Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 13 of 16
Back to Result List

Interference with activator protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells

  • BACKGROUND Activator protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2alpha and AP-2gamma is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms. METHODS We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant. RESULTS We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed Cell Death and Cell Adhesion and Migration as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. Ctgf, Nrp1, Tnfaip3, Gsta3) and AP-2 and other main apoptosis players and to create a unique network. CONCLUSIONS Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the ability to induce apoptosis. Therefore, interference with AP-2 function could increase the sensitivity of tumor cells towards therapeutic intervention.

Export metadata

Additional Services

Search Google Scholar Check availability

Statistics

Show usage statistics
Metadaten
Document Type:Article
Language:English
Author:Verena Thewes, Francesca Orso, Richard Jäger, Dawid Eckert, Sabine Schäfer, Gregor Kirfel, Stephan Garbe, Daniela Taverna, Hubert Schorle
Parent Title (English):BMC Cancer
Volume:10
First Page:192
ISSN:1471-2407
DOI:https://doi.org/10.1186/1471-2407-10-192
PMID:https://pubmed.ncbi.nlm.nih.gov/20459791
Publisher:BioMed Central
Date of first publication:2010/05/11
Departments, institutes and facilities:Institut für funktionale Gen-Analytik (IFGA)
Dewey Decimal Classification (DDC):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Entry in this database:2018/07/14