• search hit 2 of 2
Back to Result List

Interfacial Tension and Related Properties of Ionic Liquids in CH4 and CO2 at Elevated Pressures: Experimental Data and Molecular Dynamics Simulation

  • Experimental data on the interfacial tension of ionic liquids in CO2 and CH4 atmospheres at elevated pressures (up to 20 MPa and 353 K) are presented and discussed. In addition, molecular modeling is utilized to describe the thermophysical properties under process-relevant conditions. Molecular modeling has the potential to predict findings in order to avoid costly experiments in the future and to explain the principal behavior of the whole system in terms of simulated concentration profiles. The interfacial tension is recognized to be an important quantity in a number of processes, e.g., for describing multiphase flow. By dissolving within the liquid phase, gases reduce the interfacial tension, which in turn is closely related to the phase behavior. It is shown that the experimentally determined interfacial tension, which decreases from values of 50 mN·m–1 under atmospheric conditions down to 10 mN·m–1 in CO2 but still above 30 mN·m–1 in CH4 at 10 MPa, is appropriately reflected by molecular dynamics (MD) simulations. The obtained data are analyzed in view of literature data and by using experimentally determined pressure-dependent densities and solubilities of CH4 and CO2 within ionic liquids. The results form part of a database for the ongoing development of MD simulations.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Availability
Metadaten
Document Type:Article
Language:English
Parent Title (English):J. Chem. Eng. Data (Journal of Chemical & Engineering Data)
Volume:62
Issue:8
First Page:2234
Last Page:2243
ISSN:0021-9568
DOI:https://doi.org/10.1021/acs.jced.6b00751
Publisher:ACS Publications
Date of first publication:2017/07/28
Note:
The authors gratefully acknowledge financial support by the BMBF "01IH13005J SkaSim: Skalierbare HPC-Software fur molekulare Simulationen in der chemischen Industrie".
Departments, institutes and facilities:Fachbereich Elektrotechnik, Maschinenbau, Technikjournalismus
Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE)
Dewey Decimal Classification (DDC):5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Entry in this database:2017/08/05