• search hit 3 of 3
Back to Result List

Towards Finding an Optimal Flight Zone for a Side-by-Side Tracking UAV w.r.t Extraction of Dynamic Vector Fields

  • In this paper we present work towards finding an optimal flight zone of an Unmanned Aerial Vehicle (UAV) as adhering to space-restricting factors brought upon by a dynamic vector field extraction algorithm. The objective of the UAV is to perform side-by-side tracking and following of a lightweight ground vehicle while acquiring high quality video of tufts attached to the side of the tracked vehicle. The recorded video is supplied to a dynamic vector field extraction algorithm that produces the positions and deformations of the tufts over time as they interact with the surrounding air, resulting in an airflow model of the tracked vehicle. The present limitations of wind tunnel tests and computational fluid dynamics simulation suggest the use of a UAV for real world evaluation of the aerodynamic properties of the shell of the vehicles exterior. The novelty of the proposed approach is alluded to defining specific flight zone restricting factors while adhering to the vector field extraction algorithm, where as a result we were capable of formalizing a locally-static and a globally-dynamic geofence attached to the tracked vehicle and enclosing the UAV. Moreover, a drone video quality and stability analysis tool was implemented to aid in quantifying the quality of the drone video and in constructing the geofence.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Availability
Metadaten
Document Type:Conference Object
Language:English
Parent Title (English):19th International Arab Conference on Information Technology (ACIT 2018), Werdanye, Lebanon, 28-30 Nov. 2018
First Page:1
Last Page:7
ISBN:978-1-7281-0385-3
DOI:https://doi.org/10.1109/ACIT.2018.8672714
Publisher:IEEE
Date of first publication:2019/03/25
Award:Best Paper Award
Tag:UAV; aerodynamics; drone video quality; dynamic vector fields; flight zone; geofence
Departments, institutes and facilities:Fachbereich Informatik
Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE)
Dewey Decimal Classification (DDC):6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Entry in this database:2019/03/29