Refine
Departments, institutes and facilities
- Fachbereich Informatik (62)
- Fachbereich Ingenieurwissenschaften und Kommunikation (24)
- Fachbereich Angewandte Naturwissenschaften (23)
- Institut für funktionale Gen-Analytik (IFGA) (21)
- Institute of Visual Computing (IVC) (21)
- Institut für Cyber Security & Privacy (ICSP) (17)
- Institut für Verbraucherinformatik (IVI) (17)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (14)
- Fachbereich Wirtschaftswissenschaften (11)
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (3)
Document Type
- Conference Object (84)
- Article (73)
- Report (5)
- Part of a Book (4)
- Book (monograph, edited volume) (2)
- Conference Proceedings (2)
- Lecture (2)
- Preprint (2)
- Working Paper (2)
- Contribution to a Periodical (1)
Year of publication
- 2014 (181) (remove)
Language
- English (181) (remove)
Keywords
- FPGA (3)
- education (3)
- parallel breadth-first search (3)
- BFS (2)
- Exchangeable pairs (2)
- Garbage collection (2)
- Human Factors In Software Design (2)
- Java virtual machine (2)
- NUMA (2)
- Simulation (2)
The title of the annual report 2013 "Shaping change: The University Addresses Society‘s Probing Challenges" reveals the great importance placed on social, economic and technological changes at the university.
This key aspect thus runs through the contents of the 90-page annual report like a common thread, without losing track of the enormous variety of research and teaching at Bonn-Rhein-Sieg University. Whether the exploration of gaps in robot safety during a European Intensive Programme, a report about the Philipines crisis region from a graduate who has worked as an organizer for Care International, or the chapter "What does change look like?" – The annual report provides the full spectrum of opportunities, activities and findings of university members.
A principal step towards solving diverse perception problems is segmentation. Many algorithms benefit from initially partitioning input point clouds into objects and their parts. In accordance with cognitive sciences, segmentation goal may be formulated as to split point clouds into locally smooth convex areas, enclosed by sharp concave boundaries. This goal is based on purely geometrical considerations and does not incorporate any constraints, or semantics, of the scene and objects being segmented, which makes it very general and widely applicable. In this work we perform geometrical segmentation of point cloud data according to the stated goal. The data is mapped onto a graph and the task of graph partitioning is considered. We formulate an objective function and derive a discrete optimization problem based on it. Finding the globally optimal solution is an NP-complete problem; in order to circumvent this, spectral methods are applied. Two algorithms that implement the divisive hierarchical clustering scheme are proposed. They derive graph partition by analyzing the eigenvectors obtained through spectral relaxation. The specifics of our application domain are used to automatically introduce cannot-link constraints in the clustering problem. The algorithms function in completely unsupervised manner and make no assumptions about shapes of objects and structures that they segment. Three publicly available datasets with cluttered real-world scenes and an abundance of box-like, cylindrical, and free-form objects are used to demonstrate convincing performance. Preliminary results of this thesis have been contributed to the International Conference on Autonomous Intelligent Systems (IAS-13).
When developing new ICT systems and applications for domestic environments, rich qualitative approaches improve the understanding of the user's integral usage of technology in their daily routines and thereby inform design. This knowledge will often be reached through in-home studies, strong relationships with the users and their involvement in the design and evaluation process. However, whilst this kind of research offers valuable context insights and brings out unexpected findings, it also presents methodological, technical and organizational challenges for the study design and its underlying cooperation processes. In particular, due to heterogeneous users in households in terms of technology affinity, individual needs, age distribution, gender, social constellations, personal role assignment, project expectations, etc. it produces particular demands to collaborate with users in the design process and thereby exposes a range of practical challenges. The full-day workshop wishes to identify these practical challenges, discuss best practice and develop a roadmap for sustainable relationships for design with users.
This article describes an approach to rapidly prototype the parameters of a Java application run on the IBM J9 Virtual Machine in order to improve its performance. It works by analyzing VM output and searching for behavioral patterns. These patterns are matched against a list of known patterns for which rules exist that specify how to adapt the VM to a given application. Adapting the application is done by adding parameters and changing existing ones. The process is fully automated and carried out by a toolkit. The toolkit iteratively cycles through multiple possible parameter sets, benchmarks them and proposes the best alternative to the user. The user can, without any prior knowledge about the Java application or the VM improve the performance of the deployed application and quickly cycle through a multitude of different settings to benchmark them. When tested with the representative benchmarks, improvements of up to 150% were achieved.
During space missions astronauts suffer from cardiovascular deconditioning, when they are exposed to microgravity conditions. Until now, no specific drugs are available for effective countermeasures, since the underlying mechanism is not completely understood. Endothelial cells (ECs) and smooth muscle cells (SMCs) play crucial roles in a variety of cardiovascular functions, many of which are regulated via P2 receptors. However, their function in ECs and SMCs under microgravity condition is still unknown. In this study, ECs and SMCs were isolated from bovine aorta and differentiated from human mesenchymal stem cells (hMSCs), respectively. Subsequently, the cells were verified based on specific markers. An altered P2 receptor expression pattern was detected during the commitment of hMSC towards ECs and SMCs. The administration of natural and artificial P2 receptor agonists and antagonists directly affected the differentiation process. By using EC growth medium as conditioned medium, a vessel cell model was created to culture SMCs and vice versa. Within this study, we were able to show for the first time that the expression of some P2 receptors were altered in ECs and SMCs grown for 24h under simulated microgravity conditions. On the other hand, in some P2 receptor expressions such as P2X7 conditioned medium compensated this change.
In conclusion, our data show that P2 receptors play an important functional role in hMSC differentiation towards ECs and SMCs. Since some P2 receptor artificial ligands are already used as drugs for patients with cardiovascular diseases, it is reasonable to assume that in the future they might be promising candidates for treating cardiovascular deconditioning.
Current computer architectures are multi-threaded and make use of multiple CPU cores. Most garbage collections policies for the Java Virtual Machine include a stop-the-world phase, which means that all threads are suspended. A considerable portion of the execution time of Java programs is spent in these stop-the-world garbage collections. To improve this behavior, a thread-local allocation and garbage collection that only affects single threads, has been proposed. Unfortunately, only objects that are not accessible by other threads ("do not escape") are eligible for this kind of allocation. It is therefore necessary to reliably predict the escaping of objects. The work presented in this paper analyzes the escaping of objects based on the line of code (program counter – PC) the object was allocated at. The results show that on average 60-80% of the objects do not escape and can therefore be locally allocated.
Social cash transfers (SCTs) are considered a priority in least-developed countries, where the gap between the need for basic social protection and existing provisions is greatest. This study represents one of the first comprehensive treatments of the impact of social cash transfers in low-income sub-Saharan Africa, and the first for Zambia's oldest SCT scheme. The results, based on propensity score matching and fully efficient odds-weighted regression, and data from the Kalomo SCT pilot scheme, confirm positive SCT effects on per capita consumption expenditure. We also discover threshold effects with SCT mostly impacting food expenditure among poorer beneficiary households and non-food expenditure among wealthier beneficiaries.
Robust Indoor Localization Using Optimal Fusion Filter For Sensors And Map Layout Information
(2014)
The work being described in this paper is the result of a cooperation project between the Institute of Visual Computing at the Bonn-Rhein-Sieg University of Applied Sciences, Germany and the Laboratory of Biomedical Engineering at the Federal University of Uberlândia, Brazil. The aim of the project is the development of a virtual environment based training simulator which enables for better and faster learning the control of upper limb prostheses. The focus of the paper is the description of the technical setup since learning tutorials still need to be developed as well as a comprehensive evaluation still needs to be carried out.
This thesis presents an approach to automatically adjust the parameters of a Java application run on the IBM J9 Virtual Machine in order to improve its performance. It works by analyzing the logfile the VM generates and searching for specific behavioral patterns. These patterns are matched against a list of known patterns for which rules exist that specify how to adapt the VM to the given application. Adapting the application is done by adding parameters and changing existing ones, for example to achieve a better heap usage. The process is fully automated and carried out by a toolkit developed for this thesis. The toolkit iteratively cycles through multiple possible parameter sets, benchmarks them and proposes the best alternative to the user. The user can, without any prior knowledge about the Java application or the VM improve the performance of the deployed application.
The ability to track moving people is a key aspect of autonomous robot systems in real-world environments. Whilst for many tasks knowing the approximate positions of people may be sufficient, the ability to identify unique people is needed to accurately count people in the real world. To accomplish the people counting task, a robust system for people detection, tracking and identification is needed.
One of the great societal challenges that we face today concerns the move to more sustainable patterns of energy consumption, reflecting the need to balance both individual consumer choice and societal demands. In order for this ‘energy turnaround’ to take place, however, reducing residential energy consumption must go beyond using energy-efficient devices: More sustainable behaviour and lifestyles are essential parts of future ‘energy aware’ living. Addressing this issue from an HCI perspective, this paper presents the results of a 3-year research project dealing with the co-design and appropriation of a Home Energy Management System (HEMS) that has been rolled out in a living lab setting with seven households for a period of 18 months. Our HEMS is inspired by feedback systems in Sustainable Interaction Design and allows the monitoring of energy consumption in real-time. In contrast to existing research mainly focusing on how technology can persuade people to consume less energy (‘what technology does to people’), our study focuses on the appropriation of energy feedback systems (‘what people do with technology’) and how newly developed practices can become a resource for future technology design. Therefore, we deliberately followed an open research design. In keeping with this approach, our study uncovers various responses, practices and obstacles of HEMS use. We show that HEMS use is characterized by a number of different features. Recognizing the distinctive patterns of technology use in the different households and the evolutionary character of that use within the households, we conclude with a discussion of these patterns in relation to existing research and their meaning for the design of future HEMSs.
Residential and commercial buildings are responsible for about 40% of the EU’s total energy consumption. However, conscious, sustainable use of this limited resource is hampered by a lack of visibility and materiality of consumption. One of the major challenges is enabling consumers to make informed decisions about energy consumption, thereby supporting the shift to sustainable actions. With the use of Energy-Management-Systems it is possible to save up to 15%. In recent years, design approaches have greatly diversified, but with the emergence of ubiquitous- and context-aware computing, energy feedback solutions can be enriched with additional context information. In this study, we present the concept “room as a context” for eco-feedback systems. We investigate opportunities of making current state-of-the-art energy visualizations more meaningful and demonstrate which new forms of visualizations can be created with this additional information. Furthermore, we developed a prototype for android-based tablets, which includes some of the presented features to study our design concepts in the wild.
The case for basic human needs in coaching: A neuroscientific perspective - The SCOAP Coach Theory
(2014)
Realism and plausibility of computer controlled entities in entertainment software have been enhanced by adding both static personalities and dynamic emotions. Here a generic model is introduced that allows findings from real-life personality studies to be transferred to a computational model. Adaptive behavior patterns are enabled by introducing dynamic event-based emotions. The advantages of this model have been validated using a four-way crossroad in a traffic simulation. Driving agents using the introduced model enhanced by dynamics were compared to agents based on static personality profiles and simple rule-based behavior. The results show that adding a dynamic factor to agents improves perceivable plausibility and realism.
In the field of domestic service robots, recovery from faults is crucial to promote user acceptance. In this context we focus in particular on some specific faults, which arise from the interaction of a robot with its real world environment. Even a well-modelled robot may fail to perform its tasks successfully due to unexpected situations, which occur while interacting. These situations occur as deviations of properties of the objects (manipulated by the robot) from their expected values. Hence, they are experienced by the robot as external faults.
Unexpected Situations in Service Robot Environment: Classification and Reasoning Using Naive Physics
(2014)
Structure-activity relationships of thiostrepton derivatives: implications for rational drug design
(2014)
Gas chromatography with flame-ionization detection (FID) and gas chromatography-mass spectrometry (GC/MS) with electron impact ionization (EI) and chemical ionization (PCI and NCI) were successfully used for separation and identification of commercially available longchain primary alkyl amines. The investigated compounds were used as corrosion inhibiting and antifouling agents in a water-steam circuit of energy systems in the power industry. Solidphase extraction (SPE) with octadecyl bonded silica (C18) sorbents followed by gas chromatography were used for quantification of the investigated Primene JM-T™ alkyl amines in boiler water, condensate and superheated steam samples from the power plant. Amine formulations from Kotamina group favor formation of protective layers on internal surfaces and keep them free from corrosion and scale. Alkyl amines contained in those formulations both render the environment alkaline and limit the corrosion impact of ionic and gaseous impurities by formation of protective layers. Moreover, alkyl amines limit scaling on heating surfaces of boilers and in turbine, ensuring failure-free operation. Application of alkyl amine formulation enhances heat exchange during boiling and condensation processes. Alkyl amines with branched structure are more thermally stable than linear alkyl amines, exhibit better adsorption and effectiveness of surface shielding. As a result, application of thermostable long-chain branched alkyl amines increases the efficiency of anti-corrosive protection. Moreover, the concentration of ammonia content in water and in steam was also considerably decreased.
Analytical pyrolysis technique hyphenated to gas chromatography/mass spectrometry (Py-GC/MS) has extended the range of possible tools for characterization of synthetic polymers/copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at elevated temperature between 500 and 1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer/copolymer sample are formed. The pyrolysis products are chromatographically separated by using a fused silica capillary column and subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminate the need for pre-treatment by performing analyses directly on the solid or liquid polymer sample.
In this paper, application examples of the analytical pyrolysis hyphenated to gas chromatography/mass spectrometry for the identification of different polymeric materials in the plastic and automotive industry, dentistry and occupational safety are demonstrated. For the first time results of identification of commercially light-curing dental filling material and a car wrapping foil by pyrolysis-GC/MS are presented.
Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs.
Simulation of thermal behavior during friction stir welding process for predicting residual stresses
(2014)
The analytical pyrolysis technique hyphenated to gas chromatography–mass spectrometry (GC–MS) has extended the range of possible tools for the characterization of synthetic polymers and copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at temperatures of 500–1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer or copolymer sample are formed. The pyrolysis products are chromatographically separated using a fused-silica capillary column and are subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminates the need for pretreatment by performing analyses directly on the solid or liquid polymer sample. In this article, application examples of analytical pyrolysis hyphenated to GC–MS for the identification of different polymeric materials in the plastic and automotive industry, dentistry, and occupational safety are demonstrated. For the first time, results of identification of commercial light-curing dental filling material and a car wrapping foil by pyrolysis–GC–MS are presented.
The analytical pyrolysis technique hyphenated to gas chromatography–mass spectrometry (GC–MS) has extended the range of possible tools for the characterization of synthetic polymers and copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at temperatures of 500–1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer or copolymer sample are formed. The pyrolysis products are chromatographically separated using a fused-silica capillary column and are subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminates the need for pretreatment by performing analyses directly on the solid or liquid polymer sample. In this article, application examples of analytical pyrolysis hyphenated to GC–MS for the identification of different polymeric materials in the plastic and automotive industry, dentistry, and occupational safety are demonstrated. For the first time, results of identification of commercial light-curing dental filling material and a car wrapping foil by pyrolysis–GC–MS are presented.
Exposure to microgravity conditions causes cardiovascular deconditioning in astronauts during spaceflight. Until now, no specific drugs are available for countermeasure, since the underlying mechanism is largely unknown. Endothelial cells (ECs) and smooth muscle cells (SMCs) play key roles in various vascular functions, many of which are regulated by purinergic 2 (P2) receptors. However, their function in ECs and SMCs under microgravity conditions is still unclear. In this study, primary ECs and SMCs were isolated from bovine aorta and verified with specific markers. We show for the first time that the P2 receptor expression pattern is altered in ECs and SMCs after 24 h exposure to simulated microgravity using a clinostat. However, conditioned medium compensates this change in specific P2 receptors, for example, P2X7. Notably, P2 receptors such as P2X7 might be the important players during the paracrine interaction. Additionally, ECs and SMCs secreted different cytokines under simulated microgravity, leading into a pathogenic proliferation and migration. In conclusion, our data indicate P2 receptors might be important players responding to gravity changes in ECs and SMCs. Since some artificial P2 receptor ligands are applied as drugs, it is reasonable to assume that they might be promising candidates against cardiovascular deconditioning in the future.
Purpose – The aim of the study is to investigate the implementation of corporate sustainability (CS) in the German real estate sector.
Design/methodology/approach – The authors begin by outlining the framework set by the European Union and the German Federal Government for companies wanting to be classified as sustainable. After this, the relevance of sustainability for German real estate companies is discussed. Their empirical section contains an international comparison. Finally, they present an analysis checking the implementation of CS for the main 135 German real estate companies.
Findings – The present analysis shows that German real estate companies compare well with their international counterparts, in 2012 representing 15 per cent of all real estate firms reporting on the basis of the Global Reporting Initiative. However, of the 135 companies in Germany surveyed, only a small proportion classify themselves as CS and CSR (corporate social responsibility) enterprises. This number could be rapidly increased by better documentation of companies’ commitment to sustainability.
Practical implications – The study’s importance lies in the overview it provides of CS activities in the German real estate industry. In addition, it provides hints on how companies can improve their documentation to classify as CSR enterprises. Although the analysis concentrates on Germany, the results are also relevant for companies in other European countries.
Adapting plans to changes in the environment by finding alternatives and taking advantage of opportunities is a common human behavior. The need for such behavior is often rooted in the uncertainty produced by our incomplete knowledge of the environment. While several existing planning approaches deal with such issues, artificial agents still lack the robustness that humans display in accomplishing their tasks. In this work, we address this brittleness by combining Hierarchical Task Network planning, Description Logics, and the notions of affordances and conceptual similarity. The approach allows a domestic service robot to find ways to get a job done by making substitutions. We show how knowledge is modeled, how the reasoning process is used to create a constrained planning problem, and how the system handles cases where plan generation fails due to missing/unavailable objects. The results of the evaluation for two tasks in a domestic service domain show the viability of the approach in finding and making the appropriate goal transformations.
Humans exhibit flexible and robust behavior in achieving their goals. We make suitable substitutions for objects, actions, or tools to get the job done. When opportunities that would allow us to reach our goals with less effort arise, we often take advantage of them. Robots are not nearly as robust in handling such situations. Enabling a domestic service robot to find ways to get a job done by making substitutions is the goal of our work. In this paper, we highlight the challenges faced in our approach to combine Hierarchical Task Network planning, Description Logics, and the notions of affordances and conceptual similarity. We present open questions in modeling the necessary knowledge, creating planning problems, and enabling the system to handle cases where plan generation fails due to missing/unavailable objects.
This book constitutes the proceedings of the 14th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2014 held in Marienstatt, Germany, in April/May 2014. The 25 revised full papers presented were carefully selected from 37 submissions. The papers are structured in specific fields on concurrent Kleene algebras and related formalisms, reasoning about computations and programs, heterogeneous and categorical approaches, applications of relational and algebraic methods and developments related to modal logics and lattices.
As soon as data is noisy, knowledge as it is represented in an information system becomes unreliable. Features in databases induce equivalence relations—but knowledge discovery takes the other way round: given a relation, what could be a suitable functional description? But the relations we work on are noisy again. If we expect to record data for learning a classification of objects then it can well be the real data does not create a reflexive, symmetric and transitive relation although we know it should be. The usual approach taken here is to build the closure in order to ensure desired properties. This, however, leads to overgeneralisation rather quickly.
On nothing
(2014)
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
The contribution of the most common reciprocal translocation in childhood B-cell precursor leukemia t(12;21)(p13;q22) to leukemia development is still under debate. Direct as well as secondary indirect effects of the TEL-AML1 fusion protein are commonly recorded by using cell lines and patient samples, often bearing the TEL-AML1 fusion protein for decades. To identify direct targets of the fusion protein a short-term induction of TEL-AML1 is needed. We here describe in detail the experimental procedure, quality controls and contents of the ChIP, mRNA expression and SILAC datasets associated with the study published by Linka and colleagues in the Blood Cancer Journal [1] utilizing a short term induction of TEL-AML1 in an inducible precursor B-cell line model.
Robots, which are able to carry out their tasks robustly in real world environments, are not only desirable but necessary if we want them to be more welcome for a wider audience. But very often they may fail to execute their actions successfully because of insufficient information about behaviour of objects used in the actions.
This paper gives an overview of the development of Fair Trade in six European countries: Austria, France, Germany, the Netherlands, Switzerland and the United Kingdom. After the description of the food retail industry and its market structures in these countries, the main European Fair Trade organizations are analyzed regarding their role within the Fair Trade system. The following part deals with the development of Fair Trade sales in general and with respect to the products coffee, tea, bananas, fruit juice and sugar. An overview of the main activities of national Fair Trade organizations, e.g. public relation activities, completes the analysis. This study shows the enormous upswing of Fair Trade during the last decade and the reasons for this development. Nevertheless, it comes to the conclusion that Fair Trade is still far away from being an essential part of the food retail industry in Europe.
The latest advances in the field of smart card technologies allow modern cards to be more than just simple security tokens. Recent developments facilitate the use of interactive components like buttons, displays or even touch-sensors within the cards body thus conquering whole new areas of application. With interactive functionalities the usability aspect becomes the most important one for designing secure and popularly accepted products. Unfortunately the usability can only be tested fully with completely integrated hence expensive smart card prototypes. This restricts application specific research, case studies of new smart card user interfaces, concerning applications and the performance of useability tests in smart card development. Rapid development and simulation of smart card interfaces and applications can help to avoid this restriction. This paper presents SCUIDtextsuperscript{Sim} a tool for rapid user-centric development of new smart card interfaces and applications based on common smartphone technology.
A cost-efficient alternative to outside-in tracking systems for pointing interaction with large displays is to equip the pointing device with a camera, whose images are matched to display content. This work presents the Dynamic Marker Camera Tracking (DMCT) framework for display-based camera tracking. It accounts for typical display characteristics and uses dynamic on-screen markers overlaid to the display content that follow the camera. An example marker implementation and a tracking recovery method are presented. DMCT can measure pointing locations with sub-millimeter precision in large tracking volumes and computes 6-DoF camera poses for 3D interaction. 60 Hz update rate and 24 ms latency were achieved. DMCT's main limitation is the visible marker interfering with display content. In pointing effciency, the prototype is comparable to an OptiTrack system.
Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway.
We investigated graphene structures grafted with fullerenes. The size of the graphene sheets ranges from 6400 to 640,000 atoms. The fullerenes (C60 and C240) are placed on top of the graphene sheets, using different impact velocities we could distinguish three types of impact. Furthermore, we investigated the changes of the vibrational properties. The modified graphene planes show additional features in the vibronic density of states.
Design of a declarative language for task-oriented grasping and tool-use with dextrous robotic hands
(2014)
Apparently simple manipulation tasks for a human such as transportation or tool use are challenging to replicate in an autonomous service robot. Nevertheless, dextrous manipulation is an important aspect for a robot in many daily tasks. While it is possible to manufacture special-purpose hands for one specific task in industrial settings, a generalpurpose service robot in households must have flexible hands which can adapt to many tasks. Intelligently using tools enables the robot to perform tasks more efficiently and even beyond the designed capabilities. In this work a declarative domain-specific language, called Grasp Domain Definition Language (GDDL), is presented that allows the specification of grasp planning problems independently of a specific grasp planner. This design goal resembles the idea of the Planning Domain Definition Language (PDDL). The specification of GDDL requires a detailed analysis of the research in grasping in order to identify best practices in different domains that contribute to a grasp. These domains describe for instance physical as well as semantic properties of objects and hands. Grasping always has a purpose which is captured in the task domain definition. It enables the robot to grasp an object in a taskdependent manner. Suitable representations in these domains have to be identified and formalized for which a domain-driven software engineering approach is applied. This kind of modeling allows the specification of constraints which guide the composition of domain entity specifications. The domain-driven approach fosters reuse of domain concepts while the constraints enable the validation of models already during design time. A proof of concept implementation of GDDL into the GraspIt! grasp planner is developed. Preliminary results of this thesis have been published and presented on the IEEE International Conference on Robotics and Automation (ICRA).
Business process infrastructures like BPMS (Business Process Management Systems) and WfMS (Workflow Management Systems) traditionally focus on the automation of processes predefined at design time. This approach is well suited for routine tasks which are processed repeatedly and which are described by a predefined control flow. In contrast, knowledge-intensive work is more goal and data-driven and less control-flow oriented. Knowledge workers need the flexibility to decide dynamically at run-time and based on current context information on the best next process step to achieve a given goal. Obviously, in most practical scenarios, these decisions are complex and cannot be anticipated and modeled completely in a predefined process model. Therefore, adaptive and dynamic process management techniques are necessary to augment the control-flow oriented part of process management (which is still a need also for knowledge workers) with flexible, context-dependent, goaloriented support.
Nitrile-type inhibitors are known to interact with cysteine proteases in a covalent-reversible manner. The chemotype of 3-cyano-3-aza-β-amino acid derivatives was designed in which the N-cyano group is centrally arranged in the molecule to allow for interactions with the nonprimed and primed binding regions of the target enzymes. These compounds were evaluated as inhibitors of the human cysteine cathepsins K, S, B, and L. They exhibited slow-binding behavior and were found to be exceptionally potent, in particular toward cathepsin K, with second-order rate constants up to 52 900 × 103 M–1 s–1.
The usage of the Web has experienced a vertiginous growth in the last few years. Watching video online has been one major driving force for this growth lately. Until the appearance of the HTML5 agglomerate of (still draft) specifications, the access and consumption of multimedia content in the Web has not been standardized. Hence, the use of proprietary Web browser plugins flourished as intermediate solution. With the introduction of the HTML5 VideoElement, Web browser plugins are replaced with a standardized alternative. Still, HTML5 Video is currently limited in many respects, including the access to only file-based media. This paper investigates on approaches to develop video live streaming solutions based on available Web standards. Besides a pull-based design based on HTTP, a push-based architecture is introduced, making use of the WebSocket protocol being part of the HTML5 standards family as well. The evaluation results of both conceptual principles emphasize, that push-based approaches have a higher potential of providing resource and cost efficient solutions as their pull-based counterparts. In addition, initial approaches to instrument the proposed push-based architecture with adaptiveness to network conditions have been developed.
SOA-Readiness of REST
(2014)
Service Security Revisited
(2014)
It is a euphemism to say that humans use tools. Humans possess a vast repertoire of tools they use every day. In fact, as language or bipedal locomotion, tool use is a hallmark of humans. Tool use has also been often viewed as an important step during evolution (van Schaik et al., 1999) or even as a marker of the evolution of human intelligence (Wynn, 1985). So a fundamental issue is, what are the cognitive and neural bases of human tool use? The present series of papers in this special topic represents the newest additions to that research topic.
We explore the potential of stereoscopic 3D (S3D) vision in offering distinct gameplay using an S3D-specific game called Deepress3D. Our game utilizes established S3D design principles for optimizing GUI design, visual comfort and game mechanics which rely on depth perception in time-pressured spatial conflicts. The game collects detailed S3D player metrics and allows players to choose between different, evenly matched strategies. We conducted a between subjects study comparing S3D and monoscopic versions of Deepress3D that examined player behavior and performance and measured user-reported data on presence, simulator sickness, and game experience.
Deep Gaming
(2014)
How to create a distinct user experience of Stereo 3D in Interactive Entertainment & Virtual Reality Gaming Stereoscopic 3D (S3D) vision offers spatial visual perception by presenting two separate and different This article or re envision the, creative economy different versions of games in it up. By authors behind the same sheet, of primary medical dental and operator. If I gently rubbed miles chest wouldn't know. Listing infohere at a way through, sixth grade level by the layout and memory. Hats off adjust the bass and restart automatic benefit. Try to be fooled into serious topics by playing with a lot. Creating general many other people, with new digital games allow their impact! The hunt for example my google, searches has learned. These badges this development phases to work it is in my year.