Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 17 of 2033
Back to Result List

Drosophila lifespan control by dietary restriction independent of insulin-like signaling

  • Reduced insulin/insulin-like growth factor (IGF) signaling may be a natural way for the reduction of dietary nutrients to extend lifespan. While evidence challenging this hypothesis is accumulating with Caenorhabditis elegans, for Drosophila melanogaster it is still thought that insulin/IGF and the mechanisms of dietary restriction (DR) might as yet function through overlapping mechanisms. Here, we aim to understand this potential overlap. We found that over-expression of dFOXO in head fat body extends lifespan and reduces steady-state mRNA abundance of insulin-like peptide-2 under conditions of high dietary yeast, but not when yeast is limiting. In contrast, conditions of DR that increase lifespan change only insulin-like peptide-5 (ilp5) mRNA abundance. Thus, reduction of ilp5 mRNA is associated with longevity extension by DR, while reduction of insulin-like peptide-2 is associated with the diet-dependent effects of FOXO over-expression upon lifespan. To assess whether reduction of ilp5 is required for DR to extend lifespan, we blocked its diet-dependent change with RNAi. Loss of the ilp5 dietary response did not diminish the capacity of DR to extend lifespan. Finally, we assessed the capacity of DR to extend lifespan in the absence of dFOXO, the insulin/IGF-responsive transcription factor. As with the knockdown of ilp5 diet responsiveness, DR was equally effective among genotypes with and without dFOXO. It is clear from many Drosophila studies that insulin/IGF mediates growth and metabolic responses to nutrition, but we now find no evidence that this endocrine system mediates the interaction between dietary yeast and longevity extension.

Export metadata

Additional Services

Search Google Scholar Check availability

Statistics

Show usage statistics
Metadaten
Document Type:Article
Language:English
Author:Kyung-Jin Min, Rochele Yamamoto, Susanne BuchORCiD, Michael Pankratz, Marc Tatar
Parent Title (English):Aging Cell
Volume:7
Issue:2
First Page:199
Last Page:206
ISSN:1474-9718
DOI:https://doi.org/10.1111/j.1474-9726.2008.00373.x
PMID:https://pubmed.ncbi.nlm.nih.gov/18221413
Publisher:Blackwell Publishing
Place of publication:Oxford
Date of first publication:2008/01/21
Keyword:Drosophila; aging; insulin/IGF-1 signaling; longevity regulation
Dewey Decimal Classification (DDC):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Entry in this database:2019/02/26