Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 4 of 3
Back to Result List

Bond-graph-based fault detection and isolation for hybrid system models

  • For the case when the abstraction of instantaneous state transitions is adopted, this paper proposes to start fault detection and isolation in an engineering system from a single time-invariant causality bond graph representation of a hybrid model. To that end, the paper picks up on a long-known proposal to model switching devices by a transformer modulated by a Boolean variable and a resistor in fixed conductance causality accounting for its ON resistance. Bond graph representations of hybrid system models developed in this way have been used so far mainly for the purpose of simulation. The paper shows that they can well constitute an approach to the bond-graph-based quantitative fault detection and isolation of hybrid models. Advantages are that the standard sequential causality assignment procedure can be a used without modification. A single set of analytical redundancy relations valid for all physically feasible system modes can be (automatically) derived from the bond graph. Stiff model equations due to small values of the ON resistance in the switch model may be avoided by symbolic reformulation of equations and letting the ON resistance of some switches tend to zero, turning them into ideal switches. First, for two examples considered in the literature, it is shown that the approach proposed in this paper can produce the same analytical redundancy relations as were obtained from a hybrid bond graph with controlled junctions and the use of a sequential causality assignment procedure especially for fault detection and isolation purpose. Moreover, the usefulness of the proposed approach is illustrated in two case studies by its application to standard switching circuits extensively used in power electronic systems and by simulation of some fault scenarios. The approach, however, is not confined to the fault detection and isolation of such systems. Analytically validated simulation results obtained by means of the program Scilab give confidence in the approach.

Download full text files

Export metadata

Additional Services

Search Google Scholar Check availability

Statistics

Show usage statistics
Metadaten
Document Type:Article
Language:English
Author:Wolfgang Borutzky
Parent Title (English):Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Volume:226
Issue:6
First Page:742
Last Page:760
ISSN:0959-6518
URN:urn:nbn:de:hbz:1044-opus-8962
DOI:https://doi.org/10.1177/0959651812440665
Publisher:Sage
Publishing Institution:Hochschule Bonn-Rhein-Sieg
Date of first publication:2012/05/18
Embargo Date:2013/05/18
Copyright:© IMechE 2012. This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.
Keyword:ARRs; FDI; Hybrid models of engineering systems; averaged bond graph models; bond graphs; operation mode independent causalities; power electronic systems
Departments, institutes and facilities:Fachbereich Informatik
Dewey Decimal Classification (DDC):0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Open access funding:Deutsche Forschungsgemeinschaft / Allianz- und Nationallizenzen: Diese Beiträge sind mit Zustimmung der Rechteinhaber aufgrund einer DFG-geförderten National- bzw. Allianzlizenz frei zugänglich.
Entry in this database:2015/04/02
Licence (Multiple languages):License LogoIn Copyright (Urheberrechtsschutz)