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A B S T R A C T

The lattice Boltzmann method (LBM) stands apart from conventional macroscopic approaches due to its low
numerical dissipation and reduced computational cost, attributed to a simple streaming and local collision step.
While this property makes the method particularly attractive for applications such as direct noise computation,
it also renders the method highly susceptible to instabilities. A vast body of literature exists on stability-
enhancing techniques, which can be categorized into selective filtering, regularized LBM, and multi-relaxation
time (MRT) models. Although each technique bolsters stability by adding numerical dissipation, they act on
different modes. Consequently, there is not a universal scheme optimally suited for a wide range of different
flows. The reason for this lies in the static nature of these methods; they cannot adapt to local or global
flow features. Still, adaptive filtering using a shear sensor constitutes an exception to this. For this reason, we
developed a novel collision operator that uses space- and time-variant collision rates associated with the bulk
viscosity. These rates are optimized by a physically informed neural net. In this study, the training data consists
of a time series of different instances of a 2D barotropic vortex solution, obtained from a high-order Navier–
Stokes solver that embodies desirable numerical features. For this specific text case our results demonstrate
that the relaxation times adapt to the local flow and show a dependence on the velocity field. Furthermore,
the novel collision operator demonstrates a better stability-to-precision ratio and outperforms conventional
techniques that use an empirical constant for the bulk viscosity.
1. Introduction

Computational fluid dynamics (CFD) has become an indispensable
technology in the field of aeronautics [2,3]. For the vast majority
of fluid dynamic problems in the aviation industry, the motion of a
fluid may accurately be described by the Navier–Stokes (NS) equations,
which translate to the macroscopic conservation of mass and momen-
tum. Despite the simplified view of a fluid as a continuum, accurate
fully-resolved direct numerical (DNS) or large-eddy (LES) simulations
at operating conditions (i.e. subject to high Reynolds numbers) are still
cost-prohibitive due to the need for fine models imposed by turbulence.
The chaotic motions in a flow that cover a wide range of length scales
(the ratio of the smallest to the largest scales in one dimension is
estimated to scale with Re3∕4 in isotropic turbulence) must not be
ignored as they are crucial for the correct prediction of fluid behavior.

∗ Corresponding author.
E-mail address: horstmann.tobias@googlemail.com (J.T. Horstmann).

1 A single CPU node of the DLR HPC cluster CARO consumes 600 watts [1], amounting to roughly 15 kWh per day, which is more than the energy consumption
of the average European household (10 kWh per day).

The presence of turbulence thus puts severe constraints on the spatio-
temporal resolution of a simulation. In a DNS of wall-bounded flows,
the number of grid points scales with ∼ Re37∕14 [4]. Within the Reynolds
number range relevant to the aircraft industry (Re = 107 − 109) such a
simulation would require 108 − 1010 CPU hours on today’s supercom-
puters [5]. Regardless of the infeasibility of such a simulation due to
time and current HPC constraints, the energy requirements for such an
endeavour would be unjustifiable in the age of climate change1. It is
therefore more than ever necessary to develop more efficient simulation
methods that maintain a high fidelity. A less cost-intensive alternative
to DNS are large eddy simulations (LES), where only the large, often
anisotropic turbulent structures are resolved, and the unresolved small
scales are accounted for by a so-called sub-grid scale model. However,
a recent study has shown that simulating an entire aircraft at operating
conditions would still take 600 years to accomplish using modern HPC
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infrastructure [5]. At present, such a task can only be achieved within
a reasonable turnaround time using the Reynolds-averaged Navier–
Stokes (RANS) approach. In the case of steady RANS, for example,
the flow variables are temporally averaged resulting in unclosed terms
due to nonlinearity (e.g., Reynolds stress terms for the momentum
equations). However, because of this simplified representation of tur-
bulence, it often fails to correctly predict turbulence transition and
flow separation; two phenomena that largely influence lift and drag
characteristics, for example.

The ultimate goal in CFD is, therefore, to achieve high-fidelity
results at reasonable costs. In 2013, NASA ventured a quick look at the

FD landscape of the year 2030, concluding that LES-based methods
ill still not be feasible by then [6]. However, the past 10 years have

een two important developments in the field of CFD.
On the one hand, further advancement of the lattice Boltzmann

ethod has led to its establishment as a valuable LES tool, outperform-
ng conventional (continuum-based) approaches in this discipline by a
actor of five to ten [7–9].

On the other hand, the recent burst of interest in machine learning
ML) has led to a reinvigorated thrust for innovation in the CFD
ommunity [10].

Successful implementations of machine learning in CFD encompass
but are not limited to) areas such as turbulence modeling [11,12], op-
imization and control [13], and the development of Physics-Informed
eural Networks (PINNs), which offer a novel approach to solving
omplex fluid dynamics problems by incorporating underlying physical
rinciples directly into their learning algorithms [14,15]. Consequently,
t did not take long for research groups to begin exploring the integra-
ion of LBM and ML, to expedite achieving the grand challenges in CFD,
s mentioned in [6]. It is critical in this domain to distinguish between
urrogate models and hybrid models, where deep learning is applied
o only a part of the governing equation. The former, like PINNs, have
emonstrated the ability to both solve forward simulations as well as
nfer solutions from sparse velocity fields without relying on boundary
onditions [16]. Another innovative approach is Lat-Net, employing
onvolutional layers to efficiently compress flow field information [17].
espite their promising results, these models face challenges in gener-
lizing across different flow conditions, particularly varying Reynolds
umbers and levels of turbulence. Furthermore, ensuring adherence to
he governing equations (in particular in case of Lat-Net) remains chal-
enging in the complete replacement of these equations with machine
earning models. Due to the high efficiency and parallelizability of the
treaming step in LBM, an alternative to surrogate models is to leverage
eep learning exclusively for the collision operator. Previous research
y Corbetta et al. [18] and Prins [19] demonstrated that the Bhatnagar–
ross–Krook (BGK) operator can be effectively learned using a deep
eural network, which takes the pre-collision states of the distribution
unctions as input and predicts the post-collision states. Another study
y Bedrunka et al. [20] explored using deep learning to optimize the
on-hydrodynamic relaxation times of a multi-relaxation time (MRT)
ollision operator. A particularity of this approach is that the relaxation
imes are space and time dependent and vary as a function of the local
elocity moments. They showed that their neural collision operator
utperforms the classical MRT model in terms of stability and accuracy.

In this study we adopt a very similar approach, aiming to learn
function that maps the local velocity moments to the relaxation

imes associated with the bulk viscosity. Our focus on this aspect is
riven by two primary factors: firstly, a locally increased bulk viscosity
rovides a general mechanism for stabilizing the simulation of weakly
ompressible [21] and compressible [22] flows (shock wave smearing).
econdly, as demonstrated in [23], a velocity dependent bulk viscos-
ty can mitigate the violation of Galilean invariance inherent in the
tandard BGK-LBM approach.

Through this research, we seek to expand on the study of neu-
al collision operators in LBM. A novel aspect of this study lies in
2

he training data, which stems from a Galilean invariant, isothermal
Navier–Stokes solver. We will therefore address the question of how far
it is possible to transfer numerical properties between different fluid
dynamic models. The paper is organized as follows: the theoretical
part briefly recaps the different stability enhancing measures that are
commonly used in LBM. This is followed by a presentation of the
isothermal finite-volume Navier–Stokes (FV-NS) solver that is used to
generate the ground truth data (Section 2.5). The theory part concludes
with a section on the machine learning framework applied in this
study (Section 2.8) together with an overview of the ML-LBM algorithm
(Section 2.9). Section 3 presents the results of the neural collision
operator. A conclusion is drawn in Section 4.

2. Theory

The Navier–Stokes equations (NSE) are the macroscopic equivalent
to the Boltzmann equation (BE) up to second order in the Knudsen
number (Kn2), as demonstrated by a Chapman–Enskog analysis [24].
Defined as the ratio of mean free path to the representative physical
length scale, the Knudsen number is usually very small for the large
part of aeronautic applications (Kn ≪ 0.01). In such cases, both models
exhibit a similar level of fidelity. However, to make the Boltzmann
approach accessible and computationally competitive to conventional
methods in CFD, the number of particle velocities must be reduced to a
finite set (lattice), resulting in the discrete velocity Boltzmann equation
(DVBE). Using a standard lattice like the D2Q9 this reduction introduces
a cubic error term into the momentum and energy equations, limiting
the standard approach to isothermal, weakly compressible flows. This is
in contrast to the Navier–Stokes numerical solver, where the discretiza-
tion of velocity space does not apply and the numerical characteristics
are solely determined by the discretization of space and time. The
following sections will summarize the most prominent techniques to
control the numerical behavior of the lattice Boltzmann method and
present the discrete Navier–Stokes model used in this study. The theory
is restricted to a consideration in two-dimensional space for brevity,
and all formulas are presented in dimensionless, or rather lattice units.

2.1. Standard LBM

The lattice Boltzmann method that is usually found in literature and
referred to as standard LBM is a simple update rule for the populations
𝑓𝛼 residing on a D2Q9 lattice, where 𝛼 indicates the lattice-velocity
direction. In the absence of a source term, it can be written (in lattice
units) as

𝑓𝛼(𝒙 + 𝒄𝛼 , 𝑡 + 1) = 𝑓𝛼(𝒙, 𝑡) −
1
𝜏
[

𝑓 (𝒙, 𝑡) − 𝑓 eq
𝛼 (𝒙, 𝑡)

]

, (1)

where the right-hand side of (1) describes the collision of the pop-
ulations using the BGK operator. The post-collision states are then
streamed to the neighboring nodes during one time step. The discrete
Maxwellian 𝑓 eq

𝛼 provides a probability for a resting fluid of finding a
particle at position 𝒙 and time 𝑡, traveling at the discrete velocity 𝒄𝛼 .
It is usually truncated at second order, i.e.

𝑓 𝑒𝑞
𝛼 = 𝜌𝜔𝛼

(

1 +
𝒄𝛼 ⋅ 𝒖
𝑐20

+
(𝒄𝛼 ⋅ 𝒖)2

2𝑐40
−

|𝑢|2

2𝑐20
+ (Ma3)

)

, (2)

here 𝑐0 =
√

1∕3 is the isothermal speed of sound (in lattice units).
During collision, the populations 𝑓𝛼 are relaxed towards this probability
value, controlled by the relaxation time

𝜏 = 𝜏𝑠 +
1
2
, (3)

with 𝜏𝑠 = 𝜈∕𝑐20 , and 𝜈 being the kinematic viscosity of the fluid (in lat-
tice units). This type of collision is referred to as single relaxation time
(SRT) collision. An alternative formulation to (1) involves a collision in
moment space such that

𝑓 (𝒙 + 𝒄 , 𝑡 + 1) = row ( −1) ⋅
{

𝒎 𝒙, 𝑡 −𝜦 ⋅
[

𝒎 𝒙, 𝑡 −𝒎eq 𝒙, 𝑡
]}

, (4)
𝛼 𝛼 𝛼 ( ) ( ) ( )
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where  is a transformation matrix that maps the population vector 𝒇
and 𝒇 𝑒𝑞 onto moment space, i.e.

=  ⋅ 𝒇 and 𝒎𝑒𝑞 =  ⋅ 𝒇 𝑒𝑞 . (5)

The relaxation rate is now prescribed in a diagonal collision matrix
𝜦srt containing the relaxation frequency 𝜔 = 1∕𝜏 on the diagonal.
Concretely,

𝜦srt = diag(𝜔,… , 𝜔
⏟⏞⏟⏞⏟
𝑞−times

), (6)

where 𝑞 is the number of discrete velocity directions. The subscript SRT
indicates that all moments are, a priori, relaxed at the same rate. It
should be noted that depending on the choice of  the properties of the
model may slightly vary compared to (1). This is particularly true when
using central moments [25] or cumulants [26] instead of raw moments.
This, however, shall not be the subject of this study. Due to the low
dissipation rate, the standard LBM is not very robust in withstanding
disturbances (errors) that are introduced during the discretization pro-
cess. It is for that reason that (1) or rather (4) are mostly used in the
academic context and LBM solvers used for simulations at industrial
scale typically employ some sort of stability enhancing techniques that
will briefly be presented in the following.

2.2. Filtered LBM

In order to widen the stability envelop of LBM one can either in-
crease the numerical dissipation of certain modes (e.g. shear, acoustic,
and or ghost) or specifically address and reduce the errors introduced
during the discretization process, or do both. The universal means of
choice to increase numerical dissipation is selective filtering [27,28],
which can be applied to the distribution functions 𝑓𝛼 or the moments
𝑚𝛼 . Choosing 𝜙 as placeholder, a classical filtering operation reads

𝜙 = 𝜙 − 𝜎
D
∑

𝑗

𝑁
∑

𝑛=−𝑁
𝑑𝑛𝜙(𝒙 + 𝑛𝒙𝑗 , 𝑡), (7)

with 𝒙𝑗 being the unit vector, 𝜎 denotes the strength of the filter, 𝑁 is
the number of points of the stencil and 𝑑𝑛 are the filter coefficients.

Obviously, other possibilities exist to increase the numerical dissi-
pation, including time-splitting [29] and off-lattice schemes [30–32].
Nevertheless, these methods – in particular the latter – compromise the
efficiency of the steam-and-collide algorithm [33, p. 81].

2.3. Regularized LBM

The second technique specifically addresses a major source of insta-
bility in LBM, which is the presence of so-called ghost modes. Due to
a disparity between the number of distribution functions and macro-
scopic variables that are relevant to Navier–Stokes dynamics (density,
velocity and strain rate tensor), the solution space in standard LBM
contains non-hydrodynamic moments that can lead to instabilities if
not controlled properly. A very simple but elegant method to damp
these non-hydrodynamic moments is to reconstruct the non-equilibrium
distribution 𝑓 neq only from the strain rate tensor 𝜫neq, i.e.

𝑓 neq ≈ 𝑓 (1) = 𝑤𝛼
1
2𝑐40

(2) ∶ 𝜫neq, (8)

here (2) = 𝒄𝛼𝒄𝛼 − 𝑐20𝑰 is a second-order Hermite polynomial and
‘:’’ denotes a full index contraction. This regularized LBM was first
roposed in [34]. The early truncation nevertheless entails a loss of
elevant information. A higher order truncation without reintroduc-
ng the ghost modes relies on a recursive relation that enables an
pproximation of any non-equilibrium moment of order 𝑛 from the
quilibrium moment of order 𝑛+1 [35]. A last improvement to regular-
zed LBM applies a blending function to the strain rate tensor, so that
3

small fraction of 𝜫neq is computed by a macroscopic finite difference
cheme [36], i.e.

𝑛𝑒𝑞
hrr = 𝜎hrr

𝑞
∑

𝛼=1
𝒄𝛼𝒄𝛼𝑓

neq
𝛼 + (1 − 𝜎hrr)

[

−𝜇
(

∇ℎ𝒖 + ∇ℎ𝒖𝑇
)]

, (9)

where ∇ℎ denotes here a second-order finite difference operator. This
approach is referred to as hybrid recursive regularization (HRR) and
has proven to yield stable results at Reynolds numbers beyond 106 [37].

2.4. MRT-LBM

The last stability enhancing method and certainly the most versatile
one is the multi-relaxation time (MRT) approach. It relies on a relax-
ation in moment space, while the relaxation times as in (6) are not
identical but tuned individually in order to specifically control certain
moments. Using a tensor product (TP) basis in the transformation
matrix [38], the non-equilibrium moment vector reads

𝒎neq =  TP ⋅ 𝒇 neq =
[

0, 0, 0,𝛱neq
𝑥𝑥 ,𝛱neq

𝑦𝑦 ,𝛱neq
𝑥𝑦 , 𝑄neq

𝑥𝑥𝑦, 𝑄
neq
𝑥𝑦𝑦, 𝐴

neq
𝑥𝑥𝑦𝑦

]𝑇 , (10)

where the subscript identifies a unique moment in 2D, i.e.
neq
𝑥𝑥𝑦 =

∑𝑞
𝛼=1 𝑐𝑥,𝛼𝑐𝑥,𝛼𝑐𝑦,𝛼𝑓

𝑛𝑒𝑞
𝛼 . The first three off-equilibrium moments

are zero in accordance with the solvability conditions of standard LBM,
i.e.

𝑚neq
1 =

𝑞
∑

𝛼=1
𝑓 neq
𝛼 = 0 and 𝑚neq

𝑖 =
𝑞
∑

𝛼=1
𝑐𝑖,𝛼𝑓

neq
𝛼 = 0. (11)

he moments four to six are the three distinct elements of the sym-
etric stain rate tensor. The last three elements are the off-equilibrium
arts of the aforementioned non-hydrodynamic moments, or rather
host modes. Thus, one possibility to attenuate the ghost modes is to
et the respective relaxation frequencies equal to 1, i.e.

mrt = diag
(

𝜔1, 𝜔𝑥, 𝜔𝑦, 𝜔𝑥𝑥, 𝜔𝑦𝑦, 𝜔𝑥𝑦, 1, 1, 1
)

, (12)

o that their post-collision state equals the equilibrium moment (cf.
4)). Actually, this is equivalent to the standard regularization proce-
ure described in the previous section. Note that in the above matrix
he remaining frequencies are all equal to 𝜔 as defined in (3). For the
ake of better comprehensibility we have adopted the same notation
s used for the elements of the moment vector 𝒎neq. The advantage of
RT-LBM lies in the fact that the relaxation frequencies can be chosen

etween 1 and 𝜔 and can be tuned individually. This, however, has
ead to the publication of numerous studies with a different choice
f relaxation time values and there still seems to be no consensus
bout the optimal parameterization. As a matter of fact this poses an
nteresting optimization problem, which can be addressed using ML
echniques as demonstrated in [20].

As stated in the introduction, a flow quantity that is important to
he stability of LBM is the bulk viscosity. If we separate the dynamic
iscosity 𝜇 from the bulk viscosity 𝜇𝑏 in the definition of the strain rate
ensor we obtain following expression

neq = 𝜇
(

∇𝒖 + ∇𝒖𝑇 − 2
D
(∇ ⋅ 𝒖)𝑰

)

+ 𝜇𝑏 (∇ ⋅ 𝒖) 𝑰 . (13)

From (13) we can immediately deduce that in the standard SRT-LBM
model 𝜇𝑏 is equal to 𝜇 in 2D or rather amounts to 𝜇𝑏 = 2∕3𝜇 in 3D. In
other words, shear and deviatoric normal stresses (acoustic propaga-
tion) dissipate at a similar rate. A von Neumann stability analysis has
revealed that this setting is prone to instabilities due to a phenomenon
called eigenvalue-collision [39] that is the entanglement of the shear
mode and the two acoustics modes, which can trigger instabilities.
Remedy may therefore be provided by artificially increasing the bulk
viscosity so that the acoustic modes are damped preventing a collision
with the shear mode. Strictly speaking, the bulk viscosity does not
relate to a specific collision frequency in (12) given 𝒎neq, since it
acts on the trace of the strain rate tensor. The control of the bulk

viscosity through the collision operator can nonetheless be achieved
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in two different ways: one possibility is to change the fourth and the
fifth element of the non equilibrium moment vector 𝒎neq (cf. (10)) to
𝑚neq
4 = 𝛱neq

𝑥𝑥 + 𝛱neq
𝑦𝑦 and 𝑚neq

5 = 𝛱neq
𝑥𝑥 − 𝛱neq

𝑦𝑦 and subsequently reduce
𝜔4 [40]. Alternatively, the collision matrix can be modified such that

𝜦mrt ⋅𝒎neq =

⎛

⎜

⎜

⎜

⎜

⎝

⋱
𝜔𝑏+𝜔𝜈

2
𝜔𝑏−𝜔𝜈

2
𝜔𝑏−𝜔𝜈

2
𝜔𝑏+𝜔𝜈

2
⋱

⎞

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎝

⋮
𝛱neq

𝑥𝑥

𝛱neq
𝑦𝑦
⋮

⎞

⎟

⎟

⎟

⎟

⎠

,

with 𝜔𝜈 and 𝜔𝑏 being the relaxation frequencies related to the kinematic
and bulk viscosity, respectively [24, p. 418]. Reducing the latter will
enhance the stability of the scheme.

An MRT model also allows to correct the violation of Galilean
invariance. The standard discretization of velocity space (e.g. D2Q9)
ntroduces an error into the higher-order (≥ 3) equilibrium moments,
hich can be quantified as a (Ma3) - error at dominant order. Due to

he previously mentioned recursive relation between the non-equilibrium
oments of order 𝑛 and the equilibrium moments of order 𝑛 + 1, the

cubic defect (Ma3- error) can also be found in the non-equilibrium
moments of order 𝑛 ≥ 2. In other words, it is contained in the strain rate
tensor of the momentum equation. The correction of the diagonal and
off-diagonal elements of this tensor is achieved in a different manner.
For the latter is sufficient to use a partial third-order extension of the
Maxwellian (indicated by 𝑝3) of the form

𝑓 𝑒𝑞, 𝑝3
𝛼 = 𝜌𝜔𝛼

(

1 +
𝒄𝛼 ⋅ 𝒖
𝑐20

+
(𝒄𝛼 ⋅ 𝒖)2

2𝑐40
−

|𝑢|2

2𝑐20
+

𝒄𝛼 ⋅ 𝒖
6𝑐40

(

(𝒄𝛼 ⋅ 𝒖)2

𝑐20
− 3|𝑢|2

)

− (𝛹𝑥,𝛼 + 𝛹𝑦,𝛼)

)

, (14)

ith

𝑥,𝛼 =
𝑐𝑥,𝛼
6𝑐40

(

𝑐2𝑥,𝛼𝑢
3
𝑥

𝑐20
− 𝑢3𝑥

)

, and 𝛹𝑦,𝛼 =
𝑐𝑦,𝛼
6𝑐40

(

𝑐2𝑦,𝛼𝑢
3
𝑦

𝑐20
− 𝑢3𝑦

)

.

he error in the diagonal elements, however, cannot be restored by
eans of expanding the Maxwellian. On a standard lattice a Chapman–
nskog expansion at second-order in the Knudsen number yields

neq
𝑖𝑖 = −2𝜏𝜌𝑐20

𝜕𝑢𝑖
𝜕𝑥𝑖

+ 𝜏
𝜕𝜌𝑢3𝑖
𝜕𝑥𝑖

⏟⏟⏟
Ma3−error

. (15)

e see that the first term on the right hand side represents the diagonal
lements of the strain rate tensor 2𝜇𝑺 = 𝜇

(

∇𝒖 + ∇𝒖𝑇
)

with 𝜇 = 𝜏𝜌𝑐20 .
he second term is an error term, which is the cubic defect due to the
iscretization of velocity space. Using the chain rule and neglecting the
erms of order (Ma5) it can be shown that

neq
𝑖𝑖 = −2𝜇

(

1 −
3𝑢2𝑖
2𝑐20

)

𝜕𝑢𝑖
𝜕𝑥𝑖

(16)

41, p. 47]. The effective viscosity

eff = 𝜇
(

1 − 3
2
Ma2

)

(17)

thus decreases with increasing Mach number, which explains the limi-
tation of standard LBM to the weakly compressible regime. It should be
noted that the modified viscosity only concerns the diagonal elements
of the strain rate tensor. It has thus the character of a bulk viscosity.
In contrast to its physical counterpart it is, however, space and time
variant as it depends on the velocity squared in 𝑥 and 𝑦-direction. A
proper correction of the cubic defect therefor requires two independent
relaxation times. More precisely

𝜏c𝑖𝑖(𝒙, 𝑡) = 𝜏𝑠

[

1 −
3𝑢2𝑖 (𝒙, 𝑡)

2𝑐20

]−1

+ 0.5, (18)

[23], where the superscript c indicates a correction in order to recover
the bulk viscosity of an isothermal Navier–Stokes model.
4

We conclude that for MRT-LBM on a standard D2Q9 lattice, there
re up to five relaxation frequencies that may be modified, i.e. those re-
axing 𝛱neq

𝑥𝑥 , 𝛱neq
𝑦𝑦 , and the three ghost modes. Moreover, the relaxation

requencies 𝜔1, 𝜔𝑥 and 𝜔𝑦 can be neglected due to the solvability con-
ition ((11)). We are therefore left with a single relaxation frequency,
hich is bound by physical constraints and that is the one relaxing 𝛱𝑥𝑦,

.e. the shear stress.

.5. Isothermal finite-volume Navier–Stokes model

This section elaborates the different steps of discretizing the isother-
al Navier–Stokes equation in space and time. This Navier–Stokes
odel is composed of the conservation equations for mass and momen-

um, i.e.
𝜕𝒎
𝜕𝑡

+ ∇ ⋅𝒎 = 0 (19)

with

𝒎 =
(

𝜌
𝜌𝒖

)

and 𝒎 =
(

𝜌𝒖
𝜌𝒖𝒖 + 𝑝𝑰 − 2𝜇𝑺

)

, (20)

where the subscript  indicates the respective fluxes of the moments
in 𝒎. It should be noted that in this model 𝜇𝑏 = 2

3𝜇 as for example
hown in [42]. In contrast to the standard lattice Boltzmann method,
he space and time derivative of the NSE are treated separately, owing
o the non-linearity of the advection term.

Comparative studies examining different Navier–Stokes methods
ith respect to the numerical properties of LBM indicate that the
ispersion of standard LBM is comparable to a three-stage Runge–
utta in time and a third-order approximation in space [43]. In order

o match the numerical dissipation of standard LBM a higher order
iscretization is required [44]. In this study, we choose the classical
our-stage Runge–Kutta scheme in conjunction with a quadratic upwind
nterpolation scheme for convective kinematics (QUICK) [45], which
as proven to be stable at the Courant–Friedrichs–Lewy (CFL) condition
mposed by LBM. This bears the advantage that the training data has
he same spatio-temporal resolution (𝛥𝑡lbm = 𝛥𝑡ns for given 𝛥𝑥) as the
BM simulation and no additional data preparation is necessary. The
emporal update of mass and momentum can then be summarized as

(1∕4) = 𝒎𝑡 − 𝛥𝑡
2
(𝒎𝑡

 )

𝒎(2∕4) = 𝒎𝑡 − 𝛥𝑡
2
(𝒎(1∕4)

 )

𝒎(3∕4) = 𝒎𝑡 − 𝛥𝑡(𝒎(2∕4)
 )

𝒎𝑡+𝛥𝑡 = 𝒎𝑡 − 𝛥𝑡
6

[

(𝒎𝑡
 ) + 2(𝒎(1∕4)

 ) + 2(𝒎(2∕4)
 ) +(𝒎(3∕4)

 )
]

,

where  is the finite-volume discretization operator. In order to update
the density 𝜌 and the momentum 𝜌𝑢𝑖 in 𝑥 and 𝑦-direction, following
expression needs to be evaluated


⎛

⎜

⎜

⎝

𝜌𝑢𝑗
𝜌𝑢𝑥𝑢𝑗 + 𝑝𝛿𝑥𝑗 − 𝜇2𝑆𝑥𝑗
𝜌𝑢𝑦𝑢𝑗 + 𝑝𝛿𝑦𝑗 − 𝜇2𝑆𝑦𝑗

⎞

⎟

⎟

⎠

.

Using a central difference approximation, the discrete pressure gradient
and the Laplacian of the deviatoric stress term are computed as

(𝑝𝛿𝑖𝑗 ) = 𝛿𝑖𝑥
𝑐20𝜌(e) − 𝑐20𝜌(w)

2𝛥𝑥
+ 𝛿𝑖𝑦

𝑐20𝜌(n) − 𝑐20𝜌(s)
2𝛥𝑦

(𝜇2𝑆𝑖𝑗 ) = 𝜇
𝑢𝑖(e) + 𝑢𝑖(w) + 𝑢𝑖(n) + 𝑢𝑖(s) − 4𝑢𝑖(p)

𝛥𝑥𝛥𝑦
,

where the letters e, w, n, and s indicate neighboring nodes of grid point
p = (𝑥, 𝑦). In particular, e = (𝑥 + 𝛥𝑥, 𝑦), w = (𝑥 − 𝛥𝑥, 𝑦), n = (𝑥, 𝑦 + 𝛥𝑦),
and s = (𝑥, 𝑦 − 𝛥𝑦).

The third-order (QUICK) scheme evaluates the surface fluxes of
mass and momentum with respect to the flow direction using a five-
point-stencil incorporating additional information from the grid points



Computers and Fluids 272 (2024) 106191J.T. Horstmann et al.

a

w
p
w
H
a
d
f
b
s
i
o
v
m
l
s
s
w
b
o
w
a
f
f
c
c

2

m
A

e
r

m
f

𝜦

t
T

2

c
O
(
w
i
w
h
4
d
t
t
a
d

𝑓

n

t
n
o
m
c
u
f
d
n
t
u
t

o
o
c

𝜏

ee = (𝑥+2𝛥𝑥, 𝑦), ww = (𝑥−2𝛥𝑥, 𝑦), nn = (𝑥, 𝑦+2𝛥𝑦), and ss = (𝑥, 𝑦−2𝛥𝑦).
The fluxes in 𝑥-direction are then

(𝜙𝑢𝑥) = 𝑢𝑥(e)
( 6
8
𝜙(p) + 3

8
𝜙(e) − 1

8
𝜙(w)

)

− 𝑢𝑥(w)
( 6
8
𝜌(w) + 3

8
𝜙(p) − 1

8
𝜙(ww)

)

for 𝑢𝑥 > 0 and

(𝜙𝑢𝑥) = 𝑢𝑥(e)
( 6
8
𝜙(e) + 3

8
𝜙(p) − 1

8
𝜙(ee)

)

− 𝑢𝑥(w)
( 6
8
𝜙(p) + 3

8
𝜙(w) − 1

8
𝜙(e)

)

for 𝑢𝑥 < 0 with 𝜙 =
{

𝜌, 𝜌𝑢𝑥, 𝜌𝑢𝑦
}

. The fluxes in 𝑦-direction are computed
following the same principle. The flux balance over all faces is then
obtained as (𝜙𝑢𝑗 ) = (𝜙𝑢𝑥) + (𝜙𝑢𝑦). In the following the above
described discretization will be referred to as RK4-QUICK.

2.6. Method comparison

In order to conclude the presentation of the different numerical
schemes we assess their numerical characteristics on a decaying tur-
bulence test case [46] choosing a (𝑛𝑥 × 𝑛𝑦) = (128 × 128) periodic
domain with Re = 10000 (based on the domain length) and Ma = 0.1.
The initial solution is shown in Fig. 1(a). The energy peak at 𝑡 = 0
is located at a wavenumber of 10. The single relaxation time model
corresponds to (4), with 𝒎 − 𝒎eq = tp ⋅ (𝒇 − 𝒇 eq,𝑝3) and 𝜔 defined as
in (3). SRT(𝜎 = 0.01) is the same SRT model with the only difference
that mass and momentum are filtered using a 7-point stencil ((7)) and
a filter coefficient of 𝜎 = 0.01. The hybrid recursive regularized model
presented in Section 2.3 uses a blending coefficient 𝜎HRR equal to 0.98
in (9). The multi relaxation time model does a full over-relaxation of
the three non-hydrodynamic moments ı.e. 𝜔𝑥𝑥𝑦 = 𝜔𝑥𝑦𝑦 = 𝜔𝑥𝑥𝑦𝑦 = 1.
Moreover, the fourth moment, 𝑚neq

𝑥𝑥 , is replaced by the trace of 𝜫neq and
lso relaxed with 1. The fifth moment 𝑚neq

𝑦𝑦 is consequently replaced by
𝛱neq

𝑥𝑥 −𝛱neq
𝑦𝑦 and relaxed with the physical relaxation frequency 𝜔.

Fig. 1(b) shows the energy spectrum after 3000 iterations obtained
ith the different methods. The SRT model features the lowest dissi-
ation, however, we observe an accumulation of energy in the high
avenumber regime. This phenomenon is also be observed in case of
RR despite being the method with the highest dissipation, particularly
t high wavenumbers. This behavior may be attributed to the finite
ifference scheme used in Eq. (9). The modified wavenumber of central
inite difference schemes reduces to zero at the highest wavenum-
er [47]. It is thus possible that those wavenumbers are finally not
ubject to sufficient physical or numerical dissipation such that aliasing
ncreases energy at the largest wavenumbers. The energy accumulation
bserved when using SRT is likely related to the discretization of
elocity space. It is well-known that aliasing effects occur as continuous
oments are wrongly represented in the discrete LBM case due to the

imited number of discrete velocities. MRT and filtered SRT show a very
imilar, intermediate dissipation rate at high wavenumbers. Turbulent
tructures with a wavenumber of around 10 dissipate more quickly
ith MRT and HRR compared to SRT, and RK4-QUICK, which could
e attributed to the damping of the ghost modes that is absent in the
ther models. Interestingly, the Navier–Stokes model performs very
ell, showing only a slightly higher dissipation than SRT without the
ccumulation of energy near the Nyquist frequency. These findings
urther motivate the training of the neural collision operator with data
rom our NS solver, in the anticipation that the favorable numerical
haracteristics (stable at low dissipation) will be passed on to the neural
ollision operator.

.7. Neural LBM

In this paper, neural LBM denotes a variation of the MRT-LBM
odel, where certain relaxation times are trained using a neural net.
5

s elaborated in Section 2.4 it would be possible to only fix 𝜔𝑥𝑦
and let the ML algorithm take care of the remaining relaxation rates.
This, however, would require the training of at least 4 different neural
nets (𝑄𝑥𝑦𝑦 and 𝑄𝑥𝑥𝑦 are symmetric). Moreover, a very similar study
xists that has already successfully demonstrated the training of the
elaxation frequencies related to the three ghost modes (in 2D) using

high resolution LBM data [20]. Since our training data consists of
Galilean invariant solutions from an isothermal Navier–Stokes solver,
we decide to focus on 𝜔𝑥𝑥 and 𝜔𝑦𝑦. This will allow the net to learn the
correction of the cubic defect as well as to tune the bulk viscosity to
adapt to the numerical dissipation of the RK4-QUICK solver. The ghost

odes in this study are simply relaxed with 𝜔, so that the framework
or the neural LBM model is the following matrix

nn = diag
(

… , 𝜔nn𝑥𝑥, 𝜔
nn
𝑦𝑦 , 𝜔, 𝜔, 𝜔, 𝜔

)

, (21)

ogether with the non equilibrium moment vector 𝒎neq defined in (10).
he sub-/superscript nn indicates an output of the neural net.

.8. Machine learning framework

The advent of machine learning has led to the development of
ountless platforms to kick-start machine-learning augmented projects.
ne such platform is the Python based open-source software lettuce

https://github.com/lettucecfd/lettuce), which is a modular LBM frame-
ork that can easily be extended and coupled with machine learning

nfrastructure based on pytorch. In previous studies, the framework
as used to train relaxation times that are associated with the non-
ydrodynamic modes based on a refined LBM reference solution [20,
8]. For this study, we have extended the framework by the previously
escribed FV-NS method to enable the training with data that lacks
he Ma3 -error. As a consequence, an interface is required to feed
he macroscopic solution into the LBM algorithm. For this purpose

high-order recursive regularization step [49] is applied so that the
istribution functions are initialized with

𝛼 = 𝑓 eq
𝛼 (𝜌ns, 𝒖ns) + 𝑓 (1),rr

𝛼 (𝜌ns, 𝒖ns), (22)

where 𝑓 (1),rr
𝛼 is a fourth-order recursively regularized (RR)

on-equilibrium distribution.
The input layer contains the nine velocity moments corresponding

o the transformation matrix tp. The hidden layer is composed of 24
eurons with a rectified linear unit (ReLU) activation. Each network’s
utput layer consists of a single neuron, providing an independent
apping function for each relaxation time 𝜏𝑥𝑥 and 𝜏𝑦𝑦 (Fig. 2). This

onfiguration was adopted from previous studies [20]. The rationale for
sing separate networks, each with its own single output neuron, stems
rom (18), which indicates that the relaxation times might significantly
iffer depending on the flow. In a joint network with multiple output
eurons, a dominant relaxation time could disproportionately influence
he training of the others. Additionally, we hypothesize that the hidden
nits represent different combinations of velocity moments (features)
hat might be different for 𝜏𝑥𝑥 and 𝜏𝑦𝑦.

Each net is evaluated in each node of the computational grid. This
allows for the relaxation time to vary in space and time, which is
expected as the correction of the cubic defect depends on the velocity
field. This also implies that each node stores one training example (𝒎,
𝜏nn𝑖𝑖 ) and that the resolution (𝑛𝑥×𝑛𝑦) of the simulation data corresponds
to the number of training examples at time 𝑡.

According to (18) the magnitude of the numerical error as a result
of the violation of Galilean invariance cannot exceed the physical
relaxation time 𝜏𝑠 in the subsonic regime. It is true that in a full
overrelaxation the factor is 0.5∕𝜏𝑠, however, this is applied to the trace
f 𝜫neq and not separately to 𝛱neq

𝑥𝑥 and 𝛱neq
𝑦𝑦 , which is different. Based

n this observation, the activation function in the output neuron was
hosen such that
nn
𝑖𝑖 = (1 + tanh(𝑎))𝜏𝑠 +

1
2
, (23)

where 𝑎 is the weighted sum of the hidden layer output. The neural
relaxation time is thus constrained to vary on the interval 0.5 < 𝜏nn𝑖𝑖 <
0.5 + 2𝜏 .
𝑠

https://github.com/lettucecfd/lettuce
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Fig. 1. Initial solution of the decaying turbulence test case with an energy peak at a wavenumber of 10 and the respective wavenumber spectrum after 3000 iterations.
Fig. 2. Neural net.

2.9. Algorithm

In an iterative process, the algorithm seeks the relaxation times 𝜏nn𝑥𝑥
and 𝜏nn𝑦𝑦 , such that the difference between the two solvers (LBM and
NS) is minimized with respect to some loss function ℒ . In this study,
we simply chose the average of the conserved quantities as a measure
for the performance of the model, i.e.

ℒ (𝑡) = 1
2

𝑛𝑥×𝑛𝑦
∑

𝑖
mse

(

𝜌lbm(𝒙𝑖, 𝑡), 𝜌ns
)

+ 1
2

𝑛𝑥×𝑛𝑦
∑

𝑖
mse

(

|𝒖|lbm(𝒙𝑖, 𝑡), |𝒖|ns
)

(24)

where mse denotes the mean-squared error (see Fig. 2).
The training of the neural net begins with the generation of true

simulation data for 𝑛𝛥𝑡 iterations using the RK4-QUICK scheme. In a
next step, we define a time interval 𝛥𝑇 , which subdivides the simu-
lation data into 𝑛𝛥𝑇 fragments. Then we choose a random number 𝑟
with 𝑟 ∈ N0 and 𝑟 ∈ [0, 𝑛𝛥𝑇 [ (without replacement) and initialize 𝑓𝛼
at time 𝑡 = 𝑟𝛥𝑇 using RR (Eq. (22)). After initializing 𝜏nn𝑖𝑖 via forward
propagation, the neural MRT-LBM algorithm is run for 𝛥𝑇 iterations.
Once the simulation is completed, the result is compared to the NS
solution at time 𝑡 = (𝑟+1)𝛥𝑇 using (24). Finally, a backpropagation step
updates the parameters of the net at learning rate 𝛽. This procedure is
repeated 𝑛 −1 times, which completes a single epoch. An illustration
6

𝛥𝑇
Table 1
Values of the kinematic viscosity and the relaxation
time for different grid resolutions (in lattice units).
𝑁 64 96 144

𝜈 0.00064 0.00096 0.00144
𝜏 0.50192 0.50288 0.50432

of the single steps of an epoch is shown in Fig. 3 for the barotropic
vortex test case [50] on a 64 × 64 grid. 𝛥𝑇 was chosen such that
the vortex passes 0.75 times the periodic domain (from right to left)
and 𝑛𝛥𝑇 = 5. For the sake of better comprehensibility, 𝑟 is not chosen
randomly here but at increasing order.

3. Validation

As mentioned in Section 2, a single snapshot of simulation data al-
ready provides 𝑁2 training examples, where 𝑁 is the non-dimensional
length of the quadratic, regular Cartesian grid. It is worth mentioning
that even though the neural net is only fed with single point data
it is nevertheless trained with gradients of 𝜌 and 𝒖, which are con-
tained in the higher order velocity moments of 𝑓𝛼 . In this study we
limit the training to a single test case, the aforementioned barotropic
vortex [50].

The following validation will include two versions of this case for
training and testing, in the following referred to as low Mach number
case and high Mach number case. All variables will be given in lattice
units 𝛥𝑥 = 𝛥𝑡 = 1.

The high Mach number case was chosen such that the SRT-LBM
algorithm becomes unstable, i.e. Ma > 0.3. In addition to the cubic
Mach error, instabilities may also be triggered by the undamped ghost
modes. In order to be consistent with regard to this additional source
of instability, the two Mach number cases use the same relaxation time
𝜏 (in lattice units). In the low Mach number case the bulk velocity in
𝑥-direction is set to 𝑢low = 0.1 (in lattice units), so that Malow = 0.173.
The velocity fields are shown in Fig. 4. The Reynolds number in this
case is set to Relow = 10 000. In the high Mach number case, the bulk
velocity is increased by a factor of 2.5, leading to a Mach number
of Mahigh = 0.433. The Reynolds number Rehigh is increased by the
same factor in order to maintain the same relaxation time. The vortex
strength is set to 0.1 in both cases, leading to a maximum Mach number
of 0.233 and 0.493, respectively.

The cases were run on a periodic square domain with three different
resolutions that differ by a factor of 1.5. The respective collision times
are provided in Table 1. If not stated otherwise, single resolution data
is shown for the coarse grid (𝑁 = 64).
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Fig. 3. Diagram of a single training epoch: the upper row shows the NS data in the background plane, which is used to initialize the LB simulation that is shown in the foreground.
The lower row shows the LBM solution advanced by 𝛥𝑇 = 480 iterations, resulting in 0.75 domain passages of the vortex in positive 𝑥 - direction (periodic domain). In this example
the vortex therefore passes the domain three times with 𝑛𝛥𝑇 = 5. (Note that the last snapshot of the NS simulation data that is only required for the computation of ℒ is omitted
here.).
Fig. 4. Initial velocity fields of the barotropic vortex at low Mach number.
3.1. Low mach number case

The neural collision operator is trained with the algorithm described
in Section 2.9 using three different learning rates. In fact, the training
corresponds to the diagram in Fig. 3 with the only difference that the
order of the training fragments within a single epoch is chosen ran-
domly. A training interval 𝛥𝑇 corresponding to 0.75 domain passages
of the vortex amounts to 480, 720 and 1080 iterations on the coarse,
medium, and fine grid, respectively. The learning curves for the coarse
grid case are shown in Fig. 5 and do not vary significantly among
different resolutions.

The loss is normalized with respect to the difference between the
RK4-QUICK scheme and the SRT-LBM model. We recall that the loss
shown in Fig. 5 is the average loss over one epoch. By the end of the
first epoch, the relative loss can therefore already be inferior to 1 as
seen in case of 𝛽 = 0.0025 and 𝛽 = 0.005. After 25 epochs all learning
curves have converged towards a relative loss of about 85%. In other
words, the neural collision times 𝜏nn𝑥𝑥 and 𝜏nn𝑦𝑦 have brought the solutions
of LBM and RK4-QUICK 15% closer to each other, with respect to the
loss function defined in (24). The lower rates show a smooth convex
convergence, while the higher rate converges the fastest but does so in
a more irregular fashion, which indicates that this learning rate could
be too high. A default learning rate of 𝛽 = 0.005 is therefore used in the
following.

In order to get a first intuition on how the neural collision oper-
ator behaves on the barotropic vortex test case, we do a qualitative
7

Fig. 5. Evolution of different learning rates over 25 epochs using 64 × 64 training
examples.

cross-comparison of the density and the velocity fields. The results
represented in Fig. 6 show the field differences after 5 domain passages
between every pair of the tested schemes: RK4-QUICK (NS), SRT-LBM
(SRT), and neural LBM (NN). The contours of the density difference
𝛥𝜌ns-srt = 𝜌ns − 𝜌srt indicate that LBM is less dissipative than NS.
Moreover, around the vortex we recognize a formation of patches with
𝛥𝜌 ≠ 0 that resembles a spiraling pinwheel.
ns-srt
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Fig. 6. Differences between the density and velocity fields of the different schemes after 5 domain passages.
When comparing NS with NN, we observe that the neural collision
adds to the numerical dissipation, so that the difference at the vortex
center disappears. The spiraling pattern in the vicinity of the vortex,
however, remains unchanged. A comparison of the two LBM schemes
in Fig. 6(e) confirms that NN is more dissipative than SRT-LBM. The
density difference 𝛥𝜌nn-srt around the vortex is zero. We suspect that the
reason for the pinwheel-like structures lies in the different discretiza-
tion of the advective terms (FV versus lattice) and can therefore not be
corrected by the neural collision operator.

The interpretation of the velocity difference contours 𝛥|𝑢| in less
straightforward. The vortex rotates counter-clockwise, which means
that in case of a translation in positive 𝑥-direction, rotational and
bulk velocity are opposed above the vortex center, while below, the
combined velocities excess the mean flow velocity (see Fig. 4(a)). The
neural collision operator has therefore a decelerating effect on the
vortex rotation as evidenced in Fig. 6(f). This is in agreement with
a higher dissipation observed in Fig. 6(e). The difference 𝛥|𝑢|ns−srt is
more complex but it is again save to say that the macroscopic method
is more dissipative than the particle based approach. In the periphery
of the vortex we observe a similar spiral-like structure (as seen in the
8

𝛥𝜌 contours) that can also be seen when comparing NN with NS in
Fig. 6(d). Again we attribute this to a conceptual difference in the
discretization of the variable transport.

For a more quantitative assessment of the neural collision operator
the different numerical methods are compared with respect to the
𝐿2-norm after one (640 iterations) and five domain passages (3200
iterations) along the horizontal centerline, i.e.

𝜀𝜙 =

√

∑𝑁
𝑥=1 (𝜙(𝑥,𝑁∕2, 𝑡) − 𝜙(𝑥,𝑁∕2, 𝑡 = 0))2

𝑁
, (25)

where 𝜙 is a dummy variable. The 𝐿2-error is computed with respect
to the initial solution since there is no trivial solution for 𝑡 ≠ 0. It is
therefore composed of the numerical error and the physical decay of
the vortex that is proportional to 𝑒−𝜈𝑘2𝑡. The results should hence only
be used for a relative estimate. The −2-slope is nonetheless shown in
the bottom row of Fig. 7.

On the coarse grid (64 × 64), the reference SRT-LBM method
shows the smallest error in all four graphs. The neural LBM algorithm
(NN) shows a very similar error than the scheme it was trained with
(RK4-QUICK) apart from 𝜀 after one domain passage, where the error
𝜌
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Fig. 7. 𝐿2-error of the different numerical schemes after 1 (left column) and 5 (right column) domain passages with respect to the initial solution. The neural relaxation times
ere trained with 𝛽 = 0.005 based on data from the NS scheme with QUICK approximation in space. The dashed line in the bottom row figures indicates the −2-slope.
s notably higher. This is nevertheless a possible outcome, since the
eural collision operator was trained to reduce the error or rather loss
n the entire domain (cf. (24)) and not only over the center line at
= 𝑁∕2. Using a coarse mesh (64 × 64), NS and LBM show a very

imilar error in the density, while the solution obtained with the NN
cheme has a higher error. On the fine mesh (144 × 144), the NS
cheme shows the smallest error 𝜀𝜌 after one and five domain passages.
he LBM algorithm with neural collision operator shows a slightly
igher error 𝜀𝜌 than the base algorithm with single relaxation time.
n case of 𝜀𝜔𝑧

, where 𝜔𝑧 denotes the vorticity in the 𝑥–𝑦 plane, the 𝐿2
rrors differ only marginally among the different methods.

A second part of the quantitative validation investigates in how
ar the neural collision operator generalizes to lower or rather higher
esolution data (coarse-graining and fine-graining). Concretely, the
eural nets that were trained with fine resolution data are tested on
he coarse and medium mesh and vice versa. We recall that the neural
ets learn the mapping from the nine velocity moments 𝒎 to the

relaxation times 𝜏nn𝑥𝑥 and 𝜏nn𝑦𝑦 . A transfer to a different discretization
step is therefore straightforward, as the nets do not contain information
about the grid size (only the number of training examples varies).
For each resolution in Fig. 8, we show the performance of the neural
collision operation that was trained on a coarse (𝑁 = 64), medium
(𝑁 = 96) and fine mesh (𝑁 = 144). In addition, results of the SRT-LBM
(circle) and the RK4-QUICK (square) methods are shown once again for
better comparability. The effect on 𝜀𝜌 and 𝜀𝜔𝑧

is quite different. The
vorticity error depends highly on the resolution of the training data
and not so much on the resolution of the testing data. The error on
the coarse mesh using an NN that was trained with high resolution
data is therefore considerably smaller compared to the reference SRT-
LBM scheme. Interestingly, this error reduction can only be traced to

nn nn
9

the collision times 𝜏𝑥𝑥 and 𝜏𝑦𝑦 – in other words a manipulation of
the normal stresses of the strain rate tensor. The density error on the
other hand depends more on the resolution used during training. In
case of a coarse-graining the neural collision operator outperforms the
standard method only at the first checkpoint. After 5 domain passages,
the error lies between the result of SRT-LBM and the RK4-QUICK
method. In terms of the density error, the NS scheme becomes better
with increasing resolution up to the point where it outperforms the
SRT-LBM model on a 144 × 144 grid. At such fine resolution, the NN
net will try to reduce the dissipation by lowering the bulk viscosity,
which is authorized by the output activation function in (23). This
explains the better performance of NN versus SRT-LBM when trained
on the fine mesh and applied to the coarse. At the same time we expect
a deterioration of stability. Fine-graining leads to an expectedly worse
performance and is only shown for the sake of completeness.

3.2. High mach number case

After a first evaluation of the neural collision operator, the Mach
number and the Reynolds number are now increased by a factor of
2.5 to create a flow that lies outside the stability envelop of SRT-
LBM. We recall that by increasing the Reynolds number and the Mach
number simultaneously, the relaxation time (in lattice units) remains
unaffected. A single domain passage now only requires 256, 384 and
576 iterations on the coarse, medium, and fine grid, respectively. The
training intervals 𝛥𝑇 of a single epoch are chosen such that the traveled
distance remains unchanged compared to the low Mach number case
(0.75𝑁). Fig. 9 shows the density and vorticity profiles of the vortex at
𝑦 = 𝑁∕2 after 3 (for a better distinctiveness of the results) and 5 domain
passages on a 64 × 64 grid. In addition to the three schemes that were
previously examined, we also present results for an MRT model that
contains the correction of the cubic defect, denoted mrt𝑐 [23]. In agree-
ment with the 𝐿 -error in Fig. 7 the SRT-LBM model shows the lowest
2
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Fig. 8. 𝐿2-error of the different numerical schemes after 1 (left column) and 5 (right column) domain passages with respect to the solution at 𝑡 = 0. The neural collision operator
was trained with differently resolved data (color coded triangles) and then tested on different mesh resolutions (abscissa).
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dissipation. After three domain passages the results of SRT and MRTc
are superimposed. The dissipative behavior of the RK4-QUICK scheme
and neural LBM are very similar with a slightly lower dissipation for
the latter. After 5 domain passages the standard LBM scheme becomes
unstable. This is also true for the mrtc, although the instability appears
less developed. The NS model and the neural LBM model show stable
results.

The neural collision operator thus yields more dissipated but stable
results compared to the standard approach with SRT. Now the question
arises of how the neural LBM compares to other stability enhancing
schemes presented in Section 2. For that reason we have repeated the
simulation of the high Mach number test case with the HRR scheme
(𝜎hrr = 0.98) and the MRT scheme, where the ghost modes and the
trace of the strain rate tensor are fully over-relaxed (𝜔 = 1). For
he sake of consistency, the ghost modes in the NN collision model
re exceptionally relaxed with 𝜔 = 1 as well. The density profile
nd the turbulent kinetic energy spectrum after 10 domain passages
re presented in Fig. 10. The increase in domain passage allows for
better distinction of the results. We find that all schemes remain

table and mainly differ in terms of dissipation. Concerning the density
rofile across the vortex (Fig. 10(a)), the HRR scheme shows the lowest
issipation (i.e. highest density drop), while the density fields obtained
ith MRT and NN are very similar with a slightly lower dissipation in

ase of the latter.
At first glance this is in contradiction to the results of the decay-

ng turbulence in Fig. 1 and the kinetic energy spectrum shown in
ig. 10(b). However, the difference in the spectra only becomes visible
n the high wavenumber regime, while the barotropic vortex case
ssembles most energy at low wavenumbers. At these wavenumbers
n increased bulk viscosity (MRT) seems to have a bigger impact on
10

he numerical dissipation than the hyperviscosity that is added by the 𝜏
artial finite difference approximation of the strain rate tensor in HRR.
his difference nevertheless seems to be too small to be visible in
ig. 10(b).

We conclude the validation with some contour maps of the nor-
alized relaxation times 𝜏𝑥𝑥(𝒙, 𝑡) = (𝜏𝑥𝑥(𝒙, 𝑡) − 0.5)∕𝜏𝑠 and 𝜏𝑦𝑦(𝒙, 𝑡) =

(𝜏𝑦𝑦(𝒙, 𝑡)−0.5)∕𝜏𝑠 after 5 domain passages. The top row in Fig. 11 shows
the correction proposed in [23] and given in (18), while the bottom
row shows the neural collision times that were informed by the results
of an isothermal Navier–Stokes solver. According to (18), the analytical
correction of the Mach error depends on the velocity field. In particular
𝜏c𝑥𝑥 scales with (1 − 𝑢2𝑥)

−1 and 𝜏c𝑦𝑦 is proportional to (1 − 𝑢2𝑦)
−1. Since the

vortex travels in the 𝑥-direction, 𝜏c𝑥𝑥 is greater than 𝜏𝑠 everywhere in the
omain. In accordance with the 𝑢𝑥-velocity field shown in Fig. 4(a), it
s the highest below the vortex, where the rotational and translational
elocities superimpose and it is lowest above the vortex, where these
elocities are opposed.
𝜏c𝑦𝑦 on the other hand equals the single relaxation time 𝜏𝑠 every-

here in the domain, apart from two semicircular regions conforming
o the square of the zero-centered velocity field 𝑢𝑦 (cf. Fig. 4(b)). How-
ver, the deviation from 𝜏𝑠 remains below 1% due to the comparatively
ow rotational velocity of the vortex (Mamax = 0.06).

The contours of the normalized neural collision time 𝜏nn𝑥𝑥 resemble
ore the velocity field 𝑢 = 𝑢𝑥 + 𝑢𝑦 (or a power of it) than 𝑢2𝑥 (cf.

ig. 4(c)). Moreover, the deviation from 𝜏𝑠 is more pronounced. While
he value of 𝜏𝑐𝑥𝑥 is about 26% to 57% higher than the reference value,
ñn
𝑥𝑥 varies on the entire positive interval that is authorized by the tanh
ctivation function, i.e. [𝜏𝑠; 2𝜏𝑠] (cf. (23)).

The neural collision time relaxing the normal stresses in 𝑦-direction
reatly differs from 𝜏𝑐𝑦𝑦. Firstly, we notice that in the periphery of the
ortex the value is about 25% higher than the shear relaxation time

𝑠. The contours show two patches with an increased value of about
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Fig. 9. Density and vorticity profiles after 3 (left) and 5 (right) domain passages. The neural collision operator was trained with the NS data using the QUICK scheme. The learning
rate was set to 𝛽 = 0.005.
Fig. 10. Density profile and energy spectrum after 10 domain passages.
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1.45𝜏𝑠, which are located below and to the right of the vortex center.
In addition, there is a region above the vortex center where 𝜏nn𝑦𝑦 is lower
compared to the value in the far field. This is not the case for 𝜏𝑐𝑦𝑦.

Similar to the corrected relaxation times, the neural relaxation times
are influenced by the velocity field. The specific correction nevertheless
was not transferred to the neural LBM scheme. This can be explained by
the fact that the two schemes (LBM and RK4-QUICK) also differ in terms
of numerical dissipation and that this difference is more important. The
neural values are maximized within the limits of the activation function
in order to get closer to the dissipation rate of the NS solver.

4. Conclusion

This work is part of a series of (independent) studies, where neural
networks are employed either as surrogate collision models or as part
of the MRT collision operator in LBM. In a previous study [20], it was
demonstrated that a neural network can learn a mapping between the
local velocity moments and the non-hydrodynamic relaxation times of
an MRT model, which improves simulation results. In this study we
11
adopt a similar approach by learning a mapping for the relaxation
times associated with the bulk viscosity. Another novelty here is that
the training data stems from a Galilean invariant, isothermal Navier–
Stokes solver. Demonstrated through the example of a 2d barotropic
ortex, several interesting conclusions can be drawn. The neural relax-
tion times 𝜏nn𝑥𝑥(𝒙, 𝑡) and 𝜏nn𝑦𝑦 (𝒙, 𝑡), which vary locally, depend mainly
n the velocity field and show non-linear behavior. A learning of
he specific correction of the cubic defect is not observed as other
umerical differences (dissipation rate) dominate. In terms of stability,
he neural collision operator performs better than an MRT model that
nly corrects the cubic defect. Furthermore, on the selected test case the
ovel collision operator performs slightly better in terms of accuracy,
hen compared to a naive increase of bulk viscosity, which is often
one to stabilize simulations. The use of a neural network in order
o determine certain relaxation times thus constitutes an interesting
lternative to conventional stability enhancing schemes. It is shown
hat the neural collision operator allows to endow LBM with certain
umerical properties that are inherent to the donor scheme (NS). One
ould therefore imagine to use LBM as an efficient base algorithm that
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Fig. 11. Contour maps of the normalized relaxation times 𝜏𝑥𝑥 and 𝜏𝑦𝑦 after 960 iterations (5 domain passages) of the barotropic vortex case at Ma = 0.433. The upper row shows
the relaxation field that is necessary to correct the cubic defect of standard LBM. The bottom row are the neural collision times that where trained to match the solution of an
isothermal Navier–Stokes solver. Both, the training and the testing were carried out on a 64 × 64 grid at Re = 25 000.
can be customized for specific flows. Another area of application are
flows with conflicting numerical requirements. A current workaround
are sensors that allow to locally change the numerical behavior of a
scheme based on a predefined threshold. A properly trained neural
collision operator would automatically take care of this. In LES sim-
ulations the subgrid-scale turbulence is accounted for by an artificial
shear viscosity. In this case one could also use a neural net to compute
𝜏nn𝑥𝑦 (𝒙, 𝑡). Since the input layer contains information about the velocity
gradients, such a neural turbulence model would automatically adapt to
regions of increased shear, i.e. in proximity to a wall. Many more ideas
exist, including the use of a convolution layer paired with a central
moment collision operator to build more efficient, equivariant neural
nets. This will be tested in future studies.
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