Symbolic Representation of Execution Specific Knowledge

  • In the field of service robots, dealing with faults is crucial to promote user acceptance. In this context, this work focuses on some specific faults which arise from the interaction of a robot with its real world environment due to insufficient knowledge for action execution. In our previous work [1], we have shown that such missing knowledge can be obtained through learning by experimentation. The combination of symbolic and geometric models allows us to represent action execution knowledge effectively. However we did not propose a suitable representation of the symbolic model. In this work we investigate such symbolic representation and evaluate its learning capability. The experimental analysis is performed on four use cases using four different learning paradigms. As a result, the symbolic representation together with the most suitable learning paradigm are identified.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Availability
Metadaten
Document Type:Conference Object
Language:English
Author:Anastassia Kuestenmacher, Paul G. Plöger
Parent Title (English):30th International Workshop on Principles of Diagnosis DX'19, November 11-13, 2019, Klagenfurt, Austria
Pagenumber:7
URL:https://dx-workshop.org/2019/accepted-papers/
Date of first publication:2019/10/08
Submission status:accepted
Departments, institutes and facilities:Fachbereich Informatik
Dewey Decimal Classification (DDC):0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Entry in this database:2019/11/09