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Abstract. This work proposes a novel approach for probabilistic end-to-end all-sky imager-based nowcasting 
with horizons of up to 30 min using an ImageNet pre-trained deep neural network. The method involves a two-
stage approach. First, a backbone model is trained to estimate the irradiance from all-sky imager (ASI) images. 
The model is then extended and retrained on image and parameter sequences for forecasting. An open access 
data set is used for training and evaluation. We investigated the impact of simultaneously considering global 
horizontal (GHI), direct normal (DNI), and diffuse horizontal irradiance (DHI) on training time and forecast 
performance as well as the effect of adding parameters describing the irradiance variability proposed in the 
literature. The backbone model estimates current GHI with an RMSE and MAE of 58.06 and 29.33 W m−2, 
respectively. When extended for forecasting, the model achieves an overall positive skill score reaching 18.6 % 
compared to a smart persistence forecast. Minor modifcations to the deterministic backbone and forecasting 
models enables the architecture to output an asymmetrical probability distribution and reduces training time 
while leading to similar errors for the backbone models. Investigating the impact of variability parameters shows 
that they reduce training time but have no signifcant impact on the GHI forecasting performance for both deter-
ministic and probabilistic forecasting while simultaneously forecasting GHI, DNI, and DHI reduces the forecast 
performance. 

1 Introduction 

Model predictive control (MPC) of renewable energy sys-
tems relies on accurate predictions to correctly optimize the 
trajectory of the systems control actions (Riou et al., 2021; 
Maheri, 2014; Sachs and Sawodny, 2016; Dongol, 2019; Zhu 
et al., 2015; Tazvinga et al., 2013; Taha and Mohamed, 2016; 
Zhang et al., 2018; Mbungu et al., 2017). While some sys-
tem components can be modeled using physics-based ap-
proaches, forecasting the electrical load and meteorologi-
cal parameters in real-time remains a challenge. Several ap-
proaches can be used to generate these forecasts. Among 
them are statistical, empirical, numerical, and artifcial neu-
ral network (ANN) methods (Sachs, 2016; Dongol, 2019; 
Bozkurt et al., 2017; Bouktif et al., 2018; Yang et al., 2016; 

Maitanova et al., 2020; Telle et al., 2020; Bruno et al., 2019; 
Chaaraoui et al., 2021). ANNs have gained popularity in a 
variety of applications such as image classifcation, action 
recognition, and time-series forecasting. They have shown 
improved performance and robustness, compared to statisti-
cal and physics-based approaches (Krizhevsky et al., 2012; 
He et al., 2015; Tan and Le, 2020; Devlin et al., 2019; 
Shoeybi et al., 2020; Brown et al., 2020; Radford et al., 2019; 
Qian et al., 2021). This trend led to the development of ANNs 
that use images from all-sky imagers (ASI) to predict the fu-
ture solar irradiance. Current solutions consist of stand-alone 
ANN applications or a combination of ANN and physics-
based approaches (Pothineni et al., 2019; Paletta et al., 2021; 
Yang et al., 2021; Fabel et al., 2022; Nouri et al., 2021; 
Hasenbalg et al., 2020). In addition, training ANNs with 
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parametric or non-parametric uncertainties can provide infor-
mation through symmetric probability distributions. Xiang 
et al. (2021) use a quantile regression method to determine 
the probability distribution, by defning a set of 19 evenly 
distributed quantiles as output of their ANN. Paletta et al. 
(2022), treats their ANN forecasting model as a classifer to 
generate binned probability classes, by defning 100 output 
classes which are equally distributed throughout their irra-
diance normalization range. Feng et al. (2022) use Bayesian 
model averaging (BMA), which requires a set of ANN mod-
els. They differ in the input images they receive, which are 
augmented through occlusion perturbations, resulting to a 
global horizontal irradiance (GHI) forecast ensemble. This 
ensemble is then used to estimate parameters of a probability 
density function (PDF), defning a normal distribution. Nie 
et al. (2023) propose a new hybrid approach, by combining 
a stochastic generative pre-trained transformer ANN and a 
physics-informed ANN for video prediction. An ensemble 
of possible image sequence predictions for each time step 
is generated, based on past images from an ASI. The pre-
dicted sequence ensembles are then used to estimate a GHI 
probability distribution through another ANN for each future 
time-step. Nouri et al. (2023) propose a more conservative 
approach, using a U-Net ANN for cloud segmentation and a 
stereoscopic cloud height estimation with two ASI. With a 
sequence of ASI images, the authors can then determine the 
cloud movements and extrapolate the expected direct normal 
irradiance (DNI) through ray-tracing and a sun tracker mea-
surement device, which decomposes the observed solar ir-
radiance in its diffuse and direct components. The authors 
combine their method with a persistence forecasting method 
to enhance the forecast. To obtain probabilistic forecasts, 
the authors classify the past 15 min of irradiance data into 
eight variability classes. The variability classes are formal-
ized through a set of variability parameters defning value 
boundaries for each variability class. Depending on the fore-
cast horizon, the authors use past observations and/or deter-
ministic forecasts for the variability classifcation in a sliding 
window fashion. To determine which variability class repre-
sents which probability distribution, the authors use approxi-
mately 2 years of observation data and simulate forecasts on 
this data. By logging the forecast error and the correspond-
ing variability class, the authors then determine a discretized 
probability distribution for each variability class, based on 
the magnitude of the forecast error. These discretized prob-
ability distributions are then stored in a look-up table and 
fetched as reference when performing forecasts on the vali-
dation data set, by determining the variability class with the 
above mentioned method. 

Probability information can be harnessed in probabilistic 
Model Predictive Control (MPC) applications for renewable 
energy systems, enabling the incorporation of uncertainty 
into the state estimation, as well as the constraining and fne-
tuning of control parameters (Sachs, 2016). Deploying cur-
rent methods to perform such probabilistic forecasts through 

ASI increases both investment and maintenance costs, at-
tributed to the need for irradiance measurement instruments 
like sun trackers or pyranometers (Nouri et al., 2021, 2023; 
Paletta et al., 2021). Furthermore, the prediction of a large 
number of parameters to defne the probability distribution, 
or the training and inference of multiple models to estimate 
a smaller number of parameters, both either impact the mod-
els performance by distributing ANN model parameters on a 
large set of output neurons or proportionally increases train-
ing and inference time depending on the size of the ensem-
ble required. The exploitation of transformer models to pre-
dict image sequences can be a viable approach, but appears 
to use more computational resources than required by using 
the predicted images as a bridge to lower resolution outputs. 
Also, using asymmetric probability distributions appears to 
be more suitable for our use case, rather than symmetric ones 
(Barnes et al., 2021; Feng et al., 2022). 

In this research, we propose a method to exploit an Im-
ageNet pre-trained ResNet50v2 backbone as a feature ex-
tractor for probabilistic ASI-based irradiance forecasting of 
up to 30 min. The feature extractor allows us to output ir-
radiance values with minor modifcations. The method con-
sists of two stages. First, the backbone is trained to predict 
four parameters from an ASI image, defning an asymmet-
ric irradiance probability distribution. Afterwards, we extend 
and retrain the model to perform the forecasting task using 
long short-term memory (LSTM) and densely connected lay-
ers. Therefore, our method uses a two-stage training process, 
but performs inference with a one-stage model. Our method 
also facilitates the easy substitution of the feature extractor 
backbone with more powerful or more effcient models, such 
as MobileNet, DarkNet, EffcientNet or ConvNeXt (Howard 
et al., 2017; Redmon and Farhadi, 2018; Tan and Le, 2020; 
Liu et al., 2022). We add relevant exogenous variables from 
literature (Paletta et al., 2021; Yang et al., 2021) and in-
vestigate the impact of variability parameters, proposed by 
Schroedter-Homscheidt et al. (2018), instead of constraining 
the problem within variability classes, as done by Nouri et al. 
(2023), allowing the ANN to determine suitable parameters 
for performing the forecast. The impact of adding DNI and 
diffuse horizontal irradiance (DHI) on the forecasting and es-
timation performance is investigated. 

Unlike previous work, we avoid predicting complex high-
dimensional outputs to determine distributions, or compute-
intensive ensembling techniques and instead restrict our out-
put to four parameters which are suffcient to fully defne the 
asymmetric probability distribution as a continuous function 
and train only one model in two stages, instead of an ensem-
ble of models. Our approach only needs a single ASI and re-
quires a radiometer only for training. It can be deployed with-
out the usage of a radiometer, greatly reducing maintenance 
and investment costs for the implementation on the feld. We 
report training and inference times, to determine the mod-
els potential for edge computing applications for MPC, and 
estimate the effort to train our model on a much larger and 
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geographically diversifed data set. The following research 
questions are addressed in this study: 

1. Can pre-trained ANNs be adapted to estimate the GHI 
from an ASI image? 

2. How much training time is required? 

3. Does adding the DNI and DHI to the estimation task 
improve the accuracy of GHI estimates? 

4. Is it possible to generate irradiance probability distribu-
tions instead of deterministic values? 

5. Can the estimation task be extended to a forecasting 
task? 

6. What is the impact of adding the variability parameters 
proposed by Schroedter-Homscheidt et al. (2018)? 

7. Are the forecasts and estimations generated within ac-
ceptable inference times? 

2 Data set 

This research uses an open data set provided by Pedro et al. 
(2019). The data set contains a quality-controlled record of 
the GHI, DNI, DHI measurements and corresponding ASI 
images. The data ranges from 2014 to 2016 with a temporal 
resolution of 1 min and has been collected in Folsom, Cal-
ifornia. For our application, the image resolution is scaled 
down to 224 × 224. To avoid trivial cases with no cloud cov-
erage, the majority of clear-sky data points were fltered out 
with the clear-sky identifcation method proposed by Reno 
and Hansen (2016). Additionally, data points were fagged as 
clear-sky 30 min prior and after detection to ensure that the 
model did not predict clear-sky data points, focusing in this 
study on the prediction of the more challenging non-clear-
sky events. For the forecasting task, we also ensured that 
ASI images for the past hour were available to calculate the 
variability parameters, proposed by Schroedter-Homscheidt 
et al. (2018). From the set of ASI images, we then generated 
irradiance values from the backbone models. This research 
follows the assumption that there is no radiometer available 
during the operation of the system. We therefore exploit the 
ASI as a radiometer. The data set was randomly separated 
into 868 training days, 108 validation days, and 108 testing 
days. Timestamps of the ASI images were rounded to the full 
minute since the images were not taken exactly to the same 
minute as the irradiance measurements. 

3 Methodology 

In this section, we present the two-stage training approach, 
frst introducing the backbone model in Sect. 3.1. The vari-
ability parameters, proposed by Schroedter-Homscheidt et al. 

(2018), are presented in Sect. 3.2. The extension of the back-
bone to a forecasting model is described in Sect. 3.3. Ar-
chitectures and training confgurations are documented for 
both stages. For comparison purposes, we use four backbone 
model variations. The frst variation only estimates the de-
terministic GHI. The second estimates GHI, DNI, and DHI 
simultaneously. The last two variations output asymmetric 
probability distributions instead of deterministic values. 

The forecasting model has an additional variation, adding 
the aforementioned variability parameters. This variation 
serves to determine their impact on performance. The vari-
ability parameters are calculated through the backbone 
model’s past and current irradiance estimations from the ASI 
images. Forecasting horizons of 5, 10, 20, and 30 min were 
evaluated for each forecasting models variation, consider-
ing horizons investigated in literature and seamless predic-
tion applications with numerical weather prediction methods 
(Pothineni et al., 2019; Nouri et al., 2021; Xiang et al., 2021; 
Paletta et al., 2021; Feng et al., 2022; Diagne et al., 2012; 
Kober et al., 2012; Owens and Hewson, 2018; Urbich et al., 
2020). 

3.1 Backbone model 

The ResNet50v2 ANN architecture proposed by He et al. 
(2016) is used as a classifer. It distinguishes a set of classes 
describing the content of an image. The model is trained 
on the ImageNet data set to validate its performance com-
pared to other architectures (Deng et al., 2009). Minor mod-
ifcations to the architecture allow the model to be exploited 
as a feature extractor. This approach is practiced in other 
disciplines (Rezende et al., 2017; Ou et al., 2019; Ron-
neberger et al., 2015). Furthermore, a pre-trained model al-
ready learned to extract features within images to perform its 
task. Features can include edges, corners, or color gradients. 
The model can therefore be deployed to perform other tasks 
requiring a similar set of features (Ferreira et al., 2018; Du 
et al., 2018). 

In the frst step, we modifed a pre-trained ResNet50v2 
model by removing the output layer after the 5th convo-
lutional block. This step reveals the feature vector, where 
each element describes a lower level representation of a cer-
tain image section. These representations help the ANN ful-
fll its task. They are not pre-defned and the ANN deter-
mines which feature it requires to generate the desired out-
put from the image. A pre-trained ResNet50v2 model had 
already learned to extract a set of these low level represen-
tations from a classifcation task, a process that was helpful 
for the investigated application. A two-dimensional global 
average pooling layer serves to reshape the feature vector to 
appropriate dimensions (Chaaraoui et al., 2022). 

To transfer the classifcation task to a probabilistic re-
gression, we use an approach proposed by Barnes et al. 
(2021). The output layer is replaced by four densely con-
nected neurons representing the four parameters location (µ), 
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Figure 1. Architecture of the backbone ANN, which generates asymmetric probability distributions for all three irradiance components. 

tailweight (τ ), skewness (γ ), and scale (σ ). These param-
eters defne a sinh-arcsinh distribution, proposed by Jones 
and Pewsey (2009), which allows for asymmetric probability 
distributions to be fexibly defned. µ defnes the location of 
the irradiance distribution and gives an estimate of the solar 
position and its coverage by a cloud. σ scales the distribu-
tion and plays a major role in representing the models con-
fdence. τ and γ allow the model to create asymmetries, by 
altering the distribution’s skewness and kurtosis. We expect 
this asymmetry to be especially helpful with this particular 
forecasting task, simply by taking into account that certain 
cloud cover situations have a higher probability to decrease 
(current irradiance is close to clear-sky) or increase (current 
irradiance is the result of a cloud blocking the sun) the solar 
irradiance. 

To maintain unsigned values for τ and σ , their logarithm 
is calculated with log(τ ) and log(σ ) as a bijective map. This 
bijective map constrains the ANN to output only positive val-
ues for these two parameters, because a negative tailweight 
or negative spread of the distribution are not possible. The 
exponential function of the corresponding outputs returns τ 
and σ . The backbone architecture is illustrated in Fig. 1. 

The task of the probabilistic backbone model is to estimate 
the probability distribution of the GHI, DNI, and DHI from 
an ASI image. For that, we frst train the model to understand 
the relation between the image and the irradiance values, be-
fore moving over to a forecasting task. 

To examine the performance differences between this 
probabilistic approach and a deterministic approach, we ex-
change the layers after the global average pooling layer for a 
set of densely connected neurons. These neurons output a de-
terministic irradiance value. This deterministic architecture 
is shown in Fig. 2. 

To output only the GHI, the top and bottom output 
branches after the global average pooling layer for DNI and 
DHI are removed. 

3.1.1 Backbone model training confguration 

A mirroring strategy is applied for our multi GPU system, 
replicating the models on each GPU and dividing the batch 
among them. The weight update is performed after each 
training step, by aggregating the gradients of all four replicas. 
Data shuffing is applied for each epoch as an augmentation 
technique. As a loss function, we implement the negative log-
arithmic likelihood for the probabilistic models, as suggested 
by Barnes et al. (2021) and defned as: X 
L(xi ) =− 

1 N 

log(P (yi |µ,σ,γ,τ )) (1)
N 

i=1 

with xi being the ith input from the batch input of the 
ANN, yi being the corresponding real irradiance value and 
P the probability density function of the sinh-arcsinh func-
tion, which is defned by the parameters µ, σ , γ , and τ . The 
deterministic models compute the loss with the mean squared 
error (MSE), defned as: 

N1 X� �2MSE = yi − ŷi (2)
N 

i=1 

with ŷi being the output of the ANN. Note that the losses of 
the models predicting GHI, DNI and DHI simultaneously are 
equally weighted among the irradiance components. 

The weights are optimized with the adaptive moment esti-
mation optimizer (ADAM). While the deterministic models 
use a learning rate reducer and early stopper, the probabilis-
tic confgurations do not use the early stopper, due to the low 
number of epochs necessary to train the models. 

Adv. Sci. Res., 20, 129–158, 2024 https://doi.org/10.5194/asr-20-129-2024 

https://doi.org/10.5194/asr-20-129-2024


133 S. Chaaraoui et al.: Probabilistic deep learning irradiance forecasting 

Figure 2. Principle of the backbone ANN architecture to generate the deterministic irradiances for all three irradiance components. 

Figure 3. Training pipeline of the backbone ANN model. 

Table 1. Training confgurations for the backbone models. 

Det. or Param. Bs. Init. Lrr. Lrr. min. Irr. Es. Es. Max. 
stoch. lr. factor 1 patience 1 patience epochs 

Det. 1 16 10−4 0.3 10−4 8 10−5 15 100 
Det. 3 16 10−4 0.3 10−4 8 10−5 15 100 
Stoch. 1 16 10−4 0.3 10−2 3 – – 5 
Stoch. 3 16 10−4 0.3 10−2 3 – – 4 

Det.: deterministic; stoch.: stochastic; Param.: either GHI-only or GHI, DNI and DHI simultaneously; Bs.: batch size; Init. lr.: 
initial learning rate; Lrr.: learning rate reducer; Es.: early stopper. 

Figure 3 shows the training pipeline of the backbone ANN 
model. The image is preprocessed by scaling the pixels to 
values between −1 and 1 (Abadi et al., 2015). The irradiance 
values are normalized, with: 

ynorm = 
y

. (3) 
ymax 

Parameters for all four confgurations can be found in Ta-
ble 1. 

3.2 Variability Parameters 

Schroedter-Homscheidt et al. (2018) utilize variability pa-
rameters from relevant literature to classify 1 h of minutely 
radiation time-series in eight variability classes. These vari-
ability classes serve as indicators for different cloud situa-
tions, which differ in their impact on solar power production. 
In our study, we use these variability parameters as additional 

features for our forecasting model to determine, if they have 
an impact on forecasting performance. All variability param-
eters are derived from the GHI and DNI, unless stated other-
wise, resulting into 15 variability parameters from the GHI 
and 13 variability parameters from the DNI: 

1. σSk, proposed by Skartveit et al. (1998), uses the clear-
sky index of the current, past and future observation and 
computes root mean squared differences. Schroedter-
Homscheidt et al. (2018) use a sliding window approach 
to frst determine the hourly mean clear-sky indices 
throughout the time-series and then apply the equation 
by Skartveit et al. (1998), defned as: 
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s� �2 � �2 
kc,t − kc,t−1 + kc,t − kc,t+1 

σSk = 
2 � �X1 N−2 

gtwith kc,t = . (4)
N − 2 gcs,tt=2 

2. VCoimbra, proposed by Coimbra et al. (2013), resembles 
the root mean squared difference between the clear-sky 
index and the clear-sky index one time step ahead, with: v u 

N−1 t 1 �2u X� 
VCoimbra = kc,t − kc,t+1 . (5)

N − 1 
t=1 

3. VIStein, proposed by Stein et al. (2012), divides the sum 
of the root squared difference between the current and 
previous irradiance with the root squared difference be-
tween the current and previous clear-sky irradiance: qNP 

(gt − gt−1)2 
+ 1 

VIStein = t=2 
. (6)PN q� �2 

gcs,t − gcs,t−1 + 1 
t=2 

4. Using the variability indices proposed by Perez et al. 
(2011), which takes the absolute differences between 
two consecutive clear-sky indices and irradiance val-
ues throughout the whole hour and calculates the mean, 
standard deviation and maximum value within the se-
quence of differences, defned as: 

N−1X1 
1kc,mean = 1kc,t (7)

N − 1 
t=1 v u X�u 1 N−1 �2 

1kc,SD = t 1kc,t − 1kc,t (8)
N − 1 

t=1 

1kc,max =maxt 1kc,t 

with 1kc,t = kc,t − kc,t+1 (9) 
N−1X1 

1gmean = |1gt | (10)
N − 1 

t=1 v u 
N−1 

1gSD = t 1gt − 1gt (11) 
u 1 X� �2 

N − 1 
t=1 

1gmax =maxt |1gt |

with 1gt = gt − gt+1. (12) 

5. OVER5 and OVER10, representing the occurrences of 
GHI overshoots within the time-series sequence, only 

counting either 5 % or 10 % over clear-sky as overshoot 
occurrence: � 
OVER5 = t |gt > 1.05 · kc,t , t = 1, 2, . . ., N (13)� 
OVER10 = t |gt > 1.1 · kc,t , t = 1, 2, . . ., N . (14) 

This variability parameter is only applied for GHI val-
ues, since overshoots are theoretically not possible with 
DNI. 

6. Counting the changes in the sign of the frst deriva-
tive (CSFD) in the time-series sequence, proposed by 
Kraas et al. (2013), where only those changes are 
counted which show a 15 % change between one local 
extreme to the other. 

7. Using a time-series envelope function, proposed by 
Jung (2015). Initially the irradiance time-series is di-
vided into overlapping sub-sets of the time-series, each 
spanning a duration of 4 min. We then identify the min-
imum and maximum of each sub-set. These points ini-
tially form the preliminary upper and lower envelopes, 
respectively. These sub-sets are then extended by 1 min 
from the original time-series sequence until a new min-
imum or maximum is identifed, substituting the previ-
ously defned minimum or maximum of each sub-set. 
By methodically applying this process to each 4 min 
subset across the entire time series, we establish two 
new time-series – the upper and lower envelopes. These 
envelope series effectively encapsulate the original ir-
radiance time-series. Using these two envelope time-
series, Schroedter-Homscheidt et al. (2018) calculate 
three variability parameters: 

– The mean of each delta of the upper and lower en-
velope time-series UML (Upper Minus Lower). 

– The mean of each delta between the upper enve-
lope time-series and corresponding clear-sky radia-
tion UMC (Upper Minus Clear). 

– The mean of the lower envelope time-series LMA 
(Lower Minus Abscissa). 

With the variables in the above mentioned equations as: 

– the number of elements in the time-series sequence N . 

– g is the radiation component used to calculate the vari-
ability parameters. Which component is used, depends 
on the architecture used in Sect. 3.3. 

– gcs is the clear-sky value, calculated with the clear-sky 
model by Perez et al. (2002). 

– kc is the clear-sky index of the corresponding radiation 
component “rad” used in the equation. 
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Table 2. Clipping and normalization values for variability parame-
ters. ∗ – only for variability parameters derived from GHI. 

Variability Lower Upper varp,max 
parameter clipping clipping 

value value 

0 1 1 
VCoimbra 

σSk 
0 1 1 

VIStein 0 GHImax GHImax 
1kc,mean 0 GHImax GHImax 
1kc,SD 0 GHImax GHImax 
1kc,max 0 GHImax GHImax 
1gmean 0 1 1 
1gSD 0 1 1 
1gmax 0 2 2 
OVER5∗ 0 60 60 
OVER10∗ 0 60 60 
CSFD 0 1 1 
UML 0 GHImax GHImax 
UMC 0 GHImax GHImax 
LMA 0 GHImax GHImax 

The variability parameters are clipped and normalized ac-
cording to the values shown in Table 2. The values are nor-
malized, with: 

varpvarp,norm = . (15)
varp,max 

3.3 Forecast model 

We extend the backbone model to perform a forecasting task, 
by outputting the feature vector for the current time step t and 
the past time step t − n from the backbone, with n being the 
forecasting horizon. These feature vectors are then concate-
nated to predict the future feature vector at time step t + n, 
using a set of LSTM and densely connected neuron layers. 
To translate the predicted feature vector to a deterministic or 
probabilistic irradiance, we use the approach from the back-
bone model, shown in Fig. 1 (probabilistic) and Fig. 2 (deter-
ministic). 

Figure 4 illustrates the probabilistic approach we address 
in this section. This confguration outputs the GHI, DNI, and 
DHI simultaneously. The architectures for the probabilistic 
GHI-only model and the corresponding deterministic models 
can be found in Appendix A. These architectures follow an 
analogous concept to the approach explained here. The back-
bone model is trained beforehand, as described in Sect. 3.1. 
The model is divided into four components (a), (b), (c), and 
(). 

Figure 4a shows how the variability parameters proposed 
by Schroedter-Homscheidt et al. (2018) are generated. These 
parameters are added later to our feature vectors. The vari-
ability parameters are derived from a sequence of GHI and 
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DNI values from ASI images of the past time steps t to 
t − 60 min and t − n to t − n − 60 min, with n being the fore-
casting horizon. The deterministic GHI and DNI are esti-
mated by the previously described probabilistic backbone 
model shown in Fig. 1. To obtain explicit values from the 
probabilistic distributions, the expectation µmean of the dis-
tribution is analytically calculated, with: � �� �γ 1 
µmean = µ + σ · sinh · P with 

τ τ s 
√ � � e 

P (q) = · K (q+1) (0.25) + K (q−1) (0.25) . (16)
8 ∗ π 2 2 

Kv(x) defnes the modifed Bessel function of the second or-
der, with v being the order of the Bessel function (Amos, 
1986; Barnes et al., 2021; Jones and Pewsey, 2009). From 
the above mentioned sequence of deterministic GHI values, 
15 variability parameters can be derived. The sequence of 
DNI values does not include the parameters counting the oc-
currence of 5 % overshoots and 10 % overshoots, resulting in 
28 variability parameters. This component is not retrained in 
this stage, but included in the inference. 

Figure 4b shows how additional parameters from the cur-
rent time step t and the past time step t − n are generated. 
Again, the previously trained backbone model is used to 
output the four parameters µ, τ , γ , and σ , for GHI, DNI, 
and DHI. Additionally the mean µmean, the median µmedian, 
and the standard deviation σSD are analytically calculated for 
GHI, DNI, and DHI and added as additional features, with: � �γ 
µmedian = µ + σ · sinh (17)

τ v � � � �u 2γ 2 � � ��2u cosh · P − 1 � �t τ τ γ 1 
σSD = σ 2 · sinh · P

2 τ τ s 
√ � � e

with P (q) = · K (q+1) (0.25) + K (q−1) (0.25) . (18)
8 · π 2 2 

This process results in 21 parameters, and thus a total of 
49 parameters added to our feature vectors. Additional clear-
sky information is derived from a clear-sky model, proposed 
by Perez et al. (2002). The model determines the GHI, DNI, 
and DHI in clear-sky conditions. Additionally, the DHI is di-
vided into the ground and sky-diffuse components. Zenith θz, 
azimuth σs, and their cosine and sine are also computed 
as additional features, as proposed by Paletta et al. (2021). 
However, we do not add past irradiance measurements since 
we assume there will be no additional measurement equip-
ment available while deploying this model in the feld. This 
step results in a maximum total of 60 parameters. Note, 
the number of parameters varies depending on the architec-
ture used. This component is not retrained in this stage, but 
needed when deploying the model for forecasting. 

Figure 4c shows the only trainable component of this ar-
chitecture, using a copy of our previously trained backbone 
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Figure 4. Architecture of the probabilistic forecast model, forecasting the probability distribution of the GHI, DNI, and DHI. Blue - not 
trained, but part of training; green – trained; pink – not trained and not part of training; yellow – not trained, part of training, and optional. 
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model. This model outputs two feature vectors for t and 
t − n and concatenates these. The 60 parameters from com-
ponents (a) and (b) are concatenated at the corresponding 
time stamps t and t − n. This feature sequence is then passed 
through a set of LSTM and densely connected neurons to 
predict the feature vector at t + n. The parameters for the 
sinh-arcsinh function are translated from the predicted fea-
ture vector in the same fashion as the backbone model. De-
terministic irradiance values are calculated using Eq. (16). 

Figure 4d shows a non-trainable component of the archi-
tecture not used during training or inference of the model. It 
is required to determine the reference feature vector for our 
loss function in Sect. 3.3.1. The backbone model generates 
the feature vector for each image used in training and adds 
the output of the clear-sky model by Perez et al. (2002) for 
time step t + n. 

3.3.1 Training confguration 

To address the research questions stated in Sect. 1, we divide 
the forecast model into confgurations, differing in: 

1. Prediction horizon n (5, 10, 20, 30 min). 

2. Whether they output all three irradiance compo-
nents (GHI, DNI, and DHI) or only one (GHI). 

3. Whether the variability parameters are considered as ad-
ditional inputs. 

4. Stochastic or deterministic backbone model and there-
fore their outputs being either of those. 

The batch size for all confgurations is 16 with an initial 
learning rate of 5−4. For the deterministic models, we utilize 
a learning rate reducer with a reducing factor of 0.3, a pa-
tience of 8 epochs, and a 1 of 10−4. An early stopper stops 
the training with a 1 of 10−5 and a patience of 15 epochs. 
The maximal threshold of epochs before canceling the train-
ing is set to 100. For the stochastic model, we do not utilize a 
learning rate reducer and early stopper, since we observed a 
reduction of epoch counts to 1 epoch until convergence of the 
validation loss. This observation may be the result of train-
ing the backbone prior to extending to a forecasting task. The 
weights are optimized with the ADAM optimizer, as was the 
backbone model. 

Aside from the loss functions presented in Eqs. (1) and (2), 
we also add the loss between the predicted feature vector ŷ i 
and the feature vector yi determined by the backbone model 
and add the weights β1 and β2, with: 

X1 N 

L = β1 · kyi − ŷ i k2 + β2 · MSE (19)
N 

i=1 

and β1 = 0.3 and β2 = 0.5 for the deterministic models. The 
probabilistic model’s summarized loss is calculated, with 

β1 = 0.1 and β2 = 0.9 and: X1 N 

L = β1 · kyi − ŷi k2 + β2 · L(xi ). (20)
N 

i=1 

Note, that the loss of the models predicting GHI, DNI and 
DHI simultaneously are equally weighted among the irradi-
ance components, as with the backbone models. 

Figure 5 shows the training pipeline of the forecasting 
ANN model. The images are again preprocessed through the 
Tensorfow ResNet50v2 preprocessing function, as with the 
backbone model. The external variables are extracted from 
the backbone models output, or calculated via the clear-sky 
model by Perez et al. (2002): 

3.4 Evaluation metrics 

In this study, we use the following evaluation metrics for the 
deterministic backbone and forecasting models: 

1. Root Mean Squared Error (RMSE) and normalized 
RMSE (nRMSE), penalizing errors exponentially with 
their magnitude and defned as: v u 

Nu X�t 1 �2RMSE = yi − ŷi (21)
N 

i=1 u �v 
N �2u Xt 1 yi − ŷinRMSE = . (22)

N ymaxi=1 

2. Mean Absolute Error (MAE) and normalized 
MAE (nMAE), penalizing errors linearly with their 
magnitude defned as: X1 N 

MAE = yi − ŷi (23)
N 

i=1 
N1 X yi − ŷinMAE = . (24)

N ymaxi=1 

3. Mean Bias Error (MBE) and normalized MBE (nMBE), 
in order to rule out a systematic bias in the models out-
put, defned as: 

N1 X� � 
MBE = yi − ŷi (25)

N 
i=1 

N � � 
1 yi − ˆ nMBE = 
X yi 

. (26)
N ymaxi=1 

4. Pearson R correlation, to determine the linear correla-
tion between model output and observation, defned as: PN � � 

(yi − ymean) ŷi − ŷmean 

R = s i=1 
. (27) 

NP � �2(yi − ymean)2 ŷi − ŷmean 
i=1 
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Figure 5. General training pipeline of the forecasting ANN model. 

with ymax being the maximum irradiance value over the en-
tire data set, ŷmean the mean value over all predictions and 
ymean the mean over all irradiance values. 

For the stochastic backbone models, we additionally de-
fne the following metrics: 

1. Empirical coverage of the distributions 1qα , by com-
paring selected quantiles α = 0.95 to 0.05, 0.9 to 0.1, 
0.8 to 0.2, 0.7 to 0.3 and 0.6 to 0.4, with theoretical 
percentage of data points 1α within the quantiles, sug-
gested by Gneiting et al. (2007) and implemented by 
Xiang et al. (2021) as: ! 

N1 X� � 
1qα = · ŷi,α,up ≤ yi ≤ ŷi,α,low − 1α (28)

N 
i=1 

NαX1 
1q = · 1qαi . (29)

Nα i=1 

with ŷi,α,up being the upper forecasted quantile and 
ŷi,α,low the lower quantile of selected quantile range α. 
1q represents the absolute mean of all 1qα . 

For the forecast models, we include a skill score metric 
used by Paletta et al. (2021) and Yang et al. (2021), which 
compares the forecasts to a smart persistence forecast, de-
fned as: 

gmeas,t 
ŷi,spf = gcs,t+n · kc,t with kc,t = (30) 

gcs,t 

with ŷi,spf being the irradiance forecast and gcs,t+n the clear-
sky irradiance forecast computed by the clear-sky model 
proposed by Ineichen and Perez (2002), with the forecast 
horizon n. The current irradiance measurements are denoted 
as gmeas,t and the current clear-sky irradiance as gcs,t . 

We then determine its nRMSE and compare it to the 
nRMSE by the ANN to calculate the forecast skill FS, with 

2. The sharpness Sα from each quantile range α, illustrated 
by a sharpness diagram, proposed by Bremnes (2004). 
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Figure 6. Estimation of the GHI for 20 February 2016, using the sinh-arcsinh distribution’s quantiles α. The estimations are generated with 
the probabilistic three-parameter model, and the scatter plot shows the quantile α = 0.95 to 0.05. 

in Sect. 4.1 for the backbone models and Sect. 4.2 for the vuut forecasting models. �2�XN yi − ŷi,spf 

N ymaxi=1 

1 A sharpness diagram for the probabilistic three-parameter 
nRMSEspf = (31) model is shown in Fig. 7. The diagram provides an estimate 

of how narrow the quantile ranges are over the population of � � 
nRMSE the forecast distributions. The narrower the quantile ranges FS = 1 − · 100. (32)

nRMSEspf and whiskers, the more confdent the model is. Note, that this 
diagram requires that 1q is within an acceptable range. High 
sharpness with high 1q means, that the model is overconf-
dent, while very low 1q and low sharpness means that the 
model lacks confdence. 

To determine the signifcance in the model’s performance 
differences, a signifcance test proposed by Diebold and Mar-
iano (2002) is performed. To determine signifcance between 
the distributions means within the sharpness diagram, we use 
independent trimmed t-test, proposed by Yuen (1974). This 
test is used to compare distributions with signifcantly dif-

As an example for better illustration, Fig. 6 shows the es-
timations for 1 d by the probabilistic three-parameter back-
bone model and the prediction error as a scatter plot with the 
corresponding quantile range from 0.95 and 0.05 as a color 
gradient. It is important to note, while a full day would have 
1440 data points, given the temporal resolution of the data set 
of 1 min, the data shown in this study is limited to timings be-
tween sunrise and sunset, hence the lower sample size N , as 
seen in Fig. 6 with N = 646. The full data set is evaluated 
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Figure 7. Sharpness diagram resulting from the 1 of the quantiles α for 20 February 2016. 

Figure 8. Scatter plot between observation and estimation of the deterministic GHI-only model over the whole test data set. 

fering variances. To test these variance differences, we per-
form Levene’s test, proposed by Levene (1960). When vari-
ance does not differ signifcantly, Welch’s t-test is performed 
(Welch, 1947). The p-value threshold for rejecting the null 
hypothesis is < 0.05. 

4 Results 

We used Tensorfow to design and train our ANN’s (Abadi 
et al., 2015). To pre-process our image data, we used 
the imageIO and openCV libraries (Silvester et al., 2020; 
Bradski, 2000). Training was performed on the university’s 
HPC cluster, with nodes consisting of 4 Nvidia HGX-A100 
SXM4 GPUs with 80 GB memory connected by 600 GB s−1 

NVLink, 2 AMD EPYC 7543 CPU, and 512 GB of system 
memory. Each node performed the training of two models 
simultaneously. Inference was performed by using 120 GB 
system memory and 32 CPU cores, allowing 4 models to be 
evaluated simultaneously. We summarize our results by us-
ing the metrics and statistical tests shown in Sect. 3.4. 

4.1 Backbone model 

The backbone models show overall good performance in esti-
mating the deterministic and probabilistic irradiance compo-
nents. Figure 8 shows a scatter plot for the error between the 
observed and the estimated GHI for the deterministic GHI-
only model. The model’s error is in a reasonable range con-
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sidering the error of 2 % by the measurement device (Kern 
et al., 2023), with an RMSE of 58.06 W m−2 and MAE of 
29.93 W m−2. Additionally, the nRMSE of 0.04 and nMAE 
of 0.02 confrms, that the model produces errors close to 
the measurement error of the radiometer itself. The MBE 
of 2.11 W m−2 can be neglected with regards to the mea-
surements error. The observed and estimated GHI correlate 
closely with R = 0.98. 

For the simultaneous estimation of the GHI, DNI, and 
DHI, similar performance can be observed for the GHI es-
timation, shown in Fig. 9. The RMSE of 59.31 W m−2 and 
MAE of 30.28 W m−2 shows slightly higher errors, com-
pared to the GHI-only model. MBE can be neglected with 
1.43 W m−2, and observation strongly correlates with the es-
timation (R = 0.98). Furthermore, the model can addition-
ally estimate the DNI and DHI with RMSEs of 87.30 and 
21.98 W m−2 and MAEs of 42.67 and 12.99 W m−2, respec-
tively. MBE remains low with 0.73 W m−2 for DNI and 
0.89 W m−2 for DHI. DNI and DHI estimations correlate 
closely, with the observation: R = 0.97 and 0.98, respec-
tively. However, a one-sided Diebold–Mariano signifcance 
test on the GHI estimations of both models showed that the 
GHI-only model performs signifcantly better than the three-
parameter model with p-value < 0.05 (Diebold and Mariano, 
2002). 

The probabilistic estimation of the GHI results in sim-
ilar error metrics to those of the deterministic approach, 
with RMSE 58.36 W m−2, MAE 29.33 W m−2, and MBE of 
−1.39 W m−2. Figure 10 compares the estimation with the 
observation as a scatter plot, with 1q0.95,0.05 being colored 
for each estimation with its magnitude, visualizing the conf-
dence of each estimation. The fgure shows that the lower the 
error, the higher the confdence of the estimation is. When 
the probabilistic GHI-only model is compared with the de-
terministic model, a Diebold–Mariano signifcance test fails 
to reject the null hypothesis with p-value > 0.05, indicating 
that there is no signifcant performance difference between 
the two methods. A 1q of 13.84 % shows the mean percent-
age of estimations, which are not inside their respective the-
oretical quantiles α. 

Generating three probability distributions for GHI, DNI, 
and DHI simultaneously shows a more pronounced error 
increase for all three irradiance components, when com-
pared to the deterministic model counterpart. Figure 11 
shows the scatter plots for all three irradiance components. 
The errors are higher for all irradiance components: RMSE 
61.79 W m−2, MAE 29.95 W m−2, and MBE 6.21 W m−2 for 
GHI; RMSE 99.69 W m−2, MAE 44.27 W m−2, and MBE 
−1.02 W m−2 for DNI; and RMSE 23.99 W m−2, MAE 
12.75 W m−2, and MBE 4.77 W m−2 for DHI. Correlation 
coeffcients range from 0.96 to 0.98. 1qq0.95,0.05 for each 
GHI estimation increases as the error increases, as observed 
for the GHI-only model. However, for DNI, this increase is 
only the case for higher irradiance values, while for DHI 
only for lower irradiance values. Furthermore, we can ob-

serve a decreased 1q of 7.7 %, favoring the three parameter 
approach in this regard. 

A Diebold–Mariano signifcance test confrms that the 
GHI-only model is signifcantly better than the three param-
eter approach with p-value < 0.05. The same results can be 
observed when testing for signifcance between the proba-
bilistic and deterministic approaches, confrming that the de-
terministic three parameter approach performs signifcantly 
better than its probabilistic counterpart, with p-value < 0.05. 

Further investigations of the probability distributions are 
illustrated in a sharpness diagram in Fig. 12, grouping the 
GHI-only model and the components of the three-parameter 
model into the estimations quantile ranges α. The model 
shows pronounced uncertainty regarding the estimation of 
the DNI, with the whiskers range reaching almost half of 
the possible DNI range for q0.95,0.05. Other radiation compo-
nents are within more reasonable uncertainties. This differ-
ence may be the result of higher gradients compared to the 
DHI. A comparison between the model’s GHI outputs shows 
an increased sharpness for the GHI-only model. Performing 
independent trimmed t-test, proposed by Yuen (1974), con-
frms signifcance in the difference between the means of the 
GHI-only model and the GHI of the three-parameter model. 
This signifcant increase is the case for each quantile range α, 
with p-values < 0.05. Furthermore, Levene’s test confrms 
signifcant differences in variance for all quantile ranges α 
with p-values < 0.05 (Levene, 1960). The variance reduc-
tion observed with the GHI-only model is therefore signif-
cant and indicates that the model’s confdence fuctuates less, 
compared to that of the three-parameter model. 

Table 3 also indicates that training times are acceptable 
and inference is below one second. The three-parameter 
model also shows on both the probabilistic and the determin-
istic confgurations lower training time per epoch and lower 
inference times. 

4.2 Forecast model 

Extending the deterministic estimation task to a forecast-
ing task, as described in Appendix A2, we observe positive 
skill FS over all forecasting horizons with and without the 
addition of variability parameters. Training time decreases, 
compared to the backbone model. This decrease is mainly 
caused by the decrease of data samples resulting from need-
ing three consecutive ASI image and irradiance data pairs 
and 1 h of consecutive ASI images for the irradiance estima-
tion. Additionally, data points and images are occasionally 
missing and additional clear-sky data points are removed. A 
decrease of training time per epoch can be observed, when 
adding variability parameters to the training. Also, the model 
with variability parameters needs fewer epochs to trigger the 
early stopper. Inference times remain well below one sec-
ond, although the computation of the variability parameters 
increases the inference time. Inference and training times are 
summarized in Table 6. 
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Figure 9. Scatter plots between observation and estimation of the deterministic three-parameter model, for GHI (a), DNI (b) and DHI (c) 
over the whole test data set. 
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Figure 10. Scatter plot between observation and estimation of the probabilistic GHI-only model, with 1q0.95,0.05 being colored according 
to magnitude over the whole test data set. 

Table 3. Inference and training times for all four backbone confgurations. Bold values: arrow up means the higher the better, arrow down 
means the lower the better and arrow to 0 means the closer to 0 the better. 

Model Mean 
inference 

time 
↓ [ms] 

Training 
time 

↓ [min] 

Epochs ↓ Per 
epoch 
↓ [min] 

GHI deterministic 63.20 1460.13 39 37.44 
GHI/DNI/DHI deterministic 
GHI stochastic 

58.45 
77.94 

928.35 
84.98 

42 
5 

22.10 
17.00 

GHI/DNI/DHI stochasti 63.07 62.33 4 15.58 

Table 4. Evaluation metrics for the GHI-only deterministic forecasting model. Bold values: arrow up means the higher the better, arrow 
down means the lower the better and arrow to 0 means the closer to 0 the better. 

Horizon RMSE ↓ nRMSE ↓ MAE ↓ nMAE ↓ MBE nMBE R ↑ FS ↑ 
[W m−2] [W m−2] [W m−2] [%] 

5 min 77.30 0.05 41.73 0.03 –1.53 0.00 0.96 14.5 
10 min 87.21 0.06 49.11 0.03 −1.61 0.00 0.95 16.5 
20 min 98.81 0.07 58.36 0.04 −3.85 0.00 0.94 18.1 
30 min 108.20 0.07 64.55 0.04 −6.07 0.00 0.93 16.8 

For the confguration without variability parameters, errors 
increase with the forecasting horizon, with RMSE ranging 
between 77.3 and 108.2 W m−2 and MAE between 41.73 and 
64.55 W m−2. RMSE are slightly lower for the horizons 5, 
10, and 30 min when adding variability parameters to the 
model. MAE are higher for all forecasting horizons. A 
Diebold–Marino signifcance test fails to reject the null hy-
pothesis with p-value > 0.05, showing that the variability 
parameters do not signifcantly impact the model’s perfor-
mance. MBE can be neglected, with −1.53 to −6.07 W m−2. 

Forecasts highly correlate with observation, with R be-
tween 0.96 and 0.93, with forecast skills reaching up to 
18.1 %. Similar results can be observed in the confguration 
with variability parameters. Metrics are summarized in Ta-
bles 4 and 5. The metrics confrm that the estimation task 
can be extended to a forecasting task for different prediction 
horizons, while maintaining a positive skill score. Figures 13 
and 14 illustrate the errors as scatter plots for a 5 min fore-
casting horizon for both confgurations. 
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Figure 11. Scatter plots between observation and estimation of the probabilistic three-parameter model, for GHI (a), DNI (b) and DHI (c) 
over the whole test data set. 
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Figure 12. Sharpness diagram, grouping GHI-only and three parameter approach into the estimations quantiles ranges α. 

Table 5. Evaluation metrics for the GHI-only deterministic forecasting model, with variability parameters. Bold values: arrow up means the 
higher the better, arrow down means the lower the better and arrow to 0 means the closer to 0 the better. 

Horizon RMSE ↓ nRMSE ↓ MAE ↓ nMAE ↓ MBE nMBE R ↑ FS ↑ 
[W m−2] [W m−2] [W m−2] [%] 

5 min 77.10 0.05 41.96 0.03 0.18 0.00 0.96 14.7 
10 min 87.84 0.06 49.40 0.03 −0.83 0.00 0.95 15.9 
20 min 98.19 0.07 57.55 0.04 −3.97 0.00 0.94 18.6 
30 min 107.87 0.07 65.06 0.04 −4.97 0.00 0.93 17 

Table 6. Inference and training times for the deterministic GHI-only confgurations. Bold values: arrow up means the higher the better, arrow 
down means the lower the better and arrow to 0 means the closer to 0 the better. 

Model Mean 
inference 

time ↓ 
[ms] 

Training 
time ↓ 
[min] 

Epochs ↓ Per 
epoch 
↓ [min] 

With variability parameters 
Without variability parameters 

233.13 
195.92 

560.82 
742.60 

29 
31 

19.34 
23.95 

When forecasting all three irradiance parameters simul-
taneously, as shown in Fig. A3, a decrease of training time 
per epoch can be observed, when adding variability param-
eters to the training. Also, the number of epochs until trig-
gering the early stopper decreases. Inference time remains, 
again, well below 1 s, although the calculation of the vari-
ability parameters increases the inference time, as with the 
GHI-only confguration. This increase is mainly caused by 
the additional calculation of variability parameters derived 
from estimated DNI values. Inference and training times are 
summarized in Table 7. A signifcant performance decrease 
compared to the GHI-only model can be observed, with p-

value < 0.05 in a Diebold-Mariano test. Adding variability 
parameters to the model does not have any signifcant impact 
on the model’s performance with p-value > 0.05. Evaluation 
metrics are summarized in Tables 8 and 9. 

The probabilistic GHI-only architecture in Fig. A1 shows, 
that forecasting errors in Table 10 increase signifcantly, 
with p-value < 0.05, compared to the deterministic GHI-
only model. When variability parameters are added to the 
model, no signifcant performance gain can be confrmed 
from the errors (see Table 11) with p-value > 0.05. 

Figures 15 and 16 show the errors of the probabilistic mod-
els 5 min forecast as scatter plots. 1q0.95,0.05 is colored ac-
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Table 7. Inference and training times for the deterministic three parameter confgurations. Bold values: arrow up means the higher the better, 
arrow down means the lower the better and arrow to 0 means the closer to 0 the better. 

Model Mean 
inference 

time ↓ 
[ms] 

Training 
time ↓ 
[min] 

Epochs ↓ Per 
epoch 
↓ [min] 

With variability parameters 
Without variability parameters 

263.91 
184.92 

533.31 
796.26 

27 
33 

19.75 
24.13 

Figure 13. Scatter plot between observation and a 5 min forecast of the deterministic GHI-only model, without variability parameters over 
the whole test data set. 

Figure 14. Scatter plot between observation and a 5 min forecast of the deterministic GHI-only model, with variability parameters over the 
whole test data set. 
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Figure 15. Scatter plot between observation and a 5 min forecast of the probabilistic GHI-only model, without variability parameters over 
the whole test data set. 

Figure 16. Scatter plot between observation and a 5 min forecast of the probabilistic GHI-only model, with variability parameters over the 
whole test data set. 

cording to its error magnitude for each forecast. The plots 
show, that 1q0.95,0.05 increases with forecast error. 

A comparison of 1q for both confgurations shows that 
1q for forecasting horizons 20 and 30 min are lower when 
variability parameters are added. The sharpness diagram in 
Fig. 17 reveals, that all quantiles of the α distribution means 
are lower in the confguration without variability parameters. 
The signifcance of the distribution’s mean reductions is con-
frmed using an independent t-test for distribution pairs with 
similar variances and independent trimmed t-test for distri-
butions with differing variances, with p-value < 0.05. 

Table 12 shows inference and training times for the prob-
abilistic GHI-only models. The inference time increases but 

still remains well below one second. The training time per 
epoch increases and the difference by adding variability pa-
rameters decreases. 

For further elaboration, example forecasting scenarios and 
their corresponding image sequences are illustrated and dis-
cussed in the Supplement. 

5 Conclusions 

In this research, we present a novel approach to training and 
designing pre-trained neural networks to generate probabilis-
tic solar irradiance forecasts through ASI images. The re-
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Figure 17. Sharpness diagram, grouping the 20 and 30 min forecasting confgurations with variability parameter (w. var.) and without 
variability parameter (wo. var.) into the predictions quantile ranges α. 

Table 8. Evaluation metrics for the deterministic forecasting model for all irradiance components. Bold values: arrow up means the higher 
the better, arrow down means the lower the better and arrow to 0 means the closer to 0 the better. 

Horizon RMSE ↓ nRMSE ↓ MAE ↓ nMAE ↓ MBE nMBE R ↑ FS ↑ 
[W m−2] [W m−2] [W m−2] [%] 

5 min 78.80 0.05 41.78 0.03 0.07 0.00 0.96 12.8 
10 min 87.32 0.06 48.50 0.03 −1.50 0.00 0.95 16.4 
20 min 99.14 0.07 56.64 0.04 −3.81 0.00 0.94 17.8 
30 min 110.17 0.08 63.77 0.04 −5.49 0.00 0.93 15.2 

Table 9. Evaluation metrics for the deterministic forecasting model for all irradiance components, with variability parameters. Bold values: 
arrow up means the higher the better, arrow down means the lower the better and arrow to 0 means the closer to 0 the better. 

Horizon RMSE ↓ nRMSE ↓ MAE ↓ nMAE ↓ MBE nMBE R ↑ FS ↑ 
[W m−2] [W m−2] [W m−2] [%] 

5 min 77.95 0.05 41.43 0.03 0.14 0.00 0.96 13.7 
10 min 87.55 0.06 48.58 0.03 −2.21 0.00 0.95 16.2 
20 min 99.37 0.07 56.90 0.04 −2.29 0.00 0.94 17.6 
30 min 109.47 0.07 63.21 0.04 −5.84 0.00 0.93 15.8 

search questions formulated in Sect. 1 are answered as fol-
lows: 

1. An estimation of the GHI from ASI images can 
be performed by exploiting an ImageNet pre-trained 
ResNet50v2 as feature extractor. 

2. With the training data used in our study, the training 
time of the deterministic backbone models are roughly 
up to 1 d. The probabilistic backbone models can be 

trained in even less time with fewer epochs and less 
training time per epoch. Using all three irradiance com-
ponents for the estimation task, seems to decrease the 
training time per epoch. The deterministic forecasting 
models can be trained in well below 1 d. Adding vari-
ability parameters has been shown to reduce, both epoch 
count and training time per epoch. The probabilistic 
forecasting models train much faster with training times 
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Table 10. Evaluation metrics for the GHI-only probabilistic forecasting model. Bold values: arrow up means the higher the better, arrow 
down means the lower the better and arrow to 0 means the closer to 0 the better. 

Horizon RMSE ↓ nRMSE ↓ MAE ↓ nMAE ↓ MBE nMBE R ↑ FS ↑ 1q ↓ 
[W m−2] [W m−2] [W m−2] [%] [%] 

5 min 78.67 0.05 42.63 0.03 −5.52 0.00 0.96 12.9 4.03 
10 min 89.80 0.06 52.55 0.04 15.13 0.01 0.95 14.1 10.35 
20 min 100.44 0.07 58.96 0.04 0.99 0.00 0.94 16.8 13.64 
30 min 110.99 0.08 67.31 0.05 −24.54 −0.02 0.93 14.6 16.76 

Table 11. Evaluation metrics for the GHI-only probabilistic forecasting model, with variability parameters. Bold values: arrow up means the 
higher the better, arrow down means the lower the better and arrow to 0 means the closer to 0 the better. 

Horizon RMSE ↓ nRMSE ↓ MAE ↓ nMAE ↓ MBE nMBE R ↑ FS ↑ 1q ↓ 
[W m−2] [W m−2] [W m−2] [%] [%] 

5 min 81.20 0.06 46.17 0.03 –1.09 0.00 0.96 10.1 7.71 
10 min 88.16 0.06 51.16 0.03 4.69 0.00 0.95 15.6 13.63 
20 min 102.05 0.07 59.85 0.04 −9.65 −0.01 0.94 15.4 8.83 
30 min 109.29 0.07 65.68 0.04 −14.94 −0.01 0.93 15.9 12.73 

Table 12. Inference and training times for the probabilistic GHI-
only confgurations. Bold values: arrow up means the higher the 
better, arrow down means the lower the better and arrow to 0 means 
the closer to 0 the better. 

Model Mean inf. Training 
time ↓ [ms] time ↓ [min] 

w. var. par. 290.74 25.34 
wo. var. par. 263.41 26.85 

below half an hour. The training speed gains observed 
for adding variability parameters are less pronounced. 

3. Adding the DNI and DHI to the estimation task, signif-
cantly increases the error of the GHI estimation. This is 
true for both the deterministic and probabilistic model 
and an equal loss weighting for all three irradiance com-
ponents. 

4. It is possible to generate irradiance probability distri-
butions of the GHI without a signifcant error increase, 
compared to the deterministic model. 

5. Forecasts with positive skill are possible for determin-
istic and probabilistic GHI forecasts of up to 30 min. 
Adding the DNI and DHI with equal loss weighting sig-
nifcantly increases the error of the GHI forecast but a 
positive skill score is maintained. The forecast skill of 
the GHI-only model decreases signifcantly when tran-
sitioning to a probabilistic forecasting task, but offers 
additional information about the model’s confdence. 

6. Overall, the set of variability parameters proposed by 
Schroedter-Homscheidt et al. (2018) generally do not 
have a signifcant impact on the model’s forecasting per-
formance. 

7. Inference times remain below one second, ranging from 
184.92 to 290.74 ms for the forecasting models and 
63.07 to 77.94 ms for the backbone models. 

The empirical coverage of the distributions 1qα by the 
probabilistic forecasting model might be reduced by utiliz-
ing calibration techniques on the neural network, such as 
defning 1qα as a loss function. Quantifying the sharpness 
diagrams properly might also be a good method to be incor-
porated within the loss function. The Brier-Score, proposed 
by Brier (1950), and/or combining these loss functions could 
also be an option to calibrate the model properly and thus 
maintain good empirical coverage and high sharpness. 

The observed training time reduction through the set of 
variability parameters proposed by Schroedter-Homscheidt 
et al. (2018), shows that meteorological fndings should not 
only be considered for assisting ANNs in performance in-
crease but also for reducing the ANNs training time. Addi-
tionally, predicting variability parameters rather than irradi-
ance values can illuminate whether an ANN can extract such 
information from the input image sequence and how it does 
so. 

Regarding training time, the same is true for adding the 
DNI and DHI to the estimation task. While the maximum re-
ported training time of roughly 1 d might not be a long period 
for training ANNs, this might be a critical factor when train-
ing on a larger set of ASI images and irradiance data from all 
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over the world. Furthermore, varying the loss weights among 
the GHI, DNI and DHI in the three-parameter model could 
also lead to different results, instead of treating all three pa-
rameters equally. This needs to be evaluated in future work. 

Modifying the architecture of the LSTM and Dense lay-
ers for the forecast model could potentially enhance perfor-
mance in predicting the target feature vector based on the 
current and past feature vectors. Experimenting with differ-
ent confgurations and sizes of these layers may reveal valu-
able insights into effciency improvements and more accu-
rate predictions. This approach involves exploring variations 
in layer parameters, such as the number of units in LSTM 
layers or the activation functions in Dense layers, to opti-
mize the model’s ability to learn and generalize from tempo-
ral data sequences. Additionally, incorporating a broader and 
more detailed series of input images could further refne the 
model’s capacity to effectively learn and extract meaningful 
patterns from temporal data sequences. 

Pothineni et al. (2019) also reported an increase in accu-
racy of forecasts when training data from different geograph-
ical locations with differing atmospheric conditions are used. 
While this performance increase was only confrmed on de-
terministic forecasts, it is plausible that the same is the case 
for probabilistic forecasts. Therefore, we are currently gath-
ering ASI images and irradiance data from Ghana within the 
framework of the EnerSHelF project to test our fndings on 
a more unique data set (Meilinger and Bender, 2023; Yousif 
et al., 2022). While this study confrmed the possibility to 
use an ImageNet pre-trained ANN models for our applica-
tion, it should also be possible to use the trained models as 
pre-trained backbones on more unique and sparse data sets as 
a transfer learning technique. The method also needs a cross-
validation on different sites, to determine the effectiveness of 
using the ASI as radiometer during deployment. 

It is also important to emphasize that this study fltered out 
most clear-sky situations from the dataset to focus on non-
clear-sky conditions. Despite the ability of our model to pre-
dict clear-sky situations, as shown in the supplementary ma-
terial, predicting such clear-sky situations would be a proper 
approach to differentiate situations where more conservative 
methods are more suitable for predicting the irradiance. One 
approach would be using our method to replace the labels 
with a binary clear-sky label to train the model on a binary 
cross-entropy loss function. Labeling the images as clear-sky 
can be done via the clear-sky detection method used in this 
study. We have performed a preliminary study, using a pre-
trained ResNet50v2 classifer and modifying its output vec-
tor to output two instead of 1000 classes. These two classes 
represent clear-sky and non-clear-sky. The general principle 
is shown in Fig. A4. After training this model, we achieve 
an accuracy of 93.2 %. Extending the model to a forecast-
ing model, similar to the approach proposed in this study, we 
achieve a binary accuracy of 93.3 % for a 5 min forecasting 
horizon, 93.2 % for a 10 min forecasting horizon, 91.6 % for 
a 20 min forecasting horizon and 90.6 % for a 30 min fore-
casting horizon. The architecture is shown in Fig. A5. 

Leveraging the method to segment the ASI images through 
a U-Net to determine the presence of clouds, as proposed by 
Fabel et al. (2022), can also be a proper approach to differen-
tiate between clear-sky and non-clear-sky conditions and ap-
ply proper labeling. Using other clear-sky products to label 
the data, like the Copernicus Atmosphere Monitoring Ser-
vice McClear model (Lefèvre et al., 2013), can also be con-
sidered. 
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Appendix A: Architectures 

Figure A1. Architecture of the probabilistic forecast model, forecasting the probability distribution of the GHI. Blue – not trained, but part 
of training; green – trained; pink – not trained, and not part of training. 
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Figure A2. Architecture of the deterministic forecast model, forecasting the GHI. Blue – not trained, but part of training; green – trained; 
pink – not trained, and not part of training. 
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Figure A3. Architecture of the deterministic forecast model, forecasting the GHI, DNI, and DHI simultaneously. Blue – not trained, but part 
of training; green – trained; pink – not trained and not part of training; yellow – not trained, part of training, and optional. 
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Figure A4. Principle of the backbone clear-sky classifcation model, based on a ResNet50v2 classifer. The output vector has the dimension 
of 2, instead of the original 1000. The frst output is for clear-sky (1 = True, 0 = False). The second output is for non-clear-sky (1 = True, 
0 = False). The model can output values between 1 and 0, giving information about the models confdence. 

Figure A5. Architecture of a probabilistic clear-sky forecast model. Blue – not trained, but part of training; green – trained; pink – not trained 
and not part of training; yellow - not trained, part of training, and optional. (a) uses the ResNet50v2 backbone for estimating the current and 
past GHI, as in Fig. A2. (b) and (c) use the ResNet50v2 classifer in Fig. A4. 

Adv. Sci. Res., 20, 129–158, 2024 https://doi.org/10.5194/asr-20-129-2024 

https://doi.org/10.5194/asr-20-129-2024


155 S. Chaaraoui et al.: Probabilistic deep learning irradiance forecasting 

Code availability. The Tensorfow code relevant for the prob-
abilistic output layers is referenced in Barnes et al. (2021) 
(https://doi.org/10.48550/ARXIV.2109.07250), specifcally in Ap-
pendices C–E. The remaining code adheres to standard Tensorfow 
conventions and does not claim to be original in design. Essential 
confguration parameters are detailed within the paper. For further 
inquiries, requests or assistance for the code, please contact the cor-
responding author. 

Data availability. The images from the All-Sky Imager (ASI) and 
the associated irradiance values featured in this study are avail-
able for download at https://doi.org/10.5281/zenodo.2826938 (Car-
reira Pedro et al., 2019). 

Supplement. The supplement related to this article is available 
online at: https://doi.org/10.5194/asr-20-129-2024-supplement. 

Author contributions. Conceptualization, SC, SH, SM; method-
ology, SC, SH, SM; software, SC; validation, SC; formal analy-
sis, SC, SH, SM; investigation, SC; resources, SC, SM, SH; data 
curation, SC; writing – original draft preparation, SC; writing – re-
view and editing, SC, SH, SM; visualization, SC; supervision, SH, 
SM; project administration, SM; funding acquisition, SM. 

Competing interests. The contact author has declared that none 
of the authors has any competing interests. 

Special issue statement. This article is part of the special issue 
“EMS Annual Meeting: European Conference for Applied Mete-
orology and Climatology 2022”. It is a result of the EMS Annual 
Meeting: European Conference for Applied Meteorology and Cli-
matology 2022, Bonn, Germany, 4–9 September 2022. The cor-
responding presentation was part of session OSA1.1: Forecasting, 
nowcasting and warning systems. 

Disclaimer. Publisher’s note: Copernicus Publications remains 
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the fnal responsibility 
lies with the authors. 

Financial support. This research has been supported by the Bun-
desministerium für Bildung und Forschung (grant no. 03SF0567A-
G). 

Review statement. This paper was edited by Maurice Schmeits 
and reviewed by two anonymous referees. 

References 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, 
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., 
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-
icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, 
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., 
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., 
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, 
M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale 
Machine Learning on Heterogeneous Systems, http://tensorfow. 
org/ (last access: 26 December 2023), 2015. 

Amos, D. E.: Algorithm 644: A Portable Package for 
Bessel Functions of a Complex Argument and Non-
negative Order, ACM Trans. Math. Softw., 12, 265–273, 
https://doi.org/10.1145/7921.214331, 1986. 

Barnes, E. A., Barnes, R. J., and Gordillo, N.: Adding Uncertainty 
to Neural Network Regression Tasks in the Geosciences, arXiv 
[preprint], https://doi.org/10.48550/ARXIV.2109.07250, 2021. 

Bouktif, S., Fiaz, A., Ouni, A., and Serhani, M.: Optimal 
Deep Learning LSTM Model for Electric Load Forecast-
ing using Feature Selection and Genetic Algorithm: Compar-
ison with Machine Learning Approaches, Energies, 11, 1636, 
https://doi.org/10.3390/en11071636, 2018. 

Bozkurt, Ö. Ö., Biricik, G., and Taysi, Z. C.: Artifcial neu-
ral network and SARIMA based models for power load fore-
casting in Turkish electricity market, PLOS ONE, 12, 1–24, 
https://doi.org/10.1371/journal.pone.0175915, 2017. 

Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of Software 
Tools, https://opencv.org/ (last access: 26 December 2023), 2000. 

Bremnes, J. B.: Probabilistic Forecasts of Precipitation in 
Terms of Quantiles Using NWP Model Output, Mon. 
Weather Rev., 132, 338–347, https://doi.org/10.1175/1520-
0493(2004)132<0338:PFOPIT>2.0.CO;2, 2004. 

Brier, G. W.: Verifcation Of Forecasts Ex-
pressed In Terms Of Probabilty, Mon. Weather 
Rev., 78, 1–3, https://doi.org/10.1175/1520-
0493(1950)078<0001:VOFEIT>2.0.CO;2, 1950. 

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agar-
wal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., 
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, 
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, 
C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, 
D.: Language Models are Few-Shot Learners, arXiv [preprint], 
https://doi.org/10.48550/arXiv.2005.14165, 2020. 

Bruno, S., Dellino, G., La Scala, M., and Meloni, C.: 
A Microforecasting Module for Energy Management in 
Residential and Tertiary Buildings, Energies, 12, 1006, 
https://doi.org/10.3390/en12061006, 2019. 

Carreira Pedro, H., Larson, D., and Coimbra, C.: A comprehensive 
dataset for the accelerated development and benchmarking of so-
lar forecasting methods (Version V1) [Data set], Zenodo [data 
set], https://doi.org/10.5281/zenodo.2826939, 2019. 

Chaaraoui, S., Bebber, M., Meilinger, S., Rummeny, S., Schneiders, 
T., Sawadogo, W., and Kunstmann, H.: Day-Ahead Electric Load 
Forecast for a Ghanaian Health Facility Using Different Algo-
rithms, Energies, 14, 409, https://doi.org/10.3390/en14020409, 
2021. 

https://doi.org/10.5194/asr-20-129-2024 Adv. Sci. Res., 20, 129–158, 2024 

https://doi.org/10.48550/ARXIV.2109.07250
https://doi.org/10.5281/zenodo.2826938
https://doi.org/10.5194/asr-20-129-2024-supplement
http://tensorflow.org/
http://tensorflow.org/
https://doi.org/10.1145/7921.214331
https://doi.org/10.48550/ARXIV.2109.07250
https://doi.org/10.3390/en11071636
https://doi.org/10.1371/journal.pone.0175915
https://opencv.org/
https://doi.org/10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.3390/en12061006
https://doi.org/10.5281/zenodo.2826939
https://doi.org/10.3390/en14020409
https://doi.org/10.5194/asr-20-129-2024


156 S. Chaaraoui et al.: Probabilistic deep learning irradiance forecasting 

Chaaraoui, S., Houben, S., and Meilinger, S.: End to End 
Global Horizontal Irradiance Estimation Through Pre-trained 
Deep Learning Models Using All-Sky-Images, in: EMS An-
nual Meeting 2022, 4–9 September 2022, Bonn, Germany, 
https://doi.org/10.5194/ems2022-505, 2022. 

Coimbra, C. F., Kleissl, J., and Marquez, R.: Chapter 8 – Overview 
of Solar-Forecasting Methods and a Metric for Accuracy Eval-
uation, in: Solar Energy Forecasting and Resource Assess-
ment, edited by: Kleissl, J., Academic Press, Boston, 171– 
194, ISBN 978-0-12-397177-7, https://doi.org/10.1016/B978-0-
12-397177-7.00008-5, 2013. 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L.: ImageNet: A large-scale hierarchical image database, 
in: 2009 IEEE Conference on Computer Vision and Pattern 
Recognition, 20–25 June 2009, Miami, FL, USA, 248–255, 
https://doi.org/10.1109/CVPR.2009.5206848, 2009. 

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: 
BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding, arXiv [preprint], 
https://doi.org/10.48550/ARXIV.1810.04805, 2019. 

Diagne, H. M., Lauret, P., and David, M.: Solar irradiation fore-
casting: state-of-the-art and proposition for future developments 
for small-scale insular grids, in: WREF 2012 – World Renew-
able Energy Forum, Denver, USA, https://hal.archives-ouvertes. 
fr/hal-00918150, 2012. 

Diebold, F. X. and Mariano, R. S.: Comparing Predic-
tive Accuracy, J. Business Econ. Stat., 20, 134–144, 
https://doi.org/10.1198/073500102753410444, 2002. 

Dongol, D.: Development and implementation of model predictive 
control for a photovoltaic battery system, PhD thesis, Univer-
sität Freiburg, Freiburg, https://doi.org/10.6094/UNIFR/149249, 
2019. 

Du, H., He, Y., and Jin, T.: Transfer Learning for Human Ac-
tivities Classifcation Using Micro-Doppler Spectrograms, in: 
2018 IEEE International Conference on Computational Electro-
magnetics (ICCEM), 26–28 March 2018, Chengdu, China, 1–3, 
https://doi.org/10.1109/COMPEM.2018.8496654, 2018. 

Fabel, Y., Nouri, B., Wilbert, S., Blum, N., Triebel, R., Hasen-
balg, M., Kuhn, P., Zarzalejo, L. F., and Pitz-Paal, R.: Ap-
plying self-supervised learning for semantic cloud segmen-
tation of all-sky images, Atmos. Meas. Tech., 15, 797–809, 
https://doi.org/10.5194/amt-15-797-2022, 2022. 

Feng, C., Zhang, W., Hodge, B.-M., and Zhang, Y.: Occlusion-
perturbed Deep Learning for Probabilistic Solar Forecasting via 
Sky Images, in: 2022 IEEE Power I & Energy Society General 
Meeting (PESGM), 17–21 July 2022, Denver, CO, USA, 1–5, 
https://doi.org/10.1109/PESGM48719.2022.9917222, 2022. 

Ferreira, C. A., Melo, T., Sousa, P., Meyer, M. I., Shakibapour, 
E., Costa, P., and Campilho, A.: Classifcation of Breast Can-
cer Histology Images Through Transfer Learning Using a Pre-
trained Inception Resnet V2, in: Image Analysis and Recog-
nition, Springer International Publishing, 763–770, ISBN 978-
3-319-93000-8, https://doi.org/10.1007/978-3-319-93000-8_86, 
2018. 

Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic fore-
casts, calibration and sharpness, J. Roy. Stat. Soc. B, 69, 243– 
268, https://doi.org/10.1111/j.1467-9868.2007.00587.x, 2007. 

Hasenbalg, M., Kuhn, P., Wilbert, S., Nouri, B., and Kazantzidis, 
A.: Benchmarking of six cloud segmentation algorithms for 

ground-based all-sky imagers, Solar Energy, 201, 596–614, 
https://doi.org/10.1016/j.solener.2020.02.042, 2020. 

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Resid-
ual Learning for Image Recognition, arXiv [prepint], 
https://doi.org/10.48550/ARXIV.1512.03385, 2015. 

He, K., Zhang, X., Ren, S., and Sun, J.: Identity Map-
pings in Deep Residual Networks, in: Computer Vision – 
ECCV 2016, Springer International Publishing, Cham, 630–645, 
https://doi.org/10.48550/ARXIV.1603.05027, 2016. 

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., 
Weyand, T., Andreetto, M., and Adam, H.: MobileNets: Effcient 
Convolutional Neural Networks for Mobile Vision Applications, 
arXiv [preprint], https://doi.org/10.48550/arXiv.1704.04861, 
2017. 

Ineichen, P. and Perez, R.: A new airmass independent formulation 
for the Linke turbidity coeffcient, Solar Energy, 73, 151–157, 
https://doi.org/10.1016/S0038-092X(02)00045-2, 2002. 

Jones, M. C. and Pewsey, A.: Sinh-arcsinh 
distributions, Biometrika, 96, 761–780, 
https://doi.org/10.1093/biomet/asp053, 2009. 

Jung, S.: Variabilität der solaren Einstrahlung in 1-Minuten 
aufgelösten Strahlungszeitserien, PhD thesis, https://elib.dlr.de/ 
100762/ (last access: 26 December 2023), 2015. 

Kern, E. C., Augustyn, J., and Bing, J.: RSR2 Rotating 
Shadowband Radiometer Product Brochure, Campbell Scien-
tifc Southeast Asia, https://s.campbellsci.com/documents/au/ 
product-brochures/b_rsr2.pdf (last access: 26 December 2023), 
2023. 

Kober, K., Craig, G. C., Keil, C., and Dörnbrack, A.: Blend-
ing a probabilistic nowcasting method with a high-resolution 
numerical weather prediction ensemble for convective precip-
itation forecasts, Q. J. Roy. Meteorol. Soc., 138, 755–768, 
https://doi.org/10.1002/qj.939, 2012. 

Kraas, B., Schroedter-Homscheidt, M., and Madlener, R.: 
Economic merits of a state-of-the-art concentrating so-
lar power forecasting system for participation in the 
Spanish electricity market, Solar Energy, 93, 244–255, 
https://doi.org/10.1016/j.solener.2013.04.012, 2013. 

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: Imagenet classif-
cation with deep convolutional neural networks, Adv. Neural Inf. 
Process. Syst., 25, 1097–1105, 2012. 

Lefèvre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., 
Qu, Z., Wald, L., Schroedter-Homscheidt, M., Hoyer-Klick, C., 
Arola, A., Benedetti, A., Kaiser, J. W., and Morcrette, J.-J.: Mc-
Clear: a new model estimating downwelling solar radiation at 
ground level in clear-sky conditions, Atmos. Meas. Tech., 6, 
2403–2418, https://doi.org/10.5194/amt-6-2403-2013, 2013. 

Levene, H.: Robust tests for equality of variances, Contributions to 
Probability and Statistics: Essays in Honor of Harold Hotelling, 
Stanford University Press, Palo Alto, 278–292, ISBN 0-8047-
0596-8, 1960. 

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., 
and Xie, S.: A ConvNet for the 2020s, arXiv [preprint], 
https://doi.org/10.48550/arXiv.2201.03545, 2022. 

Maheri, A.: Multi-objective design optimisation of standalone hy-
brid wind-PV-diesel systems under uncertainties, Renew. En-
ergy, 66, 650–661, https://doi.org/10.1016/j.renene.2014.01.009, 
2014. 

Adv. Sci. Res., 20, 129–158, 2024 https://doi.org/10.5194/asr-20-129-2024 

https://doi.org/10.5194/ems2022-505
https://doi.org/10.1016/B978-0-12-397177-7.00008-5
https://doi.org/10.1016/B978-0-12-397177-7.00008-5
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/ARXIV.1810.04805
https://hal.archives-ouvertes.fr/hal-00918150
https://hal.archives-ouvertes.fr/hal-00918150
https://doi.org/10.1198/073500102753410444
https://doi.org/10.6094/UNIFR/149249
https://doi.org/10.1109/COMPEM.2018.8496654
https://doi.org/10.5194/amt-15-797-2022
https://doi.org/10.1109/PESGM48719.2022.9917222
https://doi.org/10.1007/978-3-319-93000-8_86
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1016/j.solener.2020.02.042
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1603.05027
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1016/S0038-092X(02)00045-2
https://doi.org/10.1093/biomet/asp053
https://elib.dlr.de/100762/
https://elib.dlr.de/100762/
https://s.campbellsci.com/documents/au/product-brochures/b_rsr2.pdf
https://s.campbellsci.com/documents/au/product-brochures/b_rsr2.pdf
https://doi.org/10.1002/qj.939
https://doi.org/10.1016/j.solener.2013.04.012
https://doi.org/10.5194/amt-6-2403-2013
https://doi.org/10.48550/arXiv.2201.03545
https://doi.org/10.1016/j.renene.2014.01.009
https://doi.org/10.5194/asr-20-129-2024


157 S. Chaaraoui et al.: Probabilistic deep learning irradiance forecasting 

Maitanova, N., Telle, J.-S., Hanke, B., Grottke, M., Schmidt, 
T., Maydell, K. V., and Agert, C.: A Machine Learning 
Approach to Low-Cost Photovoltaic Power Prediction Based 
on Publicly Available Weather Reports, Energies, 13, 735, 
https://doi.org/10.3390/en13030735, 2020. 

Mbungu, N. T., Naidoo, R., Bansal, R. C., and Bipath, M.: 
Optimisation of grid connected hybrid photovoltaic–wind– 
battery system using model predictive control design, IET Re-
new. Power Generat., 11, 1760–1768, https://doi.org/10.1049/iet-
rpg.2017.0381, 2017. 

Meilinger, S. and Bender, K.: EnerSHelF - Energy-Self-Suffciency 
for Health Facilities in Ghana, https://enershelf.de/ (last access: 
6 February 2023), 2023. 

Nie, Y., Zelikman, E., Scott, A., Paletta, Q., and Brandt, A.: 
SkyGPT: Probabilistic Short-term Solar Forecasting Using Syn-
thetic Sky Videos from Physics-constrained VideoGPT, arXiv 
[preprint], https://doi.org/10.48550/arXiv.2306.11682, 2023. 

Nouri, B., Blum, N., Wilbert, S., and Zarzalejo, L. F.: A 
Hybrid Solar Irradiance Nowcasting Approach: Combin-
ing All Sky Imager Systems and Persistence Irradiance 
Models for Increased Accuracy, Solar RRL, 6, 2100442, 
https://doi.org/10.1002/solr.202100442, 2021. 

Nouri, B., Wilbert, S., Blum, N., Fabel, Y., Lorenz, E., Hammer, 
A., Schmidt, T., Zarzalejo, L. F., and Pitz-Paal, R.: Probabilistic 
solar nowcasting based on all-sky imagers, Solar Energy, 253, 
285–307, https://doi.org/10.1016/j.solener.2023.01.060, 2023. 

Ou, X., Yan, P., Zhang, Y., Tu, B., Zhang, G., Wu, J., and Li, W.: 
Moving Object Detection Method via ResNet-18 With Encoder– 
Decoder Structure in Complex Scenes, IEEE Access, 7, 108152– 
108160, https://doi.org/10.1109/ACCESS.2019.2931922, 2019. 

Owens, R. G. and Hewson, T.: ECMWF Forecast User Guide, 
ECMWF, https://doi.org/10.21957/m1cs7h, 2018. 

Paletta, Q., Arbod, G., and Lasenby, J.: Benchmarking of 
deep learning irradiance forecasting models from sky im-
ages – An in-depth analysis, Solar Energy, 224, 855–867, 
https://doi.org/10.1016/j.solener.2021.05.056, 2021. 

Paletta, Q., Hu, A., Arbod, G., and Lasenby, J.: ECLIPSE: Envision-
ing CLoud Induced Perturbations in Solar Energy, Appl. Energy, 
326, 119924, https://doi.org/10.1016/j.apenergy.2022.119924, 
2022. 

Pedro, H. T. C., Larson, D. P., and Coimbra, C. F. M.: A compre-
hensive dataset for the accelerated development and benchmark-
ing of solar forecasting methods, J. Renew. Sustain. Energ., 11, 
036102, https://doi.org/10.1063/1.5094494, 2019. 

Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, 
R., and Vignola, F.: A new operational model for satellite-derived 
irradiances: description and validation, Solar Energy, 73, 307– 
317, https://doi.org/10.1016/S0038-092X(02)00122-6, 2002. 

Perez, R., Kivalov, S., Schlemmer, J., Hemker, K., and 
Hoff, T.: Parameterization of site-specifc short-term 
irradiance variability, Solar Energy, 85, 1343–1353, 
https://doi.org/10.1016/j.solener.2011.03.016, 2011. 

Pothineni, D., Oswald, M. R., Poland, J., and Pollefeys, M.: Kloud-
Net: Deep Learning for Sky Image Analysis and Irradiance Fore-
casting, in: Pattern Recognition, edited by: Brox, T., Bruhn, A., 
and Fritz, M., Springer International Publishing, Cham, 535– 
551, ISBN 978-3-030-12939-2, https://doi.org/10.1007/978-3-
030-12939-2_37, 2019. 

Qian, R., Meng, T., Gong, B., Yang, M.-H., Wang, 
H., Belongie, S., and Cui, Y.: Spatiotemporal Con-
trastive Video Representation Learning, arXiv [perprint], 
https://doi.org/10.48550/arXiv.2008.03800, 2021. 

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and 
Sutskever, I.: Language Models are Unsupervised Multitask 
Learners, https://cdn.openai.com/better-language-models/ 
language_models_are_unsupervised_multitask_learners.pdf 
(last access: 26 December 2023), 2019. 

Redmon, J. and Farhadi, A.: YOLOv3: An In-
cremental Improvement, arXiv [preprint], 
https://doi.org/10.48550/arXiv.1804.02767, 2018. 

Reno, M. J. and Hansen, C. W.: Identifcation of periods of clear 
sky irradiance in time series of GHI measurements, Renew. En-
ergy, 90, 520–531, https://doi.org/10.1016/j.renene.2015.12.031, 
2016. 

Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., and de Geus, 
P.: Malicious Software Classifcation Using Transfer Learn-
ing of ResNet-50 Deep Neural Network, in: 2017 16th IEEE 
International Conference on Machine Learning and Applica-
tions (ICMLA), 18–21 December 2017, Cancun, Mexico, 1011– 
1014, https://doi.org/10.1109/ICMLA.2017.00-19, 2017. 

Riou, M., Dupriez-Robin, F., Grondin, D., Le Loup, C., Benne, M., 
and Tran, Q. T.: Multi-Objective Optimization of Autonomous 
Microgrids with Reliability Consideration, Energies, 14, 4466, 
https://doi.org/10.3390/en14154466, 2021. 

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional 
Networks for Biomedical Image Segmentation, arXiv [perprint], 
https://doi.org/10.48550/ARXIV.1505.04597, 2015. 

Sachs, J.: Model-based optimization of hybrid energy sys-
tems, Dissertation, Universität Stuttgart and Shaker Verlag 
GmbH, https://www.shaker.de/de/content/catalogue/index.asp? 
lang=de&ID=8&ISBN=978-3-8440-4457-7 (last access: 26 De-
cember 2023), 2016. 

Sachs, J. and Sawodny, O.: A Two-Stage Model Predictive Con-
trol Strategy for Economic Diesel-PV-Battery Island Microgrid 
Operation in Rural Areas, IEEE T. Sustain. Energy, 7, 903–913, 
https://doi.org/10.1109/TSTE.2015.2509031, 2016. 

Schroedter-Homscheidt, M., Kosmale, M., Jung, S., and Kleissl, 
J.: Classifying ground-measured 1 minute temporal variabil-
ity within hourly intervals for direct normal irradiances, Mete-
orol. Z., 27, 161–179, https://doi.org/10.1127/metz/2018/0875, 
2018. 

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and 
Catanzaro, B.: Megatron-LM: Training Multi-Billion Parame-
ter Language Models Using Model Parallelism, arXiv [perprint], 
https://doi.org/10.48550/ARXIV.1909.08053, 2020. 

Silvester, S., Tanbakuchi, A., Müller, P., Nunez-Iglesias, J., Har-
fouche, M., Klein, A., McCormick, M., OrganicIrradiation, Rai, 
A., Ladegaard, A., Lee, A., Smith, T. D., Vaillant, G. A., Jack-
walker64, Nises, J., Rreilink, Van Kemenade, H., Dusold, C., 
Kohlgrüber, F., Yang, G., Inggs, G., Singleton, J., Schambach, 
M., Hirsch, M., Miloš Komarˇ c, NiklasRosenstein, Po-Chuancevi´ 
Hsieh, Zulko, Barnes, C., and Elliott, A.: imageio/imageio, Zen-
odo [code], https://doi.org/10.5281/ZENODO.1488561, 2020. 

Skartveit, A., Olseth, J. A., and Tuft, M. E.: An hourly diffuse frac-
tion model with correction for variability and surface albedo, 
Solar Energy, 63, 173–183, https://doi.org/10.1016/S0038-
092X(98)00067-X, 1998. 

https://doi.org/10.5194/asr-20-129-2024 Adv. Sci. Res., 20, 129–158, 2024 

https://doi.org/10.3390/en13030735
https://doi.org/10.1049/iet-rpg.2017.0381
https://doi.org/10.1049/iet-rpg.2017.0381
https://enershelf.de/
https://doi.org/10.48550/arXiv.2306.11682
https://doi.org/10.1002/solr.202100442
https://doi.org/10.1016/j.solener.2023.01.060
https://doi.org/10.1109/ACCESS.2019.2931922
https://doi.org/10.21957/m1cs7h
https://doi.org/10.1016/j.solener.2021.05.056
https://doi.org/10.1016/j.apenergy.2022.119924
https://doi.org/10.1063/1.5094494
https://doi.org/10.1016/S0038-092X(02)00122-6
https://doi.org/10.1016/j.solener.2011.03.016
https://doi.org/10.1007/978-3-030-12939-2_37
https://doi.org/10.1007/978-3-030-12939-2_37
https://doi.org/10.48550/arXiv.2008.03800
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1016/j.renene.2015.12.031
https://doi.org/10.1109/ICMLA.2017.00-19
https://doi.org/10.3390/en14154466
https://doi.org/10.48550/ARXIV.1505.04597
https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8440-4457-7
https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8440-4457-7
https://doi.org/10.1109/TSTE.2015.2509031
https://doi.org/10.1127/metz/2018/0875
https://doi.org/10.48550/ARXIV.1909.08053
https://doi.org/10.5281/ZENODO.1488561
https://doi.org/10.1016/S0038-092X(98)00067-X
https://doi.org/10.1016/S0038-092X(98)00067-X
https://doi.org/10.5194/asr-20-129-2024


158 S. Chaaraoui et al.: Probabilistic deep learning irradiance forecasting 

Stein, J., Hansen, C., and Reno, M. J.: The Variability Index: A 
New And Novel Metric For Quantifying Irradiance And PV Out-
put Variability, OSTI.GOV, https://www.osti.gov/biblio/1068417 
(last access: 26 December 2023), 2012. 

Taha, M. S. and Mohamed, Y. A.-R. I.: Robust MPC-based energy 
management system of a hybrid energy source for remote com-
munities, in: 2016 IEEE Electrical Power and Energy Confer-
ence (EPEC), 12–14 October 2016, Ottawa, ON, Canada, 1–6, 
https://doi.org/10.1109/EPEC.2016.7771706, 2016. 

Tan, M. and Le, Q. V.: EffcientNet: Rethinking Model Scal-
ing for Convolutional Neural Networks, arXiv [perprint], 
https://doi.org/10.48550/arXiv.1905.11946, 2020. 

Tazvinga, H., Xia, X., and Zhang, J.: Minimum cost solu-
tion of photovoltaic–diesel–battery hybrid power sys-
tems for remote consumers, Solar Energy, 96, 292–299, 
https://doi.org/10.1016/j.solener.2013.07.030, 2013. 

Telle, J.-S., Maitanova, N., Steens, T., Hanke, B., von May-
dell, K., and Grottke, M.: Combined PV Power and Load 
Prediction for Building-Level Energy Management Ap-
plications, in: 2020 Fifteenth International Conference 
on Ecological Vehicles and Renewable Energies (EVER), 
10–12 September 2020, Monte-Carlo, Monaco, 1–15, 
https://doi.org/10.1109/EVER48776.2020.9243026, 2020. 

Urbich, I., Bendix, J., and Müller, R.: Development of a Seam-
less Forecast for Solar Radiation Using ANAKLIM++, Remote 
Sens., 12, 3672, https://doi.org/10.3390/rs12213672, 2020. 

Welch, B. L.: The Generalization Of ‘Student’s’ Problem 
When Several Different Population Varlances Are Involved, 
Biometrika, 34, 28–35, https://doi.org/10.1093/biomet/34.1-
2.28, 1947. 

Xiang, M., Cui, W., Wan, C., and Zhao, C.: A Sky Image-
Based Hybrid Deep Learning Model for Nonparametric 
Probabilistic Forecasting of Solar Irradiance, in: 2021 Inter-
national Conference on Power System Technology (POW-
ERCON), 8–9 December2021, Haikou, China, 946–952, 
https://doi.org/10.1109/POWERCON53785.2021.9697876, 
2021. 

Yang, H., Wang, L., Huang, C., and Luo, X.: 3D-CNN-
Based Sky Image Feature Extraction for Short-Term 
Global Horizontal Irradiance Forecasting, Water, 13, 1773, 
https://doi.org/10.3390/w13131773, 2021. 

Yang, Y., Che, J., Li, Y., Zhao, Y., and Zhu, S.: An 
incremental electric load forecasting model based 
on support vector regression, Energy, 113, 796–808, 
https://doi.org/10.1016/j.energy.2016.07.092, 2016. 

Yousif, R., Kimiaie, N., Meilinger, S., Bender, K., Abagale, F. K., 
Ramde, E., Schneiders, T., Kunstmann, H., Diallo, B., Salack, S., 
Denk, S., Bliefernicht, J., Sawadogo, W., Guug, S., Rummeny, 
S., Bohn, P., Chaaraoui, S., Schiffer, S., Abass, M., and Amekah, 
E.: Measurement data availability within EnerSHelF, in: EMS 
Annual Meeting 2022, 4–9 September 2022, Bonn, Germany, 
https://doi.org/10.5194/ems2022-530, 2022. 

Yuen, K. K.: The Two-Sample Trimmed t for Unequal Population 
Variances, Biometrika, 61, 165–170, 1974. 

Zhang, X., Yang, J., Wang, W., Zhang, M., and Jing, T.: Integrated 
Optimal Dispatch of a Rural Micro-Energy-Grid with Multi-
Energy Stream Based on Model Predictive Control, Energies, 11, 
3439, https://doi.org/10.3390/en11123439, 2018. 

Zhu, B., Tazvinga, H., and Xia, X.: Switched Model Predictive Con-
trol for Energy Dispatching of a Photovoltaic-Diesel-Battery Hy-
brid Power System, IEEE T. Control Syst. Technol., 23, 1229– 
1236, https://doi.org/10.1109/TCST.2014.2361800, 2015. 

Adv. Sci. Res., 20, 129–158, 2024 https://doi.org/10.5194/asr-20-129-2024 

https://www.osti.gov/biblio/1068417
https://doi.org/10.1109/EPEC.2016.7771706
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.1016/j.solener.2013.07.030
https://doi.org/10.1109/EVER48776.2020.9243026
https://doi.org/10.3390/rs12213672
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1109/POWERCON53785.2021.9697876
https://doi.org/10.3390/w13131773
https://doi.org/10.1016/j.energy.2016.07.092
https://doi.org/10.5194/ems2022-530
https://doi.org/10.3390/en11123439
https://doi.org/10.1109/TCST.2014.2361800
https://doi.org/10.5194/asr-20-129-2024
https://OSTI.GOV

	Abstract
	Introduction
	Data set
	Methodology
	Backbone model
	Backbone model training configuration

	Variability Parameters
	Forecast model
	Training configuration

	Evaluation metrics

	Results
	Backbone model
	Forecast model

	Conclusions
	Appendix A: Architectures
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Special issue statement
	Disclaimer
	Financial support
	Review statement
	References

