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Abstract

A system that interacts with its environment can be much more robust if it is able to reason

about the faults that occur in its environment, despite perfect functioning of its internal

components. For robots, which interact with the same environment as human beings,

this robustness can be obtained by incorporating human-like reasoning abilities in them.

In this work we usenaive physics to enable reasoning about external faults in robots.

We propose an approach for diagnosing external faults that uses qualitative reasoning

on naive physics concepts for diagnosis. These concepts are mainly individual properties

of objects that deÞne their state qualitatively. The reasoning process uses physical laws

to generate possible states of the concerned object(s), which could result into a detected

external fault. Since e!ective reasoning about any external fault requires the information

of relevant properties and physical laws, we associate di!erent properties and laws to

di!erent types of faults which can be detected by a robot. The underlying ontology of

this association is proposed on the basis of studies conducted (by other researchers) on

reasoning of physics novices about everyday physical phenomena. We also formalize some

deÞnitions of properties of objects into a small framework represented in First-Order logic.

These deÞnitions represent naive concepts behind the properties and are intended to be

independent from objects and circumstances. The deÞnitions in the framework illustrates

our proposal of using di!erent biased deÞnitions of properties for di!erent types of faults.

In this work, we also present a brief review of important contributions in the area

of naive/qualitative physics. These reviews help in understanding the limitations of

naive/qualitative physics in general. We also apply our approach to simple scenarios

to asses its limitations in particular. Since this work was done independent of any partic-

ular real robotic system, it can be seen as a theoretical proof of the concept of usefulness

of naive physics for external fault reasoning in robotics.
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1 Introduction

It is a common experience that faults occur even in the most carefully designed systems.

Faults are even more common when the systems have to interact with real world. When an

autonomous robot interacts with its environment, its performance can be degraded either

by internal component malfunctioning or by external unseen circumstances. Although,

diagnosis of internal faults in robotics is very important, but in many cases it is not su"-

cient to guarantee improvement in robotÕs performance. This is because unseen situations,

which can degrade robotÕs performance, can exist even if the internal components of the

robot work perfectly. Therefore, a robot should also be able to detect and diagnose the

circumstances in which faults are external to itself.

In robotics, fault diagnosis typically requires tracking a very large number of possible faults

in complex non-linear dynamic systems with noisy sensors. Usage of similar techniques

for external fault diagnosis can result in enormous computational requirements. However,

it can be noticed that we human beings also encounter faulty situations while interacting

with our environment. And, we are able to reason about the situations and come to

correct conclusion about the fault without explicit calculations or arithmetic models. We

are able to do so even if we are not physics experts. Such use ofnaive physics concepts

and qualitative reasoningfor robots can also improve their ability to diagnose external

faults with minimum computation.

In this work, we usenaive physicsknowledge for reasoning about external faults encoun-

tered by robots. Thenaive physicsknowledge is common knowledge of physics novices

and common people used for reasoning about everyday physical phenomena. We use

qualitative reasoningon such knowledge to reason about external faults for robots. The

reasoning process applies qualitative version of physical laws on properties of objects in

robotÕs environment. The properties of objects are deÞned based on naive concepts behind

them. In our approach we propose to divide properties and respective relevant physical

laws based on di!erent types of faults that can be detected by the robot. The underlying

ontology of this division is based on studies conducted (by other researchers) on reasoning

of physics novices about physical phenomenon.

This work can be seen as a proof of concept that naive physics is useful for external

fault reasoning in robotics, despite many of its limitations. In this work, we also present

brief critical reviews of some of the important works in the area of naive/qualitative

physics for general understanding of naive/qualitative physics and its limitations. We

use insights from these (and other such) works to develop our approach for robot fault

reasoning. We exemplify the application of this approach by using it for di!erent scenarios
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involving simple manipulation tasks. The results and analysis of these experiments help

in understanding the limitations of using naive/qualitative physics for fault diagnosis in

general and using it with our approach in particular.

We present our work in nine chapters in this thesis. After this introduction, relevant

background for understanding our approach is given in chapter 2. This chapter mainly

comprises critical reviews of important relevant works innaive physicsfor AI. Followed

by state of the art of fault diagnosis in robotics in chapter 3, chapter 4 brießy presents the

context of our work in such approaches. This chapter also presents three simple scenarios

for illustration of faults and reasoning about them. Chapter 5 discusses the crux of this

work, where we propose our approach for fault reasoning and give relevant details. In the

proposed approach we use properties of objects for reasoning. Chapter 6 presents a small

framework that illustrates that how these properties should be deÞned in order to be used

for our proposed scheme. In chapter 7 we give results and analysis of our approach based

on the scenarios presented in chapter 4. We also state the limitations and assumptions of

our work in this chapter. After brief discussion on some related works in chapter 8, we state

conclusion and future directions of our work in chapter 9.
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2 Background

In this chapter we describe relevant background for understanding this work. This section

is mainly dedicated to understanding the concepts relevant tonaive/qualitative physics,

because this area is not well understood in general. Here we provide critical reviews of

some important works related tonaive/qualitative physicswith emphasis on the concept-

s/ideas useful for understanding our work. The approach in this section is to highlight

major problematic issues while dealing withnaive/qualitative physics. We also describe

some concepts of First-Order Logic (FOL) in this chapter. These concepts are limited to

those which are crucial for understanding this work. A reader, completely new to FOL,

can Þnd a detailed account on FOL in Russell and Norvig [2002]. This section does not

discuss concepts related to fault diagnosis. These concepts are described separately in

chapter 4.

2.1 Naive physics

Hayes [1979] proposes development of a theory composed of entire knowledge of physics of

naive reasoners in declarative symbolic form. Such theory, formed by logical formalization

of everyday knowledge of physical world, is termed asnaive physics. In the original

proposal, the author mentions following four criteria/properties of formalization of such

a theory.

1. Thoroughness: The formalization should cover the whole range of everyday phys-

ical phenomena.

2. Fidelity: It should be reasonably detailed.

3. Density: The ratio of facts to concepts should be fairly high. Such density is

required in a formalism to pin down the exact meanings of the involved concepts.

4. Uniformity: There should be a common formal framework (language, system etc.)

for the whole formalization.

Hayes proposes the structure of such a theory to be built aroundclusters, where a cluster

is a linkup of conceptstightly related to each other by numerousaxioms. Examples of

such clusters are "shape, orientation and direction", "measuring scales" and "substance

and physical states" etc. It is also proposed by the author to defer the implementation,

application and inference strategy until the formalization of the knowledge is mainly

complete. Since formalization of (almost) complete knowledge of everyday world is a huge
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task, the author proposes that this research task should be carried out by a committee.

The members of this committee should be assigned with a particular clusters to formalize.

The author further proposes that, uniformity of the theory should be maintained by time

to time meetings of the committee.

Some of the proposals in HayesÕ work are similar to those of McCarthy [1968], however

the idea of formalizingnaive physicsknowledge for reasoning, instead of common sense

knowledge, is one of the major contributions of HayesÕ proposal. The naive physics knowl-

edge contains in it the common sense knowledge taken for granted while reasoning about

a phenomenon (Hayes [1990]). This knowledge is sometimes also considered as knowledge

of physics novices(Reiner et al. [2000]).

Misconceptions about Naive Physics

Davis [1998] mentions two major misconceptions found in the literature related tonaive

physics in AI 1. These misconceptions have lead researchers to diverge from the actual

proposal of Hayes and can also be seen among the reasons of downfall of popularity of

naive physics. We brießy state these misconceptions here.

1. Implementation and manipulation of knowledge:
It is a general misconception found in the literature that researchers (e.g. Kowalski

[1979], Moore [1982] etc.) assume that a computer program which uses naive physics

knowledge should explicitly manipulate logical formulas using some theorem proving

method. However, in his work Hayes does not propose this. He proposes to choose

FOL as representation language because it does not presuppose any particular form

of implementation.

2. Representation of spatial knowledge:
It can be seen in almost all the works that while representing geometrical information

in FOL, basic spatial terms from natural language (e.g. right-of, left-of) are used as

the primitives. However, in actual there are no such restrictions imposed bynaive

physicsfor spatial knowledge representation.

2.1.1 Di!culties with naive physics

"The Naive Physics manifesto" (Hayes [1979]) is one of the highly admired works in the

Þeld of AI, however it has not truly been followed as it was proposed (Davis [1998]).

Researchers diverged from the original proposal toqualitative physics, which we describe

in section 2.2. Here we summarize some of the di"culties that are generally faced while

utilizing HayesÕ idea ofnaive physicsto accomplish any task.

1Here by "Naive Physics", we mean the original idea of naive physics as proposed by Hayes.
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1. No compilation of naive physics knowledge:
One key assumption in utilizingnaive physicsknowledge for any purpose is that we

can reason (supposedly) correctly about physical phenomena with limited knowl-

edge. However, correct reasoning requires that the structure of formalism isdense.

But there is no such densely structured formalism available in the literature. The

committees that were suppose to meet, never met and no theory was truly codiÞed

as proposed by Hayes.

2. No absolute definition of naive physics knowledge:
It is not possible to have an absolute deÞnition of a naive concept that can decide

what exactly should be considered in a formalization. Therefore, it is not possible

to develop any standard set of axioms which can relate concepts of naive physics.

3. Describing shape and space is too difficult:
It is very di"cult to describe knowledge regarding shape and space such that it can

be used for reasoning in general.

4. Level of generality of knowledge representation:
To formalize knowledge, it is important to choose the level of abstraction of un-

derlying representation. If the concepts used in representation are too general then

they may not serve the purpose of appropriate reasoning. If they are too speciÞc

then the formalism becomes too brittle and problem speciÞc.

5. Consistency of beliefs:
Hayes [1990] argues thatnaive physicsknowledge includes the common sense knowl-

edge taken for granted. This common sense knowledge comes in the form of beliefs

of individuals. These beliefs can not be guaranteed to be consistent. Reiner et al.

[2000] has shown many of such cases where beliefs of novices are inconsistent with

reality. Although, some researchers (e.g. Vosniadou [2002]) are of the view that the

beliefs of individuals can not be considered inconsistent but at the same time they

argue that there is a constant element of learning involved with individualÕs beliefs.

2.1.2 Microworlds

One major variation in naive physics(in AI) from HayesÕ proposal is the concept ofmi-

croworlds (Davis [1998]). According to this concept, the knowledge is structured in the

form of microworlds, where a microworld is an abstraction of a small part of physical

interactions, su"cient to support some interesting collection of inferences. The major

di!erence between this idea and HayesÕ proposal is that instead of expressing a body

of knowledge, this proposal focuses on justifying a collection of inferences. Accordingly,

any theory that allows commonsense problems to be stated and solved will do in mi-

croworlds approach. In short, this approach is focused on developing speciÞc physical

theories.
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Another major di!erence of this approach from HayesÕ idea ofnaive physicsis the way to

treat the beliefs that are commonsensical but false. The author divides such beliefs into

three categories given below, and allows the Þrst two in any theory that can be utilized

under this approach. The author also presumes that a cognitive model of naive reasoner

can also include the third category in its theory.

1. Beliefs that are approximately correct in everyday context. For example, a moving

ball will halt after some time even if no force is applied on it.

2. Logical consequences of (1). For example, a belief that if torque is applied to a

gyroscope, it will rotate along the axis of the applied torque. This is not correct

but is allowed as a consequence of (1) because objects generally behave like this but

gyroscope is an exception.

3. Beliefs that are plain wrong, without either of above justiÞcation.

Although, microworlds approach changes the dimension of the theory from cognitive model

(as proposed by Hayes) to competency theory, but still it su!ers from many problems2.

Among these problems following are worth reporting here.

1. Commonsense reasoning is not a task domain. It means that commonsense infer-

encing is just some module of some larger task. Therefore, it not possible to be sure

about the decision that how commonsense inference should be formulated such that

it serves the purpose of larger tasks.

2. There is no easy way to extend or integrate the microworlds.

3. There can be many microworlds but the approach by itself does not provide any

guidance for choosing between them.

2.2 Qualitative physics

There are some di!erences of opinion in the literature about relation ofqualitative physics

and naive physics. For example Bratko [2001] states, "to emphasis the contrast between

the proper physics taught in schools, and qualitative, commonsense reasoning about the

physical world, the qualitative physicsis sometimes callednaive physics". On the other

hand Davis [1998] argues thatqualitative physicshas a very di!erent ßavor as compared to

the original notion of naive physics. In DavisÕ opinionqualitative physics"is algorithmic

rather than declarative and is increasingly concerned with specialized applications rather

than commonsense reasoning". Similarly, Forbus [2003] seesqualitative physicsjust as an

adaption of qualitative reasoning(see section 2.3) focused on scientiÞc and engineering

problems.

2These problems mainly caused by the desire to combine microworlds into a large theory.
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Our perception ofnaive and qualitative physicsis in accordance with DavisÕ deÞnition. It

is also possible to draw a line between themicroworlds approach andqualitative physics

as per this deÞnition. As we have discussed above thatmicroworlds approach focuses

on developing speciÞc theories, on the other hand the works that fall under the category

of qualitative physicsfocus on developing techniques which can be applied over di!erent

theories. Below we brießy review two important approaches inqualitative physicswhich

are relevant for understanding this work.

2.2.1 Qualitative simulation

Qualitative simulation, is an inference process used inqualitative physics. The QSIM

algorithm Kuipers [1986] is one of the major contributions in this area. The main idea of

QSIM is to generate aqualitative behaviorof a dynamical system (e.g. u-tube) in terms

of a graph. This qualitative behavior represents values ofqualitative statesover time,

where eachqualitative state is a set of values of certainparameters of the system and

their mutual relations. The parameters can take values from a small set oflandmarks.

QSIM uses anabstraction of ordinary di!erential equations calledqualitative di!erential

equations (QDEs)to model the system. These QDEs represent theconstraints within the

modeled system. The simulation process uses QDEs to predict the next qualitative state of

system by enumerating the possible values and direction of change of system parameters.

The graph of the behavior of the system is generated by predicting all possible values of

the parameters.

2.2.2 Qualitative process theory

Qualitative process theory(QPT) (Forbus [1984]) uses the notion of physical process to

deÞne a theory for physical systems. These processes are the source of change in the

system and this change is deÞned over extended time. A process in QPT is a structure

that includes the objects on which it is applicable, quantity conditions, preconditions

for the application of the process and its inßuences on other processes etc. Here again

the system is deÞned by values of parameters (called quantities) which are taken from

a collection of values calledquantity space. In this approach the processes need to be

deÞned before reasoning can be performed and addition of a new process at any time

e!ects deÞnitions of other processes.
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2.3 Qualitative reasoning

Qualitative reasoning(QR) is the area of AI which creates representations for continuous

aspects of the world, such as space, time, and quantity, which support reasoning with

very little information (Forbus [2003]). In fact, QR is the approach used inqualitative

physics for inferencing. On the other side, if one is aware of misconception (1) stated

in section 2.1, it is easy to see that QR is not the only tool that can be utilized to get

beneÞt fromnaive physicsknowledge. Although there are many important issues related

to knowledge representation and reasoning in QR3, knowledge of which can be beneÞcial

for understanding this work, but here we brießy state only few important issues related

to reasoning about space and shape.

2.3.1 Reasoning about space and shape

To represent space and shape qualitatively one has to decide upon issues like ontology

of the underlying representation, spatial relations, mereology (i.e. part-hood), directions,

distance, orientation and many others. It is fairly hard to represent such aspects purely

qualitatively such that the representation can be used for reasoning in an extensible

manner. In fact, Forbus et al. [1991] says that"no general purpose, purely qualitative rep-

resentation of spatial properties exists". This notion is known aspoverty conjecturein the

literature related to QR. This conjecture is second by Cohn (Cohn and Hazarika [2001]),

who argues that for spatial reasoning nothing weaker than numbers will do. Thepoverty

conjecture is also the reason that many purely qualitative reasoning approaches can be

found for restricted physical systems (Weld and Kleer [1990]), but it is hard to specify

any such approach for spatial and kinematic mechanisms.

2.4 First-Order Logic

First Order Logic (FOL) is a logical language which is also known as Þrst-order predi-

cate calculus or predicate logic. It is a representation language of expressing knowledge

that either subsumes other representation languages, like propositional logic, or forms

the foundation of such languages e.g. higher order logics (Russell and Norvig [2002]).

Knowledge described in FOL consists of expressions4 that are composed ofconstants(e.g.

box, table), variables(e.g. X,Y), predicate symbols (e.g.place(O1, O2)) and function

3A detailed account on these issues can be found in Forbus [2003].
4The expressions used for illustration use Prolog conventions rather than actual FOL conventions (e.g.

variables start with capital letters instead of smaller). Same conventions are used in the complete
thesis.
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symbols (e.g.place(O)). The di!erence betweenfunction symbol andpredicatesymbol is

that a predicate can take on values of eithertrue or false when its argument gets instan-

tiated, whereas on its instantiation afunction may take on any constant as its value. For

instance,place(obj1, obj2) can either be true or false, butplace(obj1) may result in

value obj2.

The symbols described above can be connected intosentencesof FOL using logical con-

nectives (i.e. ÕorÕ∨, ÕandÕ∧, ÕnotÕ¬, ÕimplicationÕ⇒ and Õdouble implicationÕ⇔). The

variables in such sentences can be quantiÞed usingquantiÞers(i.e. Õfor allÕ∀ and Õthere

existsÕ∃). For example, if we want to state that "any object that is not stationary in

an interval is moving in that interval", then we can state it by following sentence in

FOL.

∀ Object, ∀ T moving(Object, T)⇔ ¬ stationary(Object, T).

A collection of sentences like above serves as FOLKnowledge Base(KB) over which infer-

encing can be performed. Inferencing in FOL is performed using logical inferencing rules

e.g. uniÞcation, resolution, backward chainingetc. These inferencing rules are applied

to symbols. Therefore, arithmetic operations are not a part of logical inferencing. How-

ever, logical inferencing can be performed oversymbolsthat are abstractions of arithmetic

operations. For example, arithmetic summation can be abstracted in apredicate symbol

as sum(X,Y,Z). Which means that Z is the arithmetic sum of X and Y. Here X, Y and

Z are variables which are allowed to get instantiated withconstant symbolspos, zero
and neg. The pos symbol represents any positive real number,neg represents a negative

real number andzero represents Õ0Õ. The predicatesum(X,Y,Z) represents aqualitative

abstraction of summation. It can be noticed here that thisqualitative summation isnon-

deterministic (i.e. replaceX with pos, Y with neg and you cannot tell that Z is 0, pos or

neg). Hence, a purelyqualitative knowledge base su!ers from loss of information at the

hands of abstraction and the logical inferencing becomes less suitable for the applications

where arithmetic operations are necessary.
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3 State of the Art

Fault diagnosis and tolerance is one of the major challenges for robotics and AI community

(Patton et al. [1989]). Experience has shown that even carefully designed and tested robots

may encounter faults (Carlson and Murphy [2003]). Therefore, robotic fault diagnosis has

always been an active area for researchers in robotics and AI. Fault diagnosis in robotics

typically requires tracking a very large number of possible faults in complex non-linear

dynamic systems with noisy sensors (Verma and Simmons [2006]). This makes model

base diagnosis a useful approach for diagnosis. For example, Honghai Liu [2005] presents

a model based approach called ÕÞrst priority diagnostic engineÕ that detects internal faults

of robots by continuous monitoring of parameters of e!ectors and narrows down the fault

to the component of the robot.

Mostly, fault diagnosis approaches in robotics deal with internal faults of robots. That

is, the faults that are caused by malfunctioning of sensors or motors of the robot. For

instance, the faults addressed in Verma et al. [2004] include mechanical component fail-

ures, such as broken motors and gears, faults due to environmental interactions, such as a

wheel stuck against a rock, and sensor failures, such as broken encoders. Monteriu et al.

[2009] presents a model based sensor fault detection and isolation system applied in real

time to unmanned ground vehicles. Some approaches are mainly focused on tractability

of the diagnosis. In one such approach Verma and Simmons [2006] takes advantage of

structure in the domain and dynamically concentrates computation in the regions of state

space that are currently most relevant without losing track of less likely states. Model

based approaches are usually not considered good in graceful degradation1. Therefore,

some approaches like Pettersson et al. [2007] also concentrate on model-free execution

monitoring.

Qualitative approaches to fault diagnosis are considered successful, in general. For ex-

ample, de Kleer and Williams [1987] uses model based diagnosis which infers behavior of

composite device from knowledge of structure and function of its components and this

inference is made qualitatively. Schroder [2002] proposes qualitative approach to fault di-

agnosis of dynamical system, mainly process control system. Similarly, Baniardalani et al.

[2010] deals with qualitative model based fault diagnosis for processes. However, such

qualitative approaches are mainly restricted to devices and well behaved processes. A re-

view of qualitative model representations and search strategies used in fault diagnostic sys-

tems of processes can be found in Venkatasubramanian [2003].

1Simmon R., Fernandez J., Golden K., Joskowicz L., Pollack M., Model Based Monitoring and Diagnosis
for Mobile Robots. http://www.cs.cmu.edu/rll/overview/reids02.
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Qualitative approaches have also made their way into robotic faults diagnosis. For in-

stance, LIU et al. [2005] presents a unit circle approach for qualitative modeling of the

robot and implements a model in robot fault diagnosis. Similarly, Daigle [2008] presents a

model-based approach to event-based diagnosis of hybrid systems based on qualitative ab-

stractions of deviations from nominal behavior. Such approaches are also concerned with

only the internal faults of the systems. Aside from fault diagnosis,naive physicsis used

in context of robotics by Kunze et al. [2011]. The authors translate naive physics problem

to a parameterized simulation problem to get time interval based Þrst order representa-

tion and use it for prediction in robot manipulation. Kunze et al. [2010] also presents a

system to integrate commonsense knowledge into robotÕs knowledge base. These works

emphasize on requirement of robotÕs human-like reasoning ability, which we achieve using

naive physics for external fault reasoning.
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4 Robotics faults

Broadly speaking, we can categorize robotic faults into two major types.

• Internal faults

These are the faults which occur in the internal components of the robot and result

into degradation of robotÕs performance. Example of such a fault can be, failure/-

malfunctioning of actuator(s) or sensor(s).

• External faults

These are the faults which occur in robotÕs environment despite perfect functioning

of its internal components. For example, if a humanoid robot is required to place a

spherical object on a table then there exists a possibility that the object rolls and

falls on the ßoor (because of some reasons unknown to the robot). Such a behavior

of the object (which was involved in robotÕs task), is an external fault that e!ects

robotÕs performance.

In this work we are interested inexternal faults faced by a robot. Although, it is possible

that an external fault itself is caused by some internal fault (e.g. the robot drops the

object on the table from some height because of malfunctioning of its manipulator(s)),

but for this work we assume that this is not the case. We assume that the internal com-

ponents of the robot work perfectly and the occurred fault is indeed an external one.

Furthermore, we are interested in reasoning about the faults which areunknown to the

robot. These unknown faults occur due to unexpected circumstances in the environ-

ment.

4.1 Fault diagnosis

Diagnosis of a fault in a system consists of two major phases a) fault detection and b)

fault isolation. For a system, the detection of a fault is to determine the occurrence of

some abnormal event (i.e. fault) and the time of detection (R. J. Patton [2000]). This

work assumes a priori detection of the fault. The second phase of isolation consists of

determining the kind and location of the fault R. J. Patton [2000]. Using this diagnosis

information the system can improve its performance.

In this work we consider model based diagnosis of unknown faults, shown in Þgure1 4.1.

In such diagnosis of faults the system uses a model to predict its behavior or the behavior

1Figure taken from, ’ Kuestenmacher A.(2010) Presentation: Diagnosis of unknown faults.’
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of the environment and uses this prediction to detect the fault. In our case the robot uses

the model of the world to predict the correct outcome of the task it needs to perform.

After the completion of the task the robot compares its new observations to the prediction

(which comes from the e!ects of the planning operators used by the robot in performing

the task). If the prediction is in contrast with the observations then the robot needs to

diagnose the fault. In case the fault is known to robot then it can take relevant actions

to overcome it. If the fault is unknown, then the robot needs to reason about it such that

the outcome of reasoning can help in improving its model. In this work we are mainly

concerned with the reasoning part of the diagnosis (shown in ÕredÕ in Þgure 4.1) and we

usenaive physicsknowledge for reasoning.

Figure 4.1: Model based diagnosis for unknown faults

It can be noticed that since we are dealing with external faults, the isolation phase (as

stated above) of the diagnosis will not locate the fault within robotÕs components. The

fault isolation will result in producing somehypotheseswhich help in isolating the condi-

tions in the external environment which cause the fault. Construction of such hypotheses

can only result from incorporating the behavior of the involved object(s), over extended

time, in reasoning. Thus, reasoning about the fault also includes the "identiÞcation"

(R. J. Patton [2000]) of the fault (i.e. determination of size and time-variant behavior of

the fault).
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4.2 Scenarios

In this section we brießy describe three scenarios in each of which a humanoid robot per-

forms a simple task. These scenarios are chosen to illustrate the occurrence of external

faults and corresponding working of the approach proposed in (upcoming sections of) this

work. Each task involves manipulation of some object to achieve a goal.

4.2.1 Scenario I

In this scenario, as shown in Þgure 4.2, a (NAO2) robot is trying to place a dice (i.e. a

cube) on a table (i.e. larger cube). While doing so the robot releases the dice in a position

that Þnally results in falling of the dice on the ßoor. The situation shown in Þgure 4.2 is

actually the result of wrong grasping by the robot when it picks up the dice from the ßoor.

This wrong grasping in turn is the consequence of a slight push to the dice by the robot

itself when it tries to pick the dice. Although, all the actuators and sensors performed

perfectly Þne in this scenario but the fault occurs. This is an example ofexternal faults,

which cannot be located within the components of the robot.

Figure 4.2: Putting an object on table.

The detection of this fault, by the robot, is accomplished by comparing thee!ects of the

actions performed by the robot with the actual observations after the completion of the

task. That is, the robot uses its model (in planning module) to predict that the dice is on

the table but the observations say that dice is on the ßoor. Therefore, the robot is able

to detect that some fault has occurred.

2http://www.aldebaran-robotics.com/



4 Robotics faults 15

4.2.2 Scenario II

In the second scenario we consider a robot dropping an object (i.e. toy duck) into a

container (i.e. a basket). Figure 4.3 shows this scenario in which the robot is about to

release the object in the correct manner such that the object drops into the container.

The robot performs the task by detecting the container and dropping the object above it.

Here, it is possible that the container is already Þlled to the top and the object falls out

on the ßoor because of that. It is also possible that top of the container is covered with

a lid and the robot does not have the ability to detect it and it is unable to complete its

task. Similarly, there can be many other circumstance which can result into occurrence

of the fault in which the object falls out on the ßoor. Such an external fault is again

detected as in scenario I.

Figure 4.3: Putting an object into a container.

4.2.3 Scenario III

In this scenario the robot picks up an object (i.e. a bottle) from the table. In Þgure 4.4,

the robot is able to do it correctly. However, it is also possible that the object is not

placed on the table correctly or the object is so light that the initial touch from the robot

makes it fall from the table and the robot is unable to complete its task because of this

external fault.

Figure 4.4: Picking an object.
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All three scenarios mentioned here involve simple manipulation tasks but completion of

these tasks can su!er from many external faults. These faults can occur even if the sensors

and actuators of the robot work perfectly Þne. Existence of such faults is possible even

without any external agent. Furthermore, these faults are unknown to the robot because

the circumstance which have lead to the faults are unseen and the robot is unaware of

such situations.
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5 Fault reasoning using naive physics

In previous chapter three simple scenarios are described to illustrate external faults. We

can make following important observations from these scenarios.

1. In all three scenarios the occurred faults are related tolocation of some object. That

is, the goal of the robot is to achieve a certain location of the object but the external

fault does not allow it to do so.

2. Occurrence of the fault can only be detected by the robotafter it completes its action

and this occurrence causes the object to go into a state where it is stable/stationary

after a while1.

3. Although any fault occurs at a particular instant of time, but the faulty behavior

of the object is extended over time. Thus, it is more natural to attribute a fault to

a state that is extended over time rather than to a state that is represented at an

instant of time. Associating the fault to an instant may require tremendous amount

of information because the behavior of the object can evolve in many di!erent ways

from a state at an instant.

4. Replacing the object in each scenario, can result in di!erent circumstances. For

instance, if the dice in scenario I is replaced with a smaller dice then the situation

in Þgure 4.2 may not result into an external fault.

5. Changing the attributes of the same object can also result into di!erent circum-

stances. For example in scenario III, if the quantity of the liquid inside the bottle

is changed, it can behave di!erently. That is, an empty bottle can easily fall as

compared to half Þlled bottle if it is not correctly picked/released.

Based on these and other such observations we develop an approach for external fault

reasoning in this chapter of the thesis. This approach/mechanism usesqualitative rea-

soning to Þnd the reasons of the occurred fault and it utilizesnaive physicsknowledge

for reasoning. We present theuse case diagramsfor the developed approach in section

5.1. These diagrams introduces the reader with relevant behaviors of the robot and the

fault reasoning system. In section 5.2, we describe detailed working of the approach by

explaining the schema of the mechanism.

1Without the presence of an external agent.
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5.1 Use case speciÞcation

The robot acts autonomously in its environment and the fault detection and diagnosis is

done by its own internal components. Therefore, the diagrams shown in this section show

the internal components of the robot asactors. The relevant behaviorsof the system are

shown as use cases. The diagrams are given in Õgeneral to detailedÕ sequence. That is,

diagram Õ1Õ is showing the most general behaviors and actors whereas diagram Õ3Õ shows

the details of behaviors and actors according to the developed approach. We givebrief

descriptions of use cases from diagram Õ3Õ in appendix D.

Figure 5.1: Use case diagram 1

Figure 5.2: Use case diagram 2
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Figure 5.1 shows that the robot interacts with the system (i.e. its world) by performing

tasks and observing it. It also detects and reason about any fault occurring in its envi-

ronment. The actors on the right hand side of use cases are the componentswithin the

robot which exhibit the behaviors associated with them. Behaviors of these components

are further reÞned in Þgure 5.2. Thefault handler, is assumed to handle the fault by de-

tecting it and requesting for reasons of their occurrence from the reasoner. This is shown

in diagram Õ2Õ, where thefault handler that interacts with the world by observing it, is

shown on the left side of the use cases.

Figure 5.3: Use case diagram 3

Diagram Õ3Õ, in Þgure 5.3, shows further reÞnement of behaviors and actors. Thefault

handler is broken down into Þve actors and thefault reasoner is shown as two di!er-

ent actors. The reader is reminded here that the actors are assumed to be (software)

components within the robot whose associated behaviors are the functions performed

by them. We only give brief description of use cases from diagram Õ3Õ in appendix D.

Detailed description and explanation of the diagrams are omitted because section 5.2 ex-

plains the overall approach/mechanism in detail, which includes all relevant explanation.

Use case diagram Õ3Õ can be better comprehended after reading the next section of the

thesis.
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5.2 Schematics for reasoning

For reasoning purpose we perceive the robotÕs world and occurrences of the (external)

faults as following.

• The goal of the robot is to achieve a particularstate of its world. In case the goal

is achieved there is no occurrence of (external) fault.

• If some (external) fault is detected, it is because the goal state is not achieved

perfectly and it is degenerated into someÞnal stateof the world, such that theÞnal

state is di!erent from the actual goal state.

• The reason of the fault lies in theimperfect goal state (i.e. the state which degener-

ated into the Þnal state) and this imperfect state can be one of many possible states

which can result into theÞnal state. We call all these possible states asintermediate

states.

• Since there is no external agent involved in the occurrence of fault, the change

from any intermediate state to the Þnal state is a result of some naturalphysical

phenomenon(e.g. gravity, friction, air pressure etc.), the source of which is unknown

to the robot.

• The actual reason of the fault is found when a list of possibleintermediate states is

generated that contains the actualimperfect goal stateand meaning of this state is

understood by the robot.

Figure 5.4: Schematic diagram
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Based on this perception of fault occurrence and diagnosis, the schematics of fault rea-

soning is shown in Þgure 5.4. The complete mechanism of fault reasoning proceeds in

four steps after the detection of the fault. In Þrst step, a set ofqueries (regarding

the reasons of occurred fault) is generated by thequery generatorwith the help of an

oracle. In second step, this set ofqueries is posed to thereasoning modulewhich cre-

ates answers to the queries by forming hypotheses composed of possibleintermediate

states. In third step, the list of hypotheses is given to thehypotheses receiver, which

is (assumed to be) able to choose the best hypothesis. Lastly, thehypotheses receiver

interprets the meanings of the hypothesis based on the deÞnitions used to create the

queries.

In Þgure 5.4, all the components of the schematics exceptÕoracleÕ and ÕdeÞnitionsÕassume

that robotÕs world consists of well deÞnedobjects. Which means that all the reasoning is

done by considering an object as a primitive entity. The reason for such a high level of

abstraction is twofold.

• Firstly, the detection of the fault is assumed to be performed using literals of plan-

ning module (not shown here) which operates at the same level of abstraction.

• Secondly, we usequalitative reasoningfor diagnosing the fault andqualitative rea-

soning deals with symbols. Using objects as constant symbols results in better

inferencing.

Below we give details of working and rationale of the approach used forÕquery generatorÕ

and Õreasoning moduleÕ. The ÕdeÞnitionsÕcomponent is the topic of discussion for next

chapter. The components shown in ÕblueÕ color are out of the scope of this work, hence

those are only brießy discussed where necessary.

5.2.1 Query generator

When the fault detector detects the fault, it triggers thequery generator. This trigger sig-

nal includes in it the type of the fault that has occurred. Thistype is directly decided from

the literals in the planning operators which indicates the occurrence of the fault. Since this

work is done independently from the planning module of the robot, here we assume that

possibletypes2 of fault fall under following three major categories.

• Location: of the object involved in the task (e.g. faults discussed in section 4.2).

• Shape:of the object (e.g. breaking/disintegration of an object.).

• Movement: of the object or robot (e.g. stoppage of robot or some part of it due to

glass door etc.).

2The assumed types are likely to cover many faults, however it can neither be claimed complete nor
correct (or wrong). The correct and complete list of such types can only be constructed based on
allowed relations in the planning module of the robot for which the fault diagnosing system is being
developed. Refinement of the ’types’ shown here is expected in real application.
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An appropriate query for the reasoning moduleconsists ofÞnal stateof the involved object,

a probable physical phenomenon(e.g. gravity) that can cause the fault and expected

correct value of the variable (i.e. property) which was not achieved. In our approach, a

state of an object is characterized by some of itsproperties. Thesepropertiesare Þnite and

relevant for reasoning about the particulartype of the fault.

Substance schema

The properties used to describe the state of the object are primarily derived from the

substance schema proposed by Reiner et al. [2000]. This schema is developed by the

authors (of Reiner et al. [2000]) based on many studies conducted on inferencing of physics

novices about daily life concepts. The left column of the table 5.1 shows the properties of

substance used by the physics novices to reason about physical phenomenon. The right

column shows the meaning of these properties. The shown properties are also used by

physics novices to reason about concepts which are new to them (e.g. forces, light and

heat etc.).

Properties Meanings
Locational Have deÞnite location
Pushable Able to push and be pushed
Frictional Experience drag when moving along a surface
Containable Able to be contained by something
Consumable Able to be usedup
Stable Do not spontaneously appear or disappear
Corpuscular nature Have surface and volume
Additive Can be combined to increase mass and volume
Inertial Require force to accelerate
Gravity sensitive Fall down when dropped

Table 5.1: Substance schema (Reiner et al. [2000]).

Ontology for fault reasoning

To reason e!ectively, the reasoning modulerequires to deal with only a small number

of relevant properties of the object. Thequery generatoris also required to enumerate

these properties in its queries. For that matter, thequery generatorutilizes an ontology

of properties which are associated withphysical phenomenathat can cause a particu-

lar type of fault. This ontology is shown in Þgure 5.5. The properties used here are

mainly derived from the properties and concepts used in substance schema of Reiner

et al. [2000]. For actual practical application of our approach this ontology may require

to be reÞned.
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Figure 5.5: Ontology for fault reasoning

The role of ÕOracleÕ

Using the inbuilt ontology, thequery generatorasks for theoracleÕs helpto Þll in the values

of relevant properties of the object in itsÞnal state. The oracle possesses the knowledge of

the world through observations. Based on theseobservationsand the deÞnitionsof prop-

erties in theÕdeÞnitionsÕcomponent, theoracle Þlls in the values of properties. The com-

plete process ofquery generationis shown as step1a and 1bin Þgure 5.4. Theprolog code

for query generatormodule can be found in appendix-B.

5.2.2 Reasoning module

After receiving the relevant queries, the prime function of thereasoning moduleis reduced

to apply the physical lawsto trace the possibleintermediate statesfrom the Þnal state

of the object. For di!erent types of fault di!erent physical lawsare to be applied on

di!erent properties. For eachtype of fault, we associate the relevantphysical lawswith

respectivephysical phenomenon. This association is shown with ÕredÕ arrows in Þgure

5.5. When a query is posed to thereasoning moduleit already contains the relevant

properties and the information regardingphysical phenomenon, and hence thereasoning

moduleselects the correct law to be applied on relevantproperties. It can be noticed here

that the complete ontology shown in Þgure 5.5 is actually used by bothquery generator

and reasoning module.
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The reasoning moduleuses logical inferencing to Þnd the possibleintermediate states. This

inferencing utilizes a model of the world which consists of following information.

• Objects in robotÕs world.

• Numeric values for some properties (e.g. height, weight)

• Possible values (i.e. in terms of symbols) of properties.

• Relations between objects (e.g. near, far).

• Auxiliary deÞnitions (e.g. same, different).

Based on this information andphysical laws, the reasoning module generates a set of

hypotheses. Each hypothesisin this set is a possibleintermediate state that can degen-

erate into the Þnal state because of the fault occurrence. This set is transmitted to the

hypotheses receiver(shown as step Õ3Õ in Þgure 5.4). Thehypotheses receiveris assumed

to select the best (or a couple of good) hypothesis(es). The selected hypothesis(es) is

interpreted by the hypotheses receiveraccording to the deÞnitions in theÕdeÞnitionsÕ

component. Theprolog code used forreasoning modulein this work can be found in

appendix-C.
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6 DeÞnitions of properties

The query generatorand the reasoning modulein chapter 5 use di!erent properties of the

object (e.g. stability, mobility) to Þnd the possibleintermediate states. These modules

assume that useful deÞnitions of these properties are available to the robot through a

deÞnition component. These deÞnitions are also required to get the exact meaning of

the diagnosis at a lower level of abstraction. In this chapter we examine that how these

deÞnitions can be formed. We do it by analyzing the requirements for any possible option

and then using these insights to establish a small framework. This framework deÞnes

some properties required inscenario I of section 4.2.1.

6.1 Requirements for deÞning

properties

The level of abstraction of the properties utilized byquery generatorand reasoning module

is very high. It means that the deÞnitions must be such that they cover as many objects

and situations as possible. However, in real world these deÞnitions depend (somewhat

closely) upon circumstances and objects under consideration. For example, a dice made of

a certain substance may remainstationary on an inclined surface in presence of gravity and

friction only, whereas a sphere made of same substance and having same weight may be

moving on the same surface. Similarly, both the objects can exhibit similar properties re-

garding their translation if the inclination of the surface is reduced or increased. Observa-

tion (4) and (5), in chapter 5 also indicate the same dependency between objects and their

behavior (i.e. properties) under particular circumstances.

Normally, an engineer or a scientist can employ newtonian mechanics to decide upon the

translation of the objects considered in the example above. Newtonian mechanics utilizes

numerical values of certain parameters (e.g. slope of the surface, frictions coe"cients

and weights etc.) to Þnd the correct results. Since we need to consider mechanics and

kinematics to decide upon such trivial properties of the object, it is quite apparent that

the deÞnitions of these properties can not be purely qualitative (as perpoverty conjecture

Forbus et al. [1991]). On the other hand, it is also not possible (or at least not feasible) to

build Metric Diagram/Place Vocabulary (MD/PV) representation (Forbus et al. [1991])

to deÞne properties because our problem domain is real world with endless possibilities.

Furthermore, it can be seen that certain deÞnitions of properties may depend upon each
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other (e.g. anunstableobject may also be amoving object). Therefore, it is also required

that deÞnitions are mutually consistent.

Here, we need to remind ourselves that the intended deÞnitions of the properties need

not be perfect according to respective concepts in mechanics and dynamics etc. This is

because the properties considered here exist because of naive concepts in the Þrst place.

Therefore what we actually need, are the explanations which satisfy the naive concepts of

translation, stability and mobility etc. Although, these explanations can not be entirely

independent from newtonian mechanics, however the naive version of these concepts can

have much lesser dependence on numeric values.

A closer look at the properties mentioned in table 5.1 and Þgure 5.5 reveals that the

deÞnitions of some properties need an extended time in order to correctly represent the

concept behind them. For example, the concept that an object ismoving, can only

be described using an interval and not just an instant. On the other hand, there are

also some other concepts (e.g an object beingstationary) that can be described at an

instant only. This fact leads towards the requirement of notion of time in the deÞnitions.

Such time dependence of deÞnitions is also in accordance with observation (3) in chapter

5.

From the discussion above it is clear that the deÞnitions of properties require utilization

of a framework that formalize these deÞnitions in a way a common person thinks about

them (i.e. not strictly following newtonian mechanics). However, all these deÞnitions

must be consistent with each other. Furthermore, this framework should utilize as less

quantitative information as possible and this information should preferably be object

independent. This would enable us to deÞne properties with lesser information and such

deÞnitions have better chances to be general or very loosely dependent on circumstances.

Logic is a preferable representation for such a framework, since the deÞnitions explain

naive concepts. In our settings a logical framework would also serve the purpose of

lowering the level of abstraction of the meanings of theintermediate statesfound by the

reasoning module.

6.2 A framework

In this section we formalize a small logical framework with an intent to exemplify that how

it can be done such that it su"ces the requirements of deÞnitions for our settings. It should

be noted that this framework is only primitive and its completeness is not claimed here.

We mainly illustrate the approach to handle the di"culties faced while developing useful

deÞnitions for our mechanism. Furthermore, the framework is only meant for solid objects.

We take some basic concepts, related to deÞning the geometry of the domain, form Davis
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[1986]. However, the approach di!ers greatly from DavisÕs work in dealing with time and

physics itself. We consider the geometry to beR3, a subset of which is occupied by any

object in the domain. Also, the shape of any object is equal to the closure of its interior

and the object itself is considered as a primitive entity.

The notion of time is captured by the concept ofintervals and instants. An interval is just

a set ofinstants. Ideally, an interval consists of inÞniteinstants, but here we consider this

number to be Þnite and small for practical reasons. Thosepredicatesor functions which

depend onintervals or instants, have explicit mentioning of respective temporal notions

in their deÞnitions. Others, which do not explicitly mention time are atemporal and are

mostly related to describing geometry of the world. ThedeÞnitions presented here are

used in chapter 7, however we repeat the relevantdeÞnitions there (where necessary) in

plain english language. Therefore, a reader not interested in deeply understanding the

logical deÞnitions can skip them in Þrst reading and return to relevant deÞnitions when

those are referred in later parts of the thesis.

Conventions

Following conventions are used in the deÞnitions of the framework.

• DeÞnitions of functions and predicates are Þrst stated in simple english. Logical

form of the deÞnition are given only for thosepredicateswhich depend upon other

deÞnitions. Axioms are also stated in logical form.

• QuantiÞers are only mentioned where they need to be emphasized. Otherwise,

universal quantiÞers are omitted.

• First letter of any variable is kept capital whereas the Þrst letter ofconstantsis kept

small.

• Name ofconstants exactly state their meanings (e.g.floor) whereas meanings of

variables are stated in respective deÞnitions. A double letter variable denotes a

set of a single letter variable. That is,T shows aninterval and TT shows a set

of intervals. Similarly X shows a point inR3 and XX shows a set of such points.

Numeric values in the names of variable are used only to distinguish them from

same kind of variables.
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Assumptions

Following are the major assumptions made in the deÞnitions.

1. An object consists of an interior and a boundary. Where the boundary itself consists

of surfaces. These surfaces are distinguished by discontinuities in the boundaries

(i.e. edges).

2. An object has at least two surfaces which correspond to its top and bottom. If the

object has only one continuous surface then it is broken into two as top and bottom.

3. All surfaces are bounded except thefloor which is also not inclined anywhere.

4. There exists a Þxed external frame of reference in which z-axis has value zero at

ßoor which increases positively in straight upward direction.

5. There exists a special constantup which represents a (hypothetical) line starting

from ßoor and moving straight up till inÞnity, parallel to z-axis of reference frame.

6. A function takes on only one value. If afunction is deÞned over aninterval such

that it takes on di!erent values in the same interval, then we assume availability of

heuristics to resolve the situation.

Below are the deÞnitions ofpredicatesand functions forming this (incomplete) framework.

We only state thoseaxiomswhich will be useful in later part of this report.

Definition 6.2.1: Predicateplace(Object1,Object2) is true whenObject1 is a place

for Object2.

place(Object1, Object2) ⇔
∃T [ surfaceArea(top(Object1, T)) > surfaceArea(bottom(Object2, T))
∧¬ container(Object1, Object2) ]∨ container(Object1, Object2)

Definition 6.2.1a: Predicate place(Object1, Object2, T) is true when Object1 is

the place forObject2 in the complete intervalT.

place(Object1, Object2,T)⇔ on(Object1, Object2, T)

Axiom 6.2.2: Floor is a place for every object.

∀Object place(floor, Object)

Definition 6.2.3: Function top(Object, T) maps the Object to the surface farthest

from the ßoor in interval T.

Definition 6.2.4: Function bottom(Object, T) maps theObject to its surface that is

nearest to the ßoor in interval T.

Definition 6.2.5: Function surfaceArea(S) maps a surface of an object to its area.
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Definition 6.2.6: Predicatestationary(Object, T) is true if the Object is stationary

in the interval T.

stationary(Object, T) ⇔
∀ I ∈ T coordinates(V, centerGravity(Object), I) ∧ V = constant

Definition 6.2.7: Function centerGravity(Object) maps anObject to its center of

gravity.

Definition 6.2.8: Predicate coordinates(V, X1, I) is true when vectorV gives the

coordinates of pointX1 at instant I.

Definition 6.2.9: Predicate moving(Object, T) is true when theObject is moving at

any instant in the interval T. In other words the Object is moving if it is not stationary

at all the instants in the interval T.

moving(Object, T) ⇔ ¬ stationary(Object, T)

Axiom 6.2.10: An object can only be eitherstationary or moving in the interval. It

can not have both states in the same interval.

∀ T ∈ TT ¬[ moving(Object, T) ∧ stationary(Object, T) ]

Definition 6.2.11: Predicate fixed(Object) is true when theObject is permanently

Þxed at its place.

fixed(Object) ⇔ ∀ T ∈ TT stationary(Object, T)

Definition 6.2.12: Predicate moveable(Object) is true when theObject can move at

any time. In other words it is not Þxed in all the intervals.

moveable(Object) ⇔ ¬ fixed(Object)

Axiom 6.2.13: An object can only be eitherfixed or moveable. It can not be both.

¬[ fixed(Object) ∧ moveable(Object) ]

Definition 6.2.14: Predicatestable(Object, T) holds true when theObject is stable

in the interval T.

stable(Object, T) ⇔
on(Object, Object1,T) ∧∀ I ∈ T [ coordinates(V, centerGravity(Object),I) ∧
parallel(make-line(V, V1), up) ∧ V1 ∈ XX = top(Object1,T)]

Definition 6.2.15: Predicate unstable(Object, T) holds true when the Object is

unstable in the interval T.
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unstable(Object, T) ⇔
on(Object, Object1,T) ∧∃ I ∈ T [ coordinates(V, centerGravity(Object),I) ∧
parallel(make-line(V, V1), up) ∧ V1 (∈ XX = top(Object1,T)]

Axiom 6.2.16: An object can only be eitherstable or unstable in an interval. It can

not have both states in the same interval (according to the framework).

∀ T ∈ TT ¬[ stable(Object, T) ∧ unstable(Object, T) ]

Definition 6.2.17: Function distance(X1,X2) maps two pointsX1 and X2 onto distance

between them. Since the points are given as coordinates in 3D space therefore they can

also be considered as vectors.

Definition 6.2.18: Predicateparallel(V1,V1) holds when vectorsV1 and V2 are paral-

lel.

Definition 6.2.19: Function make-line(X1,X2) gives a straight line between pointsX1
and X2.

Definition 6.2.20: Predicate on(Object1, Object2, T) is true when Object1 is on

Object2 in interval T.

on(Object1, Object2, T) ⇔
touch(bottom(Object1,T), top(Object2,T), XX)

Definition 6.2.21: Predicatetouch(S1,S2,XX) is true when surfaceS1 and S2 intersect

each other andXX is the set of points from their intersection.

touch(S1,S2,XX) ⇔
surface(S1) ∧ surface(S2) ∧[ S1

⋂
S2 = XX (= ! ]

Definition 6.2.22: Predicaterollable(Object) is true when theObject is rollable.

rollable(Object) ⇔
∃ T [∀ I ∈ T moving(Object, T) ∧ on(Object, Object1, T) ∧
coordinates(V, centerGravity(Object), I) ∧ parallel(make-line(V, V1), up) ∧
V1 ∈ XX = top(Object1, T) ∧ distance(V, V1) = constant ]

Axiom 6.2.23: A movableObject can either be rollable or drag-able.

∀ T ∈ TT movable(Object)⇔¬ dragable(Object) ∨¬ rollable(Object)

Axiom 6.2.24: A nonrollable object is dragable.

nonrollable(Object)⇔ dragable(Object)

Axiom 6.2.25: A nondragable object is rollable.

nondragable(Object)⇔ rollable(Object)
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As discussed above this framework is not developed with the intent to be complete. This is

why only those deÞnitions and axioms are presented here which are useful in understand-

ing the application of the schema, shown in Þgure 5.4, to the scenarios given in section 4.2.

However, following observations are worth noting in the deÞnitions.

1. The presented deÞnitions are mutually consistent. That is, no twopredicatesthat

represent opposite concepts can be true in the same interval (or set of intervals).

2. DeÞnitionsdo represent redundant information. Which means that the frame work

does not care that anunstableobject (in an interval) is also amoving object etc.

3. The deÞnitions are biased towardslocation type faults. That is, mostly the deÞni-

tions are only utilizing the information that will result into change of their truth

value with the change in location of the object. In other words the deÞnitions are

not truly correct in general.

4. The deÞnitions are independent from objects and circumstances.

5. We allow di!erent deÞnitions to refer to the same object/concept (e.g. deÞnition

6.2.1 and 6.2.1a).
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7 Results and analysis

In this chapter we present results of application of the proposed approach on the scenarios

shown in section 4.2. We mainly focus on scenario I and provide a complete overview of the

application and results of the approach. We use scenario II and III to analyze the approach

for its extensibility and limitations. These limitations, along with other possible di"culties

of applying this approach in general, are given in section 7.3. We enumerate the important

assumptions made in this work in section 7.4 of this chapter.

7.1 Scenario I

Consider scenario I, shown in Þgure 4.2. This scenario occurs in robotÕs world that has

di!erent objects in it, e.g. a dice, a table, floor, a chair, a shelf and a paper. Only

the dice and thetable are visible in the Þgure, among these objects. Assume that at the

instant of occurrence of fault thechair is placednear the table and theshelf is standing

far from it. To start with, we do not consider presence of thepaper. When the fault has

occurred thedice has fallen on thefloor and the robot detects the fault because some of

the e!ects of its last action are not achieved. For example, a predicateon(table,dice)
is not true after the completion of the action.

In this work we assume that thefault detector is able to point out the type of the

fault from the unachieved e!ects. Here the relationon/2 is a clear indication that the

fault is of type location. The fault detector sends following signal1 to the query genera-

tor.

fault(location).

Based on thetype of the fault, the query generator enumerates the properties relevant

for reasoning about thistype of fault. These properties need to obtain (symbolic) val-

ues to represent thedice in its Þnal state. These values are obtained throughora-

cleÕshelp. In this scenario, thequery generator asks for values of following proper-

ties.

[objectID, place, stability, translation, mobility, rollability].

In addition to this the oracle is also asked to state the expected location of theobject if

there were no fault. This information is easily available through the failing relation (i.e.

on(table, dice) ).

1The syntax is compatible to the code given in appendix B.
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The oracle alsoobservesthe world. Here we assume that theoracle is able to see theobject

in its Þnal state. Based on its observations, its knowledge from the failing relation and

the deÞnitions from theÕdeÞnitionÕcomponent, theoracle Þlls in the values of properties

as following.

• Since theobject involved in the failing relation is dice, thereforeobjectID gets the

value dice.

• Since the oracle observes that theobject keeps a steady position (in an entire inter-

val) on the ßoor after it has fallen, thereforedeÞnition 6.2.20is true whenObject1
is instantiated with dice and Object2 with floor. Because of this,deÞnition 6.2.1a

is also true with the same instantiations in the same interval. Hence the value of

place is floor according toobservationsand deÞnitions.

• To get the value for stability, the oracle checks the truth values of deÞnitions

6.2.14 and 6.2.15. Since thedice is on the floor in the observation interval, as

per deÞnition6.2.20, and at all the instants in the interval the center of gravity of

the dice does not leave thetop of the floor, therefore thedice is stable in the

interval. Hence from deÞnition6.2.14 stability gets the value ofstable.

• In the observation interval, center of gravity of the dice never changes its posi-

tion. Hence the dice is stationary in the interval, which is also the value for

translation.

• There exist fewintervals in all the observation intervals of the oracle where center

of gravity of the dice changed its position. Therefore, deÞnition6.2.11 is not true

(i.e. the dice is not fixed). Hence according to axiom6.2.13, deÞnition 6.2.12 is

true and mobility gets the value ofmovable.

• From axiom 6.2.23 the dice is either rollable or dragable. Since deÞnition

6.2.22 can not hold true for any interval (i.e. the dice is not rollable), therefore

rollability gets the valuenonrallable according to axiom6.2.23.

The query generatorgenerates following two queries for thereasoning moduleafter the

values of propoerties are Þlled in.

1. showHyp([objectID(dice), place(floor), stability(stable), translation
(stationary), mobility(movable), roll(rollable)], table, gravity)].

2. showHyp([objectID(dice), place(floor), stability(stable), translation
(stationary), mobility(movable), roll(rollable)], table, air)].

The only di!erence in the abovequeries is that of involved physical phenomenon(i.e.

gravity and air). For gravity the reasoning moduleshows following hypotheses for the

intermediate states of thedice.
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1. IntermediateState(dice):-
stability(stable), translation(stationary), place(floor).

2. IntermediateState(dice):-
stability(unstable), translation(moving), place(floor).

3. IntermediateState(dice):-
stability(unstable), translation(moving), place(table).

4. IntermediateState(dice):-
stability(unstable), translation(moving), place(chair).

For air the reasoning modulegenerates following hypotheses.

1. IntermediateState(dice):-
translation(moving), place(floor).

2. IntermediateState(dice):-
translation(stationary), place(floor).

In the above hypotheses, (3) (forgravity) represents the situation that actually occurs in

Þgure 4.2. Let us assume thathypotheses receiverin Þgure 5.4 is able to select thishypoth-

esis using some heuristics or methods. Using thedeÞnition component, thehypotheses

receiver interprets this hypothesis as following,

"There exists some interval (after the release ofdice) in which the dice wason the table
and its center of gravity was not at aÞxed point and the projection from its center of

gravity to downward direction left the top of the table in at least one of theinstants of

the interval."

In this scenario, if we replace thedice with the paper, then the hypotheses formed because

of air change. Theplace takes on all the values of possible places and thetranslation
takes on both values (i.e.moving and stationary). This gives 2n hypotheses (where n is

the number of possible places forpaper). The hypotheses generated because ofgravity
remain all the same (except thatdice is replaced bypaper). If we analyze this situation,

it is clear that we haveredundant information in the hypotheses for thepaper. If air is

the phenomenon involved in causing the fault while putting apaper on the table, then the

robot does not really need to know about itsstability and translation etc. However, for

reasoning moduleboth dice and paper are objects, which behave di!erently just because

of their weights. Therefore, the reasoning module has to treat and evaluate both situations

similarly. This can cause an exponential increase in the number of hypotheses generated

by the reasoning module.
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7.2 Scenario II and III

Before considering the application of the proposed approach to scenario II let us Þrst

consider its application to scenario III. In Þgure 4.4 the robot picks up abottle from

the table. Assume that the bottle is not correctly picked up and it falls down on

the floor. The detection of the fault is again made through failing relations in the

e!ects of robotÕs actions. This time, thetype would be decided based on a relation like

holding(bottle). If the decidedtype is location and the bottle is on the floor in its

Þnal statethen all the six hypothesesshown in previous section also hold here in similar

manner. In addition to those, thereasoning modulealso Þnds following new hypothesis

for gravity.

IntermediateState(bottle):-
stability(unstable), translation(moving), place(gripper).

All previous hypotheseshold here because we are considering the fault to beexternal which

makes this situation a special case of scenario I. It can be seen that above statedhypothesis

and hypothesis(3) 2 (for gravity) in previous section can both be very likely the actual

intermediate stateswhich caused the fault. However, there is one hidden problem here.

The interpretations of stability and place, (according todeÞnitions 6.2.1and 6.2.14)

does not specify the correct meaning of thesehypotheses. That is, gripper is a place for

the bottle not because thebottle can be placedon it but because thebottle can be

held within gripper. Similarly, an unstableobject in the gripper is one that is not held

correctly and not the one whoÕs C.G, leavesgripperÕs top in some instant. This is why

it is required to have di!erent deÞnitions for the same concept in the framework deÞning

the properties (see observation Õ5Õ in section 6.2).

Now we change the situation in scenario III and assume that thebottle does not fall on

the ßoor, but it falls on thetable (either standing tall or on its sides). In this case the rea-

soner is able to generate followinghypotheses. For gravity

1. IntermediateState(bottle):-
stability(stable), translation(stationary), place(table).

2. IntermediateState(bottle):-
stability(unstable), translation(moving), place(table).

3. IntermediateState(bottle):-
stability(unstable), translation(moving), place(gripper).

For air, the hypothesesare same as those in previous section except that theplace is

instantiated with table instead of floor.

2After replacing dice with bottle
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In these hypotheses(3) is indicating the actual reason of the fault, provided the correct

deÞnition. Hypothesis (2) also indicates a very likely situation when it is interpreted

according to the deÞnitions given in section 6.2. It can be noted here that we assume

that the object in its Þnal state is correctly recognized by the robot. That is, the fallen

bottle is recognized as the samebottle.

Scenario II, shown in Þgure 4.3, is not solved in this work. This is because, according

to our view the reason of the fault lies in theshapeof the concerned objects and not

in their location. It is expected that the fault in this scenario would be detected by the

fault detector by some failing relation likein(duck,basket). The in/2 predicate (or

a similar relation) is actually relevant to shape typeand not to location. In this work

we have not developed the deÞnitions regarding theshapeof objects because of timing

constraints. Since, thelaws regarding the shape also depend upon such deÞnitions, it is

not useful to state the laws related to shape without the meaning of deÞnitions. A general

inspection of deÞnition related to concepts relevant toshapesuggests that such deÞnitions

require much more geometrical information than what is used in the deÞnitions related

to location.

7.3 Limitations

The approach proposed in this work for fault diagnosis also has some limitations. These

limitations mainly come fromnaive physicsitself and thequalitative reasoningused in the

reasoning module. Below we enumerate some of the signiÞcant limitations3.

• Di"culties with the naive physics described in section 2.1.1 makes the develop-

ment of reasoning rules and thedeÞnitions very hard. Among these di"culties Õ1Õ,

Õ3Õ and Õ4Õ cause signiÞcant problems in application of the proposed schema in Þgure

5.4 to practical scenarios.

• Reasoning resembles rule-based reasoningbecauseexternal faults are caused by

physical phenomenonand these phenomenon followlaws/rule of physics. This forces

the reasoning to resemble rule-based reasoning which su!ers from brittleness. Al-

though in the proposed approach, thereasoning modulereasons at a fairly high level

of abstraction which signiÞcantly shrinks the size of this problem but it can not be

claimed solved.

3We do not claim here that all these limitations are absolutely unavoidable. The main purpose of the
enumeration is to critically evaluate application of NP to fault reasoning in general and using it with
the proposed approach in particular.



7 Results and analysis 37

• External agents are not considered in this work. This means that we have not

considered presence of other agents who are allowed to manipulate the object. How-

ever, at the same time, we feel that considering presence of such an agent can cause

severe problems to any approach to external fault diagnosis and our approach is not

an exception.

• Diagnosis may not be enough for updating the Model according to the Þgure

4.1 if the hypotheses receiverinterprets the hypothesisusing the deÞnitions that

are developed without considering such need. Another potential limitation can be

the di"culties caused in any such update because of loss of information in the

abstraction of world model used for reasoning.

• Associating correct type with faults is not simple. It may be possible that di!erent

types of faults can be associated with the same failing relation. It is also possible

that intuitive type of fault is not the correct one for reasoning purpose. For example,

a sharp reader might have noticed that we claimed faults described in section 4.2.2

(scenario II) to be of type location until we Þnally disclosed in section 7.2 that in

our opinion those faults are oftype shape. This is an intentional error in this thesis

to substantiate our argument.

• DeÞnitions of properties are time dependent. This is because the concepts behind

the naive physicsreasoning are time dependent. Although, usage of notion of time

allows us to construct deÞnitions of properties which are object and circumstances

independent. However, some of these deÞnitions depend on more than one interval

of time. In practical application this calls for storage of large amount of data.

• There is no structure in the ontology of properties because the properties shown in

Þgure 5.5 represent naive concepts. This problem can also be seen in the substance

schema shown in section 5.2.1. Because of this problem it can not be decided

for sure that which properties are more suitable for deÞningphysical laws. For

example, should we consider in the gravitational law that the object falls from the

table because it is movable or should we say that it is because the object is rollable

or both.

• Better hypotheses require better domain knowledge embedded in coded physical laws.

A hypothesis can be seen as a possible combination of symbolic values of relevant

properties that is satisÞed by the constraints of a physical law. The better these

constraints represent the actual situation, the better the hypothesis is. Similarly,

more relevant the properties (used in the law) are, more relevant the hypotheses

are.
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7.4 Assumptions

Below we enumerate some of the major assumptions made in this work. These assumptions

are separate from those described in section 6.2.

• The time dependent deÞnitions of properties assume that the robot has enough

observations that it can correctly associate properties with the object in itsÞnal

state.

• The adopted approach is similar tomicroworlds approach described in section 2.1.2.

However, we do not intend to develop a competency theory. The intention here is

to use the theory as a cognitive model, therefore we assume that thedeÞnitionscan

contain beliefs that are plain wrong, but useful in reasoning.

• We assume that the cognitive model used for deÞnition has its scope limited to the

robot using it. This means that the deÞnitions used by the robot are only valid

for the robot in fault reasoning. These deÞnitions or laws are not true depiction of

universal laws and properties.

• The reasoning module uses few relations in its model which must be created at the

time of Þnal stateof the object (e.g.near(table, chair)). Without such relations

the resulting hypothesescan be too many. We assume that the robot possesses

enough information and ability to Þll in the correct values of these relations at the

time of Þnal state.

• The approach assumes that the robot is always able to see the object in itsÞnal

state.
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8 Related Work

In this work we have appliednaive physicsknowledge for reasoning about external faults

of the robot. Although, it may appear that robotic fault diagnosis approaches are very

relevant to this work, but the fact that we deal only with external faults makes this work

very di!erent from such approaches. Reasoning about external faults is more related to

everyday commonsense reasoning than usual model based fault reasoning for a system or

a process. For such reasoning,rule-based reasoningused in expert systemshas a close

relevance, where the expert system is designed to reasons about the fault based on rules

which arephysical laws.

Since we use the naive physics knowledge for reasoning and the original concept of naive

physics (Hayes [1979]) centers aroundformalization of everyday knowledge, therefore the

works in knowledge representationare related to ours, in general. Davis [1998] presents

one important approach ofmicroworlds for knowledge representation and reasoning. In

his work, the author proposes to develop speciÞc competency theories powerful enough

to justify commonsense inferences. This approach is related to ours, in the sense that we

also develop speciÞc theories in the form of (so-called) framework(s). We already have

given a brief review of this work in section 2.1.2.

The reasoning modulein our approach uses properties of objects which are relevant to

space and shape. Many formalisms have been developed for qualitative spatial represen-

tation and reasoning. A comprehensive review of these approaches can be found in Cohn

and Hazarika [2001]. However, any ready-made import of such formalisms is not useful

for our approach. This is because we deÞne the properties of the object in a manner that

reasoning using them reveals useful information about the fault. Our approach does not

require a complete formalism that can be used for reasoning as done by engineers and

scientists. It requires a framework that is representative of knowledge of physics novices,

good enough to result in useful inferencing. Davis has developed a logical framework for

solid objects in Davis [1986] and Davis [1988]. Although, these works use almost entire

machinery of Newtonian mechanics in the framework but they are relevant to our work

because we use similar primitives for our framework.

What properties are used by physics novices to reason about daily life phenomenon? and

how do they use them for reasoning? These are important questions that need to be

answered when developing the ontology of properties used in our approach. A survey of

studies relevant to these questions is given in Reiner et al. [2000]. Authors of that work also

present thesubstance schemawhich we use in this work. To extend our work or further re-

Þne it, useful insights can be gained from Reiner et al. [2000].
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There are few other works inqualitative reasoning that can be associated with fault

diagnosis using naive or qualitative physics, however most of these works use algorithmic

approaches which we Þnd infeasible for real world environment. A detailed discussion

about such related works is not possible here. Interested reader can Þnd a comprehensive

collection of such works in Weld and Kleer [1990]. QPT and QSIM, mentioned in section

2.2 of the thesis, are two of such works.
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9 Conclusion and future work

In this work we have presented an approach for fault reasoning based onnaive physics.

We consider only theexternal faults that occur in the absence of any external agent.

The presented approach is evaluated by considering its application to three simple sce-

narios which involve manipulation tasks. Based on the evaluation we enumerate major

limitations and assumptions of this work. The mechanism to reason about the faults is

developed after studying major approaches innaive/qualitative physics. A critical review

of these approaches is given in chapter 2 of the thesis. Our proposed mechanism uses

qualitative reasoningfor reasoning about faults. Such reasoning requires use of constant

symbols and primitive relations which are understood by the reasoner. We have also pre-

sented aframework that gives deÞnitions of the used symbols and relations. The presented

framework is developed with an intent to show that how the deÞnitions of the symbols

should be perceived such thatnaive physicsconcepts behind them can be captured in a

manner useful for our approach.

Application of naive physicsknowledge for fault reasoning in real world situations is

not straight forward. The main reason for that is, the laws/rules/properties utilized by

a physicsnovice to reason about a daily life phenomenon is object and circumstances

dependent. Usually, the person utilizes only that information (i.e. laws or properties)

for reasoning which is relevant to the given circumstances. It can also not be guaran-

teed that the person has reached to the correct conclusion using the concepts which are

consistent. There is also no real hierarchical structure inproperties of the object that

are used for reasoning. Such object/situation dependence and lack of structure innaive

physicsknowledge makes it impossible to develop an approach that is generic and algo-

rithmic like QPT or QSIM. We Þnd that any approach utilizing (only) QDEs for external

fault reasoning is also not feasible in general, because use of QDEs to correctly predict

the extended behavior of objects in real world is inadequate. Furthermore, QDEs be-

come a very ine"cient approach for the situations considered in scenarios in section 4.2

where behavior of the object is easy to be characterize over extended time than local

time.

Considering the challenges stated in previous paragraph and at di!erent places in the

thesis, our proposed approach resembles microwrolds approach. We Þnd it more feasible

to usequalitative reasoningat a very high level of abstraction such that the symbols and

relations used for reasoning are deÞned in a theory (i.e. a framework) that is speciÞc

to a particular type of fault. This means, we propose to develop di!erent microworld

theories for di!erent types of faults. The deÞnitions used in such theories are mutually



9 Conclusion and future work 42

consistent, but we allow them to be even plain wrong. The deÞnitions utilize only the

relevant information that helps in inferencing in the reasoning module even with minimal

information. The proposed theories, have their scope limited only to the system (i.e.

the robot) for which they are developed and their mutual interaction is only allowed in

reasoning module (where necessary) through physical laws. We Þnd that it is feasible to

use rule-based reasoning for external faults since it is natural to state physical laws (which

cause the fault) as rules. The brittleness of this approach can be reduced signiÞcantly by

using a very high level of abstraction for the rules.

In this work the presented approach is aproof of conceptthat utilizing naive physicsfor

external fault reasoning is useful. This work does not investigate extensive application

of the approach on di!erent types of faults because of time constraints. We also do not

claim completeness of the proposed framework of deÞnitions in section 6.2. A possible

extension of this work is to develop di!erent frameworks (i.e. deÞnitions) for di!erent

types of faults and apply them to real world scenarios using further physical laws. It

can be noted that we expect side by side development of thereasoning moduleand the

deÞnition component shown in Þgure 5.4. Although, further development of this work

using same approach can be well guided by the insights from this work, however it can

not be claimed that these insights will ease the level of hardness of development on the

same foot steps.

Utilizing the approach for a real robot

In the text below we brießy summarize that how our approach can be utilized for a real

robot e!ectively. We do it by utilizing the insights from this work and assuming that we

have to work on it from the scratch.

Firstly, it can be noticed that our proposed mechanism or approach has its scope limited

to a particular (type of) robot. That is, the developed theories, ontologies and physical

laws are developed for a particular robot and can be exported (with minimum changes)

only to the robots with similar capabilities. Therefore, to use this approach for external

fault reasoning in real robot, we Þrst need to understand the capabilities (i.e. performable

tasks) of the robot. An important component of this understanding is the knowledge of

planning operators and methods used in the robot. Based on this understanding, thetypes

of faults must be developed. Then the ontology of theproperties is to be developed. It

should be noticed that there is no correct or wrong ontology for properties. The ontology

used in this work is derived form the substance schema shown in section 5.2.1. It is

expected that this ontology can vary greatly if the types of faults are di!erent. For each

type of fault, a pool of deÞnitions (i.e. framework) is to be developed. In our opinion

development of deÞnitions can follow the same approach as this work. However, it may be

possible to utilize deÞnitions more e!ectively by (somehow) letting theoracle know few

permanent objects and their intrinsic properties. For example, if theoracle already knows



9 Conclusion and future work 43

the names offixed objects in its environment then there is no need to deÞnemovable
and fixed etc..

In this work we let the hypotheses receiverto interpret the hypothesis using thedeÞnition

component that was also used to determine theÞnal stateof the object. A more e!ective

approach would be to let thehypotheses receiverinterpret the hypothesis on di!erent

deÞnitions, that are developed based on the knowledge of themodel used forprediction

in Þgure 4.1. Although maintaining the correct interpretation of the properties separately

is more work but it can have two major advantages.

1. Updating the model (in Þgure 4.1) would become much easier and e!ective.

2. The deÞnitions used for determining the Þnal state can be based on further less

knowledge.
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Appendix

A: DeÞnitions

Below are some important deÞnitions (found in the literature regarding fault diagnosis

and naive physics) of the terms used in the thesis.

Fault
An unpermitted deviation of at least one characteristic property of parameter of the

system from the acceptable/usual/standart condition.

Fault detection
Determination of the presence of fault in the system and the time of detection.

Fault isolation
Determination of kind, location and time of detection of a fault.

Fault identification
Determination of the size and time-variant behavior of a fault.

Fault diagnosis
Determination of the kind, size, location and time of detection of the fault.

Metric Diagram
A combination of symbolic and quantitative information used as an oracle for a class of

spatial questions. (DeÞnition is speciÞc to Forbus et al. [1991].)

Mereology
Mereology is the theory of parthood relations: of the relations of part to whole and

the relations of part to part within a whole. (from stanford encyclopedia of philoso-

phy)

Ontology
Ontology concerns how to carve up the world, i.e., what kinds of things there are and what

sorts of relationships can hold between them Forbus [2003].

Place Vocabulary
A purely symbolic description of shape and space, grounded in the metric diagram. (Def-

inition is speciÞc to Forbus et al. [1991].)

Qualitative behavior
A sequence of qualitative states occurring over a particular span of time is called a behavior

Forbus [2003].
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Qualitative Differential Equation Model
A qualitative di!erential equation model (QDE) is an abstraction of an ordinary di!er-

ential equation, consisting of a set of real-valued variables and functional, algebraic and

di!erential constraints among them Kuipers [1986].

Qualitative state
A qualitative state is a set of propositions that characterize a qualitatively distinct be-

havior of a system Forbus [2003].

Quantity space
A set of ordinal relationships that describes the value of a continuous parameter Forbus

[1984].

B: Query generator code

%%%% Query generator code in Prolog.
%%%% This code was used to achieve results reported here.
%%%% The code is written so that it is easily extendable just by
%%%% entering new fault ’types ’ or ’properties ’ using same approach

%%%% Process called when fault occurs
fault ( FaultType ): -

subfaultCal l (FaultType , SubFaultList ) ,

faul tPropert ies (FaultType , SubFaultList ) .

%%%% Takes in the values for the associated properties of each fault and
writes the Query to be asked on the terminal.

faul tPropert ies (FaultType , SubFaultList ) : -

write (ÕEnter ! values ! for ! fol lowing ! propert ies ! from! the ! f inal ! state :Õ)

,

nl ,

propert iesCal l (FaultType , PropertyList ) ,

enumerate ( PropertyList , FinalStateList ) ,

expectedProperty (FaultType , Property ) ,

generateQuery ( FinalStateList , SubFaultList , Property ) .

generateQuery (_ ,[] ,_) : -nl ,!.

generateQuery ( FinalStateList , [ SubFaultHead | SubFaultTai l ] ,

ExpectedProperty ) : -

nl , write (ÕshowHyp (Õ) ,write ( FinalStateList ) ,write (Õ,Õ) ,write (

ExpectedProperty ) ,write (Õ,Õ) ,write ( SubFaultHead ) ,write (Õ).Õ) ,nl ,

generateQuery ( FinalStateList , SubFaultTai l , ExpectedProperty ) .
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%%%%%% Calls for query generation %%%%%%%%

%%%%%%% Subfault calls %%%%%%%
subfaultCal l ( location , L) : -

L = [gravity ,air ].

subfaultCal l (movement , L) : -

L = [ displacement , stoppage ].

subfaultCal l ( shape ,L) : -

L = [ distort ion ].

%%%%%%% Expected property %%%%%%
expectedProperty ( location , Property ) : -

write (Õexpected ! place Õ) ,nl ,

read ( Property ) .

%%%%%%% Properties calls %%%%%
propert iesCal l ( location , L) : -

L = [objectID , stabil i ty , roll , mobil i ty , translat ion , place ].

propert iesCal l (movement , L) : -

L = [ objectID , mobi l i ty ].

propert iesCal l ( shape , L) : -

L = [ objectID , transformable , container , st ickable ].

%%%%%%% Auxiliary predicates %%%%%%%%
writeList ([]) .

wri teList ([X|L ]) : -

write (X) ,nl ,

wri teList (L) .

concatenate ([] , L , L) .

concatenate ([ X1 |L1 ] ,L ,[ X1 |L2 ]) : -

concatenate (L1 , L , L2).

addTerm (X, L , [X|L ]) .

makeTerm (X,Y,Term):-

Term =..[X ,Y ].

enumerate ([] ,[]) .

enumerate ([H|T] , [H1 |T1 ]) : -

write (H) , write (Õ=Õ) ,nl ,

read ( Property ) ,

makeTerm (H, Property , H1) ,

enumerate (T ,T1).
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C: Reasoning module code

%%%%% Model of the world %%%%%%%%

%%%% Involved objects %%%%%
object ( table ) .

object ( dice ) .

object ( f loor ) .

object ( bott le ) .

object ( basket ) .

object ( bott le ) .

object ( paper ) .

object ( shelf ) .

%%%%% Numeric values of properties %%%%%

%%height of object in centimeters
height ( table , 80) .

height (dice , 10) .

height (bottle , 20) .

height (basket , 60) .

height (duck , 7) .

height ( floor , 0) .

height (chair , 50) .

height (shelf ,150) .

height (gripper , 100) .

%%Weight of the objects in grams
weight ( table , 7000) .

weight (dice , 50) .

weight (bottle , 100) .

weight (basket , 2000) .

weight (duck , 20) .

weight (paper ,1) .

weight (shelf , 8000) .

%%%%%% Possible values of properties %%%%%%

place ( f loor ) .

place ( table ) .

place ( chair ) .

place ( shelf ) .

place ( gripper ) .

drag ( dragable ) .

drag ( nondragable ) .
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roll ( rol lable ) .

rol l ( nonrol lable ) .

mobi l i ty ( moveable ) .

mobi l i ty ( f ixed ).

stabi l i ty ( stable ) .

stabi l i ty ( unstable ) .

translat ion ( moving ).

translat ion ( stat ionary ) .

rol l ( rol lable ) .

rol l ( nonrol lable ) .

containabi l i ty ( containable ) .

containabi l i ty ( uncontainable ) .

%%%%%% Relations between objects

near ( place (X) , place (X)) . %%everyplace is near itself.
near ( object (X) , object (X)) . %%every object is near

itself.

near ( place ( table ) ,place ( chair ) ) .

near ( place ( chair ) ,place ( table )) .

near ( place ( gripper ) , place ( chair ) ) .

near ( place ( chair ) , place ( gripper )) .

near ( place ( gripper ) , place ( table )) .

near ( place (_) ,place ( f loor )) .

%%%%%% For generating output in prolog syntax %%%%%%%%%
showHyp (State , ExpectedProperty , Law):-

nl ,

applyLaw (State , ExpectedProperty , Law).

showClause ([H|T ]) : -

write (H) ,

(T = [] ,nl , write (ÕThe ! hypothesis ! could !not !be ! determined Õ);

write (Õ:-Õ) ,nl ) ,

tab (2) ,

showTail (T) .

showTail ([]) : -

write (Õ.Õ).

showTail ([H|T ]) : -
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write (H) ,

(T = [] ,! , write (Õ.Õ) ,nl

;

write (Õ,Õ) ,

tab (1) ,

showTail (T)) .

%%%%%%%%%%%%%%% Processing of query %%%%%%%%%%%%%%%%%%%%%%%%%

applyLaw ( FinalState , ExpectedLocation , gravity ) : -

gravi tyTransi t ions ( FinalState , ExpectedLocation , L) , clauseForm (L) ,

nl .

applyLaw ( FinalState , ExpectedProperty , air ) : -

airTransi t ions ( FinalState , ExpectedLocation , L) , clauseForm (L) ,nl .

%applyLaw(FinalState , ExpectedProperty , adhesion):-
%applyLaw(FinalState , ExpectedProperty , displacement):-
%applyLaw(FinalState , ExpectedProperty , stoppage):-
%applyLaw(FinalState , ExpectedProperty , distortion):-

%%%%%%%%%%%%%%% Physical Transitions %%%%%%%%%%%%%%%%%%%%%%%%%

gravi tyTransi t ions ([ objectID ( ID1 ) , stabi l i ty (St1 ) , rol l (R1) , mobi l i ty (

movable ) , translat ion (T1) , place (P1)] , ExpectedLocation , [ objectID (

ID1 ) , stabi l i ty (St2 ) , t ranslat ion (T2) , place (P2) ]) : -

place (P2) , place (P1) , height (P1 , H1) , height (P2 , H2) , height (

ExpectedLocation , H3) , near ( place ( ExpectedLocat ion ) , place (P2)) ,

( smaller (H1 , H2) , St2 = unstable , T2 = moving ; not ( smaller (H1 ,

H2)) , (H1 = H2) , (St2 = stable , T2 = stat ionary ; St2 = unstable ,

T2 = moving )) .

airTransi t ions ([ objectID ( ID1) , stabi l i ty (St1 ) , rol l (R1) , mobi l i ty (

movable ) , translat ion (T1) , place (P1)] , ExpectedLocation , [ objectID (

ID1 ) , translat ion (T2) , place (P2) ]) : -

t ranslat ion (T2) , place (P1) , place (P2) , weight ( ID1 ,W) , ( smaller (W ,5) ,

di f ferent (P1 ,P2); smaller (5 ,W) ,same(P1 ,P2)) .

%%%%%%%%%%%%%% Making clause of state %%%%%%%%%%%%%%%%%%%
clauseForm ([H|L ]) : -

H = objectID (Obj ) ,

makeTerm ([ Õ IntermediateState Õ, Obj ] , Head ) ,

addTerm (Head , L , X) ,

showClause (X).
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%%%%%%%%%%%%%% Auxiliary definitions %%%%%%%%%%%%%%%%%%%%%%%%
makeList ([] ,[]) .

makeList ([ H1 |T1 ] , [H2 |T2 ]) : -

makeTerm (H1 ,H2) ,

makeList (T1 ,T2).

makeTerm (L , Z) : -

Z =..L.

addTerm (X, L , [X|L ]) .

same(X,Y): -

X = Y.

dif ferent (X ,Y): -

not ( same(X,Y)) .

smaller (X ,Y): -

X<Y.

D: Use cases description

Detect fault (UC1): Detects the fault when e!ects of the last action of the robot are

not achieved. It gets triggered when the action has been performed. In case the action is

successful the robot is informed about that. When the fault is detected, this use case also

speciÞes thetype of the fault. It is assumed that the use case is always able to associate

relevant type(s) to the fault.

Trigger reasoning (UC2): When the fault has been detected, this use case triggers the

query generationprocess. The trigger signal is compatible to thequery generatorand it

contains thetype of the fault.

Receive hypotheses (UC3): The hypotheses receiverreceives a list of hypotheses

through this behavior. The use case is triggered after UC2 has sent the request to the

query generator. UC3 listens to any signal from UC13, this signal consists of a list

of hypotheses. After receiving the list this use case is ready to interpret the received

hypothesis. It is assumed that this use case always receives a list of hypotheses from

UC13.

Interpret hypotheses (UC4): This use case interprets the hypotheses for thehy-

potheses receiver. It starts after UC3 has successfully received the hypotheses list. UC4

extends UC5 to interpret the properties used in the hypotheses. As a result of this use

case the hypotheses receiver is able to know the meaning of each hypothesis received in

UC3.
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Define properties (UC5): Knowledge base deÞnes the properties used by UC4 and

UC8. This use case depicts the logical representation of concepts in the knowledge

base.

Create world model (UC6): The oracle creates/updates the model of the world after

UC1 has detected the fault. This use case results into an updated model of the world

after the object has reached itsÞnal state. It is assumed by the use case that the ob-

server has the compete information about the world at the time of creation of the world

model.

Observer world (UC7): This behavior related to the observer is continuous. However,

the observer uses the information of observations only after the object has reached its

Þnal state.

Define final state (UC8): This use case deÞnes Þnal state of the object after UC9

receives the trigger signal from UC2. It extends UC5 to recognize the relevant properties

of the object in its Þnal state. The oracle knows the object in its Þnal state because of

the same assumption that the robot posses the complete knowledge of the object in its

Þnal state. The e!ect of this behavior is the availability of completely speciÞed Þnal state

of the object.

Receive reasoning trigger (UC9): After UC1 has detected the fault, this use case

listens to any signal from UC2. After it receives such a signal thequery generatoruses

it to initiate UC8. It is assumed that any possible signal produced by UC2 is compatible

with UC9.

Generate query (UC10): It generates the relevant query to be received by UC11. The

generation of the query is the result of association of relevant properties to respective phys-

ical laws. UC10 initiates after UC8 has Þnished its work.

Receive query (UC11): This use case listens to the signal from UC10 after any fault is

detected by UC1. It assumes that UC10 generates only those signals which are compatible

for reasoning in UC12. A list of queries is ready to be processed by UC12, after UC11

has Þnished its job.

Perform reasoning (UC12): This use case signiÞes the reasoning process. It processes

each query of the signal from UC11. For each query it generates a list of reasons that

could cause the fault. The reasoning process also includes the world model creation,

in which it models some relations between objects and assign some numerical values to

few properties. This use case assumes that the observer posses enough information that

the relevant relations and properties get correct values at the time of Þnal state of the

object.
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Generate hypotheses(UC13): It makes the reasons of faults found by UC12 compat-

ible to be used by UC4. The e!ect of this use case is a list of hypotheses ready to be

interpreted by UC4.

CD Content

• This document as PDF

• Prolog code for

– Reasoning module

– Query generator
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