group
VMAP_Attribute has_value (xsd :string or xsd :int or xsd :

float or ...)
VMAP_Dataset subClassOf VMAP_Thing
VMAP_Dataset isStoredIn VMAP_Group
VMAP_Dataset hasColumns VMAP_Dataset_Column
VMAP_Dataset stores_variable xsd :string
VMAP_Dataset_Column subClassOf VMAP_Thing
VMAP_Dataset_Column isStoredIn VMAP_Dataset
VMAP_Dataset_Column has_column_number xsd :nonNegativeInteger
VMAP_Dataset_Column has_column_name xsd :string

Appendix B.2. Top-Level Classes of the Process Ontology

See Figure 5 for a graphical representation.

Routine subClassOf bfo :Process
Routine hasInput owl :Thing
Routine hasOutput Metadata
VMAP_Routine subClassOf Routine
VMAP_Metadata subClassOf Metadata
VMAP_Routine hasInput VMAP_File or VMAP_Dataset
VMAP_Routine hasOutput VMAP_Metadata

Appendix C. SPARQL Notations of Semantic Queries

Appendix C.1. Finding the File

SELECT ?file WHERE {
?dataset :isStoredIn + ?file
?dataset hasColumns [:stores_variable "temperature "] }

Appendix C.2. Finding the Metdata

SELECT ?metadata WHERE {
?metadata :existsOn mydataset
?metadata rdf :type Minimum }

Appendix C.3. Finding the Metadata Routine Using Routine Instances

Knowledge graph:

routine1 rdf :type Routine
routine1 hasInput mydataset1
routine1 hasOutput minimum1

SPARQL query:

SELECT ?routine WHERE {
?routine :hasInput mydataset
?routine :hasOutput minimum }

Information 2024, 15, 21 17 of 19

Appendix C.4. Finding the Metadata Routine Using Routine Subclasses

Knowledge graph:

Minimum subClassOf Metadata
Dset_Min_Routine hasOutput some Minimum
Dset_Min_Routine hasInput some VMAP_Dataset
routine1 rdf :type Dset_Min_Routine

SPARQL query:

SELECT ?routineindividual WHERE {
?routineindividual a ?routineclass .
?routineclass rdfs :subClassOf + ?outputrestriction .
?routineclass rdfs :subClassOf + ?inputrestriction .
{ SELECT ?outputrestriction WHERE {
?outputrestriction a owl :Restriction ;

owl :onProperty [rdfs :subPropertyOf * :hasOutput] ;
owl :someValuesFrom :Minimum . } }

{ SELECT ?inputrestriction WHERE {
?inputrestriction a owl :Restriction ;

owl :onProperty [rdfs :subPropertyOf * :hasInput] ;
owl :someValuesFrom :Minimum . } } }

References
1. ISO 10303-209:2014; Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 209:

Application Protocol: Multidisciplinary Analysis and Design. Standard, International Organization for Standardization: Geneva,
Switzerland, 2014.

2. VMAP Project Consortium. VMAP. A New Interface Standard for Integrated Virtual Material Modelling in Manufacturing
Industry. General Information. 2022. Available online: https://vmap.vorschau.ws.fraunhofer.de/content/dam/scai/vmap/
VMAP_v100-General_Information.pdf (accessed on 14 September 2022).

3. VMAP Project Consortium. VMAP. A New Interface Standard for Integrated Virtual Material Modelling in Manufacturing
Industry. Standard Specifcations. 2022. Available online: https://vmap.vorschau.ws.fraunhofer.de/content/dam/scai/vmap/
VMAP_v100-Standard_specifcations.pdf (accessed on 21 November 2022).

4. Kärger, L.; Bernath, A.; Fritz, F.; Galkin, S.; Magagnato, D.; Oeckerath, A.; Schön, A.; Henning, F. Development and Validation of
a CAE Chain for Unidirectional Fibre Reinforced Composite Components. Compos. Struct. 2015, 132, 350–358. [CrossRef]

5. Spelten, P. Bridging the Gap between Product and Simulation Data Management. An Analysis of the Needs and Possibilities in
Industrial Engineering. Bachelor’s Thesis, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Munich,
Germany, 2021. [CrossRef]

6. Spelten, P. Simulation Data Goes Ontology. Master’s Thesis, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung
e.V., Munich, Germany, 2023. [CrossRef]

7. Michels, P.; Bruch, O.; Gulati, P. ITEA VMAP - How the simulation workfow of blow moulded plastic parts benefts from the
VMAP Interface Standard. In Proceedings of the NAFEMS World Congress VMAP Conference 2019, Quebec, QC, Canada,
17–20 June 2019.

8. ISO 10303-14:2005; Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 14:
Description Methods: The Express-X Language Reference Manual. Standard, International Organization for Standardization:
Geneva, Switzerland, 2005.

9. ISO 10303-21:2015; Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 21: Im-
plementation Methods: Clear Text Encoding of the Exchange Structure. Standard, International Organization for Standardization:
Geneva, Switzerland, 2015.

10. ISO 10303-26:2011; Industrial Automation Systems—Product Data Representation and Exchange—Part 26: Implementation
Methods: Binary Representation of Express-Driven Data. Standard, International Organization for Standardization: Geneva,
Switzerland, 2011.

11. The HDF Group. Hierarchical Data Format, Version 5. 1997. Available online: https://www.hdfgroup.org/HDF5/ (accessed on
5 December 2022).

12. ISO 10303-1:1994; Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 1:
Overview and Fundamental Principles. Standard, International Organization for Standardization: Geneva, Switzerland, 1994.

13. AFNeT. AP209 Website. Available online: www.ap209.org/ (accessed on 16 January 2021).
14. Norris, M. How to—Get Started with Simulation Data Management; NAFEMS: Chicago, IL, USA, 2020; ISBN 978-1-83979-027-0.

https://vmap.vorschau.ws.fraunhofer.de/content/dam/scai/vmap/VMAP_v100-General_Information.pdf
https://vmap.vorschau.ws.fraunhofer.de/content/dam/scai/vmap/VMAP_v100-General_Information.pdf
https://vmap.vorschau.ws.fraunhofer.de/content/dam/scai/vmap/VMAP_v100-Standard_specifications.pdf
https://vmap.vorschau.ws.fraunhofer.de/content/dam/scai/vmap/VMAP_v100-Standard_specifications.pdf
http://doi.org/10.1016/j.compstruct.2015.05.047
http://dx.doi.org/10.24406/publica-608
http://dx.doi.org/10.24406/publica-1300
https://www.hdfgroup.org/HDF5/
www.ap209.org/

Information 2024, 15, 21 18 of 19

15. Eigner, M.; Stelzer, R. Product Lifecycle Management; Springer: Berlin/Heidelberg, Germany, 2009. [CrossRef]
16. Turnitsa, C.; Padilla, J.J.; Tolk, A. Ontology for modeling and simulation. In Proceedings of the Winter Simulation Conference,

Baltimore, MD, USA, 5–8 December 2010; pp. 643–651. [CrossRef]
17. Berners-Lee, T.; Fischetti, M. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor;

DIANE Publishing Company: Darby, PA, USA, 2001; ISBN 978-1439500361.
18. Wagner, A. Linked Product Data: Describing Multi-Functional Parametric Building Products Using Semantic Web Technologies.

Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2020. [CrossRef]
19. Bruno, G.; Antonelli, D.; Villa, A. A reference ontology to support product lifecycle management. Procedia CIRP 2015, 33, 41–46.

[CrossRef]
20. El Kadiri, S.; Kiritsis, D. Ontologies in the context of product lifecycle management: State of the art literature review. Int. J. Prod.

Res. 2015, 53, 5657–5668. [CrossRef]
21. Meyer, M.C.; Yu, Z.; Delforouzi, A.; Roggenbuck, J.; Wolf, K. Ontologies for Digital Twins in Smart Manufacturing; Whitepaper;

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.: Munich, Germany, 2020.
22. Meyer, M.C.; Delforouzi, A.; Schlimper, R.; John, M.; Link, T.; Koster, D.; Summa, J.; Krauß, C. A digital twin for lightweight

thermoplastic composite part production. In Proceedings of the NAFEMS World Congress 2021, Online, 25–29 October 2021.
23. Grolinger, K.; Capretz, M.A.M.; Marti, J.R.; Srivastava, K.D. Ontology – based Representation of Simulation Models. In

Proceedings of the Twenty-Fourth International Conference on Software Engineering and Knowledge Engineering (SEKE),
San Francisco, CA, USA, 1–3 July 2012; pp. 432–437.

24. Bao, Q.; Zhao, G.; Yu, Y.; Dai, S.; Wang, W. The ontology-based modeling and evolution of digital twin for assembly workshop.
Int. J. Adv. Manuf. Technol. 2021, 117, 395–411. [CrossRef]

25. Nagy, L.; Ruppert, T.; Abonyi, J. Ontology-Based Analysis of Manufacturing Processes: Lessons Learned from the Case Study of
Wire Harness Production. Complexity 2021, 2021. [CrossRef]

26. Singh, S.; Shehab, E.; Higgins, N.; Fowler, K.; Reynolds, D.; Erkoyuncu, J.A.; Gadd, P. Data management for developing digital
twin ontology model. Proc. Inst. Mech. Eng. Part J. Eng. Manuf. 2021, 235, 2323–2337. [CrossRef]

27. Cheong, H.; Butscher, A. Physics-based simulation ontology: An ontology to support modeling and reuse of data for physics-based
simulation. J. Eng. Des. 2019, 30, 655–687. [CrossRef]

28. Arp, R.; Smith, B.; Spear, A.D. Building Ontologies with Basic Formal Ontology; MIT Press: Cambridge, MA, USA, 2015.
29. Dehainsala, H.; Pierra, G.; Bellatreche, L. OntoDB: An Ontology-Based Database for Data Intensive Applications. In Proceedings of

Database Systems for Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2007.
30. Araujo, T.H.; Agena, B.T.; Braghetto, K.R.; Wassermann, R. Ontomongo—Ontology-based data access for NoSQL. Proc. Ceur

Workshop Proc. 2017, 1908, 55–66.
31. Calvanese, D.; Cogrel, B.; Komla-Ebri, S.; Kontchakov, R.; Lanti, D.; Rezk, M.; Rodriguez-Muro, M.; Xiao, G. Ontop: Answering

SPARQL queries over relational databases. Semant. Web 2017, 8, 471–487. [CrossRef]
32. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures; University of California: Irvine, CA, USA,

2000.
33. Harris, S.; Seaborne, A. SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013. 2013. Available online:

http://www.w3.org/TR/sparql11-query/ (accessed on 14 September 2022).
34. Asprino, L.; Daga, E.; Gangemi, A.; Mulholland, P. Knowledge Graph Construction with a Façade: A Unifed Method to Access

Heterogeneous Data Sources on the Web. ACM Trans. Internet Technol. 2022, 23, 1–31. [CrossRef]
35. Klyne, G.; Carroll, J. Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation 2004. Latest

Version. Available online: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (accessed on 26 December 2023).
36. Steindl, G.; Frühwirth, T.; Kastner, W. Ontology-Based OPC UA Data Access via Custom Property Functions. In Proceedings of the

IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Zaragoza, Spain, 10–13 September 2019;
Volume 2019, pp. 95–101. [CrossRef]

37. OPC 10000-1 UA V 1.05.02; Unifed Architecture Core—UA. Standard, OPC Foundation. The Industrial Interoperability Standard:
Scottsdale, AZ, USA, 2022.

38. Mahnke, W.; Leitner, S.H. OPC Unifed Architecture—The future standard for communication and information modeling in
automation. ABB Rev. 2009, 3, 3.

39. Cyganiak, R.; Das, S.; Sundara, S. R2RML: RDB to RDF Mapping Language. W3C Recommendation, W3C. 2012. Available
online: https://www.w3.org/TR/2012/REC-r2rml-20120927/ (accessed on 26 December 2023).

40. Leshcheva, I.; Begler, A. A method of semi-automated ontology population from multiple semi-structured data sources. J. Inf. Sci.
2022, 48, 223–236. [CrossRef]

41. Boy, J.; Crepel, J.M.; Rosché, P. Test Suite for the CAE Implementor Forum Round 5S. 2019. Available online: https://www.mbx-
if.org/documents_cae/test_suite%20CAE-IF%20R5S_v1.0.pdf (accessed on 9 July 2020).

42. Dean, M.; Schreiber, G. OWL Web Ontology Language Reference. W3C Recommendation 2004. Latest Version. Available online:
http://www.w3.org/TR/2004/REC-owl-ref-20040210/ (accessed on 26 December 2023).

43. Pauwels, P.; Terkaj, W. EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology.
Autom. Constr. 2016, 63, 100–133. [CrossRef]

http://dx.doi.org/10.1007/978-3-540-68401-5
http://dx.doi.org/10.1109/WSC.2010.5679124
http://dx.doi.org/10.13140/RG.2.2.17992.88327
http://dx.doi.org/10.1016/j.procir.2015.06.009
http://dx.doi.org/10.1080/00207543.2015.1052155
http://dx.doi.org/10.1007/s00170-021-07773-1
http://dx.doi.org/10.1155/2021/8603515
http://dx.doi.org/10.1177/0954405420978117
http://dx.doi.org/10.1080/09544828.2019.1644301
http://dx.doi.org/10.3233/SW-160217
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1145/3555312
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://dx.doi.org/10.1109/ETFA.2019.8869436
https://www.w3.org/TR/2012/REC-r2rml-20120927/
http://dx.doi.org/10.1177/0165551520950243
https://www.mbx-if.org/documents_cae/test_suite%20CAE-IF%20R5S_v1.0.pdf
https://www.mbx-if.org/documents_cae/test_suite%20CAE-IF%20R5S_v1.0.pdf
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://dx.doi.org/10.1016/j.autcon.2015.12.003

Information 2024, 15, 21 19 of 19

44. OMG®Unifed Modeling Language®Version 2.5.1 Specifcations; OMG UML®. Standards, Object Management Group (OMG®) 2017.
Available online: https://www.omg.org/spec/UML/2.5.1/PDF (accessed on 26 December 2023).

45. Brickley, D.; Guha, R. RDF Schema 1.1. W3C Recommendation 2014. Latest Version. Available online: http://www.w3.org/TR/
2014/REC-rdfschema-20140225/ (accessed on 26 December 2023).

46. Tony Liu, D.; William Xu, X. A review of web-based product data management systems. Comput. Ind. 2001, 44, 251–262.
[CrossRef]

47. Abdelrahman, M.M.; Zhan, S.; Chong, A. A three-tier architecture visual-programming platform for building-lifecycle data
management. In Proceedings of the SimAUD, Online, 25–27 May 2020. [CrossRef]

48. Lamy, J.B. Owlready: Ontology-oriented programming in Python with automatic classifcation and high level constructs for
biomedical ontologies. Artif. Intell. Med. 2017, 80, 11–28. [CrossRef] [PubMed]

49. Van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum voor Wiskunde en Informatica Amsterdam: Amsterdam,
The Netherlands, 1995.

50. Foundation, P.S. Tkinter—Python Interface to Tcl/Tk. 2023. Available online: https://docs.python.org/3/library/tkinter.html
(accessed on 5 December 2023).

51. Collette, A. Python and HDF5; O’Reilly: Sebastopol, CA, USA, 2013. [CrossRef]
52. Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,

N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]
53. Ganapathy, G.; Sagayaraj, S. To generate the ontology from java source code. Int. J. Adv. Comput. Sci. Appl. 2011, 2, 111–116.

[CrossRef]
54. Bedini, I.; Nguyen, B. Automatic ontology generation: State of the art. In PRiSM Laboratory Technical Report; University of

Versailles: Paris, France, 2007; pp. 1–15.
55. Chu, S.C.; Xue, X.; Pan, J.S.; Wu, X. Optimizing ontology alignment in vector space. J. Internet Technol. 2020, 21, 15–22.
56. He, Y.; Chen, J.; Antonyrajah, D.; Horrocks, I. BERTMap: A BERT-based ontology alignment system. In Proceedings of the AAAI

Conference on Artifcial Intelligence, Washington DC, USA, 7–14 February 2022; Volume 36, pp. 5684–5691.
57. Roy, S.; Modak, A.; Barik, D.; Goon, S. An overview of semantic search engines. Int. J. Res. Rev. 2019, 6, 73–85.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.omg.org/spec/UML/2.5.1/PDF
http://www.w3.org/TR/2014/REC-rdfschema-20140225/
http://www.w3.org/TR/2014/REC-rdfschema-20140225/
http://dx.doi.org/10.1016/S0166-3615(01)00072-0
http://dx.doi.org/10.13140/RG.2.2.26013.74724
http://dx.doi.org/10.1016/j.artmed.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28818520
https://docs.python.org/3/library/tkinter.html
http://dx.doi.org/10.5281/zenodo.6575970
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.14569/IJACSA.2011.020218

	Introduction
	Standardization and Semantic Technologies for Simulation Data Management
	Standardization of SPDM
	The ISO Standard STEP
	The VMAP CAE Data Interface Standard

	Semantic Technologies for SPDM
	Ontological Core Framework
	Ontological Data Integration

	Software Requirements
	Software Architecture and Prototype
	Semantic Definitions
	Storage Ontology
	Process Ontology

	Querying Information in Three Steps
	Software Design
	Presentation Layer
	Application Layer
	Access Layer
	Naming Conventions and Used Packages

	Test Functions

	Discussion and Outlook
	Appendix A
	Appendix B
	Top-Level Classes of the Storage Ontology
	Top-Level Classes of the Process Ontology

	Appendix C
	Finding the File
	Finding the Metdata
	Finding the Metadata Routine Using darkgrayRoutine Instances
	Finding the Metadata Routine Using darkgrayRoutine Subclasses

	References

