• search hit 2 of 3
Back to Result List

Segmentierung von multimodalen Laserscanner-Daten im Außenbereich und Terrain-Klassifikation

  • In der vorliegenden Arbeit wird ein Verfahren zur Segmentierung von Außenszenen und Terrain-Klassifkation entwickelt. Dazu werden 360 Grad-Laserscanner-Aufnahmen von Straßen, Gebäudefassaden und Waldwegen aufgenommen. Von diesen Aufnahmen werden verschiedene visuelle Repräsentationen in 2D erstellt. Dazu werden die Distanzinformationen und Winkelübergänge der Polarkoordinaten, die Remissionswerte und der Normalenvektor eingesetzt. Die Berechnung des Normalenvektors wird über ein modernes Verfahren mit einerniedrigen Laufzeit durchgeführt. Anschließend werden Oberflächeneigenschaften innerhalb einer Punktwolke analysiert und vier Klassen unterschieden: Untergrund, Vegetation, Hindernis und Himmel. Die Segmentierung und Klassifkation geschieht in einem Schritt. Dazuwird die Varianz auf den N ormalen über eine Filtermaske berechnet und ein Deskriptor erstellt. Der Deskriptor beinhaltet die Normalenvektoren und die Normalenvarianz fürdie x-, y- und z-Achse. Die Ergebnisse werden als Überblendung auf dem Remissionsbilddargestellt. Die Auswertung wird über eigens erstellte Ground-Truth-Daten vorgenommen. Dazu wird das Remissionsbild genutzt und der Ground-Truth mit verschiedenen Farben eingezeichnet. Die Klassifkationsergebnisse sind in Precision-Recall-Diagrammen dargestellt.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Availability
Metadaten
Document Type:Master's Thesis
Language:German
URL:https://nbn-resolving.org/urn:nbn:de:0011-n-4390286
Referee:Paul G. Plöger, Gerhard K. Kraetzschmar, Erich Rome
Place of publication:Sankt Augustin
Granting Institution:Hochschule Bonn-Rhein-Sieg
Contributing Corporation:Fraunhofer IAIS
Date of first publication:2017/04/04
Dewey Decimal Classification (DDC):0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Theses:Fachbereich / Informatik
Entry in this database:2017/06/14