Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 24 of 1144
Back to Result List

Novel haptic interfaces and their impact on perception and performance

  • This thesis explores novel haptic user interfaces for touchscreens, virtual and remote environments (VE and RE). All feedback modalities have been designed to study performance and perception while focusing on integrating an additional sensory channel - the sense of touch. Related work has shown that tactile stimuli can increase performance and usability when interacting with a touchscreen. It was also shown that perceptual aspects in virtual environments could be improved by haptic feedback. Motivated by previous findings, this thesis examines the versatility of haptic feedback approaches. For this purpose, five haptic interfaces from two application areas are presented. Research methods from prototyping and experimental design are discussed and applied. These methods are used to create and evaluate the interfaces; therefore, seven experiments have been performed. All five prototypes use a unique feedback approach. While three haptic user interfaces designed for touchscreen interaction address the fingers, two interfaces developed for VE and RE target the feet. Within touchscreen interaction, an actuated touchscreen is presented, and study shows the limits and perceptibility of geometric shapes. The combination of elastic materials and a touchscreen is examined with the second interface. A psychophysical study has been conducted to highlight the potentials of the interface. The back of a smartphone is used for haptic feedback in the third prototype. Besides a psychophysical study, it is found that the touch accuracy could be increased. Interfaces presented in the second application area also highlight the versatility of haptic feedback. The sides of the feet are stimulated in the first prototype. They are used to provide proximity information of remote environments sensed by a telepresence robot. In a study, it was found that spatial awareness could be increased. Finally, the soles of the feet are stimulated. A designed foot platform that provides several feedback modalities shows that self-motion perception can be increased.

Export metadata

Additional Services

Search Google Scholar Check availability

Statistics

Show usage statistics
Metadaten
Document Type:Doctoral Thesis
Language:English
Author:Jens Maiero
URL:https://bura.brunel.ac.uk/handle/2438/22615
Referee:George Ghinea, André Hinkenjann
Contributing Corporation:Brunel University London
Date of first publication:2021/05/06
Keyword:Human-Computer Interaction; Robotics; Smartphone; Touchscreens; Virtual Reality
Departments, institutes and facilities:Fachbereich Informatik
Institute of Visual Computing (IVC)
Graduierteninstitut
Dewey Decimal Classification (DDC):0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Entry in this database:2021/06/30