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A B S T R A C T

A building’s energy storage demand depends on a variety of factors related to the specific local conditions such
as building type, self-sufficiency-rate, and grid connection. Here, a newly developed bottom-up procedure is
presented for classifying buildings in an urban building portfolio according to specific criteria. The algorithm
uses publicly available building data such as building use, ground floor area, roof ridge height, solar roof
potential, and population statistics. In addition, it considers the local gas grid (GG) as well as the district
heating (DH) network. The building classification is developed for identifying typical building situations that
can be used to estimate the demand for residential energy storage capacity. The developed algorithm is used to
identify potential implementation of private photovoltaic(PV)-metal-hydride-storage (MHS) systems, for three
scenarios, into the urban infrastructure for the city of Cologne. As result the statistical confidence interval
of all analyzed buildings regarding their classification as well as corresponding maps is shown. Since similar
data sets as used are available for many German or European metropolitan areas, the method developed with
the assumptions presented in this work, can be used for classification of other urban and semi-urban areas
including the assessment of their grid infrastructure.
1. Introduction

As part of Germany’s energy transition, the government aims to
achieve a carbon-free national energy infrastructure by 2045. Accord-
ing to data from the Federal Ministry for Economic Affairs and Climate
Action (BMWK) in 2022 [1], the residential sector represented 29% of
end energy consumption in 2020. Of that consumption, approximately
70%–75% is attributed to the direct use of fossil fuels, primarily for
heating and hot water. To reduce the overall energy demand in the res-
idential sector, solar home systems are subsidized by the government,
leading to an increase in local production of residential PV energy [2].
PV energy generation depends on geographic location, weather con-
ditions, and the time of day, while residential consumption is based
on residents’ lifestyles and ambient temperature. As both, PV energy
production and residential energy consumption are not sufficiently in
tune with each other, the need for energy storage to improve local
self-consumption increases.
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Quantification and allocation of energy gain and use in urban,
suburban, and rural areas are of most importance for planning and
developing a future energy landscape. Especially grid developers need
detailed energy curves in high spatial and timely accuracy to feed
energy flow simulation and optimization tools such as MEgy [3,4] or
MYNTS [5] to calculate an expansion of grid sections as infrastructure
costs are high for installing permanent underground tubes or cables.
When examining the private sector as an energy consumer, it is es-
sential to evaluate also the accessibility of both gas grid and district
heating. This is particularly crucial in urban areas where there is high
population density and building concentration, with a high likelihood
of buildings connected to these grids. This data can then be used in
simulation studies e.g. to analyze the effects of decentralized feed-in
into DH networks [6].

Usually classification methods of residential energy consumption
are divided into a knowledge-based ‘‘top-down’’ or a data-driven ‘‘bot-
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tom-up’’ method of an excerpt area. These methods can be subdi-
vided into either economical or technological methods for the top-
down branch or statistical or engineering methods for the bottom-up
branch [7]. While the statistical method uses buildings energy demand
samples in regression with various possible parameter, the engineer-
ing method is based on the buildings characteristics to estimate an
energy demand. The use of Geographical Information System (GIS)
data to analyze energy topics in a bottom-up method is established
and commonly used e.g., creating benchmark data for electric power
system [8], looking at defossilization strategies of heating [9], to
estimate an application potential of heat pumps [10] or to give a
detailed distribution of heat demand [11]. [12] already incorporates
several GIS data sources to create a multi criterion decision map. The
local distribution of buildings in the area of interest has an important
influence on the energy production, as also concluded by [13]. For all
these reasons, the bottom-up approach with a strong influence of the
engineering method was chosen.

In the residential sector, it is typical to use a building as the base
unit for projecting energy. The possible solar roof generation, based on
PV, depends on the available roof area of the building as well as on the
solar resource and its spatial and temporal distribution. [14] reviewed
the impact of PV on buildings onto their energy self-consumption. Data
on solar resources are globally (e.g. SOLAR GIS [15]), or in higher
resolution, locally (e.g. COSMO-REA [16]) available. From this data,
PV power and PV yields can be calculated using state-of-the-art models
(e.g. PVGIS [17]). In addition, pre-validated data on solar potential
is already published by several environmental state agencies, e.g. by
the State Agency for Nature, Environment and Consumer Protection
(LANUV) of North Rhine-Westphalia (NRW) [18]. The latter has been
used in this study to estimate solar PV potential.

Surplus renewable electricity from PV modules can be converted
into hydrogen via electrolysis of water. This so called green hydrogen
will play a significant role in the energy transition [19]. Hydrogen can
be fed into the GG, which offers an additional infrastructure to store
and deliver energy on a seasonal scale. This can be used to provide
energy to households, which are connected to the GG. If already
available, the GG will be first choice to store hydrogen, as no additional
infrastructure is needed. Without a connecting GG, compact and safe
MHS systems will be an option to store hydrogen long-term. This is
because some metals and alloys have the ability to absorb hydrogen
atoms and embed them in the metal lattice — together they form a
stable metal-hydride. In this state, a good amount of hydrogen can be
stored in a relatively small volume under moderate pressure and low
temperatures [20]. The energy chemically stored in hydrogen can be
reconverted to electricity by using a fuel cell. The whole hydrogen stor-
age path counts therefore as power-to-power system. [21] for example,
assessed various power-to-x strategies focusing on small-scale systems
and their strengths and weaknesses.

Only few residential hydrogen storage systems have been realized
yet, but their potential to safely store energy across seasons with very
low energy loss is promising [22]. If needed, the hydrogen can be used
for electricity as well as for heat production, depending on the local
demand, which again depends on the building type as well as on the
access to heat or GG infrastructure. For the future evaluation of possible
implementation of hydrogen gas storage, the connection to existing
infrastructure is an important selection criterion and therefore needs to
be included in the analysis. The new method developed and described
in this paper includes the power grid (PG), DH networks and the GG.

The building’s energy balance depends on the electric and thermal
load of the building. Each building has unique energy requirements
determined by the number of occupants, their habits, and the building’s
materials and shape. To simplify the accumulation of diverse energy
data the buildings are clustered around representative sample units.
This typification is usually done via computational algorithms of GIS
data on basis of a buildings characteristics e.g. its food print [23] or
2

by its geometric ratio [24]. Several sources and tools for analyzing
building data are available. [25] compared his method for several
sources, while [26] made a comparison of 8 urban building energy
modeling (UBEM) tools since 2009. The use of building data, such as a
building’s floor area and height, is very common and is used in all tools
to estimate a building’s energy demand. Less common is the inclusion
of statistical data, such as population, to refine the energy data results.
Only one of the tools mentioned in [26] is labeled with this capability,
currently available for residential buildings. These tools aim to look at
the demand side of buildings. The supporting infrastructure networks
play a minor role in the analysis made with these tools. Although
the latest tools include some support for network analysis, existing
DH networks and GG are not included in the building classification.
Heat demand of buildings can be spatially accumulated to balance
municipalities and regions, as did [27] for a geographical analysis of
energetic biomass use.

Bottom-up classification of buildings are usually performed for de-
fined and limited areas. A comprehensive guide for region specification
was implemented by the European Government. It defines areas in
different sizes and density. The so-called Nomenclature of Territorial
Units for Statistics (NUTS) are a common unit to differentiate and
compare to other regions of the same definition [28]. The region chosen
for this work belongs to the NUTS 2 region cluster. The regional focus
is limited to residential areas in and around Cologne, fourth biggest
city in Germany by inhabitants. As each city has its unique building
portfolio, a detailed analysis of building types combined with their
possible occupancy will result in a high spatial energy demand map
suitable for planning future energy infrastructure. Especially access to
gas- or heat grids might play an important role for optimization of
energy storage demand and system sizing. Information about existing
grid infrastructure are and need to be included in planning tools
e.g. like [29].

To classify buildings according to their net energy demand, a
bottom-up analysis of the regional building stock is carried out. The
analysis is based on geographical and statistical open datasets for build-
ing size, roof solar potential and population. In addition to traditional
distribution analysis of typical representatives of each building type,
the analysis includes the energy production of PV systems and the
energy demand at the individual building level. To further combine
the analyzed building portfolio with an existing scenario set, the
buildings’ connections to different types of energy grids are considered.
Next to an generally available electricity grid connection, buildings
in urban areas are commonly connected to a gas grid or a local
heating network. In this newly developed method the building type,
electrical energy self-sufficiency, and grid-connection serve as criteria
for building classification in a regional context. The classified building
stock can be separated in clusters. In combination with distinguishing
features of three relevant scenarios the data can provide insight on
possible use of grid-integrated residential PV-MHS systems. Specific
datasets for each scenario will serve as input parameters for a newly
developed energy system model, based on energy flow simulation, that
investigate the interaction of hydrogen production (from excess solar
energy by electrolysis), storage in a metal-hydride tank, and hydro-
gen utilization in a connected fuel cell forming a local PVPtGtP (PV
power-to-gas-to-power) network. The simulation model is presented
in [4].

The developed method is presented in Section 2, introduced by
preceding work specifying a framework: defining the building typol-
ogy, selecting scenarios for possible implementation of the PV-MHS
system, and obtaining and verifying data for suitability. After a targeted
pre-processing of the different data sources, these sources have been
integrated to a single database using various corrective processing
steps of the building data and including continuous plausibility checks
of the algorithm during development. Subsequently, all buildings are
classified according to a predefined typology. Additional characteristics
such as self-sufficiency and availability to existing energy networks are

included in the targeted classification of buildings.
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Fig. 1. Schematic diagram of the method developed.

First results showing the effectiveness of the building classification
are presented in Section 3. In the following Section 4 these results are
discussed w.r.t. their target use. A preview of future work, depending
on the created classification data, finalizes the paper.

2. Methods, data sets, and region selected

The newly developed method presented in this paper is schemat-
ically depicted in Fig. 1. According to the context and the task in
coherence with the selected scenarios, available input data sets are
acquired from various publicly available data sources. Together with
predefined building attributes, the data sets are passed to an algorithm
to processes and modify the data sets in four steps.

1. Pre-processing to extract and harmonize data sets
2. Extracting building features and calculating interim attributes
3. Assigning of interim attributes and aggregation to target at-

tributes
4. Reducing of data set to relevant data set to discard outliers

This classification procedure results in a clustered data set, which
can be used to extract relevant parameter settings for scenario simula-
tions. In the following this method is applied to the case of integrating
residential PV-MHS systems into the Cologne building sector, consider-
ing the existing grid infrastructure for gas and heat. The framework
is discussed in Section 2.1 defining the selected scenarios with an
attached definition of target attributes in Section 2.2. In Section 2.3
the selected data sets are described, followed by the data processing of
the classification procedure in Section 2.4.

2.1. Scenario selection

In the case of grid-integrated residential PV-MHS systems, the clas-
sification procedure is based on a set of target attributes describing the
building types specific to the target scenarios. Three scenarios have
been selected along the available energy grid infrastructure, in this
case connections to electricity, gas, and heat networks. It is assumed
that an urban building is connected only to the electricity grid or to
the electricity grid and the GG or a DH network. In Germany, nearly
100% of buildings are connected to the electricity grid. However, due
to the cost of installation, DH networks are limited in their expansion
and tend to be concentrated in urban centers. GG networks are more
extensive. In the case of Cologne they reach nearly into every suburb.
Buildings connected to the different grids will have different energy
system configurations. In a future hydrogen supported energy system
the use of hydrogen gas and storage opportunities in an MHS are
unclear, especially if taking into consideration the use of excess heat
from the hydrogen conversation processes. Buildings connected to DH
can benefit from a centralized MHS using the DH to transport excess
heat to the buildings. Buildings connected to the GG can use the grid
itself as hydrogen storage, but the generation of hydrogen presumably
will be centralized. Use of hydrogen would occur in the individual
buildings, allowing a heat recovery on cold days and therefore sup-
porting the heating system, as well as lowering the power needs of the
3

electricity grid or even feed-in of power. Buildings only connected to
the electricity grid must implement the whole hydrogen storage path
and handle their seasonal energy storage to gain benefit by raising their
self-consumption. As a connection to the electricity grid is given in
all scenarios, the scenarios are named ‘Power grid’ (neither DH nor
GG connection), ‘District Heating’, and ‘H2 Gas Grid’. The distinctive
description of the scenarios is listed in Table 1. Visualizations of these
scenarios can be found in Fig. 2. The exemplary region studied in
the following, namely the Cologne city area, houses about 1 million
inhabitants in an area of about 405 km2. The city’s utility service
offers a gas grid (GG) reaching into nearly every district and four
separated DH networks. In the area, about 143,784 buildings are listed
as residential buildings according to [30] in 2020. These buildings
differ in features of various characteristics and form an inhomogeneous
building portfolio.

For assessing the energy demand of city areas, a bottom-up energy
mapping method is used. To estimate the energy need of the building
and their inhabitants various attributes about a building are collected or
estimated. This method accounts for the grid connection, the building’s
age, the number of flats and their floor space of a building as well as
its number of inhabitants. As these data are not available for public use
for each building in detail, an algorithm using open data sources from
the government and municipal statistics is developed combining and
assigning possible buildings parameters to each unit. These parameter
sets are then consolidated into three main attributes as defined in the
following Section 2.2. Clustering of buildings with similar parameter
sets is possible through the use of these attributes. Districts with similar
parameters form a nucleus by considering their spatial situation and
result in sample districts and buildings for the scenario calculations.

2.2. Attribute definition

In order to classify the common building types within the limited
region, three attributes were chosen.

1. building type
2. self-sufficiency rate
3. grid access

These attributes were extracted from the cluster of drivers associ-
ated with the scenario descriptions by trying to combine availability
or derivation from known data sets with significance in the considered
scenario of the sector analysis.

The building type is defined according to the Institute for Housing
and Environment (IWU), which fulfilled the German part of a European-
wide project EPISCOPE, classifying existing residential buildings ac-
cording to age, size, number of flats, and further parameters [31].
All buildings are categorized based on their living area, the number
of dwelling units in the building, and the location of the building in
relation to other buildings (freestanding, semi-attached, or attached).
In accordance with common typification, buildings are represented in
four groups:

1. Single or double family house (SFH/DFH/SDFH)
2. Apartment building (AB) with 3–6 dwellings
3. Big apartment building (BAB) with 7–13 dwellings
4. Living quarter (LQ) including high-rise buildings with more than

13 dwellings

In seeking a representative net energy load for each building, the
focus is on the two main drivers of energy use. According to the data
analysis of BMWK in the years 2011–2019, the residential sector uses
around 70% of its end energy demand for heating and around 30%
for electricity (lighting, appliances, hot water, etc.) [1]. Overall, a
building’s energy needs can be listed in three categories: electricity,
heating, hot water. Each of these is caused by a mixture of dependencies
from:
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Fig. 2. Descriptive depiction of the scenarios: 1. Power Grid, 2. District heating, and 3. H2 Gas Grid — with the interconnecting grid between the buildings of electricity (yellow),
district heating (red), and H2 gas (blue). Possible implementation of storages (MHS in black, thermal storage in red/blue, and battery (gray/green).
Table 1
Target scenarios for city district/living quarter evaluation.

Attributes\Scenario Power grid District heating H2 Gas Grid

Grid Connection Power grid only PG, DH, potentially GG
for DH-subnet

PG and GG

Presumably dominant
building type

SFH and DFH District-wise similar,
leaning to greater share
of MFH

District-wise similar

Self-sufficiency rate Decent Medium to low Very low

MHS size and
placement

Individual small units
in each building

Big units in district
subnet

GG used as seasonal
storage,
use of MHS only
supportive

H2 conversion
placement

Individual in each
building

Central unit for subnet Split generation and
use

Alternative
developments

Competition or
combination
with heat-pump

CHP or solar-thermal
supported DH

Change of supply type

Operation Electricity-driven Heat-driven Mixed

Grid simulation
complexity

Simple, high similarity Medium, single district
unit

Complex, variant
demand

Individual simulation
complexity

Complex, various
components

Medium, single district
unit

Medium, variant
demand
• building shape, materials, common walls, location, energy gain,
. . .

• number of flats in building
• flat size, infrastructure, . . .
• number of inhabitants per flat
• inhabitant’s habits, appliances, . . .

To balance all these parameters and their variations is impossi-
ble. Therefore, the greatest impact on energy dependence is usually
assumed to be determinant. Heating needs are calculated by square
meter of the flat’s ground surface, ambient temperature, and state of
the building’s insulation capacities. Electricity and hot water needs
are mainly driven by consumption per inhabitant group. All electrical
energy loads are summed up to 𝐸𝐿. To include a future energy gain
from possible PV modules, pre-evaluated solar roof data is included.
The annual calculated solar gain is represented by 𝐸𝐺. To calculate an
annual electrical self-sufficiency rate 𝑟𝑠𝑠 following ratio is defined:

𝑟𝑠𝑠 =
𝐸𝐺
𝐸𝐿

(1)

The third attribute for clustering is the grid access. It differs the
buildings by their possible access to existing energy grids. In Germany
a building’s connection to the electricity grid, especially in urban and
semi-urban areas, estimates close to 100%. Additional energy grid con-
nection to a gas grid or to district heating is very likely. The allocation
of buildings to supply networks mainly relies on the maps given and
the proximity of identified network segments to the buildings.
4

Starting with multiple data sources, an algorithm is formed that
interleaves the described data sources and combines them to selected
attributes.

2.3. Data sources

In the following paragraph, the data sources and their pre-processing
are presented.

Cadastral data. All building-related properties are extracted from a GIS
open-access data set provided by the regional government [32] named
ATKIS (Official Topographical Cartographic Information System). From
the so called LoD2 building model [33] information about a building’s
base area perimeter, roof shape and its ridge height, as well as build-
ing’s identification number, current use, and its address are extracted.
A building that contains at least one dwelling may consist of several
parts. These parts will most likely, but not necessarily, have the same
building identification number. Only building parts that are defined
to be residential buildings are extracted from the database [18]. The
data sets are further reduced by combining building parts with the
same identification number, same location, same address, or similar
proximity. To reduce the amount of data these building parts were
unified, by extending the properties of the biggest building part (by
ground surface) to all building parts with same ID or location. Building
parts with missing address data are added to the nearest address. Data
sets with the same address within 100 m are also be joined to be
represented as one. Buildings with n distinct house numbers in the
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Table 2
Average electricity consumption in kWh in 2013 by household size [35].

Persons in
Household

Observations Median
kWh/(flat x year)

1 649 1957
2 889 3528
3 294 4561
4+ 273 4568

address are counted as a single building with n parts with the same
properties.

A useful additional information that completes the typification of
the IWU [31], but not included in the dataset, is the building type
neighboring situation. It determines if a building is freestanding, with-
out any contact to neighboring buildings or has one or two shared walls
with the adjacent buildings. For this, the boundaries of all buildings
are compared to the four nearest neighbors according to their loca-
tion. If overlapping boundary points are found, they are considered
accordingly.

A building’s living area is needed for the assignment of flats, the
estimation of inhabitants, and the building’s age. For this the ground
surface, the roof ridge height, and the roof type are used to estimate
a usable living area per building. The results for the living area are
adjusted according to the given data of the municipal statistics for the
total living area per inhabitant.

Solar roof data. The solar roof data is a pre-evaluated data set made
available to the public by the State Agency for Nature, Environment and
Consumer Protection (LANUV) of North-Rhine-Westphalia (NRW) [34].
Roof surface data from LIDAR-scans were evaluated in terms of size,
altitude, azimuth, and shadowing to calculate potential areas of PV
modules and their solar electricity yield. Construction-related factors
such as condition and static of the roof or building, as well as re-
cessed roof windows and smaller roof disturbances like vents were
not considered in this data basis. The annual solar power generation
was pre-calculated based on technological development from 2015.
Nowadays, these values give back the lower edge of the possible. Con-
veniently most identified potential solar roof surfaces were assignable
to its building by the known building’s identification number of the
cadastral data. For some roof area this information was missing or could
not be assigned. Since the majority of buildings are suitable for PV
installation, the lesser error is to assign roofs without identified solar
area to the nearest comparable solar roof (similar roof size within the
next 10 buildings) on the same street and copy their data set corrected
by the ratio of their ground areas.

Electricity demand data. The annual electricity consumption is taken
from a study by RWI [35] as listed in Table 2, derived from observation
of several households and their energy consumption.

Census data. As the energy use of electricity is referenced by a dwell-
ing’s inhabitants, governmental open data of its last population census
(2011) [36] to estimate the number of persons living in a particular
building is used. The census data is available in a gridded resolution
of 100 m per 100 m. The statistical data is slightly distorted due
to statistical error as well as privacy protection. Additionally to the
population data, the sizes per dwelling, number of building types,
heating units, etc. were counted. Used data and their categories are
listed in Table 3. The following adaption is implemented to improve
the census data:

• Grid tiles without dwelling but with n cadastre buildings existent
are counted as n buildings found

• Grid tiles without population but with dwellings are counted with
interpolated population data of the area

• Grid tiles without residential buildings are neglected
5

Fig. 3. Distribution map the city’s gas grid (gray) and district heating (black) from
data obtained by [38,39].

• Grid tiles with less population than buildings are counted with
one person per flat

• Outliers with more than 700 m2 living area per inhabitant or less
than 10 m2 living area per inhabitant are adjusted to fit the border

Nevertheless, this fine grid of data gives a good estimate of higher and
lower populated areas and can easily be used to calculate inhabitants
per m2 of living area and therefore give a good estimation of number of
inhabitants per flat or building. The local population density calculated
are then be adjusted to fulfill the number of inhabitants for the whole
region, as stated as official number in [30].

Map data. Two different types of network maps are used to deter-
mine whether a building is likely to be connected to the existing gas
network or to a district heating networks. Maps from both networks
were publicly available but with unknown date of origin. Similar grid
connections might be estimable by analyzing heating needs or creating
a synthetic grid similar to a city’s street network [37]. The high-
resolution district heating network is published on municipal provider’s
website [38]. The gas grid is obtained from a published pdf file with a
maximum resolution of approx. 11622 × 12489 pixels [39]. Depending
on the different map resolutions, networks are assigned in order. Build-
ings connected to district heating are not connected to the gas network,
even if the gas network is in front of the building. Gas connections
are assigned street by street with an almost exclusive quota. In Fig. 3
both networks are shown in an overlay. As central heating system for
living quarters might stretch over several buildings an adaption with
data from the census is made in grid tiles with majority allocation
to district heating. Nevertheless, a higher non-assignment of attached
living quarters is likely.

Municipal statistical data. The municipal statistical data is published by
the city’s own statistic department [30]. As this statistical data is more
recently published, it is used to correct the approximation of the living
area to a reasonable verified number. Also, the overall population is
adapted to newer values, but the distribution stays as quoted by the
census data.

2.4. Data processing

Fig. 4 shows a simplified schematic of the data processing during the
classification procedure. It shows, how data, originating from several
source databases, are combined, corrected and collected in interim
attributes to result in three target attributes to characterize a specific
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Table 3
Categories of the extracted census data set [36].

Living area
(# bldgs of m2 cat.)

Population
(# inhabitants)

Building type
(# buildings)

Construction date
(year range)

Heating type
(# units)

Below 30
30–39
. . .
170–179
180 and more

Total
Sex (male/female)
Age distribution
(ten years age groups)
Age distribution
(five classes of years)

Detached SFH/DFH
Semi-detached SFH/DFH
Terraced SFH/DFH
3–6 dwellings in AB
7–12 dwellings in AB (BAB)
13+ dwellings in AB (LC)
(other)

Before 1919
1919–1949
1950–1959
. . .
1990–1999
2000–2005
2006 and later

DH
Apartment heating
Block heating
Central heating
Individual stoves
Fig. 4. Simplified schema of data sources and their use in the algorithm.
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uilding. A connection of different data sets in between the databases
s made on basis of same ID, in the case of cadastre data to solar roof
ap, or location of building for connecting cadastre data, census and
etwork data.

Assisting interim attributes have to be calculated and assigned. As
nterim attributes serve:

(a) the building attachments — a building’s shared walls to its
neighbors

(b) the living area — floor space occupied by dwellings
(c) the number of flats in a building
(d) the number of inhabitants in a flat/building
(e) the age of the building — related to different energy standards

On basis of the interim attributes, the three target attributes (build-
ng type, self-sufficient rate, and building’s grid access) are determined
y three processes:

• the classification of a building as a defined type
• the allocation of annual PV production and energy demand to

calculate the self-sufficiency rate
• the distance determination between a building to the next avail-

able energy grid (GG, DH) sets the grid access

Starting with an analysis of the given boundaries of all buildings
rom the LOD2 model, the four closest buildings (by location) are
hecked for matching points to determine a building’s attachment,
r in other words, if a building is free-standing or shares walls with
ne or more buildings.

More important is the estimation of a building’s living area, as it
nfluences all three assignments of flats, inhabitants, and a building’s
ge which are all used to calculate the building’s energy balance.
he estimation of the building’s living area is based on the given
round surface, the measured roof ridge height, and the roof shape.
he different roof shape types are acknowledged by a rough factor for
he highest floor space. The number of floors is estimated by the roof
6

ridge height of the building part divided by the most common floor
height around 2.8 m. For larger multi-story buildings, a deduction of
10% of the living area is made to account for common stairwells, lifts,
walkways, and walls. This deduction plays a minor role, as the total
living area is subsequently corrected by a factor to consider the official
statistical data of the municipality from 2019.

The assignment of inhabitants is performed with data from the
ensus. In each tile of the census, the number of inhabitants is divided
y the sum of flat space (given in 10 flat size categories), to calculate a
ocal population density. Boundary tiles without data are extrapolated
rom nearby tiles. A minimum occupancy of one person per flat is
ssumed. This population density is then used with the estimated living
rea to calculate the number of inhabitants per building.

The assignment of flats follows a similar approach. In each map
ile of the census a count of flats per building type is given. As the
uilding type is not yet known, the overall flat count per map tile affects
ts procedure. If no additional census data is available, the overall mean
lat size of 76 m2/flat is used to determine a buildings number of flats.
f a flat count in more than 3 house types are given, the frequency
istribution is used to assign single dwellings to the lower end of living
rea values per building and more flats to the possible AH with higher
iving area values. A third case is in between given cases, here the flat
ount is used to calculate a mean size of a flat and assign a certain
umber of flats per building accordingly.

The assignment of age is made by overlaying the frequency distri-
ution of the buildings’ volume and the frequency distribution of the
uildings per age following the assumption, that similar buildings are
onstructed in a similar time frame. As the distribution is also based on
he census data in 100 m × 100 m map tiles, the overall influence on
he final energy balance is acceptable.

The building classification is based on a previous analysis of
he building flat assignment and the subordinate building attachment.
ased on these attributes, the predefined building type is assigned to
he building dataset.
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The allocation of energy quantities from solar roof generation
and electricity load is achieved with the following procedure. For the
solar roof gain, the pre-calculated annual gains are provided by the
assigned dataset. The electricity consumption is taken from RWI [35].
It depends on the household size. A building’s electricity consump-
tion is determined by assigning the median value for electricity con-
sumption per flat and household size to each dwelling and totaled
accordingly per building. The self-sufficiency rate is then calculated
according to Eq. (1). A future extension of the self-sufficiency rate using
a cross analysis with heat loads per house type based on IWU [31] is
conceivable.

The distance determination considers whether a building is con-
nected to an existing district heating or to the existing gas grid. With
the higher resolution of the district heating network the assignment is
performed by comparing whether a coordinate of the network lines is
actually inside or near the building’s ground borders. Since there are
building blocks with central heating for more than one building, and
the attached buildings were not connected to the network, additional
data from the census is used. Buildings in map tiles with a high to
exclusive use of district heating, as indicated by the census data, were
also assigned as users of the district heating network.

For all other buildings, the distance from the building location to
the nearest gas grid point is counted, which is obtained by detecting
gas pipes in the gas grid image. The resolution only allows to check
if a street or a part of a street is equipped with the GG. Therefore, a
building is counted as ‘gas grid available’ if the distance to the next
gas grid point is less than the usual street width of about 10 m plus
a distance for the location point to its ground boundary, estimated by
half the square root of its ground surface.

3. Results

The following result graphs and values are based on the previously
described data sources and the current development state of the al-
gorithm. Nearly 300,000 data sets for buildings or building parts are
found in the cadastral data that belong to the Cologne city area and are
analyzed for the purpose of this work. About 172,000 building parts
are identified for residential use. From the solar potential data base
all roof entries were scanned and accumulated to about 163,000 solar
roofs on buildings or building parts. A first matching, by ID, results
in 132,000 building parts with data of solar potential. Further joining
of these building parts by building ID, address and proximity, leaves
about 134,000 building units with only 19,000 roofs without data.
As described above, missing solar roof data is generated from nearby
buildings for these buildings leaving finally only 1.3% of the buildings
without solar roof data.

The official data from the city has 143,556 residential buildings
listed for 2019. Nearly 147,000 data entries of buildings with resi-
dential purpose are counted by the algorithm using ID, location, and
address as separation or unification units. This is a good indication of
consistent building count. The assignment of flats in a building groups
these into 5 categories. The survey identified 90,107 SDFHs, 26,184
ABs, 13,437 BABs, and 4,304 LQs in the considered area. Regarding
the connection of buildings to each other, the algorithm identified
30,085 free-standing buildings, 50,119 buildings with one and 53,828
buildings with two or more shared wall sections with neighboring
buildings.

A heat map is used to visualize the results from analyzing residential
buildings for each of the three scenarios by distribution of building
types across the entire city area. The map highlights different districts
with similar building types. In each heat map the city center is marked
with two concentric circles of 2.5 and 5 km radius. A corresponding
statistical evaluation of the electrical self-sufficiency rate by building
type is shown by a box plot. The horizontal red line in the box
plots represents a self-sufficiency rate of one. Buildings above this line
indicate a surplus of electrical energy within a year, while those below
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Fig. 5. Heat map of confident building types connected to GG and power grid.

the line require additional electrical energy to meet their needs. Several
key elements can be observed in the box plot. First, the median value
represents the central tendency of the data distribution. It provides
an indication of the typical solar energy to energy need ratios for
the different building types. Buildings identified as outliers, with more
than three scaled median absolute deviations, are shown as individual
data points outside the whiskers in the box plot. These datasets are
discarded as they do not represent the common range of a building
type specific self-sufficiency rate and are therefore not shown in the
heat map. The inner quartile data points, shown in the box plot, are
considered representative buildings for the scenario cases. These data
points provide a more accurate representation of energy production and
consumption for each building type. Overall it can be observed, that
single-family homes (SFH) tend to have a higher solar energy input per
living surface compared to multi-family homes (MFH) or living quarters
(LQ) with more stories. This suggests that SFHs have a greater potential
for self-consumption of own produced solar energy.

The heat map in Fig. 5 shows all buildings by type which are
connected to the extended GG. It is noticeable that the inner city area
has a higher density of apartment buildings (AB) to living quarters
(LQs), while the outer city area has more buildings functioning as
single/double-family homes (SDFH) to smaller apartment buildings
(AB) with 3–13 dwellings. Based on the analysis of the inner quartile
data points and the self-sufficiency rate, the conclusion is, that there
is an overall higher self-sufficiency rate in the outer parts of the city.
Given the higher proportion of SDFH in the outer parts of the city,
it is likely that these building types contribute to the overall higher
self-sufficiency rate observed in these areas. This suggests that the
outer parts of the city have a greater potential for renewable energy
generation and less dependence on external energy sources.

In Fig. 7 the heat map with buildings connected to the district heat-
ing grid is shown. As observed previously, Cologne has a larger central
grid and several smaller district grids for district heating distribution. In
the map, these buildings connected to these grids are depicted and the
district-wise smaller grids are shown clearly separated from the central
grid. Connected to the city center grid, the building types of AB, BAB
and LQ are prevalent. Clearly identifiable are some districts of the outer
city area, were only SFH to DFH buildings are connected to one of the
smaller DH grids.

However, when examining the data set of connected residential
buildings, it becomes apparent that the data base is reduced, as in-
dicated by the point density of outliers in corresponding data set in
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Fig. 6. Box plot of building types connected to different grids, horizontal red line indicates self-sufficiency rate equal to one.
Fig. 7. Heat map of confident building types connected to DH and power grid.

Fig. 6. Next to the GG, the number of residential buildings connected
to DH is small. Only about 5% of all identified residential buildings
are connected to the DH grid. The self-sufficiency rate of SDFH in
this case is even higher compared to the other two scenarios. Espe-
cially in the outer city area, as seen in the heat map, some districts
are nearly solely occupied by single-family and double-family homes
(SDFH). This suggests that these types of buildings have a greater
potential for surplus energy generation or a reduced need for additional
electrical energy. By identifying the districts’ prevalent buildings style,
the buildings attributes can be traced back to flat roof single-story
houses. This building style was particularly prevalent in the 1970s
and 1980s. Flat roofs provide ample space for the installation of solar
panels, allowing for sufficient solar energy generation. In addition, the
age of the buildings suggests that the occupancy is currently relatively
low due to demographic changes and combined with the single-story
nature of these houses, energy use is in the lower range, resulting in
overall higher self-sufficiency rate.
8

Fig. 8. Heat map of confident building types only connected to the power grid.

In the last set of results, the examination of the heat map (Fig. 8)
shows all the buildings that are neither connected to the gas grid (GG)
nor district heating (DH). The density of buildings in this heat map
gives a clear insight into the concentration in the outer districts of the
city with building types leaning in the SFH to AB range.

Several observations can be made when analyzing the map. First,
in these outer districts there is a significantly higher number of single-
family homes (SFH) compared to other building types. Accordingly
there is a prevalence of SFH in areas where GG or DH connections
are not present. Also districts with same building types are clearly
seen and can be separated and identified for real world comparison.
Additionally, when looking at the self-sufficiency rate of all building
types (Fig. 6), their mean value is set slightly higher compared to the
gas grid scenario. This can be attributed to a higher solar energy yield
per living area than in the more central districts. The abundance of SFH
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in these areas allows for a greater potential for solar energy generation,
resulting in a higher self-sufficiency rate.

4. Discussion

As shown in the previous chapter, public data can be used to classify
buildings in urban areas according to building type, self-sufficiency
rate, and grid access. Self-sufficiency is estimated on the basis of net
energy demand considering photovoltaic rooftop potential as well as
building-type dependent heat and electricity demand distinguishing
different types of grid access. With a newly developed algorithm, a
representative energy load of each building can be calculated. For this,
each building is classified based on specific attributes and the energy
demand is estimated.

A representative amount of all buildings in the whole city is evalu-
ated. The buildings are paired with official statistical data to estimate
the occupancy of each building. The number of flats and persons
per building brings more detail to the analysis and improves the
energy demand estimate compared to regular citywide averages. For
the allocation of the buildings to the infrastructural energy grids some
adjustments could be made to known building indicators, but the anal-
ysis certainly does not reflect complete and unambiguous allocations
of buildings to specific networks. Additionally, various inconsistencies
between the datasets, including different data set recording dates, ID
mismatches, and missing data due to data protection, result in outliers.
Some of these can be avoided by possible compensation, e.g. by filling
in data from neighboring solar roofs. Nevertheless, the energy disper-
sion in the building type class is relatively high, but the inner quantiles
are well represented and therefore the outliers are easy to identify.

Understanding the historical context and architectural features of
districts provides valuable insights into the factors contributing to the
observed self-sufficiency rate variations. This knowledge can inform
future urban planning and energy management strategies, promoting
sustainable and energy-efficient building designs that align with the
specific characteristics of different regions and grid connections within
the city.

This work focuses on the individual building level and its yearly
energy demand by including sample energy assessments of end en-
ergy use, similar to evaluated data sets by [13,40]. Details about the
buildings inhabitants are not known, therefore a creation of demand
profiles based on the occupant behaviors, like conducted by [41], are
not included.

The use of open and public datasets is very beneficial in terms
of availability, statistical range, and protection of privacy, but it also
has its challenges in terms of missing or conflicting data as well as
unclear definitions. Due to the chosen area and its size, the availability
of the data and the resolution are of crucial importance. The selected
datasets that form the input have a good overall resolution, with the
coarsest defining the horizon of observation, which in this case is the
population census data, limiting the resolution to 100 m × 100 m
tiles. The identification of single buildings and their energy demand
might vary, due to unification of population density over a single tile.
Identifying similar districts and summarizing the energy demands of
these are a very useful tool for planning and development of energy
grids, as well as in this case, looking for potential placement and sizes
of technology implementations.

The used data sets are available for many German or European
metropolitan areas. If cadastral data might not be available, building
attributes can be extracted to a certain accuracy from maps, GIS,
LIDAR or satellite data. Solar potential data might be derived from
this geometrical data set as well, in combination with irradiation data.
Statistical data can be included in coarser resolution if governmental
census data is not given. In general, the method developed with the
assumptions presented can also be applied for the classification of other
urban and semi-urban areas including the assessment of their grid
9

infrastructure.
5. Conclusion

The method used to classify buildings for bottom-up energy demand
mapping was successfully applied to all three scenarios. The same
approach can be performed to assess similar housing situations in other
urban or suburban areas.

Applying the bottom-up method to a restricted area, evaluating the
whole amount of individual buildings leads to a distribution w.r.t the
targeted parameters. In each distribution of exclusive parameters, a
statistical evaluation provides information such as median and range
from building types and their energy demand. The individual median
building or locally clustered similar buildings can serve as representa-
tive and will enhance energy demand and grid use simulations. The use
for identifying similar districts and summarizing the energy demands
of these are a very useful tool for planning and development of energy
grids, as well as in this case, looking for potential placement and sizes
of technology implementations.

Understanding the relationship between building types, gas grid,
and district heating connectivity, and the self-sufficiency rate supports
energy planning strategies and contribute to the development of more
sustainable and energy-efficient urban areas. By promoting the expan-
sion of district heating infrastructure and encouraging the adoption of
energy-efficient building designs, cities like Cologne can work towards
achieving their energy and sustainability goals. The future role of the
gas grid has to be determined. A re-dedication of existing natural gas
pipelines to build up a hydrogen grid is feasible and might play a role
in future energy distribution.

The research presented in this paper forms a basis for future work.
With identified districts, matching the scenarios, a multiphysical simu-
lation model will be created in MEgy simulator [4]. Calculated energy
demand and surpluses are to be used as key inputs to optimize storage
sizes. Following the method suggested by [3], a metamodel that can
be created from the dynamic simulation results will be used for the
sizing optimization. In addition, planned hydrogen generator plants as
well as (possibly retrofitted) combined heat and power plants shall be
taken into account. Respective models and data from [42,43] shall be
incorporated.
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