• search hit 8 of 107
Back to Result List

Acceleration of Blob Detection in a Video Stream using Hardware

  • This report presents the implementation and evaluation of a computer vision problem on a Field Programmable Gate Array (FPGA). This work is based upon [5] where the feasibility of application specific image processing algorithms on a FPGA platform have been evaluated by experimental approaches. The results and conclusions of that previous work builds the starting point for the work, described in this report. The project results show considerable improvement of previous implementations in processing performance and precision. Different algorithms for detecting Binary Large OBjects (BLOBs) more precisely have been implemented. In addition, the set of input devices for acquiring image data has been extended by a Charge-Coupled Device (CCD) camera. The main goal of the designed system is to detect BLOBs in continuous video image material and compute their center points. This work belongs to the MI6 project from the Computer Vision research group of the University of Applied Sciences Bonn-Rhein-Sieg1 . The intent is the invention of a passive tracking device for an immersive environment to improve user interaction and system usability. Therefore the detection of the users position and orientation in relation to the projection surface is required. For a reliable estimation a robust and fast computation of the BLOB's center-points is necessary. This project has covered the development of a BLOB detection system on an Altera DE2 Development and Education Board with a Cyclone II FPGA. It detects binary spatially extended objects in image material and computes their center points. Two different sources have been applied to provide image material for the processing. First, an analog composite video input, which can be attached to any compatible video device. Second, a five megapixel CCD camera, which is attached to the DE2 board. The results are transmitted on the serial interface of the DE2 board to a PC for validation of their ground truth and further processing. The evaluation compares precision and performance gain dependent on the applied computation methods and the input device, which is providing the image material.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Availability
Metadaten
Document Type:Report
Language:English
Parent Title (English):Technical Report / Faculty of Computer Science, University of New Brunswick
Issue:10-201
Pagenumber:31
Contributing Corporation:Faculty of Computer Science, University of New Brunswick
Publication year:2010
Departments, institutes and facilities:Fachbereich Informatik
Institute of Visual Computing (IVC)
Dewey Decimal Classification (DDC):000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Entry in this database:2015/04/02