Refine
Department, Institute
- Fachbereich Angewandte Naturwissenschaften (13) (remove)
Document Type
- Article (8)
- Part of a Book (5)
Year of publication
Keywords
- GC/MS (13) (remove)
This book chapter describes application examples of gas chromatography/mass spectrometry and pyrolysis – gas chromatography/mass spectrometry in failure analysis for the identification of chemical materials like mineral oils and nitrile rubber gaskets. Furthermore, failure cases demanding identification of polymers/copolymers in fouling on the compressor wall of a car air conditioner and identification of fouling on the surface of a bearing race from the automotive industry are demonstrated. The obtained analytical results were then used for troubleshooting and remedial action of the technological process.
Solid-Phase Microextraction (SPME) is a very simple and efficient, solventless sample preparation method, invented by Pawliszyn and coworkers at the University of Waterloo (Canada) in 1989. This method has been widely used in different fields of analytical chemistry since its first applications to environmental and food analysis. SPME integrates sampling, extraction, concentration and sample introduction into a single solvent-free step. The method saves preparation time, disposal costs and can improve detection limits. It has been routinely used in combination with gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) and successfully applied to a wide variety of ompounds, especially for the extraction of volatile and semi-volatile organic compounds from environmental, biological and food samples.
Since the last twenty years, SPME in headspace (HS) mode is used as a valuable sample preparation technique for identifying degradation products in polymers and for determination of rest monomers and other light-boiling substances in polymeric materials. For more than ten years, our laboratory has been involved in projects focused on the application of HS-SPME-GC/MS for the characterization of polymeric materials from many branches of manufacturing and building industries. This book chapter describes the application examples of this technique for identifying volatile organic compounds (VOCs), additives and degradation products in industrial plastics, rubber, and packaging materials.
Headspace-SPME-GC-MS identification of volatile organic compounds released from expanded polystyrene
(2004)
A method for the identification of volatile organic compounds (VOCs) released from packaging expanded polystyrene (EPS) is presented. Headspace solid-phase microextraction (HS-SPME) with a 75-μm carboxen-polydimethylsiloxan fiber was used as sample preparation technique before the determination of the volatile organic compounds by gas chromatography–mass spectrometry (GC-MS). For separation of compounds, two fused silica capillary columns of different polarity (DB-5ms and BPX-50) were used. Styrene monomer with his impurities and oxidation products, as well as residual pentane, were identified in the headspace of EPS.
Refers To: Peter Kusch, Gerd Knupp, Marcus Hergarten, Marian Kozupa, Maria Majchrzak: Solid-phase extraction-gas chromatography and solid-phase extraction-gas chromatography–mass spectrometry determination of corrosion inhibiting long-chain primary alkyl amines in chemical treatment of boiler water in water-steam systems of power plants. - Journal of Chromatography A, Volume 1113, Issues 1–2, 28 April 2006, Pages 198-205