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Abstract

Fast Text Detection for Road Scenes

by Matias Alejandro
Valdenegro Toro

Extraction of text information from visual sources is an impdant component of
many modern applications, for example, extracting the textrom tra c signs on a
road scene in an autonomous vehicle. For natural images oratbscenes this is a
unsolved problem.

In this thesis the use of histogram of stroke widths (HSW) for @racter and non-

character region classi cation is presented. Stroke widthare extracted using two
methods. One is based on the Stroke Width Transform and anothéased on run

lengths. The HSW is combined with two simple region featuresispect and occu-
pancy ratios{ and then a linear SVM is used as classi er. One sdntage of our

method over the state of the art is that it is script-indepenént and can also be used
to verify detected text regions with the purpose of reducingafse positives.

Our experiments on generated datasets of Latin, CJK, Hiragarend Katakana char-
acters show that the HSW is able to correctly classify at leat0 % of the character
regions, a similar gure is obtained for non-character regns. This performance is
also obtained when training the HSW with one script and testig with a di erent
one, and even when characters are rotated. On the English akdnnada portions of
the Chars74K dataset we obtained over 95% correctly classd character regions.

The use of raycasting for text line grouping is also propose8y combining it with our
HSW-based character classi er, a text detector based on Maxirha Stable Extremal
Regions (MSER) was implemented. The text detector was evalted on our own
dataset of road scenes from the German Autobahn, where 65% @sgon, 72% recall
with a f-score of 69% was obtained. Using the HSW as a text verrancreases
precision while slightly reducing recall. Our HSW feature &ws the building of a
script-independent and low parameter count classi er fori@mracter and non-character
regions.
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Chapter 1
Introduction

Writing is considered one of humanity's most important advacements, since it allows
to permanently record information for later use. The humanitilization has produced
countless written text that lie on physical media, such as geer, stone, walls, etc.

The retrieval of such textual information from non-digitalsources is a topic of much
interest, and it covers many areas of knowledge, such as Cartgr Vision, Statistics,
Pattern Recognition and Machine Learning. In general we takreading for granted,
but computers in general have great di culty in doing so.

One of the great di culties with text detection and recognition is the large amount
of variation in text color, size, orientation, texture, apgearance, font, style and script.
The assumptions that can be taken to ease the problem are ldt

Many applications require extraction of text from visual sarces, such as still image
and video. Some examples are augmented reality, licenset@laecognition, blind
person assistance and automated data entry into computer $gms. In the context
of autonomous systems and autonomous vehicles, the infotina stored in trac
signs and panels is relevant to the driving process, and lélgaequired for driving in
the same way as human drivers do.

Text information can be used in many ways by an autonomous viete. Speed limits
can change due to tra c conditions and accidents, and tempary signs can be in-
stalled, such as when works are performed on a road. Thus thas a need for vision
algorithms that can extract such information from a video canera installed in the

1



Chapter 1. Introduction 2

vehicle.

Many algorithms for text detection and recognition exist12] [13]. Text detection is

the task of nding \whether" and \where" the text is located i nside the image, and
text recognition is the task of converting the text parts of animage to a digital text

representation (such as character strings).

But recognition algorithms in general perform poorly in relaworld scenes, mainly be-
cause the task itself is complex due to the big variation in ¥ size, color, orientation,
script and style, and because of many parts of natural scenesn be considered to be
text. Also, many algorithms are designed only for documentsd not for real-world
scenes such as road scenes.

For example, a text detection and recognition algorithm by Nemann et al [14] could

only correctly extract 329% of the text in natural scenes from the SVT dataset].

Newer methods that use advanced convolutional neural netwarlcan correctly re-
trieve up 70% text from the same dataset, but are computatiaily expensive.

Script should also be considered. Only 3@ of the world population uses the Latin
script their day to day writing and reading needs, but almostall text detection
methods operate only on Latin script text. This could be dued the prevalence of
top Western universities in computer vision research.

There is always a tradeo between detection and computatiai performance. Many
algorithms that are fast do not detect all text and perform porly, while algorithms
that are slow are able to detect much more text correctly.

In this thesis we develop and introduce a new text detector rtteod based on character
classi cation using a histogram of stroke widths. This feaftre allows to classify and
detect text without making assumptions on the script, and asve will show, it gives

good performance, even for road scenes. A text grouping methis also introduced,
which only requires one parameter. As it will be shown, compuianal and detection

performance of both methods are adequate for the problem,cawe believe they are
a contribution to the state of the art.



Chapter 2

Related Work

There are vast amounts of information currently stored in tetual form, and a num-
ber of di erent systems are designed with requirements of&ding" or retrieving this
textual information from non-digital sources, such as pried documents, captured
images or directly from video cameras attached to robots aralitonomous vehicles.
Then this information could be stored in other formats, suclas digital information,
from where processing by computers is easier.

For example, an autonomous vehicle could take advantage @ading text in tra c
signs and panels for path planning, since some tra ¢ panelsave the road contain
information about which lane will take the vehicle to its detnation, as well as real-
time information about the conditions in the road ahead. Somef such panels can
be seen in Figure2.1

Reading this textual information from visual sources is cal text recognition and
usually requires 3 stageslpl:

Image Acquisition
An image of the target text is obtained. For a scene, a camera isually
used, while for documents an optical scanner is used. In thistial stage many
situations can in uence the quality of further stages, suchs blur, camera focus,
lighting and shadows.

Text Detection
Text is localized in the image and detected text regions areapsed into the

3
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(a) Australian Tra c Panel (b) Slovenian Tra c Panel

Figure 2.1: Some tra c panels from Australia and Slovenia. Source: Public
Domain

Image Acquisition Text Detection Text Recognition—— Recognized Text

Figure 2.2: Text Recognition Pipeline

next stage. The purpose of this stage is to reduce the size bethypothesis
space, since text recognition algorithms are slow when tooamy hypotheses
must be tested, and recognition performance is not optimainge too many
false positives will be produced. This stage is also calle@xt Localization.

Text Recognition
Text is recognized from patches of the original image and omrted into a
digital representation (usually strings of characters) bysing a machine learning
and/or pattern recognition algorithm. Algorithms that do recognition are called
Optical Character Recognition (OCR). The quality of the loated text greatly
in uences the results of the recognition stage.

The pipeline is shown in Figure2.2 Many real-world applications require some form
of text recognition [15), such as:

License plate recognition

Where cameras are placed on roads and license plate numberpadsing cars
are required, with di erent purposes, such as vehicle anddrc ow control,
law enforcement, and billing for tolls.

Automatic data entry
Documents are put through a scanning device and the informati is presented
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to the user or used by a computer system. Examples of this arark checks,
tickets, invoices and any kind of textual information stord \on paper” that
need to be read by a computer or be digitalized. Many banks usech systems
to automatically process checks, as well as post o ces for rha

Book scanning and storage
A complete book is scanned and converted into digital formatn order to be
made available to a wider audience by storing it in a digitaldrm, which can
be transmitted over the internet or safely stored in a permant medium for
future use. Project Gutenberg does this.

Historical documents
Since the medium where they are written degrades over timeigdal storage of
their contents is a must to keep cultural knowledge for futie generations.

Technologies to assist blind and visually impaired persons
Most written content is not available in a form that is friendy to computer
systems used by such persons. This kind of systems usuallegents the in-
formation in another medium, such as reading the book in aumiform with a
speech synthesizer software, or outputting the text through braille system.

Translation
An image or live camera feed is analyzed and words are recogdiand trans-
lated into another language, in an augmented-reality fashio There are mobile
phone applications that already do this, such as Word Lens @nslator 2.

Search
Search engines in general only search in digital text informan, such as text
documents and web pages, and ignore information that mightebstored in
images and/or video. The extraction of textual informationfrom images could
enable better search engines and would increase the amountirdbrmation
available to search on.

Autonomous driving
Autonomous cars are currently being developed, as well as Adead Tra c
Assistance Systems (ADAS)16]. Both systems either replace or aid the driver
with the driving task, and also would require the use of textuainformation

Ihttp://iwww.gutenberg.org/wiki/Main_Page
2https://play.google.com/store/apps/details?id=com.questvisual.wordlens.demo&
hl=en
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available in tra ¢ signs and panels, as well as other text indfrmation in road
scenes, such as the names of places, nearby stores and shops.

There is vast amount of literature about Text Detection andbr Localization, and
many algorithms and variations of them have been developedhich is a indicator
of the di culty of this problem. A survey on the current state of the art in text
detection can be found in Zhang et al.1]2]:

Edge-based Methods
Edges from an edge detector algorithm are used along with ige processing
operations to extract text regions, usually by doing morpHogical operations,
such as dilation to connect edges into complete boundariesasf object.

Texture-based Methods
This kind of methods uses a sliding window approach, by takingll possible
windows from the image of a given size, and using texture fea#s to discrim-
inate text from non-text windows.

Region-based Methods
Text regions are extracted in a image with a region detectioalgorithm, and
then are classi ed as text or non-text by a text and/or charater classi er.
Connected component methods also fall into this categoryinse they usually
are designed detect regions of an image that have a commonpedy, such as
characters or text.

Stroke-based Methods
This kind of methods is a mix of the previous ones, but conceating on the use
of stroke information as a mean for discriminating text frormon-text regions.

Text detection itself is a very hard problem due to the very lgh variability of char-
acters and text regions 13] [12], such as:

Size
There is no de ned size of characters in the image, as well dsetnumber of
characters in words and text lines.
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Orientation
Text could appear in any orientation. While the most common oentation is
horizontal, text also could be vertical, or in diagonal orietations, and even
skewed due to the camera viewpoint.

Color
Text could have any color, and while usually text is designedthave a very
strong contrast with its background, but this might not be abé to be perceived
from the camera viewpoint due to illumination conditions.

Texture
In general text always has a constant color, but it could alsbe textured, or
have implicit edges, such as inscriptions on stone, whergHhting is used to
\see" the text.

Font and Appearance
Many di erent fonts exists, and graphics designers' creatity tends to create
new ways and forms to present text and characters. Text could/en be pre-
sented as shapes without a constant color or texture, such tme \M" formed
by the McDonalds sign.

Script
The script from where characters are drawn can also vary. Thmost common
assumption is the use of Latin or Roman characters, but manyouantries in
Asia and the Middle East do not use such characters, and manygafithms fail
under such circumstances.

2.1 Public Datasets

There are many datasets for evaluation of text detection ancecognition. The pri-
mary dataset used for text detection is the ICDAR dataset, bdt in its 2003 1] * and
2011 p] 4 versions.

The ICDAR 2003 dataset contains color images of sizes betwe@80x960 to 1600x1200
pixels. The training subset contains 258 images, and the teg) subset contains 251
images. Some images from this dataset are shown in Fig@ea.

3http://algoval.essex.ac.uk/icdar/Datasets.html
“4http://robustreading.opendfki.de/wiki/SceneText
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The ICDAR 2011 dataset also contains color images of sizes Wweén 640x480 to
3888x2592 pixels, with 229 training images, and 255 testingages. Some images
from this dataset are shown in Figure?.4.

Both datasets primarily contain English text in real-worldscenes, but also in general
the text regions cover a considerable area of the image, sostgossible to say that
this datasets are biased towards text that is \big" inside tle image frame, and do
not contain small pieces of text (such as in a road scene).

Figure 2.3: Some images from the ICDAR 2003 dataset]]

ESPANOL-INGLES
INGLES-ESPANOL

Figure 2.4: Some images from the ICDAR 2011 dataset]
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Another dataset is the Street View Text (SVT) B] °, which is made from images
taken from Google Street View, and contains 100 color images foaining, and 249
color images for testing. Image sizes vary from 1024x768 ©18x898 pixels, and in
general the text regions cover smaller areas that in compsoin with the ICDAR 2003
and 2011 datasets. Some images from this dataset can be seekigure 2.5.

The images in this dataset are from road scenes, but in genethky contain \ar-
tifacts" due to the stitching done by Google to construct the Beet View images.
Google uses cars with several cameras attached to the roofddamage stitching is
needed to produce a 36(Qpanorama that is used for Google Street View. The dataset
also exhibits a small amount of deformation due to lens diston.

Figure 2.5: Some images from the SVT dataset3]

The Chars74K dataset 4] © is a dataset normally used for character recognition
that contains images of characters. This dataset is split to several sub-datasets,
for both the English language (Latin/Roman characters) and he Kannada script

(commonly used in East India). It contains 7705 charactersdm natural images, 3410
handwritten characters obtained from a Tablet PC, and 62992haracters generated
from di erent fonts.

Generated font images are 128x128 pixels in size and only team Latin characters.
Kannada script is present on images of handwritten text capted with a Tablet PC.

Shttp://vision.ucsd.edu/ ~kailsvt/
Shttp://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
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Some generated font numbers from this dataset can be seen igle 2.6, while some
generated lowercase letters from a computer font can be seerFigure 2.7.

The gures show the huge variation of fonts and combinationsf roman/bold/italics
in the dataset, which makes it well suited to train characteclassi ers and character
recognizers. We mention this dataset because it was used mstwork to evaluate
our character classi er.

Figure 2.6: Some numbers from the Chars74K Dataset4]

Figure 2.7: Some lowercase letters from the Chars74K Dataset|]

2.1.1 Evaluation Metrics

The most common evaluation metrics for text detection are pcision and recall J].

Ground truth information is provided in the datasets, usudly in the form of axis
aligned bounding boxes around text (Rectangles). From thisformation, we denote
T as the set of targets, the correct bounding boxes in the grouricuth, and E as
the set of estimates, the bounding boxes returned by the deter for a given input
image. The set of correct estimates is denoted asThen precisionp is computed as:

p= 19 (2.1)

And recall is computed as:
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r= — (22)

A low precision means the detector is over-estimating the amunt of text bounding
boxes in the image, while a low recall means the detector isder-estimating the
amount of text bounding boxes in the image. Both a high pred@n and recall are
desired for a good text detector. One way to combine precigi@and recall into a
single measure is the f-score, computed as:

f = (2.3)

Ol
+
=l

Precision, recall and f-score are always in the;[0] range. One remaining issue is to
de ne when a rectangle estimate is correct or not, since regtgles from the ground
truth and estimated rectangles will never exactly match, andome degree of exibility
must be taken into account. The ICDAR 2003 competition]] uses the following
evaluation protocol. Given 2 rectangles, the match betweeroth rectanglesA and
B is de ned as:

T
areaA c B)

match(A;B) = areaA - B)

(2.4)
Where A[ B represents the bounding box that contains boti®\ and B. The match
between 2 rectangles is a number between 0 and 1, where 0 meamsnatch, and 1
is a perfect match. Then the best match for rectangle from a set of ground truth
rectanglesR is:

bestMatch(r; R) = max match(r; r o) (2.5)
ro
Then precision and recall can be re-de ned as:

1 X
P= — bestMatch(r; T) r =

bestMatch(r; E) (2.6)
IE) r2e

m r2T

Some authors17] instead consider a rectangle as correct if and only if the §tematch
is bigger than some threshold , where the most common value is = 0:5.
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2.2 Edge-based Methods

Edge methods use the information available from the high ctrast between a char-
acter and its background to extract edges, then group edgedd candidate character
regions. Candidate character regions are validated throhdheuristic rules, such as
region height, number of holes and aspect ratio, and then gneed using a clustering
algorithm to form text lines. This is very similar to Regionbased methods, but in
general edge information is unreliable due to image noiseption blur, lighting con-
ditions and the fact that information about the interior of the regions is completely
ignored.

The use of heuristic rules is in general very unreliable, s@ they can provide good
performance in one dataset, and completely fail to generadi to other datasets, and
in general they are application dependent. In general theseles require parameter
tuning which can be tedious and error-prone. Finally, edgesa be disconnected
due to various reasons, such as noise and lighting conditsyrwhich can \split" the
candidate text regions.

Smith and Kanade [L§ used a 3x3 horizontal di erence Iter and thresholding to

extract vertical edges from TV news video. After thresholdig, smoothing is applied

to remove small disconnected edges and to connect strongcdisnected edges. Then
clustering is applied to identify text lines and bounding bxes are computed.

Text regions are detected if they meet three heuristic constints: Bounding box as-
pect ratio bigger than Q75, occupancy ratio bigger than @5 and cluster size bigger
than 70 pixels. The authors evaluated their algorithm in a sall video dataset, con-
taining approximately 20 text regions, and in average theialgorithm detected 90%
of the available text, with a false positive rate of 20%.

Sato et al. [L9) extracted character candidates by using a bank of Iters thiadetect
horizontal, vertical, left and right diagonal edges, sinceharacters usually have edges
in these directions. The input image is rst interpolated tosub-pixel precision, due
to the low resolution their video frames (320 240), and the correlations between
each lter in the bank and the interpolated image is computed All Iter outputs
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that are positive are accumulated into a character image, Wth is then thresholded
to obtain a binary image.

Vertical and horizontal projections are then used to extractharacter candidates
from the binary image. For Video OCR, their method correctly dtected 898% of
the characters in their dataset.

Chen at al. [20] use Canny edge detection to extract edges, which are grodpley

means of morphological dilation. Heuristic rules are used tdter text from non-text

region. A set of asymmetrical Gabor Iters and a neural netwd are used to estimate
the scale of text, and then scale is used to enhance the edgesegf. Performance
on their own dataset is 8% recognition for enhanced images, compared to:B%
with non-enhanced images.

Liu and Samarabandu 21] used a multiscale edge detection approach, on which the
input image is convolved with a bank of Iters that detect edgs in four orientations
(the authors called this the Compass operator). Four edgeientation images are
produced for each scale, in orientations of 045, 90 and 135. Edge orientation
images are then combined to produce a feature map that enhasctext regions.

A 7x7 morphological dilation element is used to cluster textegions, and two simple
heuristics are used to remove non-text regions: occupancgdaaspect ratios, then
bounding boxes are constructed. The authors evaluated thégarithm on their own
dataset, on which they obtained 98B% precision and 9%% recall.

Neumann and Matas 22] also use a multiscale approach, but their purpose is to
detect strokes instead of pure edges. For this they used aelt specially designed
to detect strokes at di erent scales, which is equivalent tedge detection between
two \ridge" orientations that form a stroke. After computing the stroke image, they
threshold it to obtain a binary image, where a connected coropents algorithm is
executed to extract candidate character regions.

For each candidate character region, clustering is perforohdy exhaustively eval-
uating all bounding boxes generated by the K-nearest neigbbing regions. On the
ICDAR 2011 dataset the authors obtained state of the art (at thatime) performance
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of 664% recall and 798% precision, but their method is very expensive. Their Mat-
lab implementation takes 35 seconds per frame, and a C++ im@nentation might
not be fast enough for real-time performance.

2.3 Texture-based Methods

Texture-based methods use texture properties to discrimitetext from non-text.
First, a sliding window is used over the image, and for each vdaw, texture features
are extracted from the window, such as Wavelet transforn2f], Local Binary Pat-
terns (LBP) [24] [25] and Histogram of Oriented Gradients (HOG) 26] [27]. Then
a machine learning algorithm classi cation algorithm is tained on the features and
used to discriminate text from non-text windows.

Finally, intersecting detections are merged to produce thenal text detections. This
kind of methods, in general, is computationally very expen® due to the number of
windows that have to be evaluated, but trade-o s can be madeSmall windows are in
general more precise but the number of windows to be evaludtgrows very quickly,
while the use of bigger windows reduces the number of windoveslie evaluated, but
precision drops.

Another issue with texture-based methods is scale. Since thesg window has a
xed size, text that is smaller or bigger than the window mightnot be detected as
such, so multiscale approaches are needed, by building a gayid representation of
the input image 29|

Viola and Jones 29 pioneered the use of weak classiers for object detectiory b
using AdaBoost to train a cascade of weak classi ers. Their wowas focused on face
detection, and they used Haar Wavelets3[)] as features that are then discriminated
by a weak classi er in the form of a step function on a weightelinear combination
of the featuresx;:

X
f (x) = step Wi X (2.7)

The boosted cascade of weak classi ers has been succesdiisiyl for object detection.
This kind of object detectors can be trained for any kind of gect, and it has been
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successfully used for text detection as well. For face detien, Viola and Jones
obtained 939% correct classi cation rate on the MIT+CMU dataset. The ewaluation
of the Haar wavelets is very fast due to the fact that this wavetecan be quickly
evaluated with the use of summed area table&9].

Another type of texture feature is the Histogram of Oriented Gadients (HOG),
initially developed by Dalal and Triggs R6]. Their work focused on human and
pedestrian detection, but the technique has been used forhet types of objects as
well.

The HOG descriptor is computed over a sliding window, rst comast-normalizing
the image, and then by computing the image gradient, and diding the window into
overlapping 6x6 cells, and for each cell a 9-bin histogramtbie gradient magnitude is
computed (from O to 180 ). Each histogram vote from a gradient element is weighted
by the distance to the center of the cell, and by the gradient agnitude.

Then, for each 3x3 block of cells, all histograms are concat¢ed and normalized to
create a block descriptor. All the block descriptors inside #thnwindow are concate-
nated to produce a nal HOG descriptor for the window, which foms a very large
feature vector. Finally a Linear SVM is trained and used to discriinate object from
non-object. The HOG algorithm has also been successfully dsler text detection
[31].

Since the HOG feature vector is very large, using a Linear SVM &a very high prob-
ability of nding a separating plane [32], but the computation of the HOG feature
vector is expensive, due to the required sliding window anduttiscale approaches.
GPU implementations of HOG exist B3] that achieve hard real-time performance.

Hanif et al. [34] used a boosted cascade of weak learners, in the same way asaViol
Jones P9 for text detections. The authors developed features baseuh the Mean
Di erence Feature (MDF), the Standard Deviation (SD) and theHistogram of Ori-
ented Gradients (HOG), with 39 features in total (7 from MDF, 16from SD and
16 from HOG). The features are extracted from each window, bypktting it into
blocks. As a weak learner, they used linear discriminant analg (LDA) and the
log-likelihood ratio test (LRT).
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They evaluated their cascade on the ICDAR 2003 dataset, and talmed 929% de-
tection rate with a 780 LDA weak classi ers, and 94% detection rate with 780
LRT weak classi ers. The authors mentioned that their casade is \fast”, with a

computation time of 2 seconds for 640x480 images with 8 scale

Minetto et al. [31] develop the T-HOG feature based on HOG for detection and recog
nition of single line text. By exploiting the fact that the distribution of gradients in
top, medium and bottom regions of the window are not the sam#éh)e authors com-
pute a HOG descriptor by using horizontal cells, setting theumber of cell columns
to 1. First, the sliding window extracted from the image is reéged, keeping aspect
ratio, to a constant height between 20 and 25 pixels, and theindow is also contrast
normalized.

For each cell the HOG descriptor is computed in a similar way #t of Dalal and Triggs
[26]. To avoid sharp cell boundaries, the authors weight the dddistogram votes with
a Gaussian function instead of weighting blocks. Finally atiells histograms are con-
catenated and the nal descriptor is normalized. Linear SVM4d again used for text
discrimination.

Minetto et al. [35 built a text detector and recognition system called Snoop&ext
that uses the T-HOG feature descriptor for text classi catim. On the ICDAR 2005
dataset they obtained a precision of 74%, and a recall of 63%ith a better precision
than the current state of the art, but with a lower recall. On te Street View Text
dataset they obtained a precision of 36% and a recall of 54%hieh is better than
the current state of the art.

2.4 Region-based Methods

Region-based methods use a region detector (with a connectesinponent algorithm)
to detect regions of interest in the input image, which can beonsidered to be a
bottom-up approach, since pixels are individually identied as belonging to a can-
didate text region, and from the aggregation of pixels, a cdidate text region is
constructed.
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After candidate text regions are obtained, they have to be clased as text or non-
text regions, especially if a generic region detector is wseFor this heuristic rules
and/or machine learning classi cation algorithms are use{lL2].

We should note that candidate text regions might be individal characters, or con-
nected text regions, depending on the characteristics oféhext in the image. For
example, some forms of handwritten letters have connecti@gtrokes between each
character, while normal computer font characters usuallyalnot have this property.

A clustering or grouping algorithm is used to group candidat text regions into full
text lines. Again for this purpose handmade heuristics or unpervised clustering
algorithms are used, such as spectral clusteringq.

The advantage of region-based methods is that in general thare fast and they are
scale invariant since no sliding window or assumption abosgize is required.

For text detection, the most common and best performing regn detector is the
Maximally Stable Extremal Region (MSER) Detector B7], which detects connected
regions with stable area under varying thresholds. In a sessit takes a grayscale
input image and does thresholding and connected componentadysis at the same
time. MSER can be computed in linear time 11], and in general text regions with
constant color are almost always detected as MSER's.

MSER has also been extended to detect color regio3§]| but generally only grayscale
MSER is used for text detection. The MSER algorithm will be dgcribed in detail in
Chapter 3.

Neumann and Matas ¢] used the MSER detector on grayscale, red, green and blue
channels of the input image to obtain candidate character geons, and then used an
SVM classi er with a Radial Basis Function (RBF) kernel to disciminate between
character and non-character regions. Their SVM classi er edl 8 features, which
are shown in Table2.1 and was trained on real-world MSER regions extracted from
images on Flickr”.

Their character classi er obtained a 9#4% correct classi cation rate. Then they
construct a graph of regions, and text line formation is donby means of nding a

"http://www.flickr.com
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path through this graph that maximizes the probability of beng text. The graph is
constructed by sequentially extracting horizontal text lires from character regions.

Their method also performs text recognition by means of a 2@6ature dimension
vector that is generated by rst converting each MSER regionnto a 35x35 pixel
matrix, then blurring it with a Gaussian lIter and subsampling it to a 5x5 matrix,
and repeating this for 8 directions. An SVM classi er was traiad with a RBF Kernel.

On the Chars74K dataset, the authors obtained 76% correctly recognized charac-
ters, 121% incorrectly recognized characters, and 1330 characters that were not
detected in the image (Giving a 8% correct character detection rate).

On the ICDAR 2003 dataset the authors obtained a precision 08%0 and a recall of
55%. For individual characters, 79% of the total number of characters was correctly

detected.
Aspect Ratio Relative Height Compactness
Number of Holes Convex Hull Area to Surface Area Ratio Color Consistency
Background Color Consistency  Skeleton Length to Perimeter Ratio

Table 2.1: Features for Character Classi cation used by Neumann and Matas §]

In [14], Neumann and Matas introduced an exhaustive search methoseor MSER
regions to discriminate character from non-character remis. To do this, they prune
the tree generated by the MSER algorithm to contain only regns with a high like-
lihood of being a character, by using a veri cation functiontrained with a SVM

classi er on a small set of features (similar to the ones in Te 2.2).

Their method obtained a precision of 65% and a recall of 64% time ICDAR 2003
dataset, which outperforms the current state of the art whemonsidering the f-score
of 63%.

Neumann and Matas T] then switched to use all possible Extremal Regions (ER)
instead of only the maximally stable extremal onesg] [14]. ERs were extracted
from the input image in the RGB and HSI color space2p] projections, as well on
the intensity gradient of the image computed with the maximumntensity di erence
method. The authors report that 948 % of all characters are detected as Extremal
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Regions in at least one of the image projections.

Neumann and Matas also introduces the use of incrementally cpatable descriptors
as features for a character classi er. This descriptors carelcomputed along with
the ER evaluation by the MSER algorithm, and the authors proide 5 descriptors:
area, bounding box, perimeter, Euler number and horizontal crossings.

Their character classi er uses a probabilistic model traied on the features shown in
Table 2.2 A Real AdaBoost decision tree classi er was used on a 2 stagaessi er,
while the second stage used an SVM classi er with RBF Kernel dhree features: the
area-to-hole ratio, the convex hull ratio and the number ofter boundary in exion
points.

This method was combined with the exhaustive search method dleumann and
Matas [14]. The authors evaluated on the ICDAR 2011 dataset as well as tf&/T
dataset. On the ICDAR 2011 dataset, they obtained 64% recall, with 731% preci-
sion, with a recall that is better than the current state of the art.

On the SVT dataset, the authors obtained a recall of 32%, and a precision of 19%.
The authors note that the SVT dataset contains text watermarksn the image, and
their method also detects such watermarks, which explainke low precision.

P

Aspect Ratio ¥ Compactnes p;iff;r
Number of Holes 1 Median Horizontal Crossings

Table 2.2: Features for Character Classi cation used by Neumann and MatasT]

MSER regions are known to be sensitive to motion bluBf] [15]. Chen et al. used
MSER regions enhanced with edge information to avoid this potem, as well as using
the distance transform to obtain stroke width information,which is used for character
classi cation and grouping. Their method obtained 73% predisn and 60% recall on
the ICDAR 2003 dataset, which is state of the art performance.

Multiple segmentations and a multiscale approach has als@én used to improve the
results of MSER-based text detectors. Neumann and Matad(] used this approach
to obtain 67:5% recall and 851% precision on the ICDAR 2011 dataset, which is
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Figure 2.8: Example characters from di erent Asian scripts

the best from the state of the art, but this approach increasecomputation time
considerably, to 31 seconds per frame.

2.5 Stroke-based Methods

Text, as drawn by humans, is drawn with pencils, fountain pensna other kinds of
writing devices that produce text with an almost constant stoke width. Thus stroke
width is a inherent property of text that can be used to detectext regions.

It should be mentioned that not all writing scripts have contant stroke width. In
particular many scripts used in Asia are drawn using brushes, drthis produces a
varying but bounded stroke width, as can be see in Figuiz8.

One of the rst methods to successfully use stroke informatn to detect text is the
Stroke Width Transform (SWT) [8]. This method uses the Canny edge detector
[41] to extract edges from the image, then a stroke width image isomputed by
raycasting in the direction of the gradient for each detectk edge pixel, until an
appropriate opposite edge is found. This opposite edge musdavie a gradient angle
opposite to that of the ray, plus a tolerance (The authors useg). The Euclidean
distance between the starting and ending edges gives an ewttion of the stroke
width in pixels, and is written to the stroke width image for ech ray pixel.

After computing the stroke width image, a connected componenalgorithm is exe-
cuted over this image, which groups pixels that have a strokeidth ratio less than
3:0. This way connected components represent characters. Cheer regions are
Itered with a set of heuristic rules, shown in Figure2.3. Then a set of hand tuned
heuristic rules are used to group character regions into teknes with a minimum of
three characters.
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The grouping heuristics consider features such as: similar di@n stroke width, sim-
ilar height, distance between letters and color similarity.

Aspect Ratio Stroke Width - Ratio
CC Diameter to Median Stroke Width Ratio | Bounding Box Intersection
CC Height

Table 2.3: Features for Character Classi cation used by Epshtein et al. 8]

This method has obtained good results on the ICDAR 2003 datasevith precision
of 73% and recall of 60% (with f-score of 66%). Computation tienreported by the
authors is Q94 seconds per frame. But the SWT algorithm has many drawbacks
such as the high number of parameters, the use of hand-tuneduhstic rules, and
since its a gradient-based algorithm, noise in the image canroduce small holes into
the SWT image, which can produce disconnected regions.

In general the SWT algorithm was a milestone in text detectionand other authors
have been trying to nd alternate ways to compute a more reliakel stroke width im-
age. Chen at al. 20] used the distance transform to produce a stroke width image.

The SWT algorithm itself is not appropiate for text with arbitr ary orientations, since
the heuristic rules used by Epshtein et al. are biased for hpontal text. Yao et al.
[42] created a text detector based on the SWT that is able to dete¢ext at arbitrary
orientations, by using features that are rotation invariah[17] , and estimation of the
minor and major axes, as well as the orientation of the charaat regions by means
of the Camshift algorithm [43.

The amount of features used for character classi cation antéxt line grouping is
high, with 6 complex features for character classi cationand 11 features for text
line grouping. A modi ed HOG is used for character classi catio.

Since the ICDAR datasets do not contain oriented text, the aurtors developed their
own dataset that contains a mixture of ICDAR 2003 and a proposgedataset with ori-
ented text, the authors obtained 63% precision, 63% recalthile the SWT algorithm
[8] obtained 25% precision and 25% recall, which is a clear ingpement.
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2.6 Other Methods

In general most text detection algorithms are trained and/oevaluated only on Latin

characters, and have poor performance or fail if images comaharacters from other
scripts, such as Asian or Middle East scripts. Also many algtinims assume horizon-
tal text or even text that lies in a line (collinear), which in the real-world does not
always hold. Some examples of curved text can be seen in Figdr@

Figure 2.9: Examples of Non-Collinear Text

Kasar and Ramakrishman$] develop a multi-script and multi-oriented text detector,
rst by using color edge detection with a Canny edge detectarn each color channel
of the image, and then combining edges from each color chahimo one image with
the OR binary operator. Edges are then linked and candidate ctecter regions are
obtained from connected component analysis and the COCOCLUSDIlor clustering
algorithm [44]. Then 12 features are used to identify regions that contaicharacters.

Features are shown in Table.4.

Aspect Ratio Occupancy Ratio Boundary Smoothness
Boundary Stability | Stroke Width Standard Deviation | Stroke Width to Height Ratio
Stroke Homogeneity Gradient Density Gradient Symmetry

Area Ratio Gradient Angle Distribution Convex De ciency

Table 2.4: Features for Character Classi cation used by p]

An SVM classi er with RBF kernel and a neural network are trainel on such features
over the ICDAR 2003 dataset. The authors evaluated their algithm on their own
dataset that contains multi-language scripts used in Indias well as English, and also
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contains curved text. They report a precision of 80% and a retaf 86%, which is
pretty high for a text detector, but this evaluation only corsiders per-pixel character
detection, and the dataset used by the authors is not publicna more conclusions or
comparisons cannot be done.

To group characters into words, the authors used Delaunayiémgulation and some
heuristic rules. The full text detector was evaluated on the CDAR 2003 dataset,
and they obtained a precision of 63%, and a recall of 59%, whics similar to the
best methods of the state of the art.

Gomes and Karatzas45| developed a text detector with a di erent structure than
other detectors presented in the literature. Their concermwvas to develop a text
detector that can detect characters and text with any scriptwithout taking previous
assumptions about any speci c script. To do this, their works based on perceptual
organization, which is the grouping of perceptually signi ant atomic objects, since
this is in theory what humans use to recognize textual inforation.

The authors start by extracting MSER regions from the input inage, and ltering

character regions with simple rules based on region sizepast ratio, stroke width

variance and number of holes. Then characters are clusterey bsing perceptual
organization, by means of a di erent set of features (geontgt mean Region color,
boundary mean color, stroke width and mean gradient magnitle on the border).
Group hypothesis are generated and evaluated with an evidenaccumulation frame-
work and only meaningful text clusters are output as detectits.

To evaluate their approach, the authors used the KAIST datas¢46], which contains
images of English and Korean text. On this dataset, they obiaed a precision of
66% and a recall of 78%, which is higher than the recall of 60%epented by Lee at
al in [46].

Wang et al. 47] used convolutional neural networks (CNN) for text detectiorand
recognition (end-to-end). First they trained patches of chacter images from the
ICDAR 2003 dataset, as well as generated character images, ngsiunsupervised
feature learning fi8 to extract features, and then used a 4-layer CNN to do text
detection with such features.
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A CNN is a type of neural network used for image processing an@)ject detection
that is similar to do Itering with set of banks, but unlike standard image processing,
the lIters are \learned" by the network during the training process.

The authors obtained state of the art results, obtaining feore of 76% on the ICDAR
2003 dataset, and f-score of 46% on the SVT dataset, which igtiee than the state
of the art of [3]. For character and word detection, the authors also obtagd 90%
recall on the ICDAR 2003 dataset, and 70% recall on the SVT datas

In general CNN fall into the category of texture-based methaj] and also have the
performance problem due to the sliding window. CNN methodssa have issues with
training, due to the massive amount of parameters in the netwk, which requires a
massive amount of training data, which also makes trainingrties very large. Wang
et al. [47] used GPUs for training, which shows the problem.

2.7 Discussion

Scene text detection is a not solved problem. This can be seernthe evaluation of

algorithms under the SVT dataset, where precision and recadre usually low, less
than 50%. This indicates the complexity of the problem. While m&t algorithms are
evaluated under the ICDAR datasets, such datasets do not réalrepresent text in

natural scenes.

Edge-based methods are slow and the use of lters does not gafige to non-latin

scripts. In general, Iters in speci ¢ directions are useddr edge detection, and this
works well for Latin characters, since strokes are only haontal, vertical or diago-
nal. But for other types of scripts, such as Kannada, CJK and Astascripts, this

assumption does not hold, since those scripts have strokasaimost any direction.

Texture-based methods are also generally slow, since thalisig window approach
requires the evaluation of a very large amount of windows, tkumaking a real-time
implementation impossible. GPU implementations of HOG can ruin real-time [33,
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but this approach is very speci c to a certain type of hardwag, and does not general-
ize to the kind of devices that end users use, such as cellpbsrand tablet computers.

Most text detection algorithms make implicit or explicit asumptions about the script
that will be detected [L5]. Most algorithms can only detect Latin characters and they
have not been trained or evaluated on other scripts. Since tmeinority of people in
the world speak Latin-based languages (3[®% to be precise), there is still much work
to do in order to be able to detect non-latin scripts.

In general, the number of features used by text detection algthms is high, in order
to provide a good generalization performance in the train ahar test datasets, but
also such features make generalization to other kind of guis very dicult. For
example, a popular feature is the number of holes in a connedtcomponent region,
since Latin letters have a small number of holes (A has one boIB has two holes,
and such), but Asian scripts have a much higher number of holess can be seen in
Figure 2.8, so for this kind of feature, a Asian script region could be migken for a
non-character region, and text detection would fail.

Multi-script [ 44] and multi-oriented [42] text detectors rely on a high number of fea-
tures as well, which also makes character classi cation esmpsive, since more features
are needed, and some features are expensive to compute, iscHOG-based features.

There is big fraction of the literature that relies on hand twmed heuristic rules to
group text, and such rules in general do not generalize well tdher datasets 15].
Tuning this rules by hand is very tedious, but grid search caalso be used to au-
tomatically tune, but since the number of parameters is laey grid search becomes
untractable.

The Stroke Width Transform [8] and stroke width information is a popular choice for
current state of the art algorithms, but the SWT algorithm itself uses heuristic rules
for character classi cation and text grouping. Since the SWT Igorithm is based
on Canny edge detector, missing and unlinked edges can ceedisconnected regions
that are mistaken for non-text regions.
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The use of a tolerance threshold to compare the opposite edgadient angle is also
tricky, since for some fonts there is no opposite edge withagrappropiate angle. This
can be seen in Figure.1Q where two angle tolerance thresholds; are presented,
and the value of = 5 as recommended by Epshtein et al.8] produces holes in
the regions. This can be xed by incrementing the thresholda ; = 5, where the
regions no longer have holes, but this threshold is extremghermissive and might
cause other problems.

@ t=3 b) t=3

Figure 2.10: Holes in SWT character regions

This problem is very characteristic of joints between stras. Similar issues can be
seen in the joints at the top of the \M" letter, where the stroke width is higher, and
there is a high variation of the stroke width in that region. $ce the SWT and other
algorithms use the stroke width variation as threshold for l@aracter classi cation,
this can easily fail. This can also be seen with other letteia Figure 2.11

Figure 2.11. Stroke Width Transform of Letters X, Y, Z and W

Many text detection algorithms have not been evaluated withrespect to computa-
tional performance. There is no comprehensive informatian the literature about
computational performance metrics about text detectors, ral only some publica-
tions (Like [7] and [8]) provide computation times per frame, but in general such
information is not available.
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Background

3.1 Writing Systems

Writing is part of day to day life, and practically almost all information is currently

stored in some form of writing, whatever this storage mediunms: a clay tablet, parch-
ment, paper, or bits in a digital media. Writing can be de nedas a system of storing
information, usually coming or representing a given langge B9 that humans or

computers use.

Writing systems are considered to be one of the most importatechnological ad-
vancements in the history of mankind 49, and such technology is one of the cor-
nerstones of modern society. Writing became a necessityrfradhe needs of storing
information, such as commercial transactions, contractand recording history in
general.

From the need of storage also comes the need for retrievingethtored information.
Autonomous systems and robots in general do not have high giylcapabilities to
read and write in most common writing systems, and much reseh is devoted to
that topic [1].

Some components of a writing system aré(:

27
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1. A set of symbols usually called characters. The set of claaters is called a

script.

2. A set of rules that de ne the meaning of characters as well dseir relations
between each other.

3. One or more language that will be represented by the writinsystem.

4. A way to record the characters into a permanent medium.

The result of writing is usually called text. Many writing systems are currently in
use around the world. A map of writing systems can be seen in Eig¢ 3.1 While
the most common writing system is Latin, this is not the majaty as can be seen in
the data available in Table3.1 Only 37:1% of the human population uses the Latin
script, and the rest uses di erent varieties of non-Latin sipts, such as Japanese
Kaniji, Chinese, Korean, Kannada, Cyrillic, etc.

Figure 3.1:  Writing Systems of the World. Source: Wikimedia Commons,
File WritingSystemsoftheWorld.png , used under the GNU Free Documentation
License (GFDL)

Script | Estimated number of Users % of total number of users
Latin 2600 Million 371 %
Chinese 1300 Million 186 %
Indian 1200 Million 171 %
Arabic 1000 Million 143 %
Other 900 Million 129 %

Table 3.1: Estimated distribution of Script users in the World according to [10]
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Many devices are also used to do the actual action of writinggcording characters
into the permanent medium). This can range from very simpleaVices such as a
quill and ink, to medium complex pens to highly advanced priers. The high variety
of devices that are used for writing is one of the sources ofriability that makes
the text detection and recognition problem very hard. Otheisources of variability
between characters are computer fonts, artistic drawingshd writing styles.

3.2 Scripts

Here we describe some of the scripts used in this thesis. Thised not intend to be
a in-depth description of such scripts, but we will only premnt relevant information
for this thesis.

3.2.1 Latin

Latin is the most common script, used by many popular languagesuch as English,
Spanish, Portuguese, Italian, Turkish, German and their vagints. The basic Latin
alphabet consists of 26 characters, which can have lowereas uppercase variations,
plus the 10 digits and some characters used for sentence cohand expression, like
the period, comma, parenthesis and other signs (FiguB2).

Some languages extend the basic Latin alphabet with addihal characters, which
usually are just variations of Latin characters. Examples dhis are the Spanish tilde
characters @, e, ,0,u) and the German Umlaut characters @, @, @).

3.2.2 Kannada

Kannada is a script used in South India to write the Kannada laguage. It consists of
13 vowels, 2 vowel-consonants and 35 consonant charact€@haracters used by this
script can be seen in Figur&.3. The interest for this script in this work is due to the
availability of handwritten and real-world Kannada characers from the Chars74K
Dataset HA].
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Figure 3.2: Characters from the Latin Script

Figure 3.3: Characters from the Kannada Script
3.2.3 Chinese-Japanese-Korean (CJK)

CJK is a term that means Chinese, Japanese and Korean, and covecsipt used in
all 3 languages. CJK itself is not a script but a collection ofcsipts. CJK mostly
contains Chinese (Han) characters and their derivations iatother Japanese and Ko-
rean characters. Some CJK characters can be seen in Fig@ré.

CJK as a set of scripts contains approximately 75000 di erent @racters that are
encoded through Unicodedl]. Separate code point blocks are allocated for CJK
characters. The CJK Unied Ideographs block contains 20941 ahacters in the
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range U+4EQ00 to U+9FCC, and the CJKUI Ext A block contains 6582 cheacters
in the range U+3400 to U+4DB5, while 42711 characters are encedl in the CIJKUI
Ext B block in the range U+20000 to U+2A6D6 B1].

Figure 3.4: Some CJK characters.Source : Public Domain

3.2.4 Hiragana and Katakana

Hiragana and Katakana are Japanese scripts, part of the Japaeewriting system,
which also include the Kaniji characters and the Latin script The basic Hiragana
character set contains 93 characters, while the basic Kataka character set contains
96 characters. Characters from both scripts can be seen in &ig 3.5.

As with many scripts used by Asia, Hiragana and Katakana requireeveral strokes
to be drawn, and specic rules were designed to draw characte Unlike CJK, the
stroke width of Hiragana and Katakana is pretty constant withno big variations.

Hiragana and Katakana are usually encoded with Unicod&1]. Hiragana codepoints
are in the range of U+3040 to U+309F, while Katakana codepointsra in the range
U+30A0 to U+30FF.
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(a) Hiragana

(b) Katakana

Figure 3.5: Hiragana and Katakana Scripts along with their Unicode codepoints.

Source : Wikimedia Commons, File UCBHiragana.png and UCBKatakana.png,
User Antonsusi, available under theCreative Commons Attribution 3.0 Germany
license
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3.3 Road Scenes

In the context of robotics and autonomous vehicles, road ses play a key role since
usually cameras and other visual sensors are installed intack vehicles with the

purpose of perception for some required tasks, such as patlarming, collision and

obstacle avoidance, etcop).

In general, road scenes have some special characteristieat tmake extracting infor-
mation from them a challenge. Here we assume that the camerapiginted parallel
to the direction of motion of the vehicle:

1. Some basic structure like the sky is the upper portion of thenage, and the
road in the lower portion. Usually the sides of a road contairigns that provide
information to the driver (tra ¢ signs and panels), or other kind of information
such as advertising, buildings, etc. Tra ¢ panels could als be located in the
upper part of the image, as shown in Figur8.6.

2. Text information in panels and signs is usually small in 38 when compared
to the size of the complete image. While driving towards the gig the text
increases, but becomes blurry due to the movement of the velai.

3. The vehicle is in constant motion and this produces motioblur in some image
frames.

4. There is no control over weather conditions, such as rainn@wv, clouds and
sunlight.

5. A special challenge that is not considered in the literate is the fact that road
scenes also needed to be analyzed in low light conditions orthe night, since
most visual sensors give no meaningful information under Idight conditions.

6. Items that contain textual information such as tra ¢ signs and panels naturally
degrade over time.

7. Temporary occluders could be present in the scene, suchte=e leaves and
branches.
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Figure 3.6: Some images of Road scenes, from the GTSDB][

For this thesis work, we are interested in retrieving the tewal information stored in
tra c signs and tra c panels, such as the ones seen in Figure.7. Here we note that
tra c signs and panels do not necessarily use the Latin script
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Figure 3.7: Korean Tra ¢ Signs and Road Panels. Source: Public Domain

3.4 Maximally Stable Extremal Regions

Maximally Stable Extremal Regions (MSER) is a region detewn algorithm origi-
nally proposed by Matas et al. 37]. The basic concept of this algorithm is that if we
threshold an imagel with Equation 3.1 with all possible threshold valueg (usually
from O to 255 for 8-bit images), and nd the connected compongs for each binary
imageT, we will note that some connected regions do not change muethile other
regions have huge variations. The regions that have smallaiges as we change the
threshold are called stable regions.

8

<1 I(p)>t
T(p;t) =, _ (3.1)
- 0 otherwise

This process on example image in Figurg.8a can be seen on Figur&.9. In this
\sequence of frames" we can see that some regions do not clegrsgich as the text in
the lower part, the star and the moon crest in the Turkish ag, wlile other regions
have a much bigger variation.
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(@) Input Image (b) MSER Regions

Figure 3.8: Example MSER detection. In (B) each color represents a di erent
detected maximally stable extremal region.

Initially when the threshold is the maximum value oft = 255, the image is com-

pletely black, and as the threshold value is decreased, sonegions appear, and as
we advance, such regions grow and merge with other regionsgdavhen the threshold

is the minimum value oft = 0, then the image is completely white, which means that
the whole image is detected as one region.

The Maximally Stable Extremal Regions of Figure3.8a are shown in Figure3.8h.
We can note that text was detected as several MSER's.
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(a) t=215 (b) t =205 (c) t=195 (d) t=185 (e) t=175
(f) t=165 (g) t=155 (h) t=145 () t=135 () t=125
(K) t=115 () t=105 (m) t=95 (n) t=85 (0) t=75
(p) t =65 (@) t=55 (N t=45 (s) t=35 ) t=25

Figure 3.9: Thresholding and connected component analysis of a example image.
Borders added for clarity

The MSER algorithm de nes an image as the function : D N2?! S, whereS
is a totally ordered set, and for 8-bit grayscale imageS = f0;1;2;3; ;255 [37)].
An adjacency relation in the imagel must be de ned, which means that pixels in
the image have neighbors. The most usual adjacency relatgare 4-connectivity and
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8-connectivity [2§].

A region R on imagel is a contiguous subset oD, where contiguity is de ned by
the adjacency relation. This is the basic de nition of a conected component in the
image. An Extremal Region (ER) is a region on imagé where either all pixels in
the boundary of the region are strictly lower or higher thanhe pixels values in the
region. This de nes two types of Extremal Regions:

Maximum Intensity Region

8r2R"b2 @R [(r)>1(b

Minimum Intensity Region

8r2R"b2 @R () <! (b

Where @ Rdenotes the boundary of regiofiR. MSER regions are extracted by con-
structing a component tree $3], where the tree is built from the bottom-up. Each
node of the tree represents one region in the image at a givewrdshold level, and
the parent-child relation between nodes represents regignowing when the thresh-
old decreases. This also implies that all pixels that belortg a child region also are
contained in the parent region. An example component tree fmo [53] can be seen in
Figure 3.1Q

Figure 3.10: MSER Component Tree, extracted from B3]
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A Maximally Stable Extremal Region is a regiorR! where the function (i) [53 has
a local minimum:

jareaR! ) areaR!" )j
areaR!)

(R)= (3.2)
Where R! is the i-th region at threshold levelt on the component tree. We should
notice that ( i) also depends on the parameter . This equation evaluates if eegion
is stable by computing the relative area di erence of the regn, when the threshold
changes fromt to t+ . If this relative area change is a local minimum with
respect to the threshold levet, then the region is deemed stable.

There is an algorithm that computes the component tre€elfl], and it is very e cient,
with complexity O(nlogm), wheren is the number of pixels in the input imagd and
m is the number of gray levels. Since this number is usually caast (equal to 255),
then this algorithm is linear in the number of pixels. The Lirar MSER algorithm is
presented in Algorithms1 and 2.

After constructing the component tree, the tree is scanned dnmaximally stable
regions are extracted. We start at the leaves of the tree an@mtinue going up until
we reach the root. Regions that minimize Equatio8.2 are selected as MSER's. Then
Itering is performed. A region is output if and only if:

1. It is stable. A minimum stability can also be used.
2. Its size is bigger than the minimum size and smaller than ¢hmaximum size.

3. Itis su ciently di erent from its parent region.

Then the MSER detector has 4 parameters:

Margin
De nes by how many threshold levels a region is considered stab The most
common value used in the literature is 5.
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Mi

Mi

nimum and maximum areas
Both are numbers in [Q1] that represent sizes relative to the complete area
of the image. They allow to Iter very small or very large regins, since in
general the MSER output contains too many regions, and veryrall or very
large regions are usually not interesting (such as singlexpls and background).

nimum di erence from parent
This parameter sets a minimum threshold on the variation beteen a region
and its parent. This is used to remove duplicate regions, sie a region could be
stable for several levels of threshold (more than the marginThis parameter
is also called minimum diversity.

Algorithm 1 Linear Time MSER Computation [11]

Require: Input Image |, maximum grey valuet,x (default to 255)

1

Il e =
Awbh R o

15:
16:
17:
18:
19:
20:
21:

22:
23:

. function linearTimeMSER (I, thax)
Convert input image | to grayscale imageG.
Initialize boundary heap as a array of stacks indexed by grdgvel.
Initialize component stack.
curPixel (0;0); curLevel G(0;0)
while true do
for Neighborsp of curPixel that have not been exploreddo
if G(p) < curLevelthen
Push p into boundary heap.
curPixel p; curLevel G(p)
else

\ Push p into boundary heap.
if curPixel has not been visitecthen

\ Add curPixel to the top of the component stack. Here the region

grows.
| Mark curPixel as visited.
if Boundary heap is not emptythen
Pop boundary heap into curPixel.
if G(curPixel ) > curLevelthen
processStack (G(curPixel ), componentStack)
curLevel G(curPixel )
else

\ processStack (tmax, cOmponentStack)
return Component tree.
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Algorithm 2  processStack method [11]

1. function processStack (newGreylLevel, Component stack)
2: \ while newGreylLevel is bigger than the greylevel on top of the compent
stack do

3 Pop component stack into a variable called top.

4: Add top to the component tree.

5: if newGreylLevel is smaller than the greylevel on top of the corapent
stack then

6: Set greylevel of top to newGreyLevel.

7 Push top into the component stack.

8: else

9: Merge top and the component on top of the stack.

10: Push the merged component into the component stack.

3.5 The Stroke Width Transform

The Stroke Width Transform (SWT) is a text detection algorithm aiginally proposed
by Epshtein et al. B]. The core of the SWT is to compute a stroke width image, of
the same size as the input image, and where each pixel contaamsinteger denoting
the width in pixels of the most likely stroke region the pixelbelongs to, or zero in
case the pixel does not belong to any stroke region.

To compute such image, Epshtein et al. use Canny edge detectialong with raycast-
ing. For each edge pixel, a ray is cast in the direction of theagient until another
edge pixel is found or the ray gets outside of the image.

If another edge pixel is found, then a comparison between thayrdirection and the
gradient orientation in the found edge is performed. If the sais parallel to the edge
gradient within a tolerance ¢, then the stroke width is computed as the distance
between the ray origin and the found edge. This can be seen imgiie 3.11 Then
the minimum between what is already stored in the stroke widitimage and the com-
puted stroke width is stored in the stroke width image for edcpixel in the ray. The
SWT algorithm can be seen in Algorithm3.

After computing the stroke width image, Epshtein et al do a spzal kind of median
Itering to avoid a problem they encountered in letters suchas the \L", where the
stroke width was incorrect due to the long parts of the letter Their median lter
consists on that, for each successful ray, they compute thestdian stroke width m,
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/

SW

/

Figure 3.11: Gradient vectors and stroke width computation by raycasting

Algorithm 3  Stroke Width Transform

Require: Input image |, Gradient orientation tolerance ;.

1:

7.
8:
9:
10:
11:

12

Do Canny Edge Detection onl and obtain binary edge imaget .
Compute Gradient orientation (p) image.
Create stroke width imageS with integer format and same size as.
R ;
for Edge positione2 E do
\ Do raycast from edge positiore with direction (e) until an edge is found or
the ray exits the image.
if Edge is found at positionp andj (p) (e)j < . then

Compute stroke width sw as distance betweer and p.

For all pixels in the ray, set the stroke width ins 2 S to minf S(s); swg.

R R]J ray.
swtMedianFilter (S, R)
creturn S

and for each pixel of the ray, if the stroke width is bigger tha the median, they set

the stroke width in that position to the median value. This melian Iter can be seen

in

Algorithm 4.

Algorithm 4 SWT Median Filter

Require: Stroke width imageS and list of rays R.

1
2
3:
4.
5
6
7

. function swtMedianFilter (S, R)
; for Rayr 2 R do
Compute medianm of the stroke width along the rayr pixels.
for Pixelp 2 r do
if S(p) >m then

Sy m

return

An example of the SWT results of a image with one word can be se@nFigure 3.12
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(@) Input Image

(b) Canny Edge Detection

(c) Stroke Width Image

Figure 3.12: SWT Example of the word \Matias"

3.6 Support Vector Machines

An Support Vector Machine (SVM) [54] is a machine learning classi cation algorithm
that uses a maximum margin as a criteria to decide the best hgpplane that will

separate the positive from the negative examples. SVM is uslygreferred over other
algorithms as a classi er due to its resistance to over tting que to the maximum
margin) and the use of the kernel trick to obtain non-linear dasion boundaries.

Over tting is an undesired e ect that happens when traininga classi er, where the
classi er learns the target function in the training data as well as learning the noise
in the data, so the trained classi er fails to generalize the ekired function when
evaluated in sets of data di erent from the training set 8Q].

One way to avoid or minimize over tting is to do cross-validaion, which consists of
splitting the dataset into two parts: a training set and a vaidation set. The SVM
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is trained with the training set, and then the validation setis used to evaluate the
performance of the trained classi er, and over tting wouldbe clear if performance in
the validation set is poor.

K-Fold cross validation is another technique used to split dasets for training [55).
But in this method, the dataset is split ink parts at random (with approximately the
same sizes), and training proceeds krounds. In each round the classi er is trained
into k 1 splits, and the remaining split is used for validation. T8 is repeated once
for each split of the dataset.

3.6.1 Linear SVM

The most basic SVM is the Linear SVM, where the decision boundaiya hyperplane
in the n-dimensional spaceR". Given a set of training dataT in the form T =
fey)jx2 R"; y2f 1;1gg, the equation of the hyperplane is:

w x b=0 (3.3)

Where w is the weight vector of the decision boundary, which is perpdicular to
the hyperplane, andb is the o set of the hyperplane from the origin. Assuming the
training data is linearly separable, then there exists a vak of w that generates 2
hyperplanes where the area between the 2 hyperplanes doesammtain any value in
the training data. This can be seen in Figur&.13 The equation of such hyperplanes
are:

w x b=1 w x b= 1 (3.4)

The distance between both hyperplanes is denominated the &rgin” of the classi er

and its value is equal tozZ:. Since we want to maximize the margin, then we need
to minimize the norm of w. This can be formulated as an optimization problem,
and the constraints are designed to avoid that training data @ints falling inside the

margin area.

Then an SVM can be trained by solving the following optimizatio problem:
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I SR .
min —jjwjj subject to
wb 2 (3.5)
8 yi(w % b 1

After training the values of w and b are stored and can be used to classify new
examples with the following equation:

8

<1 ifw x b>0
f(x)=". _ (3.6)
-1 ifw * b<O

Figure 3.13: Geometry of a Support Vector Machine. Source : Public Domain

The training examples that line on the margin are called supt vectors and give the
name to the SVM. The importance of the support vectors is thatmy the support
vectors are required to train the SVM, and if any non-supportector training example
changes, the trained SVM will be the same (unless a new examfddls inside the
margin).

Then the number of support vectors is used as a measurementte complexity of the
trained classi er, since if less support vectors are needdtle trained SVM is simpler.

But this classic Linear SVM only works if the training data is Inearly separable, and
many real datasets are not linearly separable. But the SVM cdpme converted into a
classi cation algorithm that also work for such cases.
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3.6.2 Soft-Margin SVM

The Soft-Margin SVM is used in the case that the training datas not linearly
separable and some examples will be misclassi é&b]. For this, a small modi cation
of the constraints is required:

yilw % b 1 (3.7)

Where 0 for all i, and ; represents the misclassi cation \error" of a given
training example. Then the modi ed optimization problem usd to train the Soft-
Margin SVM is:

1. X .
min éijjjz + C i subject to

8i yi(w % b 1
i O

(3.8)

Where C > 0 is a parameter that controls how much misclassi cation isalerated
when training the SVM. In some way it can be considered similao a regularization
coe cient used in other machine learning algorithms. A smalvalue of C will make
the SVM tolerate many misclassi cations, while a big value of will make the SVM
strict, and no misclassi cations will be tolerated. WherC ! 1 then the Soft-Margin
SVM behaves like a linearly separable SVMNGY|.
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Proposed Approach

In this chapter we present our text detection approach.

4.1 Overview

After evaluating the literature, we selected a classic textetection pipeline with 4
stages:

Region Extraction
We used MSER to extract regions from the image, which repregecharac-
ters. MSER is well known for text detection, since it behavegery well under
noise, detected regions are invariant to a ne transformatns p6] and a tracking
framework exists which can improve performancé3.

Character Filtering
Then we perform lItering to select regions that are characts and discard the
rest. To do this we propose a new novel feature, called the Higiram of Stroke
Widths (HSW) that has a very high classi cation rate and can disdminate
between character and non-character regions very well.

Text Line Grouping
Then we group character regions into text lines via a novel yaasting method
that we also propose.

47
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Text Veri cation
For each text line produced in the previous stage, we verifjpat they are indeed
a valid text region by means of the Histogram of Stroke Widths. ¥ery valid
text line is then the output of our detector.

A block diagram of our detector architecture is shown in Fige4.1 For our detector
we took the following assumptions:

Input Image
MSER Region Character Text Line Text Veri cati
Extraction | Filtering | Grouping > Text Veri cation

Text Detections

Figure 4.1: Text Detector Block Diagram

1. Individual characters can be detected as connected compats from the MSER

algorithm.

2. Characters can belong to any script. In particular we testeour classi cation
algorithm with Latin, Kannada, CJK, Hiragana and Katakana Scipts, but the
Histogram of Stroke Widths should work with any script.

3. Text lines formed by consecutive connected componentsrioa line. This as-
sumption is violated if the text is curved, but we believe oumethod has the
potential to also consider curved text if the character origation can be taken

into account.

Two example results from our proposed text detection pip&le can be seen in Figures
4.2 and 4.3. For each gure, there are sub gures that show the resulting wtput for
each stage.
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4.2 Region Extraction

For region extraction we use Maximally Stable Extremal Regins over a grayscale
projection of the input image. The advantages of such apprdaare:

Scale invariance
Regions can be detected at any scale, and the detector allawset a minimum
and maximum region sizes, so we don't need to process realig br very small
regions. Unlike other methods, MSER region detection does kemassumptions
about the size of the text.

A ne transform invariance
If a region is a ne transformed, the transformed region willalso be detected,
and this transformation can be undone with the algorithm presnted in [56],
but we did not use this option.

Text as MSER
Characters and Text is well known to be detectable as MSERS7], and in
general this performs very well.

Low parameter count
The MSER detector has only 4 parameters and their values geabkze very well
under many di erent images. The only parameters that need tunig are the
minimum and maximum region sizes.

The MSER algorithm detects light regions over a dark backgumd (this is called
MSER+). To detect dark regions over light background, it is equired to take image
with inverted pixel values (Di erence between maximum gragcale value and each
pixel value) and to run the algorithm again on that inverted mage (This is called
MSER-) [53]. Then we can use both sets of regions for further processimgthe
pipeline.
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(@) Input Image (b) MSER Regions (c) Filtered Character

Figure 4.2:

(218 regions) Regions (48 regions)

(d) Text Lines (23 (e) Filtered Text
lines) Lines
(3 lines)

Text Detection Pipeline results, divided per stage, with a simge
image



Chapter 4. Proposed Approach 51

(&) Input Image (b) MSER Regions
(270 regions)

(c) Filtered Character
Regions (138 regions)

(d) Text Lines (76 lines) (e) Filtered Text Lines
(14 lines)

Figure 4.3: Text Detection Pipeline results, divided per stage, with a road sene
image
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4.3 Character Filtering

To lter character regions from non-character regions, we eeloped a feature de-
scriptor for text regions. We call this feature the Histogranof Stroke Widths, and as
like the name says, we extract stroke widths from the regiomand make a histogram
of them.

4.3.1 Histogram of Stroke Widths

Since text and character regions have \almost" constant stke widths B], the his-

togram should have a very noticeable peak around the strokeidth used to draw

the character, with variations since the stroke width somé&nes varies according to
di erent fonts, di erent writing styles and on di erent cha racters.

We noticed that the distribution of stroke widths between a lbaracter and a non-
character region were dierent. In Figure4.4 we present the histogram of stroke
widths of three character regions, and in Figurel.5 the same but for three non-
character regions. We can see that the histograms are di erg non-character regions
accumulate more mass around the rst bins, while characteegions have a peak that
is further to the right of the rst bin.

But we make no such assumptions on the di erence between lagrams, and we will
let a classi cation algorithm be trained over the histogramof stroke widths feature
to distinguish character from non-character regions. Franhofer IAIS was using a
similar method of stroke width distributions for the same ppose, but comparing it
with template histogram using Earth Mover's distance38].

Since stroke width values change with font sizes, distance the camera or size of
the regions, we normalize stroke widths by the width of the humding box of the
connected component region. This provides scale invarianesince stroke widths in
general cannot be larger than the width of the connected compenmt. After building
the histogram, we normalize it by dividing each bin by the sunof all bins.
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Figure 4.4: Histogram of Stroke Widths for 3 Character Regions (Computed
with SWT and 20 histogram bins)

The histogram of stroke widths algorithm is shown in Algoritm 5. Before we can
use this algorithm, we need a way to extract stroke widths fro a connected com-
ponent. We used two di erent methods: One based on the StroR&idth Transform
[8] and another using run-lengths to approximate the stroke wttls. Run lengths are
explained in Sectior4.3.3

To classify characters, we compute the histogram of strokedtins, and then we train
a Linear SVM with a soft-margin as classier. The input featues for the SVM
classi er are the histogram of stroke widths, and two addional features:

Aspect Ratio
The aspect ratior of a connected component region is the ratio of width to
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height of the bounding box containing the component:

(4.1)

ol

Occupancy Ratio
The occupancy ratioo of a connected component region is the ratio of the
number of pixelsn in the region to the total area of the bounding box containing
the component: i

0= m (42)

The only parameter required to compute the HSW feature is theumber of histogram

bins, which should be greater than zero. We decided to use anear SVM because of
previous results that used similar techniques, such as HoZ[. We also experimented
with di erent kernels, such as Gaussian and polynomial, buthey were not superior

to a Linear kernel.

Algorithm 5 Histogram of Stroke Widths Computation
Require: List of stroke widths W, width of the region R,

1. and number of histogram binaN .

2: function HistogramOfStrokeWidths (W, Ry, N)

3: Create output histogramH with N bins.

4 for w2 W do

5: | Compute normalized stroke widthsw = R

6 | Vote into histogram H in bin number sw N.

7 Normalize H by dividing each bin by the sum of all bins.
8 return H

4.3.2 SWT-based Stroke Width Computation

Given a connected component region, we convert this compohéo an image. As-
suming the component is represented as a list of pointg;f) indicating the pixel
coordinates that belong to the region, to convert this repsentation to an image, we
rst compute the bounding box of the region, construct a imag of the same size as
the bounding box, then for each point in the region, transla it by the upper-left
corner and set its value in the image to 255. Then we computedghmage gradient
over the region image, by using the local di erence operatowhich is de ned by the
following convolution kernels:
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Lh= 1 1 Ly = (4.3)

We decided to use the local di erences kernel instead of theone common Sobel
kernels because most detected regions are small, and the &dternel incorporates
smoothing, which a ects the stroke width computations. Loal di erences works
much better than Sobel for this case.

After computing the image we do a simple edge detection algibnin. Since the region
image is completely noise-freé, we can obtain the edges by taking the gradient
magnitude image and thresholding it witht = 1. This procedure works because the
region image was created by our algorithm and is just a new reggentation of the
region.

Once we have the edges and the gradient orientation, we careube Stroke Width
Transform to obtain the stroke widths. We made a small modi ation to the SWT
algorithm.

To avoid \holes" in the regions obtained from SWT and missing g due to noise,
we removed the condition that gradient orientation at ray sbp positions must be
roughly parallel to the ray direction. Our ray stops when it lits an edge or the ray
exits the image. We can remove this constraint because theyren image is completely
noise free (since it is generated from a region and not exttad from an image patch).

Our SWT-based stroke width extraction algorithm is presentin Algorithm 6. The
stroke widths on Figures4.4 and 4.5 were computed with our SWT algorithm.

lwe say it is noise free because it is just another representation of thregion, and in this case
the image has two possible values: 0 or 255
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Algorithm 6 SWT-based stroke width extraction

Require: RegionR as a list of points (Pixel positions).

1:
2:

10:
11:
12:
13:
14.
15:
16:

17:

© N gk w

Convert R to a grayscale imagé .
Do edge detection by convolving with the local di erences kernelL, and L,
(Equation 4.3).
Compute gradient magnitudeM (p) and gradient orientation (p) images.
ThresholdM > 1 to obtain a binary edge imagee.
Create stroke width imageS with integer format and same size as.
R ;
for Edge positione 2 E do
\ Do raycast from edge positiore with direction (e) until an edge is found or
the ray gets outside of the image.
if Edge is found at positionp then
Compute stroke width sw as distance betweer and p.
For all pixels in the ray, set the stroke width ins 2 S to minf S(s); swg.
R RJ ray.
swtMedianFilter (S, R)
W
for Pixel positionsr 2 R do
W S(r) [ w.

return W
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Figure 4.5: Histogram of Stroke Widths for 3 Non-Character Regions (Computed
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4.3.3 Run-Length Stroke Width Computation

We also developed a di erent way to estimate stroke widths bgneans of run lengths.
Run-Length Encoding (RLE) is a method for data/image comprgsion R§], where a
binary image is compressed by storing consecutive elemewtsh the same value as
a single value, instead of the origin run of elements. A examepof RLE compression
can be seen in Figurel.6. For stroke width extraction we use run lengths without
line wrapping.

Figure 4.6: Run-Length Encoding Image CompressiorSource : Wikimedia Com-
mons, File RunLengthEncoding.png, used under the GNU Free Documentation
License (GFDL)

For example, the binary string \0000111010000001111" cam lencoded as 4 zeros,
then 3 ones, then 1 zero, then 1 one, then 6 zeros, and nally Aes. The same con-
cept can be used to estimate the stroke widths of a region, bgroverting the region
to a binary image (same as SWT stroke widths), and computing theun lengths for
each scanline of the image, but only for pixels that have thealue of \true". Pixels
with a value of \false" correspond to the background and areat relevant for stroke
width computation.

Using the run lengths for stroke width extraction will overesmate many stroke
widths, but our experiments show (in Sectiorb) that this is also a viable approach.
Our stroke extraction algorithm is presented in Algorithm?.

A comparison between SWT and Run-Length stroke width extraain is shown in
Figure 4.7. In that gure we can see that both histograms look very similg with
di erences in long regions where the run lengths based appah overestimates the
stroke width.
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Algorithm 7 Run Lengths based stroke width extraction
Require: RegionR as a list of points (Pixel positions).
1. Convert R to a binary imagel .
2: strokes ;
3: for y =0 to l.height do
4 is false start O
5: for x =0 to l.width do
6
.
8
9

if 1(x;y)=true and : is then
| is true; start x

if 1(x;y)="false andis then
; is false

10: sw x start

11: strokes  strokes[ sw
12: return strokes
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Figure 4.7: Comparison of SWT and Run-Lengths stroke extraction (20 his-
togram bins)
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4.4 Text Line Grouping

afiattajkul

Figure 4.8: Raycast-based Text Line Grouping

After ltering character regions, we need to group them into &xt lines. For this we
propose a method that uses raycasting from one region to ndhé next region in the
text line. This method is similar to the one presented inJ9]. The basic idea can be
seen in Figure4.8.

Given a list of character regions, rst we convert it to a labedd image, which is a
integer image where a value of zero means background or nodatand a positive
value 1 indicates the index of the region in the list that pixel belongs to.

Now from the previous label image we proceed to do raycastingor each character
region, we take the middle point of the right side of the bouridg box, and cast a
horizontal ray until we nd the next region, or the ray exits the image.

To avoid false positives and regions that are too far to be vdltext, we introduce
a distance threshold. If the distance between the curremt and the next regionn
is bigger than this threshold, we stop the raycast process @dmproceed to the next
region in the list. To maintain scale invariance, we test théollowing valuev against
the distance threshold.

3 distance(c; n)
~ min(c:width; n:width)

(4.4)

The distance threshold can be obtained with cross-validain by maximizing precision
and recall. After this process we obtain many text lines, andse lines are duplicates
or contain subparts of a text line. To reduce the number of faé or duplicated text
lines, we merge text lines that have at least one region in comon using a union- nd

merging algorithm.

After merging we consider the text lines that have at least twoegions and produce
the bounding boxes of each of such text lines and return them #esxt detections.
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The complete text grouping algorithm is presented in Algoritms 8 and 9.

Our grouping method takes the assumption that the text lines horizontal or nearly-
horizontal. But this is not a strict requirement since the me&hod could be adapted
text with any orientation. The only required information for oriented text is the
orientation of the character region to select the directionf the raycast, but this adds
complexity to our simple algorithm.

Algorithm 8 Raycast-based Text Line Grouping
Require: List of Character RegionsR, Distance thresholdd.

1. Convert R to a label imagel .

2.t

3: for r 2 R do

4: lineRegions ;

5: curRegion r

6: curLabel label of regionr.

7 while curLabel 6 0 do

8: rayLabel raycast (curRegion, I)

9: if rayLabel =0 then

10: | break

11: candRegion R(rayLabel)

12: if distancecandRegion; curRegior) > d; min(candRegion:width; curRegion:width)
then

13: | break

14: curRegion candRegion

15: curLabel rayLabel

16: lineRegions lineRegions|[ curRegion

17: tt  tl [ lineRegions

18: Merge text lines with common regions irl .
19: return It

Algorithm 9  Raycasting Method

Require: Starting region R and label image labels.
1: function raycast (R, labels)
2. r =(x;y) middle point of the right side ofR's bounding box.
if r is not a valid coordinatethen
| return 0
while r is a valid coordinate and labels() =0 do
| rx orx+1
if r is not a valid coordinatethen
| return 0
else
10 | return labels()
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4.5 Text Veri cation

Finally the last stage is text veri cation. This stage is desiged to remove the many
false positives that are generated in the previous stages. d@&ens for false positives
could be regions that look like text but are not, such as lighpoles, road markings,
etc. Also our text line grouping algorithm will produce somedise positives if the
character classi cation stage did not remove non-charaateegions.

For text veri cation we also use the histogram of stroke widtk, but instead of clas-
sifying a region, we classify the set of regions in the texnk.

To classify a text line, we compute the histogram of stroke wihs for each region
in the text line, and take the average of all histograms, andhen renormalize the
histogram so its sum is 0. We also use two additional features, but their de nition
is slightly dierent. A Linear SVM classi er is trained on these features plus the
histogram of stroke widths:

Aspect Ratio The aspect ratior of a list of connected component regions is the
ratio of width to height of the bounding box containing all the components in
the list:

ol

(4.5)

Occupancy Ratio The occupancy ratioo of a list of connected component regions
is the ratio of the sum of number of pixels ; n; across all regions to the total
area of the bounding box containing all components in the list

1 X
o= — n;j (4-6)

Whi



Chapter 5
Experimental Evaluation

In this chapter we present the experimental evaluation of ouext detector. All tests
were run on a laptop with a Intel Core i5-3317U CPU, with a normafrequency
of 1.7 GHz and a TurboBoost frequency of 2.4 GHz. The laptop ha® IGB of
RAM. The implementation was done in C++, with the GCC 4.9.1 comjiler, with
-O2 optimizations enabled

5.1 Datasets

We used 3 kinds of datasets to evaluate our detector. Fraunfieo IAIS provided video
frames of a camera mounted on a vehicle that took video foomdrom the German
Autobahn, which was used to produce a small dataset of 95 image

To train the character classi er and compare its performare with di erent scripts,
we used the Chars74K Dataset] English and Kannada images, as well as ve small
datasets generated from computer fonts.

5.1.1 Chars74K Dataset

We used the Chars74K Dataset because it contains images framntfgenerated Latin
characters, as well as handwritten Kannada characters in armat that is very easy
to use. We used two subsets of this dataset:

63
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English
The Chars74K dataset contains 62992 images of Latin characs generated
from a very big selection of computer fonts, with image sizd @28x128 pixels.
There are 1016 image samples for each character (with a totafl 62 di erent
characters). A example of some characters in this dataset wareviously shown
in Figures2.6 and 2.7.

Kannada
The Chars74K also contains Kannada script characters, fromatural images
as well as handwritten images. We selected to use the handwen character
images. In this dataset we have 25 image samples for each & 81 basic Kan-
nada characters, for a total of 1275 image samples. Imageesiare 1200x900
pixels. Some samples of this dataset are shown in Figusel

Figure 5.1: Some Handwritten Kannada characters from the Chars74K Dataset

[4]

5.1.2 Fraunhofer Tra ¢ Panel Dataset

Since there are no public datasets of images from the persipex of an autonomous
vehicle with a front facing camera, we decided to create ouwa. Fraunhofer re-
searchers used a camera on a car and produced many 720p réisolwideos of Auto-
bahn driving. We named this dataset the Fraunhofer Tra ¢ Pand Dataset (FTPD).

We took the videos and selected frames that contained tra ¢ ganels, and we obtained
95 image samples, split into 40 training and 55 test imagesoi8e examples from the
training set can be seen in Figur®.2 Image sizes are 1280x800 pixels.

Since the frames come from MP4-compressed video, the imaggsif are very noisy,
and the MPEG compression artifacts can be seen if the image® @oomed in. This
can be seen in Figur&.3 Rectangles were used to label text regions in each image.
A example of such labels can be seen in Figusel. In general the text of this dataset

is horizontal, with some cases where the text is slighly ratd.
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Figure 5.2: Some images from the Fraunhofer Tra ¢ Panel Dataset

Parameter Value | Parameter Value
Margin 10 Minimum Diversity 0.75
Minimum Area | 20 px | Maximum Area 30% of total image area

Table 5.1: MSER Parameters for character and non-character region extraction

In order to train the character classi er we extracted charaer and non-character
regions from this dataset. To extract we used a MSER detectooi gured with the
parameters shown in Tables.1, and used the labeled bounding boxes to decide if
a region is a character (positive example) or a non-charactéhegative example) to
train a Linear SVM classi er. A sample of such regions are presed in Figures5.5
and 5.6. From this dataset we extracted 1280 positive examples and D negative

examples.
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Figure 5.3: MPEG Compression artifacts on images from the Fraunhofer Dataset

Figure 5.4. Labeled text regions from the Fraunhofer Dataset

Figure 5.5: Extracted MSER character regions from the FTPD

Figure 5.6. Extracted MSER non-character regions from the FTPD
5.1.3 Character Datasets

Since most public datasets contain only text with Latin chaacters, we decided to
generate some datasets with non-latin characters from contpr fonts. The purpose
was to evaluate the generalization power of the characteraski er. The scripts we
selected were CJK, Hiragana, Katakana and Latin (for control grposes).

To generate Asian script characters, we used the IPA Fontsset provided by the

Ihttp://ipafont.ipa.go.jp/#en
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Information-Technology Promotion Agency of Japan , which aravailable under the
\IPA Font License Agreement v1.0" License’.

From the IPA Fonts set we used the IPAGothic, IPAMincho, IPAPGdhic and IPAP-
Mincho fonts to generate Asian script characters, as following

CJK
We generated 2257 CJK characters in the Unicode codepoint rande4e00 to
U+56d0, with a total of 81252 image samples.

Hiragana
We generated 93 Hiragana characters in the Unicode codepoiange U+3040
to U+309F, with a total of 3348 image samples

Katakana
We generated 96 Katakana characters in the Unicode codeporange U+30A0
to U+30FF, with a total of 3456 image samples

Latin
We generated 62 Latin characters (0-9, a-z, A-Z) with a totalfo8370 image
samples.

To generate each character image, we painted a black chamrcbon a 110x110 pixel
image, with a white background, and varied the size and proges of the font. Font
sizes (in points) were drawn fronms 2 f 18; 20; 22, 24; 26; 28, 36; 48, 72g. To generate
Latin characters, we used the Arial, Comic Sans MS, Fontin, EeSans and FreeSerif
fonts, and for each character and size combination we added/&sions of the char-
acter, with Roman, Bold and Italic styles.

Example characters from the generated datasets are presashin Figures5.7, 5.8 5.9
and 5.10

Figure 5.7: Some generated CJK characters

2http://opensource.org/licenses/IPA
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Figure 5.8: Some generated Hiragana characters

Figure 5.9: Some generated Katakana characters

Figure 5.10: Some generated Latin characters with di erent font sizes

5.2 Character Classi er per Script

5.2.1 Experimental Setup

With the purpose of evaluating the generalization power of # character classi er,
we designed several synthetic experiments that consistet training the character
classi er with a given set of positive examples, drawn from acript, and a set of
negative examples, drawn from the Fraunhofer Tra ¢ Panel D#aset.

To set the values of the SVM misclassi cation penaltfC and the number of histogram
buckets N, we used grid search, with a 10-fold cross validation. Eacloipt (C; N)
where C 2 f0:010:1;1;10,100 100@; N 2 f10,20,30;, ;190 200y was used to
train the classi er and the one with biggest correct classcation rate was selected.

Each script dataset was split into training and validation sbsets, with the training
subset being used for k-fold cross validation and the valitian dataset used for nal
classi er selection.

To compare the generalization performance of the charactelassi er, we trained it
with di erent scripts. We build a \confusion" matrix, where we trained a character
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classi er with a given script, and tested it with another scipt. This way if the char-
acter classi er really learned the distribution of stroke wdths, it should give a good
classi cation performance over a di erent script.

We evaluated 6 scripts: English (from the English subset ohé Chars74K dataset),
Handwritten Kannada (also from the Chars74K dataset), CJK, Hiagana, Katakana

and Latin.

5.2.2 Results and Analysis

Results of this experiment can be seen in Table.2 for a character classi er using
SWT strokes, and Table5.3 for a character classi er using Run Length strokes.

Train/Validate English | Kannada | CJK | Hiragana | Katakana | Latin
English 99% 96% 99% 97% 89% 95%
Kannada 97% 99% 99% 98% 93% 86%
CJK 1% 2% 98% 99% 94% 96%
Hiragana 1% 1% 98% 98% 94% 96%
Katakana 1% 1% 98% 99% 98% 97%
Latin 2% 2% 98% 99% 94% 96%
(&) Character
English | Kannada | CJK | Hiragana | Katakana | Latin
94% 94% 100% 100% 98% 100%
(b) Non-Character
Table 5.2: Character Classi er - Correct classi cation rates with SWT
Train/Validate English | Kannada | CJK | Hiragana | Katakana | Latin
English 96% 84% 97% 98% 90% 96%
Kannada 96% 100% 98% 98% 90% 90%
CJK 2% 1% 98% 99% 95% 96%
Hiragana 2% 1% 98% 99% 94% 96%
Katakana 2% 1% 98% 99% 95% 96%
Latin 6% 1% 98% 99% 96% 99%
(@) Character
English | Kannada | CJK | Hiragana | Katakana | Latin
93% 100% 100% 99% 99% 99%
(b) Non-Character
Table 5.3: Character Classi er - Correct classi cation rates with Run Lengths
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For SWT, we can see that the generalization performance is ekeat. For example,
training a classi er with Latin English characters also geeralizes very well to detect
Kannada, CJK, Hiragana and Katakana characters, with most cksi cation rates
over 90%, where the Katakana script has the lowest classi dah rate of 89%.

Correct classi cation rates for non-character are also vgrhigh, with the English
charaters having the lowest correct classi cation rates.

For run lengths we also see a very good generalization penfiance, with all character
classi cation rates over 90%, except for English vs Kannadaith a 84% classi ca-
tion rate. This could be explained because the strokes in the Hanritten Kannada
dataset are very thin, and the run length classi er could ha& problem capturing their
distribution.

Comparing SWT versus RL we see that there is no clear winneraski cation rates
for character are sometimes higher for SWT and sometimes heghfor RL. But for
non-character RL is slightly better since it has a 100% coreclassi cation rate for
non-character regions, and for other datasets they are vegymilar, with minimum
di erences.

There are several cases where classi cation fails and thappens when we train with
one of the generated datasets (CJK, Hiragana, Katakana and Lia} and test with
the non-generated datasets (English and Kannada). This shid not be surprising
due to the big di erence in size between such datasets, andette is no way we could
capture the whole variation of font size and style of the nogenerated datasets in a
relatively small dataset such as the ones we generated.

We can conclude that the Histogram of Stroke Widths can learn thstroke width
distributions of several scripts and generalize very wellith other scripts, which make
it a very powerful feature for character and text classi catbn.
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5.3 Text Detector on Road Scenes

5.3.1 Character Classi er Training

To evaluate the whole text detection pipeline, rst we trainel a character classi er on
the character and non-character regions extracted from tHerPD. The performance
of the trained classi er represented as a confusion matrixs ishown in Table5.4.
Please note that we abbreviated \character" as \char" in tha table.

Char | Non-Char Char | Non-Char
Char 88% 12 % Char 92% 8 %
Non-Char 12 % 88% Non-Char 18 % 82%
(a) SWT (b) Run Lengths

Table 5.4. Character Classi er performance while trained on the Fraunhofer
Dataset

For both SWT and RL the character classi cation performances good, with RL
being slightly better (4% di erence), but with a lower correct classi cation rate for
non-character regions. Results from the grid search prosdsr C and N are available
on Table A.1 in the Appendix.

5.3.2 Text Verier Training

The second stage that requires training is the text veri er. ® train it we took sam-

ples from the FTPD, but instead of taking single characters, &took complete text

regions inside the labeled bounding boxes. To obtain negatiexamples, we ran the
raycasting algorithm over the detected MSER regions and seked any false positive
that was completely outside the text bouding boxes.

Both kinds of regions can be seen in Figurés1land 5.12 From this dataset we
extracted 189 positive examples and 403 negative examples.

Results from the text verier training are shown on Table5.5 and the complete
results from the grid search process fa€ and N are available on TableA.3 in the
appendix. We can see that classi cation performance is vehigh, with 97% of text
regions correctly classi ed, but there is no signi cant dierence between using SWT
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Figure 5.11. Extracted MSER text regions from the FTPD

Figure 5.12: Extracted MSER non-text regions from the FTPD

or RL. Run lengths seem to be slightly worse since they confud&mes more non-text
regions as text, and have a 2% lower classi cation rate for neext regions.

Text | Non-Text Text | Non-Text
Text 97% 3% Text 97% 3%
Non-Text 1% 99% Non-Text 3% 97%
(a) SWT (b) Run Lengths

Table 5.5: Text Veri er performance while trained on the Fraunhofer Dataset

5.3.3 Experimental Setup

Now we can proceed to evaluate the whole text detection pipedé over the FTPD. As
mentioned before, we trained the character classi er and xeveri er on the training
portion of the FTPD, and ran the whole pipeline on the test porton of the dataset.
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Parameter Value

Margin 10

Minimum Diversity 0.75

Minimum Area 0:001% of total image area
Maximum Area 30% of total image area

Table 5.6: MSER Parameters for our Text Detector evaluation

The parameters used for testing are shown in Tabl.6. The value of the distance
threshold was set tod; = 1:5.

We consider a correct text detection of the detected rectalegmatches the labeled
rectangle in the ground truth in at least 70%, and then we comyte precision and
recall, as well as obtain computation times for each stage. &hext veri er (TV) was
optionally enabled or disabled to allow for comparisons ofsite ect in the detection
performance.

Enabling or disabling the text veri er gives four possible cogurations:

SWT-TV O
Stroke Width Transform used for stroke width extraction, wih the text veri er
disabled.

SWT-TV On
Stroke Width Transform used for stroke width extraction, wih the text veri er
enabled.

RL-TV O
Run Lengths used for stroke width extraction, with the text \eri er disabled.

RL-TV On
Run Lengths used for stroke width extraction, with the text \eri er enabled.

5.3.4 Results and Analysis

Text Detection performance is shown in Tablé.7. We can see that recall of the RL
text detector is better than the SWT text detector, with a bestrecall of 76%. But
for precision, the best performance is obtained with the SWT % detector.
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Enabling the text veri er has the e ect of increasing precigon by a considerable
amount, up to 24%, but it also has the e ect of decreasing redadlightly. The ob-
served decrease in recall was 7% for SWT and 4% for RL.

The best performing text detector is the Run Lengths one witlan enabled text ver-
i er, with f-score of 69%. The same con guration with SWT strokewidths has a
slightly lower f-score of 61%.

SWT-TV O SWT-TV On RL-TV O RL-TV On
Precision 40% 62 % 41% 65%
Recall 68% 61% 76% 72%
F-Score 50% 61% 53% 69%

Table 5.7. Text Detector performance on the Fraunhofer Dataset

We also obtained computational performance data, which isvailable in Table 5.8
In this table we can see that in general all detector con gutens take roughly 1
second to process a frame, and clearly the most expensivetparthe extraction of
Maximally Stable Extremal Regions. The Run Lengths detectois clearly faster,
since the character classi cation stage is much faster (35 tas faster to be precise)
than the SWT stroke widths.

For the SWT text detector, Roughly 2% of the time is spent on imge projection
(Converting to grayscale), 73% on MSER extraction, 24% on ahacter classi cation,
0:4% on text line grouping, and % verifying text. For the RL text detector, 95%
of the time is spent on the MSER extraction and only 5% on the s¢ of the pipeline.

Enabling the text veri er has a very good impact on detection pgormance while
having a very small computational cost. Since Run Lengths hawhe best detection
performance and the lowest computational cost, it is clegrkthe best choice for a text
detector based on MSER.

A comparison of our di erent detector con gurations with the SWT algorithm is
presented in Table5.9 over the FTPD. We can see that the SWT has terrible perfor-
mance, with a f-score of only 28%, and a very high computatidime.
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SWT-TV O SWT-TV On RL-TV O RL-TV On
Image Projection 23 4 ms 23 4 ms 22 7ms 22 7ms
MSER 844 131 ms | 844 131 ms | 859 143 ms| 859 143 ms
Character Classi er 281 136 ms | 281 136 ms 8 3ms 8 3ms
Text Line Grouping 6 2ms 6 2ms 7 4ms 7 4ms
Text Veri er 0O Oms 8 6ms 0O Oms 1 1ms
Total 1154 188 ms| 1162 189 ms| 896 143 ms| 896 143 ms

Table 5.8: Text Detector computation time while on the Fraunhofer Dataset

We believe this is due to the very noisy nature of the images wur dataset, since
they are real-world road scenes, with blur, and charactergeavery small in size
when compared with the size of the image frame. Also the artdts from MPEG
compression play a big role here, aecting the gradient comations, which are
known to be very sensitive to noisegQ)].

Precision | Recall | F-Score Time
MSER-SWT 40% 68% 50% 1.2 02s
MSER-SWT-TV 62% 61% 61% 1.2 02s
MSER-RL 41% 76% 53% 09 0O1l1s
MSER-RL-TV 65% 72% 69% 09 0O1s
SWT [8] 21% 40% 28% 25 02s

Table 5.9:

Dataset

Comparison between SWT and our Text Detector on the Fraunhofer
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5.4 Distance Threshold Sensitivity

In order to evaluate the sensitivity of our text detectors wih respect to the distance
threshold parameterd;, we obtained an ROC curve, which can be seen in Figusel3

The ROC curve again shows that the superior detector con gation is Run Length
strokes with an enabled text veri er, by a wide margin. The optnal value of the
distance thresholdd; was selected by performing grid search over the range(®:0]
and nding the value of d; that maximized the F-Score.

The di erence between SWT curves is smaller than the di ererebetween RL curves.
This might indicate that tuning a precise value ofd; is more critical for the Run
Lengths detector than for the Stroke Width one.

It should be noted that the ROC cuve in Figure5.13represents a \Convex hull" of
the Precision-Recall data obtained from testing the deteat algorithm, according to
recommendations fromg1]. Data points that fall inside the curve area were skipped.

1l | |—*=SWT TV-O
- SWT TV-On
081 1|~ RLTV-O
S —— RLTV-O
S 06 . n
©
L 04t .
o
0:2 :
0 [ |
| | | | |

|
0O 02 04 06 O 1
Recall

Figure 5.13: ROC curve with respect to the distance thresholdd;
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5.5 Character Classi er per Character

In order to perform a better comparison of SWT and run length sbke width ex-
traction, we performed additional experiments aimed at se® what is the di erence
between both methods.

5.5.1 Experimental Setup

We suspected that the correct classi cation rate is not the ane across di erent

characters. To evaluate this hypothesis, we tested the claater classi ed trained on

the FTPD with the Latin script dataset, but evaluated separatly for each character.
We tested numbers from 0 to 9, lowercase characters (a to z)damppercase characters
(A to 2).

5.5.2 Results and Analysis

Results of this experiment are shown on Figurés15and 5.16 For SWT the average
correct classi cation rate is 77%, and for Run Lengths it is @.

Comparing both plots, we can see that the SWT has issues cldgsig the characters
\X", \Y" and \Z", where they have the lowest correct classi cati on rates among all
characters. We believe this is due to discretization e ectef the gradient, and this
a ects the gradient orientation. The same e ect can be seemiFigure 2.11, where
there are smaller stroke widths around the section of the ker where 2 strokes meet.
The SWT seems to have issues in these cases. An individual conmpam of selected
characters is shown in Figurés.14

Run Lengths seem to be a better choice, since their classit@n rate is bigger by
a wide margin, and does not have any particular problematicharacters, but still
some characters have lower detection rates than the rest,chuas the \N", \T" and
\Z"\z" characters.
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(b) Characters where Stroke Width Transform is superior

Figure 5.14: Comparison of SWT and RL performance over selected characters

We note that problematic characters for the Run Lengths all ha long horizontal

strokes, for which the stroke width will be a overestimationwhich causes misclassi-
cations. Comparison between SWT and RL still needs more reseh, since results
can change depending on the dataset or fonts used to draw text
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Figure 5.15: SWT Character Classi er Performance per Character (77% average
classi cation rate)
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Figure 5.16: RL Character Classi er Performance per Character (90% average
classi cation rate)
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5.6 Rotation Invariance

In theory the SWT stroke widths are rotation invariant (up to the e ects of discretiza-
tion), while the Run Length stroke widths are not, since a rated character would
produce dierent run lengths, which will change the distrilution of stroke widths.
We designed this experiment to evaluate the performance did trained character
classi ers when the characters are rotated.

5.6.1 Experimental Setup

We took the images from the already generated character dagts and rotated them
(around the Z axis) to produce rotated versions, and evaluatl the performance of
the di erent character classi ers versus the new examplesEach character image
sample was rotated by an angle of 2 f 0;5; 10,15, ;360 degrees.

We tested each classi er with the corresponding rotated chacters of the same script.
We did not perform cross-script evaluation of rotated chaxers. Only the Latin,
CJK, Hiragana and Katakana scripts were evaluated.

5.6.2 Results and Analysis

Plots of the relation between classi er performance and ration angle are shown
in Figure 5.17for SWT strokes, and in Figure5.18for Run Length strokes.

From Figure 5.17we can see that performance is not a ected by rotated charaats,
except for the Latin script, where at =90 and = 270 the classi er fails, with a
zero classi cation rate. We believe this happens becauseethlassi er was not trained
on rotated characters, and while in theory the SWT is rotationnvariant, the stroke
width distributions do change slightly, which can make the dssi er fail. This can
be seen in Figures.19

One issue that must be pointed out is normalization. Our hisigram is normalized
by the width of the region, and while characters are rotatedhe stroke widths from
SWT do not change much, but the width of the region changes. Toeltruly rotation
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Figure 5.17: SWT Character Classi er Performance by Rotation Angle
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Figure 5.18: RL Character Classi er Performance by Rotation Angle

invariant, the histogram should be normalized by the minimm value between width

and height [L7]. We believe this is the reason why SWT stroke widths fail at = 90
and =270.

For Run Lengths in Figure5.18 detection performance is the same as we rotate the
characters, with very small drops for discrete angle valuesich as = 45;90; 270
and 215. Even that in theory the Run Lengths are not rotation idariant, character
classi er performance does not change with rotated charaats. We can even see in
Figure 5.20 that the stroke width distributions are di erent as the rotation angle
changes, but the classi er can still correctly classify siicsamples (even as it was not
speci cally trained for that).

One explanation for the drops at = 90 and = 270 is that normalization fails

for these cases, since at those angles, region width and heigre swapped, so the
stroke widths are not being normalized by the region width, dt by height. This

considerably changes the stroke width distribution, causg classi cation to fail.
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Figure 5.19: SWT Histogram of Stroke Widths for rotated versions of the char-

acter \A"
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Figure 5.20: RL Histogram of Stroke Widths for rotated versions of the character
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5.7 Discussion

In this chapter we have experimentally evaluated our text dection approach. Clearly
Run Lengths are the best choice for stroke width extractiorof our character clas-
si er and text veri er. Enabling the text veri er has a positive e ect on detection
performance and on computational performance as well.

Performance under the FTPD is very good, with 72% of the text ggons correctly
detected, but only 65% of the detections being correct.

By looking at the correct text detections in Figure5.23and the incorrect or incom-
plete text detections (which count as incorrect detectionsin Figure 5.22 we can
extract the following failure cases:

1. Text detection fails for some cases where one or multipleecacters in a word are
classi ed as non-characters. This will produce two text detgions in di erent
parts of a word, and they will be counted as incorrect detects.

2. Non-character regions can also be classi ed as charactegions (false positives),
and sometimes these regions can also be \attached" to nearext regions, cre-
ating bigger bounding boxes, which will make the detectioroaint as a incorrect
one.

3. Very small or noisy regions cannot be detected either as EB regions or as
character regions. This is very noticeable in Figur&.22d where \Rommer-
skirchen" had only three correctly classied or detected @racters, and the
rest are completely missing. The same applies for \Kreuz" anthe number
\57" in the same image.

In some cases MSER regions are adjacent or even inside to otregions, and this
causes some small issues. This can be seen in Figu&l. Note how in that gure,

the \n" character has some regions inside it (denoted by a derent color), and the
characters \r", \t" and \m" exhibit the same behavior.

This is due to noise in the image and could be prevented by merg regions that
are adjacent (connected), but doing this would increase trmmputation time of the
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Figure 5.21: Regions inside regions produced by the MSER detector

algorithm. Filtering on the input image is also an option.

Our text line grouping algorithm seems to work well, with a vy small number of
cases where the grouping is incorrect or \oversegments" tirmage. Such cases would
not occur if the character classi er could correctly clasgi 100% of the character
regions and completely remove the non-character regions.

Computational performance of our detector is good, some pee [/] would say it is

real-time, but more work on a optimized implementation coul produce noticeable
improvements. To extract MSER regions, we used VLFeat's MSERplementation

3, but since most MSER implementations are used for trackinghey t ellipses by

means of computation of the moments,; 1, and I, of the region, which can be in-
crementally computed and only require 3 oating point numbes to store per region
in the component tree.

But we had to modify VLFeat's MSER implementation to produce egions repre-
sented as list of points X; y), which increases computation time and memory require-
ments, since each region in the component tree contains a l&f points. Another
approach could produce much better computational perfornmae results.

Finally, the RL-based character classi er has also very goodassi cation perfor-
mance if the characters are rotated. We believe this happebgcause the RL-based
classi er is much more \tolerant” to di erent stroke width d istributions than the
SWT classi er.

3http://www.vifeat.org/overview/mser.html
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Initially we thought that the SWT-based classi er would outperform the RL-based
classi er. Our experiments show that we were wrong. The reas why the SWT-
classi er fails are the same as the reasons for why the SWT itbdails. Gradient
information is unreliable because of noise, but also the digtization e ects count.
Raycasting can fail just because there is no edge in the rayettion, but there would
be a edge if the space is continuous instead of discrete.

The number of parameters of our text detector is low, only 4 pameters for the MSER
region detector, and only 2 for the text detector itself (nurber of histogram bins and
maximum distance threshold for raycasting). This is low conmgred with other text

detectors, such as Epshtein et al.8] SWT text detector, with 13 parameters.

(a) (b)

(c)

(d) (e)

Figure 5.22: Examples of incorrect or incomplete text detections
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(d)
Figure 5.23:

(@)

(b)

(©)

(€)

Examples of correct text detections



Chapter 6
Conclusions

In this Master thesis we have presented a new feature for chater region classi ca-
tion, based on a histogram of the stroke widths. We proposed dwways to extract
stroke width information from a region detected by a MSER regn detector.

The rst way to extract stroke widths is based on the Stroke Width Transform [8],
and the second one is based on Run Lengtt&8]. Then we compute the histogram of
stroke widths, normalized by the width of the region, and by @ding two simple and
commonly used features (aspect ratio and occupancy ratio)e use a Linear SVM
classi er to classify text regions.

This approach can also be used to verify text regions, wherbet output of a text
detector is given to our text veri er, and it will remove text detections that are false
positives, improving precision of the detector. Our apprah is script-independent
and our experiments show that it can generalize very well fnotraining in one script
and testing in another di erent script.

From our approach we built a text detection pipeline with fou stages, and proposed
a simple way to group character regions into text lines by mea of raycasting from
one region to the other. We evaluated our character classren ve di erent scripts:
Latin, Kannada, CJK, Hiragana and Katakana on a dataset of gemated character
images from computer fonts.

89
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Our character classi er obtained at least 96 % correct claissation rates across dif-
ferent scripts, with the lowest classi cation rate being 89 %We trained our character
classi er with positive examples on one script, and testeditkh another script, and
we obtained very high classi cation rates in the same range.

To evaluate our text detector on road scenes, we constructeddataset of images
taken from video in the German Autobahn, which contains mostltra ¢ panels. We
denominated this the Fraunhofer Tra ¢ Panel Dataset. The besperforming detector
con guration is using run lengths for stroke width extracton and enabling the text
veri er, which obtains 65 % precision, 72 % recall with an feore of 69 %.

In comparison, the Stroke Width Transform obtains only 28 % §core on this dataset,
and this is due to the high image noise and very small charactsizes. With respect
to computational performance, our C++ detector implementaton takes Q9 0:2 sec-
onds to process a frame, where 95 % of the time is spent on MSERio& extraction.

Further testing indicated that our SWT and RL character classers su er from some
small drawbacks. Some characters such as \E", \F", \N", \W", \X", \Z" and\z" are
constantly misclassi ed as non-characters (with a 30 40 % chance), but in general
the character classi er works very well, with> 90 % correct classi cation rates and
low computational complexity.

Our experiments also show that while run lengths stroke wititextraction is not ro-
tation invariant, the classi er can still cope and correctlyclassify rotated characters
with similar precision as non-rotated characters.

Finally, in this Master thesis we believe a contribution has &en made to the state
of the art with a script-independent method for character andhon-character region
classi cation. Other contributions are the FTPD dataset, aswell as the raycasting
method for text line grouping.
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6.1 Future Work

Still there is much work to be done in text detection, and in pdicular for this work
as well.

MSER regions were extracted from a grayscale image, whichshknown problems
with image regions that have low contrast or are noisy. Thisould be improved by
using Maximally Stable Color Regions3g].

Our method also takes the assumption that characters will bdetected as MSER
regions, and this could be violated by many kinds of real-wiortext. Other authors

[40] extract MSER regions in other projections of the image, shcas each RGB or
HSV color channel, as well as on the gradient of the image. Thisuld improve the
detection performance by actually detecting more charaagte

Regions were represented as lists of points, and this crehtepace and time com-
plexity problems. We have several ideas about how to deal withis problem, such
as extracting only the thresholds and bounding boxes for dacegion, and then do
a postprocessing step that extract the regions using bothformation. This could

reduce the time it takes to extract MSER regions.

Other methods to extract stroke width information should beexplored. The his-
togram of stroke widths does not depend on any particular methl of stroke width
extraction. The distance transform has also been used to contpwstroke widths [39],
and could pose as a good option.

Our character classi er was evaluated on generated datasedf non-latin characters,
but some datasets also contain real-world images of charat in other scripts, such
as Korean and Kannada. We must evaluate our character clagsiin such datasets
to be able to know the real generalization performance witlespect to images in the
real-world, which are known to be noisy, blurry, etc.
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We also would like to integrate our character classi er intmther text detector meth-
ods, such as Neumann and Mata$][ Our character classi er could help improve
detection performance for other methods and does not regaior rely on our own
detector implementation.

One thing that must be done to obtain comparable results is tevaluate our text
detector on the ICDAR 2003 dataset. The complexity and size difis dataset makes
it a bit di cult to train. Extracting more MSER regions is als o needed to obtain
good performance, and this could not be done now because aidiconstraints.

The results about rotation invariance look promising but st more tests should be
performed. We normalized by the region width, and other noralization methods
should be evaluated, such as the minimum value between widédnd height of the
region. This could avoid edge cases where the classi er $aéind could make it truly
rotation invariant.

Finally, text detector and character classi er must be evalated with oriented text.
Our text line grouping algorithm is not rotation invariant and should fail with oriented
text, but a small modi cation that includes orientation information for each character
could be used to cast a ray in an appropriate direction, whickhould work for oriented
and curved text as well.



Appendix A

Classi er Grid Search Training

N/C |0.01| 0.1 1 10 | 100 | 1000
10 68.3| 83.3| 88.3 | 88.3| 91.7 | 91.7
20 70.0| 83.3| 86.7 | 91.7| 91.7 | 91.7
30 70.0| 83.3| 88.3 | 91.7| 93.3 | 93.3
40 70.0(81.7| 90.0 | 91.7| 91.7 | 91.7
50 70.0| 81.7| 86.7 | 90.0| 95.0 | 95.0
60 70.0| 83.3| 93.3 | 91.7| 93.3| 95.0
70 70.0{ 81.7| 95.0 | 91.7| 93.3 | 91.7
80 70.0{ 81.7| 90.0 | 91.7| 93.3 | 91.7
90 70.0( 83.3| 90.0 | 91.7| 90.0 | 91.7
100 70.0( 83.3] 91.7 | 90.0| 95.0 | 95.0
110 70.0| 81.7| 93.3 | 90.0| 91.7 | 90.0
120 70.0| 83.3| 93.3 | 91.7| 90.0 | 90.0
130 70.0| 83.3| 93.3 | 90.0| 93.3 | 91.7
140 70.0| 81.7| 93.3 | 90.0| 90.0 | 90.0
150 70.0( 81.7| 95.0 | 90.0| 91.7 | 91.7
160 70.0{ 81.7| 93.3 | 90.0| 91.7 | 90.0
170 70.0| 83.3| 93.3 | 88.3| 91.7 | 90.0
180 70.0{ 83.3| 91.7 | 91.7| 91.7 | 93.3
190 70.0| 83.3| 91.7 | 88.3| 93.3| 95.0
200 70.0| 83.3| 91.7 | 88.3| 91.7 | 88.3

Table A.1;: SWT Text Classi er Grid Search for N and C while trained on the
Fraunhofer Dataset
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Table A.2:

N/C |0.01 01 1 10 | 100 | 1000
10 71.7]86.7| 91.7| 95.0 | 95.0 | 95.0
20 68.3| 83.3| 93.3| 95.0 | 93.3 | 93.3
30 70.0/ 80.0{ 95.0 | 93.3| 91.7 | 91.7
40 70.0/ 80.0{ 95.0 | 93.3 | 91.7 | 91.7
50 70.01 80.0| 93.3| 93.3| 91.7 | 91.7
60 70.0| 78.3| 91.7| 91.7 | 90.0 | 95.0
70 70.0| 78.3| 91.7| 91.7 | 91.7 | 90.0
80 70.0] 78.3| 91.7| 93.3| 90.0 | 90.0
90 70.0| 78.3| 91.7 | 90.0 | 90.0 | 91.7
100 70.0| 78.3| 91.7 | 93.3 | 90.0 | 88.3
110 70.0| 78.3| 91.7| 91.7| 93.3 | 91.7
120 70.0| 78.3| 91.7| 91.7 | 95.0 | 91.7
130 70.0| 78.3| 91.7| 91.7 | 93.3 | 93.3
140 70.0| 78.3| 91.7 | 91.7 | 95.0 | 91.7
150 70.0| 78.3| 91.7 | 93.3 | 95.0 | 91.7
160 70.0] 78.3| 91.7| 93.3| 90.0 | 90.0
170 70.0| 78.3| 90.0| 91.7 | 91.7 | 93.3
180 70.0| 78.3| 91.7| 91.7 | 93.3 | 93.3
190 70.0| 78.3| 90.0 | 90.0 | 93.3 | 91.7
200 70.0| 78.3| 91.7 | 90.0 | 93.3| 91.7

RL Text Classi er Grid Search for N

Fraunhofer Dataset

and C while trained on the
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N/C |001 01| 1 10 100 | 1000
10 92.1| 94.7| 97.4| 100.0 | 100.0 | 100.0
20 92.1| 92.1| 97.4| 100.0 | 100.0 | 100.0
30 92.1| 89.5| 97.4| 100.0 | 100.0 | 100.0
40 92.1|89.5| 97.4| 100.0 | 100.0 | 100.0
50 92.1| 89.5| 94.7| 100.0 | 100.0 | 100.0
60 92.1| 89.5| 97.4| 100.0 | 100.0 | 100.0
70 92.1192.1197.4| 974 | 100.0 | 97.4
80 92.1|92.1| 97.4| 100.0 | 100.0 | 97.4
90 92.1/92.1| 97.4| 100.0 | 100.0 | 97.4
100 92.1/92.1|97.4| 97.4 | 100.0 | 94.7
110 92.1|92.1| 97.4| 100.0 | 100.0 | 97.4
120 92119211974 974 | 974 | 974
130 92.1{92.1197.4| 974 | 97.4 | 94.7
140 92.1/92.1197.4| 974 | 974 | 974
150 92.1/92.11974| 974 | 974 | 974
160 92.1/92.11974| 974 | 974 | 974
170 92.1192.1/97.4/100.0 | 974 | 974
180 92.1192.1197.4| 974 | 974 | 974
190 92.1/92.1|97.4| 974 | 974 | 94.7
200 92.1/92.11974| 974 | 974 | 974

Table A.3: SWT Text Veri er Grid Search for N and C while trained on the
Fraunhofer Dataset



Appendix A.

N/C |001 01| 1 10 100 | 1000
10 92.1|94.7197.4| 974 | 974 | 974
20 89.5|92.1197.4| 974 | 97.4 | 100.0
30 89.5(92.1197.4| 974 | 974 | 97.3
40 89.5/921|974| 974 | 974 | 974
50 89.5/921/974| 974 | 974 | 974
60 89.5| 92.1| 97.3| 100.0 | 97.4 | 100.0
70 89.5| 92.1| 97.4| 100.0 | 97.4 | 100.0
80 89.5|92.1| 97.4| 100.0 | 97.4 | 100.0
90 89.5(92.1| 97.4| 100.0 | 100.0 | 100.0
100 89.5(/92.1| 97.4| 100.0 | 100.0 | 100.0
110 89.5|92.11 97.4|100.0 | 94.7 | 97.4
120 89.5|92.1| 97.4| 100.0 | 100.0 | 97.4
130 89.5| 92.1| 97.4| 100.0 | 100.0 | 100.0
140 89.5/9211974| 974 | 974 | 974
150 89.5/92.1|97.4| 100.0 | 974 | 974
160 89.5/92.1/97.4| 100.0 | 974 | 974
170 89.5(92.1197.4| 974 | 974 | 974
180 89.5|92.1| 97.4| 100.0 | 100.0 | 97.4
190 89.5(92.1| 97.4| 100.0 | 100.0 | 100.0
200 89.5(/92.1| 97.4| 100.0 | 100.0 | 100.0

Table A.4: RL Text Verier Grid Search for N and C while trained on the
Fraunhofer Dataset
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