Refine
Departments, institutes and facilities
- Fachbereich Informatik (62)
- Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus (24)
- Fachbereich Angewandte Naturwissenschaften (23)
- Institute of Visual Computing (IVC) (21)
- Institut für Cyber Security & Privacy (ICSP) (17)
- Institut für funktionale Gen-Analytik (IFGA) (17)
- Institut für Verbraucherinformatik (IVI) (16)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (14)
- Fachbereich Wirtschaftswissenschaften (9)
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (3)
Document Type
- Conference Object (85)
- Article (67)
- Report (5)
- Part of a Book (3)
- Book (monograph, edited volume) (2)
- Conference Proceedings (2)
- Lecture (2)
- Preprint (2)
- Working Paper (2)
- Contribution to a Periodical (1)
Year of publication
- 2014 (175) (remove)
Language
- English (175) (remove)
Keywords
- FPGA (3)
- education (3)
- parallel breadth-first search (3)
- BFS (2)
- Exchangeable pairs (2)
- Garbage collection (2)
- Human Factors In Software Design (2)
- Java virtual machine (2)
- NUMA (2)
- Simulation (2)
Abstract Classical ballet requires dancers to exercise significant muscle control and strength both while stationary and when moving. Following the Royal Academy of Dance (RAD) syllabus, 8 male and 27 female dancers (aged 20.2 + 1.9 yr) in a full-time university undergraduate dance training program were asked to stand in first position for 10 seconds and then perform 10 repeats of a demi-plié exercise to a counted rhythm. Accelerometer records from the wrist, sacrum, knee and ankle were compared with the numerical scores from a professional dance instructor. The sacrum mounted sensor detected lateral tilts of the torso in dances with lower scores (Spearman’s rank correlation coefficient r = -0.64, p < 0.005). The 5RMS6 acceleration amplitude of wrist mounted sensor was linearly correlated to the movement scores (Spearman’s rank correlation coefficient r = 0.63, p < 0.005). The application of sacrum and wrist mounted sensors for biofeedback during dance training is a realistic, low cost option.
In general, mathematics plays a central role in our lives because today mathematics regulates our everyday life with techniques, technologies and procedures, for example coding techniques for credit cards or the drafting of curves and surfaces for construction procedures [5]. Obviously, mathematics continues to be an important element of engineering education and it still represents a major obstacle for the students. Lacking the knowledge of several topics, changing learning behavior and inadequate overall conditions at universities for the repetition of school mathematics were mentioned to be causes for the constantly increasing gap between the initial level of mathematics at university and the prior knowledge of the first semester students [2].
Structure-activity relationships of thiostrepton derivatives: implications for rational drug design
(2014)
This book constitutes the proceedings of the 14th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2014 held in Marienstatt, Germany, in April/May 2014. The 25 revised full papers presented were carefully selected from 37 submissions. The papers are structured in specific fields on concurrent Kleene algebras and related formalisms, reasoning about computations and programs, heterogeneous and categorical approaches, applications of relational and algebraic methods and developments related to modal logics and lattices.
On nothing
(2014)
As soon as data is noisy, knowledge as it is represented in an information system becomes unreliable. Features in databases induce equivalence relations—but knowledge discovery takes the other way round: given a relation, what could be a suitable functional description? But the relations we work on are noisy again. If we expect to record data for learning a classification of objects then it can well be the real data does not create a reflexive, symmetric and transitive relation although we know it should be. The usual approach taken here is to build the closure in order to ensure desired properties. This, however, leads to overgeneralisation rather quickly.
The latest advances in the field of smart card technologies allow modern cards to be more than just simple security tokens. Recent developments facilitate the use of interactive components like buttons, displays or even touch-sensors within the cards body thus conquering whole new areas of application. With interactive functionalities the usability aspect becomes the most important one for designing secure and popularly accepted products. Unfortunately the usability can only be tested fully with completely integrated hence expensive smart card prototypes. This restricts application specific research, case studies of new smart card user interfaces, concerning applications and the performance of useability tests in smart card development. Rapid development and simulation of smart card interfaces and applications can help to avoid this restriction. This paper presents SCUIDtextsuperscript{Sim} a tool for rapid user-centric development of new smart card interfaces and applications based on common smartphone technology.
This thesis presents an approach to automatically adjust the parameters of a Java application run on the IBM J9 Virtual Machine in order to improve its performance. It works by analyzing the logfile the VM generates and searching for specific behavioral patterns. These patterns are matched against a list of known patterns for which rules exist that specify how to adapt the VM to the given application. Adapting the application is done by adding parameters and changing existing ones, for example to achieve a better heap usage. The process is fully automated and carried out by a toolkit developed for this thesis. The toolkit iteratively cycles through multiple possible parameter sets, benchmarks them and proposes the best alternative to the user. The user can, without any prior knowledge about the Java application or the VM improve the performance of the deployed application.
Over the past two decades social protection has gained importance at the international and the national level of many low and middle income countries. Despite reforms in this sector being a global phenomenon, they differ from country to country. Traditional efforts to explain these dif- ferences focus on domestic factors. Yet it remains unclear how international influences and interdependencies contrib- ute to policy change. The study ‘International Policy Learn- ing and Policy Change’ aims at providing an answer to this question, by focusing on ‘soft governance’ via horizontal processes, meaning processes between equal actors. The studie was carried out in two parts. While in Part I the cur- rent state of the art in relevant research fields was assessed, in Part II the findings from Part I were used to conduct a survey which analyses the role of policy networks.
Robust Indoor Localization Using Optimal Fusion Filter For Sensors And Map Layout Information
(2014)
We consider the Hopfield model with n neurons and an increasing number p=p(n) of randomly chosen patterns and use Stein's method to obtain rates of convergence for the central limit theorem of overlap parameters, which holds for every fixed choice of the overlap parameter for almost all realisations of the random patterns.
Hybrid system models exploit the modelling abstraction that fast state transitions take place instantaneously so that they encompass discrete events and the continuous time behaviour for the while of a system mode. If a system is in a certain mode, e.g. two rigid bodies stick together, then residuals of analytical redundancy relations (ARRs) within certain small bounds indicate that the system is healthy. An unobserved mode change, however, invalidates the current model for the dynamic behaviour. As a result, ARR residuals may exceed current thresholds indicating faults in system components that have not happened. The paper shows that ARR residuals derived from a bond graph cannot only serve as fault indicators but may also be used for bond graph model-based system mode identification. ARR residuals are numerically computed in an off-line simulation by coupling a bond graph of the faulty system to a non-faulty system bond graph through residual sinks. In real-time simulation, the faulty system model is to be replaced by measurements from the real system. As parameter values are uncertain, it is important to determine adaptive ARR thresholds that, given uncertain parameters, allow to decide whether the dynamic behaviour in a current system mode is the one of the healthy system so that false alarms or overlooking of true faults can be avoided. The paper shows how incremental bond graphs can be used to determine adaptive mode-dependent ARR thresholds for switched linear time-invariant systems with uncertain parameters in order to support robust fault detection. Bond graph-based hybrid system mode identification as well as the determination of adaptive fault thresholds is illustrated by application to a power electronic system easy to survey. Some simulation results have been analytically validated.
This paper presents the numerical prototyping i. e. simulation of vibration sensor systems, to be implemented as low cost systems in machines and technical facilities. A micromachined acceleration sensor is supplemented by an analog Sallen Key Butterworth filter and a microcontroller. Within the microcontroller a second filter, a Windowed Sinc FIR filter is implemented for data reduction, followed by an FFT. The two stage filter is used to get rid of the influence of the tolerances of the analog filter, since in low cost applications an additional adjustment should be avoided. The sensor system is simulated in Labview®, a standard data acquisition software. Labview ischosen, since it has the possibility to do a numerical simulation of the sensor system and additionally using real measured vibration data as input data, thus performing a Hardware-in-the-loop-simulation (HIL). The simulation of the sensor system gives the capability to optimize system parameters in advance of building a hardware system.
Low power dissipation is a current topic in digital design, and therefore, it should be covered in a state-of-the-art electrical engineering curriculum. This paper describes how low-power design can be addressed within a digital design course. Doing so would be beneficial for both topics because low-power design is not detached from the systems perspective, and the digital design course would be enriched by references to current challenges and applications. Thus, the presented course should serve as an example of how a course can be developed to also teach students about sustainable engineering.
Applications being designed for disabled people so far are showing three main issues: specific target user group, specialized user interface (UI) and interdependence problem. In addition, three essential criteria do also affect the application’s usability, namely time, efficiency and costs. In order to overcome these problems, we propose a different perspective of User-Centered Design (UCD) by dividing and analyzing the UI architecture design process over three interdependent spaces: User, Need and application. Finally we provide the reader with an algorithmic guideline towards minimizing the interdependence issue between interaction modalities.
Current computer architectures are multi-threaded and make use of multiple CPU cores. Most garbage collections policies for the Java Virtual Machine include a stop-the-world phase, which means that all threads are suspended. A considerable portion of the execution time of Java programs is spent in these stop-the-world garbage collections. To improve this behavior, a thread-local allocation and garbage collection that only affects single threads, has been proposed. Unfortunately, only objects that are not accessible by other threads ("do not escape") are eligible for this kind of allocation. It is therefore necessary to reliably predict the escaping of objects. The work presented in this paper analyzes the escaping of objects based on the line of code (program counter – PC) the object was allocated at. The results show that on average 60-80% of the objects do not escape and can therefore be locally allocated.
Improving data acquisition techniques and rising computational power keep producing more and larger data sets that need to be analyzed. These data sets usually do not fit into a GPU's memory. To interactively visualize such data with direct volume rendering, sophisticated techniques for problem domain decomposition, memory management and rendering have to be used. The volume renderer Volt is used to show how CUDA is efficiently utilised to manage the volume data and a GPU's memory with the aim of low opacity volume renderings of large volumes at interactive frame rates.
Unexpected Situations in Service Robot Environment: Classification and Reasoning Using Naive Physics
(2014)
In the field of domestic service robots, recovery from faults is crucial to promote user acceptance. In this context we focus in particular on some specific faults, which arise from the interaction of a robot with its real world environment. Even a well-modelled robot may fail to perform its tasks successfully due to unexpected situations, which occur while interacting. These situations occur as deviations of properties of the objects (manipulated by the robot) from their expected values. Hence, they are experienced by the robot as external faults.
It is a euphemism to say that humans use tools. Humans possess a vast repertoire of tools they use every day. In fact, as language or bipedal locomotion, tool use is a hallmark of humans. Tool use has also been often viewed as an important step during evolution (van Schaik et al., 1999) or even as a marker of the evolution of human intelligence (Wynn, 1985). So a fundamental issue is, what are the cognitive and neural bases of human tool use? The present series of papers in this special topic represents the newest additions to that research topic.
Sustainability is a key issue in current research activities and programs. In this conjunction three major functions of research have been identified: Basic research, knowledge reservoirs, and knowledge transfer. With regard to a transmission to the private sector, knowledge transfer is the most important factor. In this process, universities of applied sciences can play an important part as they typically have a long-standing experience in linking science and business in their teaching and research. Another important agent in the process of knowledge transfer are networks and clusters. Their strength lies integrating the different competencies of its partners and using them to a mutual benefit.
The International Centre for Sustainable Development (IZNE) – with a major focus on responsible business and sustainable food – takes the advantage of being part of a University of Applied Sciences (Bonn-Rhein-Sieg, BRSU), and being a member of several regional and international clusters and networks. These co-operations aim to establish and strengthen linkages between science and business, in particular by investigating research needs for business and business relevant research activities. Moreover, IZNE established and expanded regional and international co-operations of its own to get more transparency about regional and international value-added chains in the food sector and the issue of responsible business.
During space missions astronauts suffer from cardiovascular deconditioning, when they are exposed to microgravity conditions. Until now, no specific drugs are available for effective countermeasures, since the underlying mechanism is not completely understood. Endothelial cells (ECs) and smooth muscle cells (SMCs) play crucial roles in a variety of cardiovascular functions, many of which are regulated via P2 receptors. However, their function in ECs and SMCs under microgravity condition is still unknown. In this study, ECs and SMCs were isolated from bovine aorta and differentiated from human mesenchymal stem cells (hMSCs), respectively. Subsequently, the cells were verified based on specific markers. An altered P2 receptor expression pattern was detected during the commitment of hMSC towards ECs and SMCs. The administration of natural and artificial P2 receptor agonists and antagonists directly affected the differentiation process. By using EC growth medium as conditioned medium, a vessel cell model was created to culture SMCs and vice versa. Within this study, we were able to show for the first time that the expression of some P2 receptors were altered in ECs and SMCs grown for 24h under simulated microgravity conditions. On the other hand, in some P2 receptor expressions such as P2X7 conditioned medium compensated this change.
In conclusion, our data show that P2 receptors play an important functional role in hMSC differentiation towards ECs and SMCs. Since some P2 receptor artificial ligands are already used as drugs for patients with cardiovascular diseases, it is reasonable to assume that in the future they might be promising candidates for treating cardiovascular deconditioning.
Realism and plausibility of computer controlled entities in entertainment software have been enhanced by adding both static personalities and dynamic emotions. Here a generic model is introduced that allows findings from real-life personality studies to be transferred to a computational model. Adaptive behavior patterns are enabled by introducing dynamic event-based emotions. The advantages of this model have been validated using a four-way crossroad in a traffic simulation. Driving agents using the introduced model enhanced by dynamics were compared to agents based on static personality profiles and simple rule-based behavior. The results show that adding a dynamic factor to agents improves perceivable plausibility and realism.
This article describes an approach to rapidly prototype the parameters of a Java application run on the IBM J9 Virtual Machine in order to improve its performance. It works by analyzing VM output and searching for behavioral patterns. These patterns are matched against a list of known patterns for which rules exist that specify how to adapt the VM to a given application. Adapting the application is done by adding parameters and changing existing ones. The process is fully automated and carried out by a toolkit. The toolkit iteratively cycles through multiple possible parameter sets, benchmarks them and proposes the best alternative to the user. The user can, without any prior knowledge about the Java application or the VM improve the performance of the deployed application and quickly cycle through a multitude of different settings to benchmark them. When tested with the representative benchmarks, improvements of up to 150% were achieved.
In contrast to projection-based systems, large, high resolution multi-display systems offer a high pixel density on a large visualization area. This enables users to step up to the displays and see a small but highly detailed area. If the users move back a few steps they don't perceive details at pixel level but will instead get an overview of the whole visualization. Rendering techniques for design evaluation and review or for visualizing large volume data (e.g. Big Data applications) often use computationally expensive ray-based methods. Due to the number of pixels and the amount of data, these methods often do not achieve interactive frame rates.
A view direction based (VDB) rendering technique renders the user's central field of view in high quality whereas the surrounding is rendered with a level-of-detail approach depending on the distance to the user's central field of view. This approach mimics the physiology of the human eye and conserves the advantage of highly detailed information when standing close to the multi-display system as well as the general overview of the whole scene. In this paper we propose a prototype implementation and evaluation of a focus-based rendering technique based on a hybrid ray tracing/sparse voxel octree rendering approach.
Within this article, we offer a new design perspective for the analysis, creation, and validation of 3D user interfaces using assistive technology as source of inspiration. While 3DUI design has matured over the last decade, many open issues remain to be solved. An assistive technology design perspective can aid: it can offer a stringent test environment to uncover issues and provides a different view on design by looking at human potential. Subsequently, we will look at major fields of interest, identifying pitfalls in 3DUI design and how assistive technology can be used to overcome these issues, outlining particular fields of research, or research directions, that deserve further attention.
This paper presents a new method of analysing the error of a sampled-data velocity stabilising system with a wide range of pulse width modulation. The analysis is based on multi-channel model obtained as a result of approximation of pulse-modulated signal at the output of a PWM converter. Approximation of piecewise-linear modulation characteristics of each channel has been obtained as a series expansion of Hermite polynomials where the expansion comprises two polynomials of the first and third orders. The transfer function of every channel and a closed-loop system has been obtained using multidimensional Z-transform. The analytical expression of an error under impact of a step input has been derived using a transfer function of the closed-loop system. A dc electric drive has been used as an example of high accuracy sample-data stabilising system to verify and demonstrate the proposed method.
We derive rates of convergence for limit theorems that reveal the intricate structure of the phase transitions in a mean-field version of the Blume–Emery–Griffith model. The theorems consist of scaling limits for the total spin. The model depends on the inverse temperature β and the interaction strength K. The rates of convergence results are obtained as (β,K) converges along appropriate sequences (βn,Kn) to points belonging to various subsets of the phase diagram which include a curve of second-order points and a tricritical point. We apply Stein’s method for normal and non-normal approximation avoiding the use of transforms and supplying bounds, such as those of Berry–Esseen quality, on approximation error.
The Project SupraMetall: Towards Commercial Fabrication of High-Temperature Superconducting Tapes
(2014)
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
An evolved neural network controller is presented to solve the optimal control problem for energy optimal driving. A controller is produced which computes equivalent control commands to traditional graph searching approaches, while able to adapt to varied constraints and conditions. Furthermore, after training, trivial amounts of computation time and memory are required, making the approach applicable for embedded systems and path planning applications.
Adapting plans to changes in the environment by finding alternatives and taking advantage of opportunities is a common human behavior. The need for such behavior is often rooted in the uncertainty produced by our incomplete knowledge of the environment. While several existing planning approaches deal with such issues, artificial agents still lack the robustness that humans display in accomplishing their tasks. In this work, we address this brittleness by combining Hierarchical Task Network planning, Description Logics, and the notions of affordances and conceptual similarity. The approach allows a domestic service robot to find ways to get a job done by making substitutions. We show how knowledge is modeled, how the reasoning process is used to create a constrained planning problem, and how the system handles cases where plan generation fails due to missing/unavailable objects. The results of the evaluation for two tasks in a domestic service domain show the viability of the approach in finding and making the appropriate goal transformations.
Level-Synchronous Parallel Breadth-First Search Algorithms For Multicore and Multiprocessor Systems
(2014)
Breadth-First Search (BFS) is a graph traversal technique used in many applications as a building block, e.g.,~to systematically explore a search space. For modern multicore processors and as application graphs get larger, well-performing parallel algorithms are favourable. In this paper, we systematically evaluate an important class of parallel BFS algorithms and discuss programming optimization techniques for their implementation. We concentrate our discussion on level-synchronous algorithms for larger multicore and multiprocessor systems. In our results, we show that for small core counts many of these algorithms show rather similar behaviour. But, for large core counts and large graphs, there are considerable differences in performance and scalability influenced by several factors. This paper gives advice, which algorithm should be used under which circumstances.
The contribution of the most common reciprocal translocation in childhood B-cell precursor leukemia t(12;21)(p13;q22) to leukemia development is still under debate. Direct as well as secondary indirect effects of the TEL-AML1 fusion protein are commonly recorded by using cell lines and patient samples, often bearing the TEL-AML1 fusion protein for decades. To identify direct targets of the fusion protein a short-term induction of TEL-AML1 is needed. We here describe in detail the experimental procedure, quality controls and contents of the ChIP, mRNA expression and SILAC datasets associated with the study published by Linka and colleagues in the Blood Cancer Journal [1] utilizing a short term induction of TEL-AML1 in an inducible precursor B-cell line model.
Improving the study entry supports students in a decisive phase of their university education. Implementing improvements is a change process and can only be successful if the relevant stakeholders are addressed and convinced. In the described Teaching Quality Pact project evaluation data is used as a mean to discuss in the university the situation of the study programs. As these discussions were based on empirical data rather than on opinion, it was possible to achieve an open discussion about measures that are implemented. The open discussion is maintained during the project when results of the measures taken are analyzed.
Estimation of camera motion from RGB-D images has been an active research topic in recent years. Several RGB-D visual odometry systems were reported in literature and released under open-source licenses. The objective of this contribution is to evaluate the recently published approaches to motion estimation. A publicly available dataset of RGB-D sequences with precise ground truth data is applied and results are compared and discussed. Experiments on a mobile robot used in the RoboCup@Work league are discussed as well. The system showing the best performance is capable of estimating the motion with drift as small as 1 cms under special conditions, though it has been proven to be robust against shakey motion and moderately non-static scenes.
A cost-efficient alternative to outside-in tracking systems for pointing interaction with large displays is to equip the pointing device with a camera, whose images are matched to display content. This work presents the Dynamic Marker Camera Tracking (DMCT) framework for display-based camera tracking. It accounts for typical display characteristics and uses dynamic on-screen markers overlaid to the display content that follow the camera. An example marker implementation and a tracking recovery method are presented. DMCT can measure pointing locations with sub-millimeter precision in large tracking volumes and computes 6-DoF camera poses for 3D interaction. 60 Hz update rate and 24 ms latency were achieved. DMCT's main limitation is the visible marker interfering with display content. In pointing effciency, the prototype is comparable to an OptiTrack system.
This work describes extensions to the well-known Distributed Coordination Function (DCF) model to account for IEEE802.11n point-to-point links. The developed extensions cover adaptions to the throughput and delay estimation for this type of link as well peculiarities of hardware and implementations within the Linux Kernel. Instead of using simulations, the approach was extensively verified on real-world deployments at various link distances. Additionally, trials were conducted to optimize the CWmin values and the number of retries to maximize throughput and minimize delay. The results of this work can be used to estimate the properties of long-distance 802.11 links beforehand, allowing the network to be planned more accurately.
Robots, which are able to carry out their tasks robustly in real world environments, are not only desirable but necessary if we want them to be more welcome for a wider audience. But very often they may fail to execute their actions successfully because of insufficient information about behaviour of objects used in the actions.
The ability to track moving people is a key aspect of autonomous robot systems in real-world environments. Whilst for many tasks knowing the approximate positions of people may be sufficient, the ability to identify unique people is needed to accurately count people in the real world. To accomplish the people counting task, a robust system for people detection, tracking and identification is needed.
An apple a day keeps the doctor away’. While it may be true that a balanced diet is a prerequisite for good health, how good is what we eat and drink every day? And is it actually possible to fulfil every customer desire with the vast array of foodstuffs on offer? BSE, dioxin in eggs, EHEC sprouts: in the light of repeated food safety crises, the issue of quality assurance as well as customer-oriented quality management has become of prime importance for the agri-food industry.
The Atmosphaeres project aims to reduce sufferers’ stress and pain levels by using 360° video environments that are presented in a highly immersive Head-Mounted Display (HMD). Here we report first insights of our prototype combination of the 360° video environments and the Oculus Rift, the HMD used for our project. We find that our ‘Atmosphaeres’ are capable of truly transporting the user to another, virtually created location, however, there were a number of restrictions with the first system, including image quality and nausea which we hope to eliminate with the system we present in this paper. There are also a number of research questions that need to be considered for the use of the Atmosphaeres in stress and pain management or for general relaxation purposes. These questions include whether 360° video environments are capable of reducing stress and experienced pain and whether changes to the Oculus Rift DK2 do in fact reduce the nausea that was often caused by the DK1. Sound is another important yet often under-considered factor in many Virtual Reality applications and questions we seek to answer revolve around how the quality and type of audio contribute to users’ feeling of presence and ultimately their stress and pain levels.
Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100'000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity.
Propionic acidemia in a previously healthy adolescent with acute onset of dilated cardiomyopathy
(2014)
Propionic acidemia (PA) is a rare autosomal recessive organic aciduria resulting from defects in propionyl-CoA-carboxylase (PCC), a key enzyme of intermediate energy metabolism. PA mostly manifests during the neonatal period, when affected newborns develop severe metabolic acidosis and hyperammonemia. We present a previously healthy teenager, who suffered from acute fatigue and breathlessness. The patient was tachycardic, displayed a precordial heave and a systolic murmur. Cardiac investigations revealed severe dilated cardiomyopathy (DCM). Biochemical work up led to the diagnosis of PA. Remarkably, this patient of consanguineous Hispanic origin was in a good general health condition before the acute onset of DCM. Diagnosis of PA was confirmed by enzymatic and molecular genetic analysis, the latter revealing a novel homozygous mutation in the PCCB gene (c.1229G > A; p.R410Q). Residual PCC enzyme activity of approximately 14 % of normal was detected in patient’s lymphocytes and fibroblasts, thereby providing a possible explanation for the hitherto asymptomatic phenotype. Conclusion: Isolated DCM, although rare, can be the leading and/or sole symptom of late-onset PA. Therefore, patients with DCM should receive a comprehensive diagnostic evaluation including selective screening for inborn errors of metabolism.
Many e-Learning-basedoffers, such as international programs and MOOCs have long since overcome the concept of national education and are designed to attract learners distributed throughout the world. In order to cope with the differences between learners, related offers often include opportunities to support the particular learning styles and learning pace beyond the advantages, which the technology itself naturally provides. Examples arethe individual configuration of the learning platformand display of contents and the provision of stylistically diverse and supplementary learning material. Such measures are relatively easy to implement andonce established, do not generate further expenses. Just, is it appropriate to lay the full responsibility for designing a comfortable (and supportive) learning environment into the hands of the learners and do they get along with such a responsibility? We asked university students from three continents regarding their expectations towards instructor-support and found major differences.
After an introduction, we discuss the conflicts that occurred in a highly experimental course setting, in which we implemented a student-centered course in urban higher education with a constructivist, blended-learning design. We analyse to which extent the cultural country profiles from our Learning Culture Survey suffice to prevent intercultural conflicts in education and provide support for the design of respective interventions.
Open educational resources (OERs) provide opportunities as enablers of societal development, but they also create new challenges. From the perspective of content providers and educational institutions, particularly, cultural and context-related challenges emerge. Even though barriers regarding large-scale adoption of OERs are widely discussed, empirical evidence for determining challenges in relation to particular contexts is still rare. Such context-specific barriers generally can jeopardize the acceptance of OERs and, in particular, social OER environments. We conducted a large-scale (N = 855) cross-European investigation in the school context to determine how teachers and learners perceive cultural distance as a barrier against the use of social OER environments. The findings indicate how nationality and age of the respondents are strong predictors of cultural distance barrier. The study concludes with identification of context-sensitive interventions for overcoming the related bar riers. These consequences are vital for OER initiatives and educational institutions for aligning their efforts on OER.
Culture, at least to some extent, is related to particular (individual and collective) experiences. In terms of education, this means that a learner, who experienced particular services in his/her past, might perceive such services as usual for educational culture and thus, expect them to be delivered in any kind of learning scenario. In German universities, education is meant to be a full-time job and usually is designed to provide a broad basis of theoretical and methodological knowledge. Achieving methodological competences is a core goal of German academic education: Once a student leaves the university, he/she is expected to decide about appropriate methods for any kind of problem (in the field of study and beyond) and how to modify the known methods in case of need. In contrast, in professional training, the learners have to study in extra-occupational situations (time is a serious issue) and might expect training that pointedly prepares them for very specific tasks. We assumed that scenarios of professional training have their own educational cultures. When designing learning contents and learning scenarios for professional training, it might be essential for the learning success to meet the learners’ expectations and contextual peculiarities.
We found remarkable differences between the results of the investigated enterprises, but even more significant diversity between the results of the German enterprises and the priory investigated German universities. As a general conclusion we can assume that generalizing research results that were solely achieved from national university students might lead to an inappropriate design of learning scenarios for particular professional contexts. Professional training for a particular enterprise should be developed according to its specific educational culture.
The Learning Culture Survey: An international research project on cultural learning attitudes
(2014)
Dieses Dokument beinhaltet die englische Version des standardisierten Fragebogens für das fortlaufende, internationale Forschungvorhaben "Learning Culture Survey". Die Bereitstellung des Fragebogens in dieser Form dient lediglich der Möglichkeit zur Prüfung und zur Kenntnisnahme. Der Entsprechend dem Forschungsdesign ist der Fragebogen in seiner Onlineversion zu verwenden.
The central concept behind Open Educational Resources (OER) is opening up the access to educational resources for stakeholders who are not the usual target user group. This concept must be perceived as innovative because it describes a general economic and social paradigm shift: Education, which formerly was limited to a specific group of learners, now, is promoted as a public good. However, despite very good intentions, internationally agreed quality standards, and the availability of the required technological infrastructure, the critical threshold is not yet met. Due to several reasons, the usefulness of OER is often limited to the originally targeted context. Questions arise if the existing quality standards for Technology Enhanced Learning (TEL) actually meet the specific requirements within the OER value chain, if the existing quality standards are applicable to OER in a meaningful way, and under which conditions related standards generally could support the exploitation of OER. We analyze quality standards for TEL and contrast the life cycle model of commercial learning resources against the life cycle model of OER. We investigate special demands on quality from the context of OER and, taking the former results into account, derive emergent quality criteria for OER. The paper concludes with recommendations for the design of OER and a future standard development.
Open Educational Resources in the Context of School Education: Barriers and possible solutions
(2014)
Due to the increasing professional mobility of their parents, pupils often find themselves in new and unfamiliar learning scenarios in foreign contexts and countries. Besides having to leave their familiar environments, these pupils additionally may face language barriers, different curricula, and have to cope with foreign cultures. Printed textbooks, which are the most commonly used educational resources in schools, provide little support for these pupils to manage the new challenges. Teachers are the professionals designated to provide the necessary support. However, they often may not fully appreciate the pupils’ individual challenges. Possible solutions could be the provision of alternative learning contents in the pupils’ native languages and an international open exchange of knowledge and experiences amongst schoolteachers. These issues are addressed by the Open Discovery Space platform. In order to empower this platform to provide the best possible support to teachers, we explored barriers to adoption of Open Educational Practices in the context of school education and asked for manageable solutions. The investigation took place in an action research scenario. After an introduction of the ODS project, we will present the identified barriers and recommendations for solutions to overcome these, and the mechanisms which we are going to implement in the ODS platform in order to provide the best possible support to the community.
This paper gives an overview of the development of Fair Trade in six European countries: Austria, France, Germany, the Netherlands, Switzerland and the United Kingdom. After the description of the food retail industry and its market structures in these countries, the main European Fair Trade organizations are analyzed regarding their role within the Fair Trade system. The following part deals with the development of Fair Trade sales in general and with respect to the products coffee, tea, bananas, fruit juice and sugar. An overview of the main activities of national Fair Trade organizations, e.g. public relation activities, completes the analysis. This study shows the enormous upswing of Fair Trade during the last decade and the reasons for this development. Nevertheless, it comes to the conclusion that Fair Trade is still far away from being an essential part of the food retail industry in Europe.
Deep Gaming
(2014)
How to create a distinct user experience of Stereo 3D in Interactive Entertainment & Virtual Reality Gaming Stereoscopic 3D (S3D) vision offers spatial visual perception by presenting two separate and different This article or re envision the, creative economy different versions of games in it up. By authors behind the same sheet, of primary medical dental and operator. If I gently rubbed miles chest wouldn't know. Listing infohere at a way through, sixth grade level by the layout and memory. Hats off adjust the bass and restart automatic benefit. Try to be fooled into serious topics by playing with a lot. Creating general many other people, with new digital games allow their impact! The hunt for example my google, searches has learned. These badges this development phases to work it is in my year.
We explore the potential of stereoscopic 3D (S3D) vision in offering distinct gameplay using an S3D-specific game called Deepress3D. Our game utilizes established S3D design principles for optimizing GUI design, visual comfort and game mechanics which rely on depth perception in time-pressured spatial conflicts. The game collects detailed S3D player metrics and allows players to choose between different, evenly matched strategies. We conducted a between subjects study comparing S3D and monoscopic versions of Deepress3D that examined player behavior and performance and measured user-reported data on presence, simulator sickness, and game experience.
Software repository data, for example in issue tracking systems, include natural language text and technical information, which includes anything from log files via code snippets to stack traces. However, data mining is often only interested in one of the two types e.g. in natural language text when looking at text mining. Regardless of which type is being investigated, any techniques used have to deal with noise caused by fragments of the other type i.e. methods interested in natural language have to deal with technical fragments and vice versa. This paper proposes an approach to classify unstructured data, e.g. development documents, into natural language text and technical information using a mixture of text heuristics and agglomerative hierarchical clustering. The approach was evaluated using 225 manually annotated text passages from developer emails and issue tracker data. Using white space tokenization as a basis, the overall precision of the approach is 0.84 and the recall is 0.85.
Gas chromatography with flame-ionization detection (FID) and gas chromatography-mass spectrometry (GC/MS) with electron impact ionization (EI) and chemical ionization (PCI and NCI) were successfully used for separation and identification of commercially available longchain primary alkyl amines. The investigated compounds were used as corrosion inhibiting and antifouling agents in a water-steam circuit of energy systems in the power industry. Solidphase extraction (SPE) with octadecyl bonded silica (C18) sorbents followed by gas chromatography were used for quantification of the investigated Primene JM-T™ alkyl amines in boiler water, condensate and superheated steam samples from the power plant. Amine formulations from Kotamina group favor formation of protective layers on internal surfaces and keep them free from corrosion and scale. Alkyl amines contained in those formulations both render the environment alkaline and limit the corrosion impact of ionic and gaseous impurities by formation of protective layers. Moreover, alkyl amines limit scaling on heating surfaces of boilers and in turbine, ensuring failure-free operation. Application of alkyl amine formulation enhances heat exchange during boiling and condensation processes. Alkyl amines with branched structure are more thermally stable than linear alkyl amines, exhibit better adsorption and effectiveness of surface shielding. As a result, application of thermostable long-chain branched alkyl amines increases the efficiency of anti-corrosive protection. Moreover, the concentration of ammonia content in water and in steam was also considerably decreased.
Analytical pyrolysis technique hyphenated to gas chromatography/mass spectrometry (Py-GC/MS) has extended the range of possible tools for characterization of synthetic polymers/copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at elevated temperature between 500 and 1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer/copolymer sample are formed. The pyrolysis products are chromatographically separated by using a fused silica capillary column and subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminate the need for pre-treatment by performing analyses directly on the solid or liquid polymer sample.
In this paper, application examples of the analytical pyrolysis hyphenated to gas chromatography/mass spectrometry for the identification of different polymeric materials in the plastic and automotive industry, dentistry and occupational safety are demonstrated. For the first time results of identification of commercially light-curing dental filling material and a car wrapping foil by pyrolysis-GC/MS are presented.
Matrix metalloproteinases (MMPs) are matrix-degrading enzymes that are over-expressed in joints of rheumatoid arthritis (RA) patients. However, the contribution of specific MMPs for the development of arthritic joints is unknown. This study is aimed at studying the role of matrix metalloproteinase-9 (MMP-9) in mice, using the K/BxN serum-transfer model of RA. Arthritis was induced in Balb/c mice by injecting K/BxN serum. Development of arthritis was followed in these mice by measuring ankle thickness and clinical index score. MMP-9 expression in the joints of mice killed at various time points during the disease progression was determined by gelatin zymography using ankle lysates. We found that MMP-9 expression increased with the severity of arthritis. Importantly MMP-9 deficient mice injected with K/BxN serum showed a milder form of arthritis in comparison to the control C57BL/6 mice injected with K/BxN serum. We therefore conclude that MMP-9 promotes arthritis in mice.
We investigated graphene structures grafted with fullerenes. The size of the graphene sheets ranges from 6400 to 640,000 atoms. The fullerenes (C60 and C240) are placed on top of the graphene sheets, using different impact velocities we could distinguish three types of impact. Furthermore, we investigated the changes of the vibrational properties. The modified graphene planes show additional features in the vibronic density of states.
The analytical pyrolysis technique hyphenated to gas chromatography–mass spectrometry (GC–MS) has extended the range of possible tools for the characterization of synthetic polymers and copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at temperatures of 500–1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer or copolymer sample are formed. The pyrolysis products are chromatographically separated using a fused-silica capillary column and are subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminates the need for pretreatment by performing analyses directly on the solid or liquid polymer sample. In this article, application examples of analytical pyrolysis hyphenated to GC–MS for the identification of different polymeric materials in the plastic and automotive industry, dentistry, and occupational safety are demonstrated. For the first time, results of identification of commercial light-curing dental filling material and a car wrapping foil by pyrolysis–GC–MS are presented.
People are getting older because of the demographic changes and the rate of disabled people is also going up. This article shows the challenge for BPMTool developer due to these circumstances. It illustrates how these changes impact the usage of BPM-Tools based on an Evaluation of an exemplary BPMTool (Cooper & Patterson, 2007) in terms of IT-Usability and IT-Accessibility. This evaluation was conducted in a research laboratory at the university.