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Abstract
Fast Text Detection for Road Scenes

by Matias Alejandro

Valdenegro Toro

Extraction of text information from visual sources is an important component of

many modern applications, for example, extracting the textfrom tra�c signs on a

road scene in an autonomous vehicle. For natural images or road scenes this is a

unsolved problem.

In this thesis the use of histogram of stroke widths (HSW) for character and non-

character region classi�cation is presented. Stroke widths are extracted using two

methods. One is based on the Stroke Width Transform and another based on run

lengths. The HSW is combined with two simple region features{aspect and occu-

pancy ratios{ and then a linear SVM is used as classi�er. One advantage of our

method over the state of the art is that it is script-independent and can also be used

to verify detected text regions with the purpose of reducing false positives.

Our experiments on generated datasets of Latin, CJK, Hiraganaand Katakana char-

acters show that the HSW is able to correctly classify at least90 % of the character

regions, a similar �gure is obtained for non-character regions. This performance is

also obtained when training the HSW with one script and testing with a di�erent

one, and even when characters are rotated. On the English andKannada portions of

the Chars74K dataset we obtained over 95% correctly classi�ed character regions.

The use of raycasting for text line grouping is also proposed.By combining it with our

HSW-based character classi�er, a text detector based on Maximally Stable Extremal

Regions (MSER) was implemented. The text detector was evaluated on our own

dataset of road scenes from the German Autobahn, where 65% precision, 72% recall

with a f-score of 69% was obtained. Using the HSW as a text veri�er increases

precision while slightly reducing recall. Our HSW feature allows the building of a

script-independent and low parameter count classi�er for character and non-character

regions.
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Chapter 1

Introduction

Writing is considered one of humanity's most important advancements, since it allows

to permanently record information for later use. The human civilization has produced

countless written text that lie on physical media, such as paper, stone, walls, etc.

The retrieval of such textual information from non-digitalsources is a topic of much

interest, and it covers many areas of knowledge, such as Computer Vision, Statistics,

Pattern Recognition and Machine Learning. In general we take reading for granted,

but computers in general have great di�culty in doing so.

One of the great di�culties with text detection and recognition is the large amount

of variation in text color, size, orientation, texture, appearance, font, style and script.

The assumptions that can be taken to ease the problem are little.

Many applications require extraction of text from visual sources, such as still image

and video. Some examples are augmented reality, license plate recognition, blind

person assistance and automated data entry into computer systems. In the context

of autonomous systems and autonomous vehicles, the information stored in tra�c

signs and panels is relevant to the driving process, and legally required for driving in

the same way as human drivers do.

Text information can be used in many ways by an autonomous vehicle. Speed limits

can change due to tra�c conditions and accidents, and temporary signs can be in-

stalled, such as when works are performed on a road. Thus there is a need for vision

algorithms that can extract such information from a video camera installed in the

1



Chapter 1. Introduction 2

vehicle.

Many algorithms for text detection and recognition exist [12] [13]. Text detection is

the task of �nding \whether" and \where" the text is located i nside the image, and

text recognition is the task of converting the text parts of animage to a digital text

representation (such as character strings).

But recognition algorithms in general perform poorly in real-world scenes, mainly be-

cause the task itself is complex due to the big variation in text size, color, orientation,

script and style, and because of many parts of natural scenescan be considered to be

text. Also, many algorithms are designed only for documents and not for real-world

scenes such as road scenes.

For example, a text detection and recognition algorithm by Neumann et al [14] could

only correctly extract 32:9% of the text in natural scenes from the SVT dataset [3].

Newer methods that use advanced convolutional neural networks can correctly re-

trieve up 70% text from the same dataset, but are computationally expensive.

Script should also be considered. Only 37:1% of the world population uses the Latin

script their day to day writing and reading needs, but almostall text detection

methods operate only on Latin script text. This could be due to the prevalence of

top Western universities in computer vision research.

There is always a tradeo� between detection and computational performance. Many

algorithms that are fast do not detect all text and perform poorly, while algorithms

that are slow are able to detect much more text correctly.

In this thesis we develop and introduce a new text detector method based on character

classi�cation using a histogram of stroke widths. This feature allows to classify and

detect text without making assumptions on the script, and aswe will show, it gives

good performance, even for road scenes. A text grouping method is also introduced,

which only requires one parameter. As it will be shown, computational and detection

performance of both methods are adequate for the problem, and we believe they are

a contribution to the state of the art.



Chapter 2

Related Work

There are vast amounts of information currently stored in textual form, and a num-

ber of di�erent systems are designed with requirements of \reading" or retrieving this

textual information from non-digital sources, such as printed documents, captured

images or directly from video cameras attached to robots andautonomous vehicles.

Then this information could be stored in other formats, suchas digital information,

from where processing by computers is easier.

For example, an autonomous vehicle could take advantage of reading text in tra�c

signs and panels for path planning, since some tra�c panels above the road contain

information about which lane will take the vehicle to its destination, as well as real-

time information about the conditions in the road ahead. Someof such panels can

be seen in Figure2.1.

Reading this textual information from visual sources is called text recognition and

usually requires 3 stages [15]:

Image Acquisition

An image of the target text is obtained. For a scene, a camera isusually

used, while for documents an optical scanner is used. In thisinitial stage many

situations can inuence the quality of further stages, suchas blur, camera focus,

lighting and shadows.

Text Detection

Text is localized in the image and detected text regions are passed into the

3
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(a) Australian Tra�c Panel (b) Slovenian Tra�c Panel

Figure 2.1: Some tra�c panels from Australia and Slovenia. Source : Public
Domain

Image Acquisition Text Detection Text Recognition Recognized Text

Figure 2.2: Text Recognition Pipeline

next stage. The purpose of this stage is to reduce the size of the hypothesis

space, since text recognition algorithms are slow when too many hypotheses

must be tested, and recognition performance is not optimal since too many

false positives will be produced. This stage is also called Text Localization.

Text Recognition

Text is recognized from patches of the original image and converted into a

digital representation (usually strings of characters) byusing a machine learning

and/or pattern recognition algorithm. Algorithms that do recognition are called

Optical Character Recognition (OCR). The quality of the located text greatly

inuences the results of the recognition stage.

The pipeline is shown in Figure2.2. Many real-world applications require some form

of text recognition [15], such as:

License plate recognition

Where cameras are placed on roads and license plate numbers ofpassing cars

are required, with di�erent purposes, such as vehicle and tra�c ow control,

law enforcement, and billing for tolls.

Automatic data entry

Documents are put through a scanning device and the information is presented
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to the user or used by a computer system. Examples of this are bank checks,

tickets, invoices and any kind of textual information stored \on paper" that

need to be read by a computer or be digitalized. Many banks usesuch systems

to automatically process checks, as well as post o�ces for mail.

Book scanning and storage

A complete book is scanned and converted into digital format, in order to be

made available to a wider audience by storing it in a digital form, which can

be transmitted over the internet or safely stored in a permanent medium for

future use. Project Gutenberg does this1.

Historical documents

Since the medium where they are written degrades over time, digital storage of

their contents is a must to keep cultural knowledge for future generations.

Technologies to assist blind and visually impaired persons

Most written content is not available in a form that is friendly to computer

systems used by such persons. This kind of systems usually presents the in-

formation in another medium, such as reading the book in audio form with a

speech synthesizer software, or outputting the text througha braille system.

Translation

An image or live camera feed is analyzed and words are recognized and trans-

lated into another language, in an augmented-reality fashion. There are mobile

phone applications that already do this, such as Word Lens Translator 2.

Search

Search engines in general only search in digital text information, such as text

documents and web pages, and ignore information that might be stored in

images and/or video. The extraction of textual informationfrom images could

enable better search engines and would increase the amount ofinformation

available to search on.

Autonomous driving

Autonomous cars are currently being developed, as well as Advanced Tra�c

Assistance Systems (ADAS) [16]. Both systems either replace or aid the driver

with the driving task, and also would require the use of textual information

1http://www.gutenberg.org/wiki/Main_Page
2https://play.google.com/store/apps/details?id=com.questvisual.wordlens.demo&

hl=en

http://www.gutenberg.org/wiki/Main_Page
https://play.google.com/store/apps/details?id=com.questvisual.wordlens.demo&hl=en
https://play.google.com/store/apps/details?id=com.questvisual.wordlens.demo&hl=en
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available in tra�c signs and panels, as well as other text information in road

scenes, such as the names of places, nearby stores and shops.

There is vast amount of literature about Text Detection and/or Localization, and

many algorithms and variations of them have been developed,which is a indicator

of the di�culty of this problem. A survey on the current state of the art in text

detection can be found in Zhang et al. [12]:

Edge-based Methods

Edges from an edge detector algorithm are used along with image processing

operations to extract text regions, usually by doing morphological operations,

such as dilation to connect edges into complete boundaries ofan object.

Texture-based Methods

This kind of methods uses a sliding window approach, by takingall possible

windows from the image of a given size, and using texture features to discrim-

inate text from non-text windows.

Region-based Methods

Text regions are extracted in a image with a region detectionalgorithm, and

then are classi�ed as text or non-text by a text and/or character classi�er.

Connected component methods also fall into this category, since they usually

are designed detect regions of an image that have a common property, such as

characters or text.

Stroke-based Methods

This kind of methods is a mix of the previous ones, but concentrating on the use

of stroke information as a mean for discriminating text fromnon-text regions.

Text detection itself is a very hard problem due to the very high variability of char-

acters and text regions [13] [12], such as:

Size

There is no de�ned size of characters in the image, as well as the number of

characters in words and text lines.
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Orientation

Text could appear in any orientation. While the most common orientation is

horizontal, text also could be vertical, or in diagonal orientations, and even

skewed due to the camera viewpoint.

Color

Text could have any color, and while usually text is designed to have a very

strong contrast with its background, but this might not be able to be perceived

from the camera viewpoint due to illumination conditions.

Texture

In general text always has a constant color, but it could alsobe textured, or

have implicit edges, such as inscriptions on stone, where lighting is used to

\see" the text.

Font and Appearance

Many di�erent fonts exists, and graphics designers' creativity tends to create

new ways and forms to present text and characters. Text could even be pre-

sented as shapes without a constant color or texture, such asthe \M" formed

by the McDonalds sign.

Script

The script from where characters are drawn can also vary. Themost common

assumption is the use of Latin or Roman characters, but many countries in

Asia and the Middle East do not use such characters, and many algorithms fail

under such circumstances.

2.1 Public Datasets

There are many datasets for evaluation of text detection andrecognition. The pri-

mary dataset used for text detection is the ICDAR dataset, both in its 2003 [1] 3 and

2011 [2] 4 versions.

The ICDAR 2003 dataset contains color images of sizes between 1280x960 to 1600x1200

pixels. The training subset contains 258 images, and the testing subset contains 251

images. Some images from this dataset are shown in Figure2.3.

3http://algoval.essex.ac.uk/icdar/Datasets.html
4http://robustreading.opendfki.de/wiki/SceneText

http://algoval.essex.ac.uk/icdar/Datasets.html
http://robustreading.opendfki.de/wiki/SceneText
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The ICDAR 2011 dataset also contains color images of sizes between 640x480 to

3888x2592 pixels, with 229 training images, and 255 testingimages. Some images

from this dataset are shown in Figure2.4.

Both datasets primarily contain English text in real-worldscenes, but also in general

the text regions cover a considerable area of the image, so it is possible to say that

this datasets are biased towards text that is \big" inside the image frame, and do

not contain small pieces of text (such as in a road scene).

Figure 2.3: Some images from the ICDAR 2003 dataset [1]

Figure 2.4: Some images from the ICDAR 2011 dataset [2]
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Another dataset is the Street View Text (SVT) [3] 5, which is made from images

taken from Google Street View, and contains 100 color images for training, and 249

color images for testing. Image sizes vary from 1024x768 to 1918x898 pixels, and in

general the text regions cover smaller areas that in comparison with the ICDAR 2003

and 2011 datasets. Some images from this dataset can be seen inFigure 2.5.

The images in this dataset are from road scenes, but in generalthey contain \ar-

tifacts" due to the stitching done by Google to construct the Street View images.

Google uses cars with several cameras attached to the roof, and image stitching is

needed to produce a 360� panorama that is used for Google Street View. The dataset

also exhibits a small amount of deformation due to lens distortion.

Figure 2.5: Some images from the SVT dataset [3]

The Chars74K dataset [4] 6 is a dataset normally used for character recognition

that contains images of characters. This dataset is split into several sub-datasets,

for both the English language (Latin/Roman characters) and the Kannada script

(commonly used in East India). It contains 7705 characters from natural images, 3410

handwritten characters obtained from a Tablet PC, and 62992characters generated

from di�erent fonts.

Generated font images are 128x128 pixels in size and only contain Latin characters.

Kannada script is present on images of handwritten text captured with a Tablet PC.

5http://vision.ucsd.edu/ ~kai/svt/
6http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
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Some generated font numbers from this dataset can be seen in Figure2.6, while some

generated lowercase letters from a computer font can be seenin Figure 2.7.

The �gures show the huge variation of fonts and combinationsof roman/bold/italics

in the dataset, which makes it well suited to train characterclassi�ers and character

recognizers. We mention this dataset because it was used in this work to evaluate

our character classi�er.

Figure 2.6: Some numbers from the Chars74K Dataset [4]

Figure 2.7: Some lowercase letters from the Chars74K Dataset [4]

2.1.1 Evaluation Metrics

The most common evaluation metrics for text detection are precision and recall [1].

Ground truth information is provided in the datasets, usually in the form of axis

aligned bounding boxes around text (Rectangles). From thisinformation, we denote

T as the set of targets, the correct bounding boxes in the groundtruth, and E as

the set of estimates, the bounding boxes returned by the detector for a given input

image. The set of correct estimates is denoted asc. Then precisionp is computed as:

p =
jcj
jE j

(2.1)

And recall is computed as:
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r =
jcj
jTj

(2.2)

A low precision means the detector is over-estimating the amount of text bounding

boxes in the image, while a low recall means the detector is under-estimating the

amount of text bounding boxes in the image. Both a high precision and recall are

desired for a good text detector. One way to combine precision and recall into a

single measure is the f-score, computed as:

f =
2

1
p + 1

r

(2.3)

Precision, recall and f-score are always in the [0; 1] range. One remaining issue is to

de�ne when a rectangle estimate is correct or not, since rectangles from the ground

truth and estimated rectangles will never exactly match, andsome degree of exibility

must be taken into account. The ICDAR 2003 competition [1] uses the following

evaluation protocol. Given 2 rectangles, the match between both rectanglesA and

B is de�ned as:

match(A; B ) =
area(A

T
B)

area(A
S

B)
(2.4)

Where A [ B represents the bounding box that contains bothA and B. The match

between 2 rectangles is a number between 0 and 1, where 0 meansno match, and 1

is a perfect match. Then the best match for rectangler from a set of ground truth

rectanglesR is:

bestMatch(r; R ) = max
r 02 R

match(r; r 0) (2.5)

Then precision and recall can be re-de�ned as:

p =
1

jE j

X

r 2 E

bestMatch(r; T ) r =
1

jTj

X

r 2 T

bestMatch(r; E ) (2.6)

Some authors [17] instead consider a rectangle as correct if and only if the best match

is bigger than some threshold� , where the most common value is� = 0:5.
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2.2 Edge-based Methods

Edge methods use the information available from the high contrast between a char-

acter and its background to extract edges, then group edges into candidate character

regions. Candidate character regions are validated through heuristic rules, such as

region height, number of holes and aspect ratio, and then grouped using a clustering

algorithm to form text lines. This is very similar to Region-based methods, but in

general edge information is unreliable due to image noise, motion blur, lighting con-

ditions and the fact that information about the interior of the regions is completely

ignored.

The use of heuristic rules is in general very unreliable, since they can provide good

performance in one dataset, and completely fail to generalize to other datasets, and

in general they are application dependent. In general theserules require parameter

tuning which can be tedious and error-prone. Finally, edges can be disconnected

due to various reasons, such as noise and lighting conditions, which can \split" the

candidate text regions.

Smith and Kanade [18] used a 3x3 horizontal di�erence �lter and thresholding to

extract vertical edges from TV news video. After thresholding, smoothing is applied

to remove small disconnected edges and to connect strong disconnected edges. Then

clustering is applied to identify text lines and bounding boxes are computed.

Text regions are detected if they meet three heuristic constraints: Bounding box as-

pect ratio bigger than 0:75, occupancy ratio bigger than 0:45 and cluster size bigger

than 70 pixels. The authors evaluated their algorithm in a small video dataset, con-

taining approximately 20 text regions, and in average theiralgorithm detected 90%

of the available text, with a false positive rate of 20%.

Sato et al. [19] extracted character candidates by using a bank of �lters that detect

horizontal, vertical, left and right diagonal edges, sincecharacters usually have edges

in these directions. The input image is �rst interpolated tosub-pixel precision, due

to the low resolution their video frames (320� 240), and the correlations between

each �lter in the bank and the interpolated image is computed. All �lter outputs
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that are positive are accumulated into a character image, which is then thresholded

to obtain a binary image.

Vertical and horizontal projections are then used to extractcharacter candidates

from the binary image. For Video OCR, their method correctly detected 89:8% of

the characters in their dataset.

Chen at al. [20] use Canny edge detection to extract edges, which are grouped by

means of morphological dilation. Heuristic rules are used to �lter text from non-text

region. A set of asymmetrical Gabor �lters and a neural network are used to estimate

the scale of text, and then scale is used to enhance the edges oftext. Performance

on their own dataset is 82:6% recognition for enhanced images, compared to 36:1%

with non-enhanced images.

Liu and Samarabandu [21] used a multiscale edge detection approach, on which the

input image is convolved with a bank of �lters that detect edges in four orientations

(the authors called this the Compass operator). Four edge orientation images are

produced for each scale, in orientations of 0� , 45� , 90� and 135� . Edge orientation

images are then combined to produce a feature map that enhances text regions.

A 7x7 morphological dilation element is used to cluster textregions, and two simple

heuristics are used to remove non-text regions: occupancy and aspect ratios, then

bounding boxes are constructed. The authors evaluated the algorithm on their own

dataset, on which they obtained 91:8% precision and 96:6% recall.

Neumann and Matas [22] also use a multiscale approach, but their purpose is to

detect strokes instead of pure edges. For this they used a �lter specially designed

to detect strokes at di�erent scales, which is equivalent toedge detection between

two \ridge" orientations that form a stroke. After computing t he stroke image, they

threshold it to obtain a binary image, where a connected components algorithm is

executed to extract candidate character regions.

For each candidate character region, clustering is performed by exhaustively eval-

uating all bounding boxes generated by the K-nearest neighboring regions. On the

ICDAR 2011 dataset the authors obtained state of the art (at that time) performance
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of 66:4% recall and 79:3% precision, but their method is very expensive. Their Mat-

lab implementation takes 35 seconds per frame, and a C++ implementation might

not be fast enough for real-time performance.

2.3 Texture-based Methods

Texture-based methods use texture properties to discriminate text from non-text.

First, a sliding window is used over the image, and for each window, texture features

are extracted from the window, such as Wavelet transform [23], Local Binary Pat-

terns (LBP) [24] [25] and Histogram of Oriented Gradients (HOG) [26] [27]. Then

a machine learning algorithm classi�cation algorithm is trained on the features and

used to discriminate text from non-text windows.

Finally, intersecting detections are merged to produce the �nal text detections. This

kind of methods, in general, is computationally very expensive due to the number of

windows that have to be evaluated, but trade-o�s can be made.Small windows are in

general more precise but the number of windows to be evaluated grows very quickly,

while the use of bigger windows reduces the number of windows to be evaluated, but

precision drops.

Another issue with texture-based methods is scale. Since the sliding window has a

�xed size, text that is smaller or bigger than the window mightnot be detected as

such, so multiscale approaches are needed, by building a pyramid representation of

the input image [28].

Viola and Jones [29] pioneered the use of weak classi�ers for object detection by

using AdaBoost to train a cascade of weak classi�ers. Their work was focused on face

detection, and they used Haar Wavelets [30] as features that are then discriminated

by a weak classi�er in the form of a step function on a weightedlinear combination

of the featuresx i :

f (x) = step
� X

wi x i

�
(2.7)

The boosted cascade of weak classi�ers has been successfullyused for object detection.

This kind of object detectors can be trained for any kind of object, and it has been
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successfully used for text detection as well. For face detection, Viola and Jones

obtained 93:9% correct classi�cation rate on the MIT+CMU dataset. The evaluation

of the Haar wavelets is very fast due to the fact that this wavelet can be quickly

evaluated with the use of summed area tables [28].

Another type of texture feature is the Histogram of Oriented Gradients (HOG),

initially developed by Dalal and Triggs [26]. Their work focused on human and

pedestrian detection, but the technique has been used for other types of objects as

well.

The HOG descriptor is computed over a sliding window, �rst contrast-normalizing

the image, and then by computing the image gradient, and dividing the window into

overlapping 6x6 cells, and for each cell a 9-bin histogram ofthe gradient magnitude is

computed (from 0� to 180� ). Each histogram vote from a gradient element is weighted

by the distance to the center of the cell, and by the gradient magnitude.

Then, for each 3x3 block of cells, all histograms are concatenated and normalized to

create a block descriptor. All the block descriptors inside the window are concate-

nated to produce a �nal HOG descriptor for the window, which forms a very large

feature vector. Finally a Linear SVM is trained and used to discriminate object from

non-object. The HOG algorithm has also been successfully used for text detection

[31].

Since the HOG feature vector is very large, using a Linear SVM has a very high prob-

ability of �nding a separating plane [32], but the computation of the HOG feature

vector is expensive, due to the required sliding window and multiscale approaches.

GPU implementations of HOG exist [33] that achieve hard real-time performance.

Hanif et al. [34] used a boosted cascade of weak learners, in the same way as Viola-

Jones [29] for text detections. The authors developed features basedon the Mean

Di�erence Feature (MDF), the Standard Deviation (SD) and theHistogram of Ori-

ented Gradients (HOG), with 39 features in total (7 from MDF, 16from SD and

16 from HOG). The features are extracted from each window, by splitting it into

blocks. As a weak learner, they used linear discriminant analysis (LDA) and the

log-likelihood ratio test (LRT).
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They evaluated their cascade on the ICDAR 2003 dataset, and obtained 92:9% de-

tection rate with a 780 LDA weak classi�ers, and 94:9% detection rate with 780

LRT weak classi�ers. The authors mentioned that their cascade is \fast", with a

computation time of 2 seconds for 640x480 images with 8 scales.

Minetto et al. [31] develop the T-HOG feature based on HOG for detection and recog-

nition of single line text. By exploiting the fact that the distribution of gradients in

top, medium and bottom regions of the window are not the same,the authors com-

pute a HOG descriptor by using horizontal cells, setting the number of cell columns

to 1. First, the sliding window extracted from the image is resized, keeping aspect

ratio, to a constant height between 20 and 25 pixels, and the window is also contrast

normalized.

For each cell the HOG descriptor is computed in a similar way that of Dalal and Triggs

[26]. To avoid sharp cell boundaries, the authors weight the cell histogram votes with

a Gaussian function instead of weighting blocks. Finally allcells histograms are con-

catenated and the �nal descriptor is normalized. Linear SVM is again used for text

discrimination.

Minetto et al. [35] built a text detector and recognition system called SnooperText

that uses the T-HOG feature descriptor for text classi�cation. On the ICDAR 2005

dataset they obtained a precision of 74%, and a recall of 63%,with a better precision

than the current state of the art, but with a lower recall. On the Street View Text

dataset they obtained a precision of 36% and a recall of 54%, which is better than

the current state of the art.

2.4 Region-based Methods

Region-based methods use a region detector (with a connectedcomponent algorithm)

to detect regions of interest in the input image, which can beconsidered to be a

bottom-up approach, since pixels are individually identi�ed as belonging to a can-

didate text region, and from the aggregation of pixels, a candidate text region is

constructed.
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After candidate text regions are obtained, they have to be classi�ed as text or non-

text regions, especially if a generic region detector is used. For this heuristic rules

and/or machine learning classi�cation algorithms are used[12].

We should note that candidate text regions might be individual characters, or con-

nected text regions, depending on the characteristics of the text in the image. For

example, some forms of handwritten letters have connectionstrokes between each

character, while normal computer font characters usually do not have this property.

A clustering or grouping algorithm is used to group candidate text regions into full

text lines. Again for this purpose handmade heuristics or unsupervised clustering

algorithms are used, such as spectral clustering [36].

The advantage of region-based methods is that in general they are fast and they are

scale invariant since no sliding window or assumption aboutsize is required.

For text detection, the most common and best performing region detector is the

Maximally Stable Extremal Region (MSER) Detector [37], which detects connected

regions with stable area under varying thresholds. In a sense, it takes a grayscale

input image and does thresholding and connected component analysis at the same

time. MSER can be computed in linear time [11], and in general text regions with

constant color are almost always detected as MSER's.

MSER has also been extended to detect color regions [38], but generally only grayscale

MSER is used for text detection. The MSER algorithm will be described in detail in

Chapter 3.

Neumann and Matas [6] used the MSER detector on grayscale, red, green and blue

channels of the input image to obtain candidate character regions, and then used an

SVM classi�er with a Radial Basis Function (RBF) kernel to discriminate between

character and non-character regions. Their SVM classi�er used 8 features, which

are shown in Table2.1 and was trained on real-world MSER regions extracted from

images on Flickr7.

Their character classi�er obtained a 94:4% correct classi�cation rate. Then they

construct a graph of regions, and text line formation is doneby means of �nding a
7http://www.flickr.com
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path through this graph that maximizes the probability of being text. The graph is

constructed by sequentially extracting horizontal text lines from character regions.

Their method also performs text recognition by means of a 200-feature dimension

vector that is generated by �rst converting each MSER regioninto a 35x35 pixel

matrix, then blurring it with a Gaussian �lter and subsampling it to a 5x5 matrix,

and repeating this for 8 directions. An SVM classi�er was trained with a RBF Kernel.

On the Chars74K dataset, the authors obtained 71:6% correctly recognized charac-

ters, 12:1% incorrectly recognized characters, and 16:3% characters that were not

detected in the image (Giving a 83:7% correct character detection rate).

On the ICDAR 2003 dataset the authors obtained a precision of 59% and a recall of

55%. For individual characters, 79:9% of the total number of characters was correctly

detected.

Aspect Ratio Relative Height Compactness
Number of Holes Convex Hull Area to Surface Area Ratio Color Consistency

Background Color Consistency Skeleton Length to Perimeter Ratio

Table 2.1: Features for Character Classi�cation used by Neumann and Matas [6]

In [14], Neumann and Matas introduced an exhaustive search method over MSER

regions to discriminate character from non-character regions. To do this, they prune

the tree generated by the MSER algorithm to contain only regions with a high like-

lihood of being a character, by using a veri�cation function,trained with a SVM

classi�er on a small set of features (similar to the ones in Table 2.2).

Their method obtained a precision of 65% and a recall of 64% onthe ICDAR 2003

dataset, which outperforms the current state of the art whenconsidering the f-score

of 63%.

Neumann and Matas [7] then switched to use all possible Extremal Regions (ER)

instead of only the maximally stable extremal ones [6] [14]. ERs were extracted

from the input image in the RGB and HSI color space [28] projections, as well on

the intensity gradient of the image computed with the maximumintensity di�erence

method. The authors report that 94:8 % of all characters are detected as Extremal
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Regions in at least one of the image projections.

Neumann and Matas also introduces the use of incrementally computable descriptors

as features for a character classi�er. This descriptors can be computed along with

the ER evaluation by the MSER algorithm, and the authors provide 5 descriptors:

area, bounding box, perimeter, Euler number� and horizontal crossings.

Their character classi�er uses a probabilistic model trained on the features shown in

Table 2.2. A Real AdaBoost decision tree classi�er was used on a 2 stage classi�er,

while the second stage used an SVM classi�er with RBF Kernel onthree features: the

area-to-hole ratio, the convex hull ratio and the number of outer boundary inexion

points.

This method was combined with the exhaustive search method of Neumann and

Matas [14]. The authors evaluated on the ICDAR 2011 dataset as well as theSVT

dataset. On the ICDAR 2011 dataset, they obtained 64:7% recall, with 73:1% preci-

sion, with a recall that is better than the current state of the art.

On the SVT dataset, the authors obtained a recall of 32:9%, and a precision of 19:1%.

The authors note that the SVT dataset contains text watermarksin the image, and

their method also detects such watermarks, which explains the low precision.

Aspect Ratio w
h Compactness

p
area

perimeter

Number of Holes 1� � Median Horizontal Crossings

Table 2.2: Features for Character Classi�cation used by Neumann and Matas [7]

MSER regions are known to be sensitive to motion blur [39] [15]. Chen et al. used

MSER regions enhanced with edge information to avoid this problem, as well as using

the distance transform to obtain stroke width information,which is used for character

classi�cation and grouping. Their method obtained 73% precision and 60% recall on

the ICDAR 2003 dataset, which is state of the art performance.

Multiple segmentations and a multiscale approach has also been used to improve the

results of MSER-based text detectors. Neumann and Matas [40] used this approach

to obtain 67:5% recall and 85:4% precision on the ICDAR 2011 dataset, which is
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Figure 2.8: Example characters from di�erent Asian scripts

the best from the state of the art, but this approach increases computation time

considerably, to 3:1 seconds per frame.

2.5 Stroke-based Methods

Text, as drawn by humans, is drawn with pencils, fountain pens and other kinds of

writing devices that produce text with an almost constant stroke width. Thus stroke

width is a inherent property of text that can be used to detecttext regions.

It should be mentioned that not all writing scripts have constant stroke width. In

particular many scripts used in Asia are drawn using brushes, and this produces a

varying but bounded stroke width, as can be see in Figure2.8.

One of the �rst methods to successfully use stroke information to detect text is the

Stroke Width Transform (SWT) [8]. This method uses the Canny edge detector

[41] to extract edges from the image, then a stroke width image iscomputed by

raycasting in the direction of the gradient for each detected edge pixel, until an

appropriate opposite edge is found. This opposite edge must have a gradient angle

opposite to that of the ray, plus a tolerance (The authors used �
6 ). The Euclidean

distance between the starting and ending edges gives an estimation of the stroke

width in pixels, and is written to the stroke width image for each ray pixel.

After computing the stroke width image, a connected components algorithm is exe-

cuted over this image, which groups pixels that have a strokewidth ratio less than

3:0. This way connected components represent characters. Character regions are

�ltered with a set of heuristic rules, shown in Figure2.3. Then a set of hand tuned

heuristic rules are used to group character regions into text lines with a minimum of

three characters.
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The grouping heuristics consider features such as: similar median stroke width, sim-

ilar height, distance between letters and color similarity.

Aspect Ratio Stroke Width �
� Ratio

CC Diameter to Median Stroke Width Ratio Bounding Box Intersection
CC Height

Table 2.3: Features for Character Classi�cation used by Epshtein et al. [8]

This method has obtained good results on the ICDAR 2003 dataset, with precision

of 73% and recall of 60% (with f-score of 66%). Computation time reported by the

authors is 0:94 seconds per frame. But the SWT algorithm has many drawbacks,

such as the high number of parameters, the use of hand-tuned heuristic rules, and

since its a gradient-based algorithm, noise in the image canintroduce small holes into

the SWT image, which can produce disconnected regions.

In general the SWT algorithm was a milestone in text detection, and other authors

have been trying to �nd alternate ways to compute a more reliable stroke width im-

age. Chen at al. [20] used the distance transform to produce a stroke width image.

The SWT algorithm itself is not appropiate for text with arbitr ary orientations, since

the heuristic rules used by Epshtein et al. are biased for horizontal text. Yao et al.

[42] created a text detector based on the SWT that is able to detecttext at arbitrary

orientations, by using features that are rotation invariant [17] , and estimation of the

minor and major axes, as well as the orientation of the character regions by means

of the Camshift algorithm [43].

The amount of features used for character classi�cation andtext line grouping is

high, with 6 complex features for character classi�cation,and 11 features for text

line grouping. A modi�ed HOG is used for character classi�cation.

Since the ICDAR datasets do not contain oriented text, the authors developed their

own dataset that contains a mixture of ICDAR 2003 and a proposed dataset with ori-

ented text, the authors obtained 63% precision, 63% recall,while the SWT algorithm

[8] obtained 25% precision and 25% recall, which is a clear improvement.
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2.6 Other Methods

In general most text detection algorithms are trained and/orevaluated only on Latin

characters, and have poor performance or fail if images contain characters from other

scripts, such as Asian or Middle East scripts. Also many algorithms assume horizon-

tal text or even text that lies in a line (collinear), which in the real-world does not

always hold. Some examples of curved text can be seen in Figure2.9.

Figure 2.9: Examples of Non-Collinear Text

Kasar and Ramakrishman [9] develop a multi-script and multi-oriented text detector,

�rst by using color edge detection with a Canny edge detectoron each color channel

of the image, and then combining edges from each color channel into one image with

the OR binary operator. Edges are then linked and candidate character regions are

obtained from connected component analysis and the COCOCLUSTcolor clustering

algorithm [44]. Then 12 features are used to identify regions that containcharacters.

Features are shown in Table2.4.

Aspect Ratio Occupancy Ratio Boundary Smoothness
Boundary Stability Stroke Width Standard Deviation Stroke Width to Height Ratio
Stroke Homogeneity Gradient Density Gradient Symmetry

Area Ratio Gradient Angle Distribution Convex De�ciency

Table 2.4: Features for Character Classi�cation used by [9]

An SVM classi�er with RBF kernel and a neural network are trained on such features

over the ICDAR 2003 dataset. The authors evaluated their algorithm on their own

dataset that contains multi-language scripts used in Indiaas well as English, and also
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contains curved text. They report a precision of 80% and a recall of 86%, which is

pretty high for a text detector, but this evaluation only considers per-pixel character

detection, and the dataset used by the authors is not public and more conclusions or

comparisons cannot be done.

To group characters into words, the authors used Delaunay triangulation and some

heuristic rules. The full text detector was evaluated on theICDAR 2003 dataset,

and they obtained a precision of 63%, and a recall of 59%, which is similar to the

best methods of the state of the art.

Gomes and Karatzas [45] developed a text detector with a di�erent structure than

other detectors presented in the literature. Their concernwas to develop a text

detector that can detect characters and text with any script, without taking previous

assumptions about any speci�c script. To do this, their workis based on perceptual

organization, which is the grouping of perceptually signi�cant atomic objects, since

this is in theory what humans use to recognize textual information.

The authors start by extracting MSER regions from the input image, and �ltering

character regions with simple rules based on region size, aspect ratio, stroke width

variance and number of holes. Then characters are clustered by using perceptual

organization, by means of a di�erent set of features (geometry, mean Region color,

boundary mean color, stroke width and mean gradient magnitude on the border).

Group hypothesis are generated and evaluated with an evidence accumulation frame-

work and only meaningful text clusters are output as detections.

To evaluate their approach, the authors used the KAIST dataset [46], which contains

images of English and Korean text. On this dataset, they obtained a precision of

66% and a recall of 78%, which is higher than the recall of 60% presented by Lee at

al in [46].

Wang et al. [47] used convolutional neural networks (CNN) for text detectionand

recognition (end-to-end). First they trained patches of character images from the

ICDAR 2003 dataset, as well as generated character images, using unsupervised

feature learning [48] to extract features, and then used a 4-layer CNN to do text

detection with such features.
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A CNN is a type of neural network used for image processing and object detection

that is similar to do �ltering with set of banks, but unlike standard image processing,

the �lters are \learned" by the network during the training p rocess.

The authors obtained state of the art results, obtaining f-score of 76% on the ICDAR

2003 dataset, and f-score of 46% on the SVT dataset, which is better than the state

of the art of [3]. For character and word detection, the authors also obtained 90%

recall on the ICDAR 2003 dataset, and 70% recall on the SVT dataset.

In general CNN fall into the category of texture-based methods, and also have the

performance problem due to the sliding window. CNN methods also have issues with

training, due to the massive amount of parameters in the network, which requires a

massive amount of training data, which also makes training times very large. Wang

et al. [47] used GPUs for training, which shows the problem.

2.7 Discussion

Scene text detection is a not solved problem. This can be seenin the evaluation of

algorithms under the SVT dataset, where precision and recallare usually low, less

than 50%. This indicates the complexity of the problem. While most algorithms are

evaluated under the ICDAR datasets, such datasets do not really represent text in

natural scenes.

Edge-based methods are slow and the use of �lters does not generalize to non-latin

scripts. In general, �lters in speci�c directions are used for edge detection, and this

works well for Latin characters, since strokes are only horizontal, vertical or diago-

nal. But for other types of scripts, such as Kannada, CJK and Asian scripts, this

assumption does not hold, since those scripts have strokes in almost any direction.

Texture-based methods are also generally slow, since the sliding window approach

requires the evaluation of a very large amount of windows, thus making a real-time

implementation impossible. GPU implementations of HOG can run in real-time [33],



Chapter 2. Related Work 25

but this approach is very speci�c to a certain type of hardware, and does not general-

ize to the kind of devices that end users use, such as cellphones and tablet computers.

Most text detection algorithms make implicit or explicit assumptions about the script

that will be detected [15]. Most algorithms can only detect Latin characters and they

have not been trained or evaluated on other scripts. Since theminority of people in

the world speak Latin-based languages (37:1% to be precise), there is still much work

to do in order to be able to detect non-latin scripts.

In general, the number of features used by text detection algorithms is high, in order

to provide a good generalization performance in the train and/or test datasets, but

also such features make generalization to other kind of scripts very di�cult. For

example, a popular feature is the number of holes in a connected component region,

since Latin letters have a small number of holes (A has one hole, B has two holes,

and such), but Asian scripts have a much higher number of holes,as can be seen in

Figure 2.8, so for this kind of feature, a Asian script region could be mistaken for a

non-character region, and text detection would fail.

Multi-script [ 44] and multi-oriented [42] text detectors rely on a high number of fea-

tures as well, which also makes character classi�cation expensive, since more features

are needed, and some features are expensive to compute, suchas HOG-based features.

There is big fraction of the literature that relies on hand tuned heuristic rules to

group text, and such rules in general do not generalize well toother datasets [15].

Tuning this rules by hand is very tedious, but grid search canalso be used to au-

tomatically tune, but since the number of parameters is large, grid search becomes

untractable.

The Stroke Width Transform [8] and stroke width information is a popular choice for

current state of the art algorithms, but the SWT algorithm itself uses heuristic rules

for character classi�cation and text grouping. Since the SWT algorithm is based

on Canny edge detector, missing and unlinked edges can create disconnected regions

that are mistaken for non-text regions.
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The use of a tolerance threshold to compare the opposite edgegradient angle is also

tricky, since for some fonts there is no opposite edge with the appropiate angle. This

can be seen in Figure2.10, where two angle tolerance thresholds� t are presented,

and the value of � t = �
6 as recommended by Epshtein et al. [8] produces holes in

the regions. This can be �xed by incrementing the threshold to � t = �
2 , where the

regions no longer have holes, but this threshold is extremelypermissive and might

cause other problems.

(a) � t = �
6 (b) � t = �

2

Figure 2.10: Holes in SWT character regions

This problem is very characteristic of joints between strokes. Similar issues can be

seen in the joints at the top of the \M" letter, where the stroke width is higher, and

there is a high variation of the stroke width in that region. Since the SWT and other

algorithms use the stroke width variation as threshold for character classi�cation,

this can easily fail. This can also be seen with other lettersin Figure 2.11.

Figure 2.11: Stroke Width Transform of Letters X, Y, Z and W

Many text detection algorithms have not been evaluated withrespect to computa-

tional performance. There is no comprehensive informationin the literature about

computational performance metrics about text detectors, and only some publica-

tions (Like [7] and [8]) provide computation times per frame, but in general such

information is not available.
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Background

3.1 Writing Systems

Writing is part of day to day life, and practically almost all information is currently

stored in some form of writing, whatever this storage mediumis: a clay tablet, parch-

ment, paper, or bits in a digital media. Writing can be de�nedas a system of storing

information, usually coming or representing a given language [49] that humans or

computers use.

Writing systems are considered to be one of the most important technological ad-

vancements in the history of mankind [49], and such technology is one of the cor-

nerstones of modern society. Writing became a necessity from the needs of storing

information, such as commercial transactions, contracts,and recording history in

general.

From the need of storage also comes the need for retrieving the stored information.

Autonomous systems and robots in general do not have high quality capabilities to

read and write in most common writing systems, and much research is devoted to

that topic [1].

Some components of a writing system are [50]:

27
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1. A set of symbols usually called characters. The set of characters is called a

script.

2. A set of rules that de�ne the meaning of characters as well astheir relations

between each other.

3. One or more language that will be represented by the writing system.

4. A way to record the characters into a permanent medium.

The result of writing is usually called text. Many writing systems are currently in

use around the world. A map of writing systems can be seen in Figure 3.1. While

the most common writing system is Latin, this is not the majority as can be seen in

the data available in Table3.1. Only 37:1% of the human population uses the Latin

script, and the rest uses di�erent varieties of non-Latin scripts, such as Japanese

Kanji, Chinese, Korean, Kannada, Cyrillic, etc.

Figure 3.1: Writing Systems of the World. Source : Wikimedia Commons,
File WritingSystemsoftheWorld.png , used under the GNU Free Documentation

License (GFDL)

Script Estimated number of Users % of total number of users
Latin 2600 Million 37:1 %
Chinese 1300 Million 18:6 %
Indian 1200 Million 17:1 %
Arabic 1000 Million 14:3 %
Other 900 Million 12:9 %

Table 3.1: Estimated distribution of Script users in the World according to [10]
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Many devices are also used to do the actual action of writing (recording characters

into the permanent medium). This can range from very simple devices such as a

quill and ink, to medium complex pens to highly advanced printers. The high variety

of devices that are used for writing is one of the sources of variability that makes

the text detection and recognition problem very hard. Othersources of variability

between characters are computer fonts, artistic drawings and writing styles.

3.2 Scripts

Here we describe some of the scripts used in this thesis. This does not intend to be

a in-depth description of such scripts, but we will only present relevant information

for this thesis.

3.2.1 Latin

Latin is the most common script, used by many popular languages such as English,

Spanish, Portuguese, Italian, Turkish, German and their variants. The basic Latin

alphabet consists of 26 characters, which can have lowercase or uppercase variations,

plus the 10 digits and some characters used for sentence control and expression, like

the period, comma, parenthesis and other signs (Figure3.2).

Some languages extend the basic Latin alphabet with additional characters, which

usually are just variations of Latin characters. Examples ofthis are the Spanish tilde

characters (�a, �e, ��, �o, �u) and the German Umlaut characte rs (•a, •o, •u).

3.2.2 Kannada

Kannada is a script used in South India to write the Kannada language. It consists of

13 vowels, 2 vowel-consonants and 35 consonant characters.Characters used by this

script can be seen in Figure3.3. The interest for this script in this work is due to the

availability of handwritten and real-world Kannada characters from the Chars74K

Dataset [4].
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Figure 3.2: Characters from the Latin Script

Figure 3.3: Characters from the Kannada Script

3.2.3 Chinese-Japanese-Korean (CJK)

CJK is a term that means Chinese, Japanese and Korean, and coversscript used in

all 3 languages. CJK itself is not a script but a collection of scripts. CJK mostly

contains Chinese (Han) characters and their derivations into other Japanese and Ko-

rean characters. Some CJK characters can be seen in Figure3.4.

CJK as a set of scripts contains approximately 75000 di�erent characters that are

encoded through Unicode [51]. Separate code point blocks are allocated for CJK

characters. The CJK Uni�ed Ideographs block contains 20941 characters in the
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range U+4E00 to U+9FCC, and the CJKUI Ext A block contains 6582 characters

in the range U+3400 to U+4DB5, while 42711 characters are encoded in the CJKUI

Ext B block in the range U+20000 to U+2A6D6 [51].

Figure 3.4: Some CJK characters.Source : Public Domain

3.2.4 Hiragana and Katakana

Hiragana and Katakana are Japanese scripts, part of the Japanese writing system,

which also include the Kanji characters and the Latin script. The basic Hiragana

character set contains 93 characters, while the basic Katakana character set contains

96 characters. Characters from both scripts can be seen in Figure 3.5.

As with many scripts used by Asia, Hiragana and Katakana requireseveral strokes

to be drawn, and speci�c rules were designed to draw characters. Unlike CJK, the

stroke width of Hiragana and Katakana is pretty constant withno big variations.

Hiragana and Katakana are usually encoded with Unicode [51]. Hiragana codepoints

are in the range of U+3040 to U+309F, while Katakana codepoints are in the range

U+30A0 to U+30FF.
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(a) Hiragana

(b) Katakana

Figure 3.5: Hiragana and Katakana Scripts along with their Unicode codepoints.
Source : Wikimedia Commons, File UCBHiragana.png and UCBKatakana.png ,
User Antonsusi, available under theCreative Commons Attribution 3.0 Germany

license
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3.3 Road Scenes

In the context of robotics and autonomous vehicles, road scenes play a key role since

usually cameras and other visual sensors are installed into such vehicles with the

purpose of perception for some required tasks, such as path planning, collision and

obstacle avoidance, etc [52].

In general, road scenes have some special characteristics that make extracting infor-

mation from them a challenge. Here we assume that the camera ispointed parallel

to the direction of motion of the vehicle:

1. Some basic structure like the sky is the upper portion of theimage, and the

road in the lower portion. Usually the sides of a road contain signs that provide

information to the driver (tra�c signs and panels), or other kind of information

such as advertising, buildings, etc. Tra�c panels could also be located in the

upper part of the image, as shown in Figure3.6.

2. Text information in panels and signs is usually small in size when compared

to the size of the complete image. While driving towards the sign, the text

increases, but becomes blurry due to the movement of the vehicle.

3. The vehicle is in constant motion and this produces motionblur in some image

frames.

4. There is no control over weather conditions, such as rain, snow, clouds and

sunlight.

5. A special challenge that is not considered in the literature is the fact that road

scenes also needed to be analyzed in low light conditions or in the night, since

most visual sensors give no meaningful information under lowlight conditions.

6. Items that contain textual information such as tra�c signs and panels naturally

degrade over time.

7. Temporary occluders could be present in the scene, such astree leaves and

branches.
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Figure 3.6: Some images of Road scenes, from the GTSDB [5]

For this thesis work, we are interested in retrieving the textual information stored in

tra�c signs and tra�c panels, such as the ones seen in Figure3.7. Here we note that

tra�c signs and panels do not necessarily use the Latin script.
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Figure 3.7: Korean Tra�c Signs and Road Panels. Source : Public Domain

3.4 Maximally Stable Extremal Regions

Maximally Stable Extremal Regions (MSER) is a region detection algorithm origi-

nally proposed by Matas et al. [37]. The basic concept of this algorithm is that if we

threshold an imageI with Equation 3.1 with all possible threshold valuest (usually

from 0 to 255 for 8-bit images), and �nd the connected components for each binary

imageT, we will note that some connected regions do not change much,while other

regions have huge variations. The regions that have small changes as we change the

threshold are called stable regions.

T(p; t) =

8
<

:

1 I (p) > t

0 otherwise
(3.1)

This process on example image in Figure3.8a can be seen on Figure3.9. In this

\sequence of frames" we can see that some regions do not change, such as the text in

the lower part, the star and the moon crest in the Turkish ag, while other regions

have a much bigger variation.
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(a) Input Image (b) MSER Regions

Figure 3.8: Example MSER detection. In (B) each color represents a di�erent
detected maximally stable extremal region.

Initially when the threshold is the maximum value oft = 255, the image is com-

pletely black, and as the threshold value is decreased, some regions appear, and as

we advance, such regions grow and merge with other regions, and when the threshold

is the minimum value oft = 0, then the image is completely white, which means that

the whole image is detected as one region.

The Maximally Stable Extremal Regions of Figure3.8a are shown in Figure3.8b.

We can note that text was detected as several MSER's.
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(a) t = 215 (b) t = 205 (c) t = 195 (d) t = 185 (e) t = 175

(f) t = 165 (g) t = 155 (h) t = 145 (i) t = 135 (j) t = 125

(k) t = 115 (l) t = 105 (m) t = 95 (n) t = 85 (o) t = 75

(p) t = 65 (q) t = 55 (r) t = 45 (s) t = 35 (t) t = 25

Figure 3.9: Thresholding and connected component analysis of a example image.
Borders added for clarity

The MSER algorithm de�nes an image as the functionI : D � N2 ! S, where S

is a totally ordered set, and for 8-bit grayscale imagesS = f 0; 1; 2; 3; � � � ; 255g [37].

An adjacency relation in the imageI must be de�ned, which means that pixels in

the image have neighbors. The most usual adjacency relations are 4-connectivity and
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8-connectivity [28].

A region R on imageI is a contiguous subset ofD, where contiguity is de�ned by

the adjacency relation. This is the basic de�nition of a connected component in the

image. An Extremal Region (ER) is a region on imageI where either all pixels in

the boundary of the region are strictly lower or higher than the pixels values in the

region. This de�nes two types of Extremal Regions:

Maximum Intensity Region

8r 2 R ^ b2 @R I(r ) > I (b)

Minimum Intensity Region

8r 2 R ^ b2 @R I(r ) < I (b)

Where @Rdenotes the boundary of regionR. MSER regions are extracted by con-

structing a component tree [53], where the tree is built from the bottom-up. Each

node of the tree represents one region in the image at a given threshold level, and

the parent-child relation between nodes represents regiongrowing when the thresh-

old decreases. This also implies that all pixels that belongto a child region also are

contained in the parent region. An example component tree from [53] can be seen in

Figure 3.10.

Figure 3.10: MSER Component Tree, extracted from [53]
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A Maximally Stable Extremal Region is a regionRt
i where the function 	( i ) [53] has

a local minimum:

	( Rt
i ) =

jarea(Rt � �
i ) � area(Rt+�

i )j
area(Rt

i )
(3.2)

Where Rt
i is the i -th region at threshold levelt on the component tree. We should

notice that 	( i ) also depends on the parameter �. This equation evaluates if aregion

is stable by computing the relative area di�erence of the region, when the threshold

changes fromt � � to t + �. If this relative area change is a local minimum with

respect to the threshold levelt, then the region is deemed stable.

There is an algorithm that computes the component tree [11], and it is very e�cient,

with complexity O(n logm), wheren is the number of pixels in the input imageI and

m is the number of gray levels. Since this number is usually constant (equal to 255),

then this algorithm is linear in the number of pixels. The Linear MSER algorithm is

presented in Algorithms1 and 2.

After constructing the component tree, the tree is scanned and maximally stable

regions are extracted. We start at the leaves of the tree and continue going up until

we reach the root. Regions that minimize Equation3.2are selected as MSER's. Then

�ltering is performed. A region is output if and only if:

1. It is stable. A minimum stability can also be used.

2. Its size is bigger than the minimum size and smaller than the maximum size.

3. It is su�ciently di�erent from its parent region.

Then the MSER detector has 4 parameters:

Margin �

De�nes by how many threshold levels a region is considered stable. The most

common value used in the literature is 5.
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Minimum and maximum areas

Both are numbers in [0; 1] that represent sizes relative to the complete area

of the image. They allow to �lter very small or very large regions, since in

general the MSER output contains too many regions, and very small or very

large regions are usually not interesting (such as single pixels and background).

Minimum di�erence from parent

This parameter sets a minimum threshold on the variation between a region

and its parent. This is used to remove duplicate regions, since a region could be

stable for several levels of threshold (more than the margin). This parameter

is also called minimum diversity.

Algorithm 1 Linear Time MSER Computation [11]

Require: Input Image I , maximum grey valuetmax (default to 255)
1: function linearTimeMSER (I , tmax )
2: Convert input image I to grayscale imageG.
3: Initialize boundary heap as a array of stacks indexed by graylevel.
4: Initialize component stack.
5: curPixel  (0; 0); curLevel  G(0; 0)
6: while true do
7: for Neighborsp of curPixel that have not been exploreddo
8: if G(p) < curLevel then
9: Push p into boundary heap.

10: curPixel  p; curLevel  G(p)
11: else
12: Push p into boundary heap.
13: if curPixel has not been visitedthen
14: Add curPixel to the top of the component stack. Here the region

grows.
15: Mark curPixel as visited.
16: if Boundary heap is not emptythen
17: Pop boundary heap into curPixel.
18: if G(curPixel ) > curLevel then
19: processStack (G(curPixel ), componentStack)
20: curLevel  G(curPixel )
21: else
22: processStack (tmax , componentStack)
23: return Component tree.
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Algorithm 2 processStack method [11]

1: function processStack (newGreyLevel, Component stack)
2: while newGreyLevel is bigger than the greylevel on top of the component

stack do
3: Pop component stack into a variable called top.
4: Add top to the component tree.
5: if newGreyLevel is smaller than the greylevel on top of the component

stack then
6: Set greylevel of top to newGreyLevel.
7: Push top into the component stack.
8: else
9: Merge top and the component on top of the stack.

10: Push the merged component into the component stack.

3.5 The Stroke Width Transform

The Stroke Width Transform (SWT) is a text detection algorithm originally proposed

by Epshtein et al. [8]. The core of the SWT is to compute a stroke width image, of

the same size as the input image, and where each pixel containsan integer denoting

the width in pixels of the most likely stroke region the pixelbelongs to, or zero in

case the pixel does not belong to any stroke region.

To compute such image, Epshtein et al. use Canny edge detection along with raycast-

ing. For each edge pixel, a ray is cast in the direction of the gradient until another

edge pixel is found or the ray gets outside of the image.

If another edge pixel is found, then a comparison between the ray direction and the

gradient orientation in the found edge is performed. If the ray is parallel to the edge

gradient within a tolerance � t , then the stroke width is computed as the distance

between the ray origin and the found edge. This can be seen in Figure 3.11. Then

the minimum between what is already stored in the stroke width image and the com-

puted stroke width is stored in the stroke width image for each pixel in the ray. The

SWT algorithm can be seen in Algorithm3.

After computing the stroke width image, Epshtein et al do a special kind of median

�ltering to avoid a problem they encountered in letters suchas the \L", where the

stroke width was incorrect due to the long parts of the letter. Their median �lter

consists on that, for each successful ray, they compute the median stroke width m,
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Figure 3.11: Gradient vectors and stroke width computation by raycasting

Algorithm 3 Stroke Width Transform

Require: Input image I , Gradient orientation tolerance� t .
1: Do Canny Edge Detection onI and obtain binary edge imageE.
2: Compute Gradient orientation � (p) image.
3: Create stroke width imageS with integer format and same size asI .
4: R  ;
5: for Edge positione 2 E do
6: Do raycast from edge positione with direction � (e) until an edge is found or

the ray exits the image.
7: if Edge is found at positionp and j� (p) � � (e)j < � t then
8: Compute stroke width sw as distance betweene and p.
9: For all pixels in the ray, set the stroke width ins 2 S to minf S(s); swg.

10: R  R [ ray.
11: swtMedianFilter (S, R)
12: return S

and for each pixel of the ray, if the stroke width is bigger than the median, they set

the stroke width in that position to the median value. This median �lter can be seen

in Algorithm 4.

Algorithm 4 SWT Median Filter

Require: Stroke width imageS and list of rays R.
1: function swtMedianFilter (S, R)
2: for Ray r 2 R do
3: Compute medianm of the stroke width along the rayr pixels.
4: for Pixel p 2 r do
5: if S(p) > m then
6: S(p)  m
7: return S

An example of the SWT results of a image with one word can be seen in Figure 3.12.
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(a) Input Image

(b) Canny Edge Detection

(c) Stroke Width Image

Figure 3.12: SWT Example of the word \Matias"

3.6 Support Vector Machines

An Support Vector Machine (SVM) [54] is a machine learning classi�cation algorithm

that uses a maximum margin as a criteria to decide the best hyperplane that will

separate the positive from the negative examples. SVM is usually preferred over other

algorithms as a classi�er due to its resistance to over�tting (due to the maximum

margin) and the use of the kernel trick to obtain non-linear decision boundaries.

Over�tting is an undesired e�ect that happens when traininga classi�er, where the

classi�er learns the target function in the training data as well as learning the noise

in the data, so the trained classi�er fails to generalize the desired function when

evaluated in sets of data di�erent from the training set [30].

One way to avoid or minimize over�tting is to do cross-validation, which consists of

splitting the dataset into two parts: a training set and a validation set. The SVM
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is trained with the training set, and then the validation setis used to evaluate the

performance of the trained classi�er, and over�tting wouldbe clear if performance in

the validation set is poor.

K-Fold cross validation is another technique used to split datasets for training [55].

But in this method, the dataset is split in k parts at random (with approximately the

same sizes), and training proceeds ink rounds. In each round the classi�er is trained

into k � 1 splits, and the remaining split is used for validation. This is repeated once

for each split of the dataset.

3.6.1 Linear SVM

The most basic SVM is the Linear SVM, where the decision boundaryis a hyperplane

in the n-dimensional spaceRn . Given a set of training data T in the form T =

f (~x; y) j ~x 2 Rn ; y 2 f� 1; 1gg, the equation of the hyperplane is:

~w � ~x � b= 0 (3.3)

Where ~w is the weight vector of the decision boundary, which is perpendicular to

the hyperplane, andb is the o�set of the hyperplane from the origin. Assuming the

training data is linearly separable, then there exists a value of w that generates 2

hyperplanes where the area between the 2 hyperplanes does not contain any value in

the training data. This can be seen in Figure3.13. The equation of such hyperplanes

are:

~w � ~x � b= 1 ~w � ~x � b= � 1 (3.4)

The distance between both hyperplanes is denominated the \margin" of the classi�er

and its value is equal to 2
jj ~w jj . Since we want to maximize the margin, then we need

to minimize the norm of ~w. This can be formulated as an optimization problem,

and the constraints are designed to avoid that training data points falling inside the

margin area.

Then an SVM can be trained by solving the following optimization problem:
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min
~w ;b

1
2

jj ~wjj2 subject to

8i y i ( ~w � ~x i � b) � 1
(3.5)

After training the values of ~w and b are stored and can be used to classify new

examples with the following equation:

f (~x) =

8
<

:

1 if ~w � ~x � b > 0

� 1 if ~w � ~x � b < 0
(3.6)

Figure 3.13: Geometry of a Support Vector Machine. Source : Public Domain

The training examples that line on the margin are called support vectors and give the

name to the SVM. The importance of the support vectors is that only the support

vectors are required to train the SVM, and if any non-support vector training example

changes, the trained SVM will be the same (unless a new examplefalls inside the

margin).

Then the number of support vectors is used as a measurement ofthe complexity of the

trained classi�er, since if less support vectors are needed, the trained SVM is simpler.

But this classic Linear SVM only works if the training data is linearly separable, and

many real datasets are not linearly separable. But the SVM canbe converted into a

classi�cation algorithm that also work for such cases.
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3.6.2 Soft-Margin SVM

The Soft-Margin SVM is used in the case that the training data is not linearly

separable and some examples will be misclassi�ed [55]. For this, a small modi�cation

of the constraints is required:

yi ( ~w � ~x i � b) � 1 � � i (3.7)

Where � i � 0 for all i , and � i represents the misclassi�cation \error" of a given

training example. Then the modi�ed optimization problem used to train the Soft-

Margin SVM is:

min
~w ;b

1
2

jj ~wjj2 + C
X

i

� i subject to

8i y i ( ~w � ~x i � b) � 1 � � i

� i � 0

(3.8)

Where C > 0 is a parameter that controls how much misclassi�cation is tolerated

when training the SVM. In some way it can be considered similarto a regularization

coe�cient used in other machine learning algorithms. A small value of C will make

the SVM tolerate many misclassi�cations, while a big value ofC will make the SVM

strict, and no misclassi�cations will be tolerated. WhenC ! 1 then the Soft-Margin

SVM behaves like a linearly separable SVM [55].
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Proposed Approach

In this chapter we present our text detection approach.

4.1 Overview

After evaluating the literature, we selected a classic text detection pipeline with 4

stages:

Region Extraction

We used MSER to extract regions from the image, which represent charac-

ters. MSER is well known for text detection, since it behavesvery well under

noise, detected regions are invariant to a�ne transformations [56] and a tracking

framework exists which can improve performance [53].

Character Filtering

Then we perform �ltering to select regions that are characters and discard the

rest. To do this we propose a new novel feature, called the Histogram of Stroke

Widths (HSW) that has a very high classi�cation rate and can discriminate

between character and non-character regions very well.

Text Line Grouping

Then we group character regions into text lines via a novel raycasting method

that we also propose.

47
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Text Veri�cation

For each text line produced in the previous stage, we verify that they are indeed

a valid text region by means of the Histogram of Stroke Widths. Every valid

text line is then the output of our detector.

A block diagram of our detector architecture is shown in Figure 4.1. For our detector

we took the following assumptions:

Input Image

MSER Region
Extraction

Character
Filtering

Text Line
Grouping Text Veri�cation

Text Detections

Figure 4.1: Text Detector Block Diagram

1. Individual characters can be detected as connected components from the MSER

algorithm.

2. Characters can belong to any script. In particular we tested our classi�cation

algorithm with Latin, Kannada, CJK, Hiragana and Katakana Scripts, but the

Histogram of Stroke Widths should work with any script.

3. Text lines formed by consecutive connected components form a line. This as-

sumption is violated if the text is curved, but we believe ourmethod has the

potential to also consider curved text if the character orientation can be taken

into account.

Two example results from our proposed text detection pipeline can be seen in Figures

4.2 and 4.3. For each �gure, there are sub�gures that show the resulting output for

each stage.
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4.2 Region Extraction

For region extraction we use Maximally Stable Extremal Regions over a grayscale

projection of the input image. The advantages of such approach are:

Scale invariance

Regions can be detected at any scale, and the detector allowsto set a minimum

and maximum region sizes, so we don't need to process really big or very small

regions. Unlike other methods, MSER region detection does make assumptions

about the size of the text.

A�ne transform invariance

If a region is a�ne transformed, the transformed region willalso be detected,

and this transformation can be undone with the algorithm presented in [56],

but we did not use this option.

Text as MSER

Characters and Text is well known to be detectable as MSERs [57], and in

general this performs very well.

Low parameter count

The MSER detector has only 4 parameters and their values generalize very well

under many di�erent images. The only parameters that need tuning are the

minimum and maximum region sizes.

The MSER algorithm detects light regions over a dark background (this is called

MSER+). To detect dark regions over light background, it is required to take image

with inverted pixel values (Di�erence between maximum grayscale value and each

pixel value) and to run the algorithm again on that inverted image (This is called

MSER-) [53]. Then we can use both sets of regions for further processingin the

pipeline.
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(a) Input Image (b) MSER Regions
(218 regions)

(c) Filtered Character
Regions (48 regions)

(d) Text Lines (23
lines)

(e) Filtered Text
Lines

(3 lines)

Figure 4.2: Text Detection Pipeline results, divided per stage, with a simple
image
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(a) Input Image (b) MSER Regions
(270 regions)

(c) Filtered Character
Regions (138 regions)

(d) Text Lines (76 lines) (e) Filtered Text Lines
(14 lines)

Figure 4.3: Text Detection Pipeline results, divided per stage, with a road scene
image
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4.3 Character Filtering

To �lter character regions from non-character regions, we developed a feature de-

scriptor for text regions. We call this feature the Histogramof Stroke Widths, and as

like the name says, we extract stroke widths from the region,and make a histogram

of them.

4.3.1 Histogram of Stroke Widths

Since text and character regions have \almost" constant stroke widths [8], the his-

togram should have a very noticeable peak around the stroke width used to draw

the character, with variations since the stroke width sometimes varies according to

di�erent fonts, di�erent writing styles and on di�erent cha racters.

We noticed that the distribution of stroke widths between a character and a non-

character region were di�erent. In Figure4.4 we present the histogram of stroke

widths of three character regions, and in Figure4.5 the same but for three non-

character regions. We can see that the histograms are di�erent, non-character regions

accumulate more mass around the �rst bins, while character regions have a peak that

is further to the right of the �rst bin.

But we make no such assumptions on the di�erence between histograms, and we will

let a classi�cation algorithm be trained over the histogramof stroke widths feature

to distinguish character from non-character regions. Fraunhofer IAIS was using a

similar method of stroke width distributions for the same purpose, but comparing it

with template histogram using Earth Mover's distance [58].

Since stroke width values change with font sizes, distance to the camera or size of

the regions, we normalize stroke widths by the width of the bounding box of the

connected component region. This provides scale invariance since stroke widths in

general cannot be larger than the width of the connected component. After building

the histogram, we normalize it by dividing each bin by the sumof all bins.
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Figure 4.4: Histogram of Stroke Widths for 3 Character Regions (Computed
with SWT and 20 histogram bins)

The histogram of stroke widths algorithm is shown in Algorithm 5. Before we can

use this algorithm, we need a way to extract stroke widths from a connected com-

ponent. We used two di�erent methods: One based on the StrokeWidth Transform

[8] and another using run-lengths to approximate the stroke widths. Run lengths are

explained in Section4.3.3.

To classify characters, we compute the histogram of stroke widths, and then we train

a Linear SVM with a soft-margin as classi�er. The input features for the SVM

classi�er are the histogram of stroke widths, and two additional features:

Aspect Ratio

The aspect ratio r of a connected component region is the ratio of width to
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height of the bounding box containing the component:

r =
w
h

(4.1)

Occupancy Ratio

The occupancy ratioo of a connected component region is the ratio of the

number of pixelsn in the region to the total area of the bounding box containing

the component:

o =
n

wh
(4.2)

The only parameter required to compute the HSW feature is the number of histogram

bins, which should be greater than zero. We decided to use a Linear SVM because of

previous results that used similar techniques, such as HoG [26]. We also experimented

with di�erent kernels, such as Gaussian and polynomial, butthey were not superior

to a Linear kernel.

Algorithm 5 Histogram of Stroke Widths Computation

Require: List of stroke widths W, width of the region Rw

1: and number of histogram binsN .
2: function HistogramOfStrokeWidths (W, Rw , N )
3: Create output histogramH with N bins.
4: for w 2 W do
5: Compute normalized stroke widthsw = w

Rw

6: Vote into histogram H in bin number sw � N .
7: Normalize H by dividing each bin by the sum of all bins.
8: return H

4.3.2 SWT-based Stroke Width Computation

Given a connected component region, we convert this component to an image. As-

suming the component is represented as a list of points (x; y) indicating the pixel

coordinates that belong to the region, to convert this representation to an image, we

�rst compute the bounding box of the region, construct a image of the same size as

the bounding box, then for each point in the region, translate it by the upper-left

corner and set its value in the image to 255. Then we compute the image gradient

over the region image, by using the local di�erence operator, which is de�ned by the

following convolution kernels:
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Lh =
�

1 � 1
�

L v =

 
1

� 1

!

(4.3)

We decided to use the local di�erences kernel instead of the more common Sobel

kernels because most detected regions are small, and the Sobel kernel incorporates

smoothing, which a�ects the stroke width computations. Local di�erences works

much better than Sobel for this case.

After computing the image we do a simple edge detection algorithm. Since the region

image is completely noise-free1, we can obtain the edges by taking the gradient

magnitude image and thresholding it witht = 1. This procedure works because the

region image was created by our algorithm and is just a new representation of the

region.

Once we have the edges and the gradient orientation, we can use the Stroke Width

Transform to obtain the stroke widths. We made a small modi�cation to the SWT

algorithm.

To avoid \holes" in the regions obtained from SWT and missing rays due to noise,

we removed the condition that gradient orientation at ray stop positions must be

roughly parallel to the ray direction. Our ray stops when it hits an edge or the ray

exits the image. We can remove this constraint because the region image is completely

noise free (since it is generated from a region and not extracted from an image patch).

Our SWT-based stroke width extraction algorithm is presented in Algorithm 6. The

stroke widths on Figures4.4 and 4.5 were computed with our SWT algorithm.

1We say it is noise free because it is just another representation of the region, and in this case
the image has two possible values: 0 or 255
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Algorithm 6 SWT-based stroke width extraction

Require: RegionR as a list of points (Pixel positions).
1: Convert R to a grayscale imageI .
2: Do edge detection by convolvingI with the local di�erences kernelLh and L v

(Equation 4.3).
3: Compute gradient magnitudeM (p) and gradient orientation � (p) images.
4: Threshold M > 1 to obtain a binary edge imageE.
5: Create stroke width imageS with integer format and same size asI .
6: R  ;
7: for Edge positione 2 E do
8: Do raycast from edge positione with direction � (e) until an edge is found or

the ray gets outside of the image.
9: if Edge is found at positionp then

10: Compute stroke width sw as distance betweene and p.
11: For all pixels in the ray, set the stroke width ins 2 S to minf S(s); swg.
12: R  R [ ray.
13: swtMedianFilter (S, R)
14: W  ;
15: for Pixel positions r 2 R do
16: W  S(r ) [ W.

17: return W
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Figure 4.5: Histogram of Stroke Widths for 3 Non-Character Regions (Computed
with SWT and 20 histogram bins)
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4.3.3 Run-Length Stroke Width Computation

We also developed a di�erent way to estimate stroke widths bymeans of run lengths.

Run-Length Encoding (RLE) is a method for data/image compression [28], where a

binary image is compressed by storing consecutive elementswith the same value as

a single value, instead of the origin run of elements. A example of RLE compression

can be seen in Figure4.6. For stroke width extraction we use run lengths without

line wrapping.

Figure 4.6: Run-Length Encoding Image CompressionSource : Wikimedia Com-
mons, File RunLengthEncoding.png, used under the GNU Free Documentation

License (GFDL)

For example, the binary string \0000111010000001111" can be encoded as 4 zeros,

then 3 ones, then 1 zero, then 1 one, then 6 zeros, and �nally 4 ones. The same con-

cept can be used to estimate the stroke widths of a region, by converting the region

to a binary image (same as SWT stroke widths), and computing therun lengths for

each scanline of the image, but only for pixels that have the value of \true". Pixels

with a value of \false" correspond to the background and are not relevant for stroke

width computation.

Using the run lengths for stroke width extraction will overestimate many stroke

widths, but our experiments show (in Section5) that this is also a viable approach.

Our stroke extraction algorithm is presented in Algorithm7.

A comparison between SWT and Run-Length stroke width extraction is shown in

Figure 4.7. In that �gure we can see that both histograms look very similar, with

di�erences in long regions where the run lengths based approach overestimates the

stroke width.
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Algorithm 7 Run Lengths based stroke width extraction

Require: RegionR as a list of points (Pixel positions).
1: Convert R to a binary imageI .
2: strokes ;
3: for y = 0 to I.height do
4: is  false; start  0
5: for x = 0 to I.width do
6: if I (x; y) = true and : is then
7: is  true; start  x
8: if I (x; y) = false and is then
9: is  false

10: sw  x � start
11: strokes strokes[ sw
12: return strokes
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Figure 4.7: Comparison of SWT and Run-Lengths stroke extraction (20 his-
togram bins)
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4.4 Text Line Grouping

Figure 4.8: Raycast-based Text Line Grouping

After �ltering character regions, we need to group them into text lines. For this we

propose a method that uses raycasting from one region to �nd the next region in the

text line. This method is similar to the one presented in [59]. The basic idea can be

seen in Figure4.8.

Given a list of character regions, �rst we convert it to a labeled image, which is a

integer image where a value of zero means background or no label, and a positive

value � 1 indicates the index of the region in the list that pixel belongs to.

Now from the previous label image we proceed to do raycasting.For each character

region, we take the middle point of the right side of the bounding box, and cast a

horizontal ray until we �nd the next region, or the ray exits the image.

To avoid false positives and regions that are too far to be valid text, we introduce

a distance threshold. If the distance between the currentc and the next regionn

is bigger than this threshold, we stop the raycast process and proceed to the next

region in the list. To maintain scale invariance, we test thefollowing valuev against

the distance threshold.

v =
distance(c; n)

min(c:width; n:width )
(4.4)

The distance threshold can be obtained with cross-validation by maximizing precision

and recall. After this process we obtain many text lines, and some lines are duplicates

or contain subparts of a text line. To reduce the number of false or duplicated text

lines, we merge text lines that have at least one region in common using a union-�nd

merging algorithm.

After merging we consider the text lines that have at least two regions and produce

the bounding boxes of each of such text lines and return them astext detections.
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The complete text grouping algorithm is presented in Algorithms 8 and 9.

Our grouping method takes the assumption that the text line is horizontal or nearly-

horizontal. But this is not a strict requirement since the method could be adapted

text with any orientation. The only required information for oriented text is the

orientation of the character region to select the directionof the raycast, but this adds

complexity to our simple algorithm.

Algorithm 8 Raycast-based Text Line Grouping

Require: List of Character RegionsR, Distance thresholddt .
1: Convert R to a label imageI .
2: tl  ;
3: for r 2 R do
4: lineRegions  ;
5: curRegion  r
6: curLabel  label of regionr .
7: while curLabel 6= 0 do
8: rayLabel  raycast (curRegion, I )
9: if rayLabel = 0 then

10: break
11: candRegion R(rayLabel)
12: if distance(candRegion; curRegion) > d t min(candRegion:width; curRegion:width)

then
13: break
14: curRegion  candRegion
15: curLabel  rayLabel
16: lineRegions  lineRegions [ curRegion
17: tl  tl [ lineRegions

18: Merge text lines with common regions intl .
19: return lt

Algorithm 9 Raycasting Method

Require: Starting region R and label image labels.
1: function raycast (R, labels)
2: r = ( x; y)  middle point of the right side ofR's bounding box.
3: if r is not a valid coordinatethen
4: return 0
5: while r is a valid coordinate and labels(r ) = 0 do
6: r:x  r:x + 1
7: if r is not a valid coordinatethen
8: return 0
9: else

10: return labels(r )
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4.5 Text Veri�cation

Finally the last stage is text veri�cation. This stage is designed to remove the many

false positives that are generated in the previous stages. Reasons for false positives

could be regions that look like text but are not, such as lightpoles, road markings,

etc. Also our text line grouping algorithm will produce some false positives if the

character classi�cation stage did not remove non-character regions.

For text veri�cation we also use the histogram of stroke widths, but instead of clas-

sifying a region, we classify the set of regions in the text line.

To classify a text line, we compute the histogram of stroke widths for each region

in the text line, and take the average of all histograms, and then renormalize the

histogram so its sum is 1:0. We also use two additional features, but their de�nition

is slightly di�erent. A Linear SVM classi�er is trained on these features plus the

histogram of stroke widths:

Aspect Ratio The aspect ratio r of a list of connected component regions is the

ratio of width to height of the bounding box containing all the components in

the list:

r =
w
h

(4.5)

Occupancy Ratio The occupancy ratioo of a list of connected component regions

is the ratio of the sum of number of pixels
P

i ni across all regions to the total

area of the bounding box containing all components in the list:

o =
1

wh

X

i

ni (4.6)
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Experimental Evaluation

In this chapter we present the experimental evaluation of ourtext detector. All tests

were run on a laptop with a Intel Core i5-3317U CPU, with a normalfrequency

of 1.7 GHz and a TurboBoost frequency of 2.4 GHz. The laptop has 10 GB of

RAM. The implementation was done in C++, with the GCC 4.9.1 compiler, with

-O2 optimizations enabled

5.1 Datasets

We used 3 kinds of datasets to evaluate our detector. Fraunhofer IAIS provided video

frames of a camera mounted on a vehicle that took video footage from the German

Autobahn, which was used to produce a small dataset of 95 images.

To train the character classi�er and compare its performance with di�erent scripts,

we used the Chars74K Dataset [4] English and Kannada images, as well as �ve small

datasets generated from computer fonts.

5.1.1 Chars74K Dataset

We used the Chars74K Dataset because it contains images from font-generated Latin

characters, as well as handwritten Kannada characters in a format that is very easy

to use. We used two subsets of this dataset:

63
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English

The Chars74K dataset contains 62992 images of Latin characters generated

from a very big selection of computer fonts, with image size of 128x128 pixels.

There are 1016 image samples for each character (with a totalof 62 di�erent

characters). A example of some characters in this dataset waspreviously shown

in Figures 2.6 and 2.7.

Kannada

The Chars74K also contains Kannada script characters, fromnatural images

as well as handwritten images. We selected to use the handwritten character

images. In this dataset we have 25 image samples for each of the 51 basic Kan-

nada characters, for a total of 1275 image samples. Image sizes are 1200x900

pixels. Some samples of this dataset are shown in Figure5.1.

Figure 5.1: Some Handwritten Kannada characters from the Chars74K Dataset
[4]

5.1.2 Fraunhofer Tra�c Panel Dataset

Since there are no public datasets of images from the perspective of an autonomous

vehicle with a front facing camera, we decided to create our own. Fraunhofer re-

searchers used a camera on a car and produced many 720p resolution videos of Auto-

bahn driving. We named this dataset the Fraunhofer Tra�c Panel Dataset (FTPD).

We took the videos and selected frames that contained tra�c panels, and we obtained

95 image samples, split into 40 training and 55 test images. Some examples from the

training set can be seen in Figure5.2. Image sizes are 1280x800 pixels.

Since the frames come from MP4-compressed video, the imagesitself are very noisy,

and the MPEG compression artifacts can be seen if the images are zoomed in. This

can be seen in Figure5.3. Rectangles were used to label text regions in each image.

A example of such labels can be seen in Figure5.4. In general the text of this dataset

is horizontal, with some cases where the text is slighly rotated.
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Figure 5.2: Some images from the Fraunhofer Tra�c Panel Dataset

Parameter Value Parameter Value
Margin � 10 Minimum Diversity 0.75
Minimum Area 20 px Maximum Area 30% of total image area

Table 5.1: MSER Parameters for character and non-character region extraction

In order to train the character classi�er we extracted character and non-character

regions from this dataset. To extract we used a MSER detector con�gured with the

parameters shown in Table5.1, and used the labeled bounding boxes to decide if

a region is a character (positive example) or a non-character (negative example) to

train a Linear SVM classi�er. A sample of such regions are presented in Figures5.5

and 5.6. From this dataset we extracted 1280 positive examples and 9072 negative

examples.
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Figure 5.3: MPEG Compression artifacts on images from the Fraunhofer Dataset

Figure 5.4: Labeled text regions from the Fraunhofer Dataset

Figure 5.5: Extracted MSER character regions from the FTPD

Figure 5.6: Extracted MSER non-character regions from the FTPD

5.1.3 Character Datasets

Since most public datasets contain only text with Latin characters, we decided to

generate some datasets with non-latin characters from computer fonts. The purpose

was to evaluate the generalization power of the character classi�er. The scripts we

selected were CJK, Hiragana, Katakana and Latin (for control purposes).

To generate Asian script characters, we used the IPA Fonts1 set provided by the

1http://ipafont.ipa.go.jp/#en
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Information-Technology Promotion Agency of Japan , which areavailable under the

\IPA Font License Agreement v1.0" License2.

From the IPA Fonts set we used the IPAGothic, IPAMincho, IPAPGothic and IPAP-

Mincho fonts to generate Asian script characters, as following:

CJK

We generated 2257 CJK characters in the Unicode codepoint rangeU+4e00 to

U+56d0, with a total of 81252 image samples.

Hiragana

We generated 93 Hiragana characters in the Unicode codepoint range U+3040

to U+309F, with a total of 3348 image samples

Katakana

We generated 96 Katakana characters in the Unicode codepointrange U+30A0

to U+30FF, with a total of 3456 image samples

Latin

We generated 62 Latin characters (0-9, a-z, A-Z) with a total of 8370 image

samples.

To generate each character image, we painted a black character on a 110x110 pixel

image, with a white background, and varied the size and properties of the font. Font

sizes (in points) were drawn froms 2 f 18; 20; 22; 24; 26; 28; 36; 48; 72g. To generate

Latin characters, we used the Arial, Comic Sans MS, Fontin, FreeSans and FreeSerif

fonts, and for each character and size combination we added 3versions of the char-

acter, with Roman, Bold and Italic styles.

Example characters from the generated datasets are presented in Figures5.7, 5.8, 5.9

and 5.10.

Figure 5.7: Some generated CJK characters

2http://opensource.org/licenses/IPA
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Figure 5.8: Some generated Hiragana characters

Figure 5.9: Some generated Katakana characters

Figure 5.10: Some generated Latin characters with di�erent font sizes

5.2 Character Classi�er per Script

5.2.1 Experimental Setup

With the purpose of evaluating the generalization power of the character classi�er,

we designed several synthetic experiments that consisted in training the character

classi�er with a given set of positive examples, drawn from ascript, and a set of

negative examples, drawn from the Fraunhofer Tra�c Panel Dataset.

To set the values of the SVM misclassi�cation penaltyC and the number of histogram

buckets N , we used grid search, with a 10-fold cross validation. Each point (C; N )

where C 2 f 0:01; 0:1; 1; 10; 100; 1000g; N 2 f 10; 20; 30; � � � ; 190; 200g was used to

train the classi�er and the one with biggest correct classi�cation rate was selected.

Each script dataset was split into training and validation subsets, with the training

subset being used for k-fold cross validation and the validation dataset used for �nal

classi�er selection.

To compare the generalization performance of the characterclassi�er, we trained it

with di�erent scripts. We build a \confusion" matrix, where we trained a character
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classi�er with a given script, and tested it with another script. This way if the char-

acter classi�er really learned the distribution of stroke widths, it should give a good

classi�cation performance over a di�erent script.

We evaluated 6 scripts: English (from the English subset of the Chars74K dataset),

Handwritten Kannada (also from the Chars74K dataset), CJK, Hiragana, Katakana

and Latin.

5.2.2 Results and Analysis

Results of this experiment can be seen in Table5.2 for a character classi�er using

SWT strokes, and Table5.3 for a character classi�er using Run Length strokes.

Train/Validate English Kannada CJK Hiragana Katakana Latin
English 99% 96% 99% 97% 89% 95%
Kannada 97% 99% 99% 98% 93% 86%
CJK 1% 2% 98% 99% 94% 96%
Hiragana 1% 1% 98% 98% 94% 96%
Katakana 1% 1% 98% 99% 98% 97%
Latin 2% 2% 98% 99% 94% 96%

(a) Character
English Kannada CJK Hiragana Katakana Latin

94% 94% 100% 100% 98% 100%

(b) Non-Character

Table 5.2: Character Classi�er - Correct classi�cation rates with SWT

Train/Validate English Kannada CJK Hiragana Katakana Latin
English 96% 84% 97% 98% 90% 96%
Kannada 96% 100% 98% 98% 90% 90%
CJK 2% 1% 98% 99% 95% 96%
Hiragana 2% 1% 98% 99% 94% 96%
Katakana 2% 1% 98% 99% 95% 96%
Latin 6% 1% 98% 99% 96% 99%

(a) Character
English Kannada CJK Hiragana Katakana Latin

93% 100% 100% 99% 99% 99%

(b) Non-Character

Table 5.3: Character Classi�er - Correct classi�cation rates with Run Lengths
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For SWT, we can see that the generalization performance is excellent. For example,

training a classi�er with Latin English characters also generalizes very well to detect

Kannada, CJK, Hiragana and Katakana characters, with most classi�cation rates

over 90%, where the Katakana script has the lowest classi�cation rate of 89%.

Correct classi�cation rates for non-character are also very high, with the English

charaters having the lowest correct classi�cation rates.

For run lengths we also see a very good generalization performance, with all character

classi�cation rates over 90%, except for English vs Kannadawith a 84% classi�ca-

tion rate. This could be explained because the strokes in the Handwritten Kannada

dataset are very thin, and the run length classi�er could have problem capturing their

distribution.

Comparing SWT versus RL we see that there is no clear winner, classi�cation rates

for character are sometimes higher for SWT and sometimes higher for RL. But for

non-character RL is slightly better since it has a 100% correct classi�cation rate for

non-character regions, and for other datasets they are verysimilar, with minimum

di�erences.

There are several cases where classi�cation fails and that happens when we train with

one of the generated datasets (CJK, Hiragana, Katakana and Latin) and test with

the non-generated datasets (English and Kannada). This should not be surprising

due to the big di�erence in size between such datasets, and there is no way we could

capture the whole variation of font size and style of the non-generated datasets in a

relatively small dataset such as the ones we generated.

We can conclude that the Histogram of Stroke Widths can learn the stroke width

distributions of several scripts and generalize very well with other scripts, which make

it a very powerful feature for character and text classi�cation.
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5.3 Text Detector on Road Scenes

5.3.1 Character Classi�er Training

To evaluate the whole text detection pipeline, �rst we trained a character classi�er on

the character and non-character regions extracted from theFTPD. The performance

of the trained classi�er represented as a confusion matrix is shown in Table5.4.

Please note that we abbreviated \character" as \char" in that table.

Char Non-Char
Char 88% 12 %
Non-Char 12 % 88%

(a) SWT

Char Non-Char
Char 92% 8 %
Non-Char 18 % 82%

(b) Run Lengths

Table 5.4: Character Classi�er performance while trained on the Fraunhofer
Dataset

For both SWT and RL the character classi�cation performance is good, with RL

being slightly better (4% di�erence), but with a lower correct classi�cation rate for

non-character regions. Results from the grid search process for C and N are available

on Table A.1 in the Appendix.

5.3.2 Text Veri�er Training

The second stage that requires training is the text veri�er. To train it we took sam-

ples from the FTPD, but instead of taking single characters, we took complete text

regions inside the labeled bounding boxes. To obtain negative examples, we ran the

raycasting algorithm over the detected MSER regions and selected any false positive

that was completely outside the text bouding boxes.

Both kinds of regions can be seen in Figures5.11 and 5.12. From this dataset we

extracted 189 positive examples and 403 negative examples.

Results from the text veri�er training are shown on Table5.5 and the complete

results from the grid search process forC and N are available on TableA.3 in the

appendix. We can see that classi�cation performance is veryhigh, with 97% of text

regions correctly classi�ed, but there is no signi�cant di�erence between using SWT
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Figure 5.11: Extracted MSER text regions from the FTPD

Figure 5.12: Extracted MSER non-text regions from the FTPD

or RL. Run lengths seem to be slightly worse since they confuse3 times more non-text

regions as text, and have a 2% lower classi�cation rate for non-text regions.

Text Non-Text
Text 97% 3 %
Non-Text 1 % 99%

(a) SWT

Text Non-Text
Text 97% 3 %
Non-Text 3 % 97%

(b) Run Lengths

Table 5.5: Text Veri�er performance while trained on the Fraunhofer Dataset

5.3.3 Experimental Setup

Now we can proceed to evaluate the whole text detection pipeline over the FTPD. As

mentioned before, we trained the character classi�er and text veri�er on the training

portion of the FTPD, and ran the whole pipeline on the test portion of the dataset.
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Parameter Value
Margin � 10
Minimum Diversity 0.75
Minimum Area 0:001% of total image area
Maximum Area 30% of total image area

Table 5.6: MSER Parameters for our Text Detector evaluation

The parameters used for testing are shown in Table5.6. The value of the distance

threshold was set todt = 1:5.

We consider a correct text detection of the detected rectangle matches the labeled

rectangle in the ground truth in at least 70%, and then we compute precision and

recall, as well as obtain computation times for each stage. The text veri�er (TV) was

optionally enabled or disabled to allow for comparisons of its e�ect in the detection

performance.

Enabling or disabling the text veri�er gives four possible con�gurations:

SWT-TV O�

Stroke Width Transform used for stroke width extraction, with the text veri�er

disabled.

SWT-TV On

Stroke Width Transform used for stroke width extraction, with the text veri�er

enabled.

RL-TV O�

Run Lengths used for stroke width extraction, with the text veri�er disabled.

RL-TV On

Run Lengths used for stroke width extraction, with the text veri�er enabled.

5.3.4 Results and Analysis

Text Detection performance is shown in Table5.7. We can see that recall of the RL

text detector is better than the SWT text detector, with a best recall of 76%. But

for precision, the best performance is obtained with the SWT text detector.
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Enabling the text veri�er has the e�ect of increasing precision by a considerable

amount, up to 24%, but it also has the e�ect of decreasing recall slightly. The ob-

served decrease in recall was 7% for SWT and 4% for RL.

The best performing text detector is the Run Lengths one withan enabled text ver-

i�er, with f-score of 69%. The same con�guration with SWT strokewidths has a

slightly lower f-score of 61%.

SWT-TV O� SWT-TV On RL-TV O� RL-TV On
Precision 40% 62 % 41% 65%
Recall 68% 61% 76% 72%
F-Score 50% 61% 53% 69%

Table 5.7: Text Detector performance on the Fraunhofer Dataset

We also obtained computational performance data, which is available in Table 5.8.

In this table we can see that in general all detector con�gurations take roughly 1

second to process a frame, and clearly the most expensive part is the extraction of

Maximally Stable Extremal Regions. The Run Lengths detector is clearly faster,

since the character classi�cation stage is much faster (35 times faster to be precise)

than the SWT stroke widths.

For the SWT text detector, Roughly 2% of the time is spent on image projection

(Converting to grayscale), 73% on MSER extraction, 24% on character classi�cation,

0:4% on text line grouping, and 0:6% verifying text. For the RL text detector, 95%

of the time is spent on the MSER extraction and only 5% on the rest of the pipeline.

Enabling the text veri�er has a very good impact on detection performance while

having a very small computational cost. Since Run Lengths have the best detection

performance and the lowest computational cost, it is clearly the best choice for a text

detector based on MSER.

A comparison of our di�erent detector con�gurations with the SWT algorithm is

presented in Table5.9 over the FTPD. We can see that the SWT has terrible perfor-

mance, with a f-score of only 28%, and a very high computationtime.
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SWT-TV O� SWT-TV On RL-TV O� RL-TV On
Image Projection 23� 4 ms 23� 4 ms 22� 7 ms 22� 7 ms
MSER 844� 131 ms 844� 131 ms 859� 143 ms 859� 143 ms
Character Classi�er 281� 136 ms 281� 136 ms 8 � 3 ms 8 � 3 ms
Text Line Grouping 6 � 2 ms 6 � 2 ms 7 � 4 ms 7 � 4 ms
Text Veri�er 0 � 0 ms 8 � 6 ms 0 � 0 ms 1 � 1 ms
Total 1154� 188 ms 1162� 189 ms 896� 143 ms 896� 143 ms

Table 5.8: Text Detector computation time while on the Fraunhofer Dataset

We believe this is due to the very noisy nature of the images inour dataset, since

they are real-world road scenes, with blur, and characters are very small in size

when compared with the size of the image frame. Also the artifacts from MPEG

compression play a big role here, a�ecting the gradient computations, which are

known to be very sensitive to noise [60].

Precision Recall F-Score Time
MSER-SWT 40% 68% 50% 1:2 � 0:2 s
MSER-SWT-TV 62% 61% 61% 1:2 � 0:2 s
MSER-RL 41% 76% 53% 0:9 � 0:1 s
MSER-RL-TV 65% 72% 69% 0:9 � 0:1 s
SWT [8] 21% 40% 28% 2:5 � 0:2 s

Table 5.9: Comparison between SWT and our Text Detector on the Fraunhofer
Dataset
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5.4 Distance Threshold Sensitivity

In order to evaluate the sensitivity of our text detectors with respect to the distance

threshold parameterdt , we obtained an ROC curve, which can be seen in Figure5.13.

The ROC curve again shows that the superior detector con�guration is Run Length

strokes with an enabled text veri�er, by a wide margin. The optimal value of the

distance thresholddt was selected by performing grid search over the range [0:0; 2:0]

and �nding the value of dt that maximized the F-Score.

The di�erence between SWT curves is smaller than the di�erence between RL curves.

This might indicate that tuning a precise value ofdt is more critical for the Run

Lengths detector than for the Stroke Width one.

It should be noted that the ROC cuve in Figure5.13 represents a \Convex hull" of

the Precision-Recall data obtained from testing the detector algorithm, according to

recommendations from [61]. Data points that fall inside the curve area were skipped.
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Figure 5.13: ROC curve with respect to the distance thresholddt
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5.5 Character Classi�er per Character

In order to perform a better comparison of SWT and run length stroke width ex-

traction, we performed additional experiments aimed at seeing what is the di�erence

between both methods.

5.5.1 Experimental Setup

We suspected that the correct classi�cation rate is not the same across di�erent

characters. To evaluate this hypothesis, we tested the character classi�ed trained on

the FTPD with the Latin script dataset, but evaluated separately for each character.

We tested numbers from 0 to 9, lowercase characters (a to z) and uppercase characters

(A to Z).

5.5.2 Results and Analysis

Results of this experiment are shown on Figures5.15and 5.16. For SWT the average

correct classi�cation rate is 77%, and for Run Lengths it is 90%.

Comparing both plots, we can see that the SWT has issues classifying the characters

\X", \Y" and \Z", where they have the lowest correct classi�cati on rates among all

characters. We believe this is due to discretization e�ectsof the gradient, and this

a�ects the gradient orientation. The same e�ect can be seen in Figure 2.11, where

there are smaller stroke widths around the section of the letter where 2 strokes meet.

The SWT seems to have issues in these cases. An individual comparison of selected

characters is shown in Figure5.14.

Run Lengths seem to be a better choice, since their classi�cation rate is bigger by

a wide margin, and does not have any particular problematic characters, but still

some characters have lower detection rates than the rest, such as the \N", \T" and

\Z"/\z" characters.
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Figure 5.14: Comparison of SWT and RL performance over selected characters

We note that problematic characters for the Run Lengths all have long horizontal

strokes, for which the stroke width will be a overestimation, which causes misclassi-

�cations. Comparison between SWT and RL still needs more research, since results

can change depending on the dataset or fonts used to draw text.
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Figure 5.15: SWT Character Classi�er Performance per Character (77% average
classi�cation rate)
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Figure 5.16: RL Character Classi�er Performance per Character (90% average
classi�cation rate)
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5.6 Rotation Invariance

In theory the SWT stroke widths are rotation invariant (up to the e�ects of discretiza-

tion), while the Run Length stroke widths are not, since a rotated character would

produce di�erent run lengths, which will change the distribution of stroke widths.

We designed this experiment to evaluate the performance of the trained character

classi�ers when the characters are rotated.

5.6.1 Experimental Setup

We took the images from the already generated character datasets and rotated them

(around the Z axis) to produce rotated versions, and evaluated the performance of

the di�erent character classi�ers versus the new examples.Each character image

sample was rotated by an angle of� 2 f 0; 5; 10; 15; � � � ; 360g degrees.

We tested each classi�er with the corresponding rotated characters of the same script.

We did not perform cross-script evaluation of rotated characters. Only the Latin,

CJK, Hiragana and Katakana scripts were evaluated.

5.6.2 Results and Analysis

Plots of the relation between classi�er performance and rotation angle � are shown

in Figure 5.17for SWT strokes, and in Figure5.18for Run Length strokes.

From Figure 5.17we can see that performance is not a�ected by rotated characters,

except for the Latin script, where at� = 90 and � = 270 the classi�er fails, with a

zero classi�cation rate. We believe this happens because the classi�er was not trained

on rotated characters, and while in theory the SWT is rotation invariant, the stroke

width distributions do change slightly, which can make the classi�er fail. This can

be seen in Figure5.19.

One issue that must be pointed out is normalization. Our histogram is normalized

by the width of the region, and while characters are rotated,the stroke widths from

SWT do not change much, but the width of the region changes. To be truly rotation
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Figure 5.17: SWT Character Classi�er Performance by Rotation Angle �
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Figure 5.18: RL Character Classi�er Performance by Rotation Angle �

invariant, the histogram should be normalized by the minimum value between width

and height [17]. We believe this is the reason why SWT stroke widths fail at� = 90

and � = 270.

For Run Lengths in Figure5.18, detection performance is the same as we rotate the

characters, with very small drops for discrete angle valuessuch as� = 45; 90; 270;

and 215. Even that in theory the Run Lengths are not rotation invariant, character

classi�er performance does not change with rotated characters. We can even see in

Figure 5.20 that the stroke width distributions are di�erent as the rotation angle

changes, but the classi�er can still correctly classify such samples (even as it was not

speci�cally trained for that).

One explanation for the drops at� = 90 and � = 270 is that normalization fails

for these cases, since at those angles, region width and height are swapped, so the

stroke widths are not being normalized by the region width, but by height. This

considerably changes the stroke width distribution, causing classi�cation to fail.
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Figure 5.19: SWT Histogram of Stroke Widths for rotated versions of the char-
acter \A"
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Figure 5.20: RL Histogram of Stroke Widths for rotated versions of the character
`A"
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5.7 Discussion

In this chapter we have experimentally evaluated our text detection approach. Clearly

Run Lengths are the best choice for stroke width extraction for our character clas-

si�er and text veri�er. Enabling the text veri�er has a posit ive e�ect on detection

performance and on computational performance as well.

Performance under the FTPD is very good, with 72% of the text regions correctly

detected, but only 65% of the detections being correct.

By looking at the correct text detections in Figure5.23and the incorrect or incom-

plete text detections (which count as incorrect detections)in Figure 5.22, we can

extract the following failure cases:

1. Text detection fails for some cases where one or multiple characters in a word are

classi�ed as non-characters. This will produce two text detections in di�erent

parts of a word, and they will be counted as incorrect detections.

2. Non-character regions can also be classi�ed as character regions (false positives),

and sometimes these regions can also be \attached" to nearbytext regions, cre-

ating bigger bounding boxes, which will make the detection count as a incorrect

one.

3. Very small or noisy regions cannot be detected either as MSER regions or as

character regions. This is very noticeable in Figure5.22d, where \Rommer-

skirchen" had only three correctly classi�ed or detected characters, and the

rest are completely missing. The same applies for \Kreuz" andthe number

\57" in the same image.

In some cases MSER regions are adjacent or even inside to other regions, and this

causes some small issues. This can be seen in Figure5.21. Note how in that �gure,

the \n" character has some regions inside it (denoted by a di�erent color), and the

characters \r", \t" and \m" exhibit the same behavior.

This is due to noise in the image and could be prevented by merging regions that

are adjacent (connected), but doing this would increase thecomputation time of the
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Figure 5.21: Regions inside regions produced by the MSER detector

algorithm. Filtering on the input image is also an option.

Our text line grouping algorithm seems to work well, with a very small number of

cases where the grouping is incorrect or \oversegments" theimage. Such cases would

not occur if the character classi�er could correctly classify 100% of the character

regions and completely remove the non-character regions.

Computational performance of our detector is good, some people [7] would say it is

real-time, but more work on a optimized implementation could produce noticeable

improvements. To extract MSER regions, we used VLFeat's MSERimplementation
3, but since most MSER implementations are used for tracking,they �t ellipses by

means of computation of the momentsI x ; I y and I xy of the region, which can be in-

crementally computed and only require 3 oating point numbers to store per region

in the component tree.

But we had to modify VLFeat's MSER implementation to produce regions repre-

sented as list of points (x; y), which increases computation time and memory require-

ments, since each region in the component tree contains a list of points. Another

approach could produce much better computational performance results.

Finally, the RL-based character classi�er has also very goodclassi�cation perfor-

mance if the characters are rotated. We believe this happensbecause the RL-based

classi�er is much more \tolerant" to di�erent stroke width d istributions than the

SWT classi�er.

3http://www.vlfeat.org/overview/mser.html
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Initially we thought that the SWT-based classi�er would outperform the RL-based

classi�er. Our experiments show that we were wrong. The reason why the SWT-

classi�er fails are the same as the reasons for why the SWT itself fails. Gradient

information is unreliable because of noise, but also the discretization e�ects count.

Raycasting can fail just because there is no edge in the ray direction, but there would

be a edge if the space is continuous instead of discrete.

The number of parameters of our text detector is low, only 4 parameters for the MSER

region detector, and only 2 for the text detector itself (number of histogram bins and

maximum distance threshold for raycasting). This is low compared with other text

detectors, such as Epshtein et al. [8] SWT text detector, with 13 parameters.

(a) (b)

(c)

(d) (e)

Figure 5.22: Examples of incorrect or incomplete text detections
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(a)

(b)

(c)

(d) (e)

Figure 5.23: Examples of correct text detections



Chapter 6

Conclusions

In this Master thesis we have presented a new feature for character region classi�ca-

tion, based on a histogram of the stroke widths. We proposed two ways to extract

stroke width information from a region detected by a MSER region detector.

The �rst way to extract stroke widths is based on the Stroke Width Transform [8],

and the second one is based on Run Lengths [28]. Then we compute the histogram of

stroke widths, normalized by the width of the region, and by adding two simple and

commonly used features (aspect ratio and occupancy ratio),we use a Linear SVM

classi�er to classify text regions.

This approach can also be used to verify text regions, where the output of a text

detector is given to our text veri�er, and it will remove text detections that are false

positives, improving precision of the detector. Our approach is script-independent

and our experiments show that it can generalize very well from training in one script

and testing in another di�erent script.

From our approach we built a text detection pipeline with four stages, and proposed

a simple way to group character regions into text lines by means of raycasting from

one region to the other. We evaluated our character classi�er on �ve di�erent scripts:

Latin, Kannada, CJK, Hiragana and Katakana on a dataset of generated character

images from computer fonts.

89
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Our character classi�er obtained at least 96 % correct classi�cation rates across dif-

ferent scripts, with the lowest classi�cation rate being 89 %.We trained our character

classi�er with positive examples on one script, and tested with another script, and

we obtained very high classi�cation rates in the same range.

To evaluate our text detector on road scenes, we constructed adataset of images

taken from video in the German Autobahn, which contains mostly tra�c panels. We

denominated this the Fraunhofer Tra�c Panel Dataset. The best performing detector

con�guration is using run lengths for stroke width extraction and enabling the text

veri�er, which obtains 65 % precision, 72 % recall with an f-score of 69 %.

In comparison, the Stroke Width Transform obtains only 28 % f-score on this dataset,

and this is due to the high image noise and very small charactersizes. With respect

to computational performance, our C++ detector implementation takes 0:9� 0:2 sec-

onds to process a frame, where 95 % of the time is spent on MSER region extraction.

Further testing indicated that our SWT and RL character classi�ers su�er from some

small drawbacks. Some characters such as \E", \F", \N", \W", \X", \Z" and\z" are

constantly misclassi�ed as non-characters (with a 30� 40 % chance), but in general

the character classi�er works very well, with> 90 % correct classi�cation rates and

low computational complexity.

Our experiments also show that while run lengths stroke width extraction is not ro-

tation invariant, the classi�er can still cope and correctlyclassify rotated characters

with similar precision as non-rotated characters.

Finally, in this Master thesis we believe a contribution has been made to the state

of the art with a script-independent method for character andnon-character region

classi�cation. Other contributions are the FTPD dataset, aswell as the raycasting

method for text line grouping.
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6.1 Future Work

Still there is much work to be done in text detection, and in particular for this work

as well.

MSER regions were extracted from a grayscale image, which has known problems

with image regions that have low contrast or are noisy. This could be improved by

using Maximally Stable Color Regions [38].

Our method also takes the assumption that characters will bedetected as MSER

regions, and this could be violated by many kinds of real-world text. Other authors

[40] extract MSER regions in other projections of the image, such as each RGB or

HSV color channel, as well as on the gradient of the image. Thiscould improve the

detection performance by actually detecting more characters.

Regions were represented as lists of points, and this created space and time com-

plexity problems. We have several ideas about how to deal withthis problem, such

as extracting only the thresholds and bounding boxes for each region, and then do

a postprocessing step that extract the regions using both information. This could

reduce the time it takes to extract MSER regions.

Other methods to extract stroke width information should beexplored. The his-

togram of stroke widths does not depend on any particular method of stroke width

extraction. The distance transform has also been used to compute stroke widths [39],

and could pose as a good option.

Our character classi�er was evaluated on generated datasets of non-latin characters,

but some datasets also contain real-world images of characters in other scripts, such

as Korean and Kannada. We must evaluate our character classi�er in such datasets

to be able to know the real generalization performance with respect to images in the

real-world, which are known to be noisy, blurry, etc.



Chapter 6. Conclusions 92

We also would like to integrate our character classi�er intoother text detector meth-

ods, such as Neumann and Matas [6]. Our character classi�er could help improve

detection performance for other methods and does not require or rely on our own

detector implementation.

One thing that must be done to obtain comparable results is toevaluate our text

detector on the ICDAR 2003 dataset. The complexity and size ofthis dataset makes

it a bit di�cult to train. Extracting more MSER regions is als o needed to obtain

good performance, and this could not be done now because of time constraints.

The results about rotation invariance look promising but still more tests should be

performed. We normalized by the region width, and other normalization methods

should be evaluated, such as the minimum value between widthand height of the

region. This could avoid edge cases where the classi�er fails and could make it truly

rotation invariant.

Finally, text detector and character classi�er must be evaluated with oriented text.

Our text line grouping algorithm is not rotation invariant and should fail with oriented

text, but a small modi�cation that includes orientation information for each character

could be used to cast a ray in an appropriate direction, whichshould work for oriented

and curved text as well.



Appendix A

Classi�er Grid Search Training

N / C 0.01 0.1 1 10 100 1000
10 68.3 83.3 88.3 88.3 91.7 91.7
20 70.0 83.3 86.7 91.7 91.7 91.7
30 70.0 83.3 88.3 91.7 93.3 93.3
40 70.0 81.7 90.0 91.7 91.7 91.7
50 70.0 81.7 86.7 90.0 95.0 95.0
60 70.0 83.3 93.3 91.7 93.3 95.0
70 70.0 81.7 95.0 91.7 93.3 91.7
80 70.0 81.7 90.0 91.7 93.3 91.7
90 70.0 83.3 90.0 91.7 90.0 91.7
100 70.0 83.3 91.7 90.0 95.0 95.0
110 70.0 81.7 93.3 90.0 91.7 90.0
120 70.0 83.3 93.3 91.7 90.0 90.0
130 70.0 83.3 93.3 90.0 93.3 91.7
140 70.0 81.7 93.3 90.0 90.0 90.0
150 70.0 81.7 95.0 90.0 91.7 91.7
160 70.0 81.7 93.3 90.0 91.7 90.0
170 70.0 83.3 93.3 88.3 91.7 90.0
180 70.0 83.3 91.7 91.7 91.7 93.3
190 70.0 83.3 91.7 88.3 93.3 95.0
200 70.0 83.3 91.7 88.3 91.7 88.3

Table A.1: SWT Text Classi�er Grid Search for N and C while trained on the
Fraunhofer Dataset
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N / C 0.01 0.1 1 10 100 1000
10 71.7 86.7 91.7 95.0 95.0 95.0
20 68.3 83.3 93.3 95.0 93.3 93.3
30 70.0 80.0 95.0 93.3 91.7 91.7
40 70.0 80.0 95.0 93.3 91.7 91.7
50 70.0 80.0 93.3 93.3 91.7 91.7
60 70.0 78.3 91.7 91.7 90.0 95.0
70 70.0 78.3 91.7 91.7 91.7 90.0
80 70.0 78.3 91.7 93.3 90.0 90.0
90 70.0 78.3 91.7 90.0 90.0 91.7
100 70.0 78.3 91.7 93.3 90.0 88.3
110 70.0 78.3 91.7 91.7 93.3 91.7
120 70.0 78.3 91.7 91.7 95.0 91.7
130 70.0 78.3 91.7 91.7 93.3 93.3
140 70.0 78.3 91.7 91.7 95.0 91.7
150 70.0 78.3 91.7 93.3 95.0 91.7
160 70.0 78.3 91.7 93.3 90.0 90.0
170 70.0 78.3 90.0 91.7 91.7 93.3
180 70.0 78.3 91.7 91.7 93.3 93.3
190 70.0 78.3 90.0 90.0 93.3 91.7
200 70.0 78.3 91.7 90.0 93.3 91.7

Table A.2: RL Text Classi�er Grid Search for N and C while trained on the
Fraunhofer Dataset
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N / C 0.01 0.1 1 10 100 1000
10 92.1 94.7 97.4 100.0 100.0 100.0
20 92.1 92.1 97.4 100.0 100.0 100.0
30 92.1 89.5 97.4 100.0 100.0 100.0
40 92.1 89.5 97.4 100.0 100.0 100.0
50 92.1 89.5 94.7 100.0 100.0 100.0
60 92.1 89.5 97.4 100.0 100.0 100.0
70 92.1 92.1 97.4 97.4 100.0 97.4
80 92.1 92.1 97.4 100.0 100.0 97.4
90 92.1 92.1 97.4 100.0 100.0 97.4
100 92.1 92.1 97.4 97.4 100.0 94.7
110 92.1 92.1 97.4 100.0 100.0 97.4
120 92.1 92.1 97.4 97.4 97.4 97.4
130 92.1 92.1 97.4 97.4 97.4 94.7
140 92.1 92.1 97.4 97.4 97.4 97.4
150 92.1 92.1 97.4 97.4 97.4 97.4
160 92.1 92.1 97.4 97.4 97.4 97.4
170 92.1 92.1 97.4 100.0 97.4 97.4
180 92.1 92.1 97.4 97.4 97.4 97.4
190 92.1 92.1 97.4 97.4 97.4 94.7
200 92.1 92.1 97.4 97.4 97.4 97.4

Table A.3: SWT Text Veri�er Grid Search for N and C while trained on the
Fraunhofer Dataset
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N / C 0.01 0.1 1 10 100 1000
10 92.1 94.7 97.4 97.4 97.4 97.4
20 89.5 92.1 97.4 97.4 97.4 100.0
30 89.5 92.1 97.4 97.4 97.4 97.3
40 89.5 92.1 97.4 97.4 97.4 97.4
50 89.5 92.1 97.4 97.4 97.4 97.4
60 89.5 92.1 97.3 100.0 97.4 100.0
70 89.5 92.1 97.4 100.0 97.4 100.0
80 89.5 92.1 97.4 100.0 97.4 100.0
90 89.5 92.1 97.4 100.0 100.0 100.0
100 89.5 92.1 97.4 100.0 100.0 100.0
110 89.5 92.1 97.4 100.0 94.7 97.4
120 89.5 92.1 97.4 100.0 100.0 97.4
130 89.5 92.1 97.4 100.0 100.0 100.0
140 89.5 92.1 97.4 97.4 97.4 97.4
150 89.5 92.1 97.4 100.0 97.4 97.4
160 89.5 92.1 97.4 100.0 97.4 97.4
170 89.5 92.1 97.4 97.4 97.4 97.4
180 89.5 92.1 97.4 100.0 100.0 97.4
190 89.5 92.1 97.4 100.0 100.0 100.0
200 89.5 92.1 97.4 100.0 100.0 100.0

Table A.4: RL Text Veri�er Grid Search for N and C while trained on the
Fraunhofer Dataset
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