Refine
Departments, institutes and facilities
- Fachbereich Wirtschaftswissenschaften (1146)
- Fachbereich Informatik (1060)
- Fachbereich Angewandte Naturwissenschaften (708)
- Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus (534)
- Institut für funktionale Gen-Analytik (IFGA) (494)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (394)
- Fachbereich Sozialpolitik und Soziale Sicherung (348)
- Institute of Visual Computing (IVC) (298)
- Institut für Cyber Security & Privacy (ICSP) (291)
- Institut für Verbraucherinformatik (IVI) (230)
Document Type
- Article (2188)
- Conference Object (1717)
- Part of a Book (872)
- Book (monograph, edited volume) (434)
- Report (187)
- Contribution to a Periodical (119)
- Working Paper (84)
- Doctoral Thesis (79)
- Preprint (75)
- Lecture (63)
- Master's Thesis (55)
- Conference Proceedings (51)
- Part of Periodical (43)
- Patent (39)
- Bachelor Thesis (38)
- Research Data (20)
- Other (17)
- Diploma Thesis (9)
- Book review (9)
- Periodical (8)
- Study Thesis (2)
- Postdoctoral thesis (1)
- Video (1)
Year of publication
Keywords
- Lehrbuch (82)
- Deutschland (33)
- Nachhaltigkeit (28)
- Controlling (25)
- Unternehmen (24)
- Management (20)
- Corporate Social Responsibility (18)
- Betriebswirtschaftslehre (16)
- Digitalisierung (16)
- Sozialversicherung (15)
Digital ecosystems are driving the digital transformation of business models. Meanwhile, the associated processing of personal data within these complex systems poses challenges to the protection of individual privacy. In this paper, we explore these challenges from the perspective of digital ecosystems' platform providers. To this end, we present the results of an interview study with seven data protection officers representing a total of 12 digital ecosystems in Germany. We identified current and future challenges for the implementation of data protection requirements, covering issues on legal obligations and data subject rights. Our results support stakeholders involved in the implementation of privacy protection measures in digital ecosystems, and form the foundation for future privacy-related studies tailored to the specifics of digital ecosystems.
A company's financial documents use tables along with text to organize the data containing key performance indicators (KPIs) (such as profit and loss) and a financial quantity linked to them. The KPI’s linked quantity in a table might not be equal to the similarly described KPI's quantity in a text. Auditors take substantial time to manually audit these financial mistakes and this process is called consistency checking. As compared to existing work, this paper attempts to automate this task with the help of transformer-based models. Furthermore, for consistency checking it is essential for the table's KPIs embeddings to encode the semantic knowledge of the KPIs and the structural knowledge of the table. Therefore, this paper proposes a pipeline that uses a tabular model to get the table's KPIs embeddings. The pipeline takes input table and text KPIs, generates their embeddings, and then checks whether these KPIs are identical. The pipeline is evaluated on the financial documents in the German language and a comparative analysis of the cell embeddings' quality from the three tabular models is also presented. From the evaluation results, the experiment that used the English-translated text and table KPIs and Tabbie model to generate table KPIs’ embeddings achieved an accuracy of 72.81% on the consistency checking task, outperforming the benchmark, and other tabular models.
A PM2.5 concentration prediction framework with vehicle tracking system: From cause to effect
(2023)
Trueness and precision of milled and 3D printed root-analogue implants: A comparative in vitro study
(2023)
Digitaltechnik
(2022)
Moderne Digitaltechnik, umfassend und kompakt: Dieses Lehr- und Übungsbuch spannt den Bogen von den Grundlagen der Digitaltechnik über den Entwurf mit VHDL und Komponenten digitaler Systeme bis zu modernen Mikrocontrollern der STM32-Serie.
Die 8. Auflage wurde aktualisiert und die Themenbereiche Mikroprozessoren und Mikrocontroller grundlegend überarbeitet.
Indoor spaces exhibit microbial compositions that are distinctly dissimilar from one another and from outdoor spaces. Unique in this regard, and a topic that has only recently come into focus, is the microbiome of hospitals. While the benefits of knowing exactly which microorganisms propagate how and where in hospitals are undoubtedly beneficial for preventing hospital-acquired infections, there are, to date, no standardized procedures on how to best study the hospital microbiome. Our study aimed to investigate the microbiome of hospital sanitary facilities, outlining the extent to which hospital microbiome analyses differ according to sample-preparation protocol. For this purpose, fifty samples were collected from two separate hospitals—from three wards and one hospital laboratory—using two different storage media from which DNA was extracted using two different extraction kits and sequenced with two different primer pairs (V1–V2 and V3–V4). There were no observable differences between the sample-preservation media, small differences in detected taxa between the DNA extraction kits (mainly concerning Propionibacteriaceae), and large differences in detected taxa between the two primer pairs V1–V2 and V3–V4. This analysis also showed that microbial occurrences and compositions can vary greatly from toilets to sinks to showers and across wards and hospitals. In surgical wards, patient toilets appeared to be characterized by lower species richness and diversity than staff toilets. Which sampling sites are the best for which assessments should be analyzed in more depth. The fact that the sample processing methods we investigated (apart from the choice of primers) seem to have changed the results only slightly suggests that comparing hospital microbiome studies is a realistic option. The observed differences in species richness and diversity between patient and staff toilets should be further investigated, as these, if confirmed, could be a result of excreted antimicrobials.
Work-related thoughts in off-job time have been studied extensively in occupational health psychology and related fields. We provide a focused review of research on overcommitment – a component within the effort-reward imbalance model – and aim to connect this line of research to the most commonly studied aspects of work-related rumination. Drawing on this integrative review, we analyze survey data on ten facets of work-related rumination, namely (1) overcommitment, (2) psychological detachment, (3) affective rumination, (4) problem-solving pondering, (5) positive work reflection, (6) negative work reflection, (7) distraction, (8) cognitive irritation, (9) emotional irritation, and (10) inability to recover. First, we leverage exploratory factor analysis to self-report survey data from 357 employees to calibrate overcommitment items and to position overcommitment within the nomological net of work-related rumination constructs. Second, we leverage confirmatory factor analysis to self-report survey data from 388 employees to provide a more specific test of uniqueness vs. overlap among these constructs. Third, we apply relative weight analysis to quantify the unique criterion-related validity of each work-related rumination facet regarding (1) physical fatigue, (2) cognitive fatigue, (3) emotional fatigue, (4) burnout, (5) psychosomatic complaints, and (6) satisfaction with life. Our results suggest that several measures of work-related rumination (e.g., overcommitment and cognitive irritation) can be used interchangeably. Emotional irritation and affective rumination emerge as the strongest unique predictors of fatigue, burnout, psychosomatic complaints, and satisfaction with life. Our study assists researchers in making informed decisions on selecting scales for their research and paves the way for integrating research on effort-reward imbalance and work-related rumination.
IT Controlling
(2023)
IT controlling is established as a tool for controlling information technology. The job description of the IT controller has changed only moderately over a long period of time. It was mainly associated with IT budgeting, IT portfolio management, IT cost planning, accounting and controlling. However, digitalization has brought movement in goals, contents and methods. New topics such as digital strategy management, cloud controlling, data science, etc. are being discussed. The task profile is changing away from pure IT cost analysis to the management of the digitization strategy with a focus on strategic IT portfolio management. Some voices are already talking about "smart controlling" or "digital controlling".
This book presents an IT controlling concept for the digital age and explains the relevant methods in a practical way.
Angewandte Makroökonomie
(2023)
Einleitung
(2022)
Buch-Diskurse
(2022)
Vorwort
(2022)
Medien-›Eingriffe‹
(2022)
Was ist ein Labor?
(2022)
Vorwort
(2022)
Harald Schmidt
(2022)
Als Medien- und insbesondere Fernsehphänomen hat Harald Schmidt die TV-Kultur im deutschsprachigen Raum maßgeblich beeinflusst. So ist es etwa der Harald Schmidt Show gelungen, halbironische Sprechweisen diskursfähig zu machen, die sich bis in die Gegenwart der Social Media verfolgen lassen. Die Beiträger*innen des Bandes untersuchen vor diesem Hintergrund die »Methode Harald Schmidt«, d.h. die Unterminierung gängiger sozialer Vorstellungen bei gleichzeitiger Affirmation derselben. Die zentrale These lautet: Harald Schmidt hat grundlegende Voraussetzungen dafür geschaffen, eine weitestgehend neue Populärkultur ästhetisch wie kulturpraktisch zu etablieren.
Buch-Aisthesis
(2022)
Literatur kann auch als Verbund von Medien betrachtet werden, die in Kooperations- und Konkurrenzverhältnissen auftreten. Dies wird umso deutlicher, wenn aus literatur- und designwissenschaftlicher Perspektive auf die Beobachtung der Differenz von typographischen und anderen, grundsätzlich nonverbalen visuellen Daten abgestellt wird. Die Beiträger*innen des Bandes leiten daraus ein Verhältnis von Literatur- und Kunstwissenschaft zu ihren Gegenständen ab, das nicht zuletzt zu einer neuen Aufmerksamkeit für die skripturale und typographische Materialität und Medialität der Literatur führt. Dabei geht es um die Theorie der Reflexion und die Praxis der Erzeugung einer je spezifischen Buch-Ästhetik.
Technik-Ästhetik
(2022)
Von Technik und Ästhetik zu sprechen, heißt, sich bereits begrifflich auf ein Feld einzulassen, das mindestens zwei divergente Perspektiven gemeinsam denkt. Dabei haben das Technische wie das Ästhetische die Bedeutung einer Interdependenz aufzuweisen: Das Technische konstituiert einerseits Funktionen, Formen und Gebrauchsaspekte - ästhetische Zustände evozieren andererseits zeichenhafte Realisierungen, phantasmatische Urteile und wahrnehmungsvermittelte Phänomene des Erscheinens. Die Beiträger*innen des Bandes zeigen, wie bei der Konfrontation von Technik und Ästhetik eine Art Verkopplung und intrinsische Dynamik qua techno-ästhetischer Evokation entstehen kann.
The Concordia Research Station provides a unique location for preparatory activities for future human journey to Mars, to explore microbial diversity at subzero temperatures, and monitor the dissemination of human-associated microorganisms within the pristine surrounding environment. Amplicon sequencing was leveraged to investigate the microbial diversity of surface snow samples collected monthly over a two-year period, at three distances from the Station (10, 500, and 1000 m). Even when the extracted total DNA was below the detection limit, 16S rRNA gene sequencing was successfully performed on all samples, while 18S rRNA was amplified on 19 samples out of 51. No significant relationships were observed between microbial diversity and seasonality (summer or winter) or distance from the Concordia base. This suggested that if present, the anthropogenic impact should have been below the detectable limit. While harboring low microbial diversity, the surface snow samples were characterized by heterogeneous microbiomes. Ultimately, our study corroborated the use of DNA sequencing-based techniques for revealing microbial presence in remote and hostile environments, with implications for Planetary Protection during space missions and for life-detection in astrobiology relevant targets.
Thermo-chemical conversion of cucumber peel waste for biobased energy and chemical production
(2022)
In the design of robot skills, the focus generally lies on increasing the flexibility and reliability of the robot execution process; however, typical skill representations are not designed for analysing execution failures if they occur or for explicitly learning from failures. In this paper, we describe a learning-based hybrid representation for skill parameterisation called an execution model, which considers execution failures to be a natural part of the execution process. We then (i) demonstrate how execution contexts can be included in execution models, (ii) introduce a technique for generalising models between object categories by combining generalisation attempts performed by a robot with knowledge about object similarities represented in an ontology, and (iii) describe a procedure that uses an execution model for identifying a likely hypothesis of a parameterisation failure. The feasibility of the proposed methods is evaluated in multiple experiments performed with a physical robot in the context of handle grasping, object grasping, and object pulling. The experimental results suggest that execution models contribute towards avoiding execution failures, but also represent a first step towards more introspective robots that are able to analyse some of their execution failures in an explicit manner.
The human enzymes GLYAT (glycine N-acyltransferase), GLYATL1 (glutamine N-phenylacetyltransferase) and GLYATL2 (glycine N-acyltransferase-like protein 2) are not only important in the detoxification of xenobiotics via the human liver, but are also involved in the elimination of acyl residues that accumulate in the form of their coenzyme A (coA) esters in some rare inborn errors of metabolism. This concerns, for example, disorders in the degradation of branched-chain amino acids, such as isovaleric acidemia or propionic acidemia. In addition, they also assist in the elimination of ammonium, which is produced during the transamination of amino acids and accumulates in urea cycle defects. Sequence variants of the enzymes have also been investigated, which may provide evidence of impaired enzyme activities, from which therapy adjustments can potentially be derived. A modified Escherichia coli strain was chosen for the overexpression and partial biochemical characterization of the enzymes, which may allow solubility and proper folding. Since post-translational protein modifications are very limited in bacteria, we also attempted to overexpress the enzymes in HEK293 cells (human-derived). In addition to characterization via immunoblots and activity assays, intracellular localization of the enzymes was also performed using GFP coupling and confocal laser scanning microscopy in transfected HEK293 cells. The GLYATL2 enzyme may have tasks beyond detoxification and metabolic defects and the preliminary molecular biology work has been performed as part of this project - the enzyme activity determinations were outsourced to a co-supervised bachelor thesis. The enzyme activity determinations with purified recombinant human enzyme from Escherichia coli provided a threefold higher activity of the sequence variant p.(Asn156Ser) for GLYAT, which should be considered as the probably authentic wild type of the enzyme. In addition, a reduced activity of the GLYAT variant p.(Gln61Leu), which is very common in South Africa, was shown, which could be of particular importance in the treatment of isovaleric acidemia, which is also common in South Africa. Intracellularly, GLYAT and GLYATL1 could be localized mitochondrially. As the analyses have shown, sequence variations of GLYAT and GLYATL1 influence their enzyme activity. As an example, the GLYAT variant p.(Gln61Leu) is frequently found in South Africa. In the case of reduced GLYAT activity, patients could be increasingly treated with L-carnitine in the sense of an individualized therapy, since the conjugation of the toxic isovaleryl-coA with glycine is restricted by the GLYAT sequence variation. Activity-reducing variants identified in this project are of particular interest, as they may influence the treatment of certain metabolic defects.
State-of-the-art object detectors are treated as black boxes due to their highly non-linear internal computations. Even with unprecedented advancements in detector performance, the inability to explain how their outputs are generated limits their use in safety-critical applications. Previous work fails to produce explanations for both bounding box and classification decisions, and generally make individual explanations for various detectors. In this paper, we propose an open-source Detector Explanation Toolkit (DExT) which implements the proposed approach to generate a holistic explanation for all detector decisions using certain gradient-based explanation methods. We suggests various multi-object visualization methods to merge the explanations of multiple objects detected in an image as well as the corresponding detections in a single image. The quantitative evaluation show that the Single Shot MultiBox Detector (SSD) is more faithfully explained compared to other detectors regardless of the explanation methods. Both quantitative and human-centric evaluations identify that SmoothGrad with Guided Backpropagation (GBP) provides more trustworthy explanations among selected methods across all detectors. We expect that DExT will motivate practitioners to evaluate object detectors from the interpretability perspective by explaining both bounding box and classification decisions.
21 pages, with supplementary
Bonding wires made of aluminum are the most used materials for the transmission of electrical signals in power electronic devices. During operation, different cyclic mechanical and thermal stresses can lead to fatigue loads and a failure of the bonding wires. A prediction or prevention of the wire failure is not yet possible by design for all cases. The following work presents meaningful fatigue tests in small wire dimensions and investigates the influence of the R-ratio on the lifetime of two different aluminum wires with a diameter of 300 μm each. The experiments show very reproducible fatigue results with ductile failure behavior. The endurable stress amplitude decreases linearly with an increasing stress ratio, which can be displayed by a Smith diagram, even though the applied maximum stresses exceed the initial yield stresses determined by tensile tests. A scaling of the fatigue results by the tensile strength indicates that the fatigue level is significantly influenced by the strength of the material. Due to the very consistent findings, the development of a generalized fatigue model for predicting the lifetime of bonding wires with an arbitrary loading situation seems to be possible and will be further investigated.
In young adulthood, important foundations are laid for health later in life. Hence, more attention should be paid to the health measures concerning students. A research field that is relevant to health but hitherto somewhat neglected in the student context is the phenomenon of presenteeism. Presenteeism refers to working despite illness and is associated with negative health and work-related effects. The study attempts to bridge the research gap regarding students and examines the effects of and reasons for this behavior. The consequences of digital learning on presenteeism behavior are moreover considered. A student survey (N = 1036) and qualitative interviews (N = 11) were conducted. The results of the quantitative study show significant negative relationships between presenteeism and health status, well-being, and ability to study. An increased experience of stress and a low level of detachment as characteristics of digital learning also show significant relationships with presenteeism. The qualitative interviews highlighted the aspect of not wanting to miss anything as the most important reason for presenteeism. The results provide useful insights for developing countermeasures to be easily integrated into university life, such as establishing fixed learning partners or the use of additional digital learning material.
In this paper, modeling of piston and generic type gas compressors for a globally convergent algorithm for solving stationary gas transport problems is carried out. A theoretical analysis of the simulation stability, its practical implementation and verification of convergence on a realistic gas network have been carried out. The relevance of the paper for the topics of the conference is defined by a significance of gas transport networks as an advanced application of simulation and modeling, including the development of novel mathematical and numerical algorithms and methods.
In this paper, the electrochemical alkaline methanol oxidation process, which is relevant for the design of efficient fuel cells, is considered. An algorithm for reconstructing the reaction constants for this process from the experimentally measured polarization curve is presented. The approach combines statistical and principal component analysis and determination of the trust region for a linearized model. It is shown that this experiment does not allow one to determine accurately the reaction constants, but only some of their linear combinations. The possibilities of extending the method to additional experiments, including dynamic cyclic voltammetry and variations in the concentration of the main reagents, are discussed.
Alkaline methanol oxidation is an important electrochemical process in the design of efficient fuel cells. Typically, a system of ordinary differential equations is used to model the kinetics of this process. The fitting of the parameters of the underlying mathematical model is performed on the basis of different types of experiments, characterizing the fuel cell. In this paper, we describe generic methods for creation of a mathematical model of electrochemical kinetics from a given reaction network, as well as for identification of parameters of this model. We also describe methods for model reduction, based on a combination of steady-state and dynamical descriptions of the process. The methods are tested on a range of experiments, including different concentrations of the reagents and different voltage range.
The general method of topological reduction for the network problems is presented on example of gas transport networks. The method is based on a contraction of series, parallel and tree-like subgraphs for the element equations of quadratic, power law and general monotone dependencies. The method allows to reduce significantly the complexity of the graph and to accelerate the solution procedure for stationary network problems. The method has been tested on a large set of realistic network scenarios. Possible extensions of the method have been described, including triangulated element equations, continuation of the equations at infinity, providing uniqueness of solution, a choice of Newtonian stabilizer for nearly degenerated systems. The method is applicable for various sectors in the field of energetics, including gas networks, water networks, electric networks, as well as for coupling of different sectors.
Dieses Buch zeigt konkret auf, was Geschäftsprozessmanagement ist und wie man es nutzen kann. Hierzu werden die zentralen Aspekte erklärt und praxistaugliche Tools anhand von Beispielen vorgestellt. Erleichtern Sie sich die tägliche Praxis der Analyse und Optimierung von Geschäftsprozessen! Der Inhalt Durchgängiges Fallbeispiel Überblick über praxisrelevante Modellierungsmethoden Modellierung von Prozesslandkarten, Swimlanes, BPMN- und eEPK-Diagrammen Analyse und Optimierung von Prozessen Prozesscontrolling mit Kennzahlen
Deployment of modern data-driven machine learning methods, most often realized by deep neural networks (DNNs), in safety-critical applications such as health care, industrial plant control, or autonomous driving is highly challenging due to numerous model-inherent shortcomings. These shortcomings are diverse and range from a lack of generalization over insufficient interpretability and implausible predictions to directed attacks by means of malicious inputs. Cyber-physical systems employing DNNs are therefore likely to suffer from so-called safety concerns, properties that preclude their deployment as no argument or experimental setup can help to assess the remaining risk. In recent years, an abundance of state-of-the-art techniques aiming to address these safety concerns has emerged. This chapter provides a structured and broad overview of them. We first identify categories of insufficiencies to then describe research activities aiming at their detection, quantification, or mitigation. Our work addresses machine learning experts and safety engineers alike: The former ones might profit from the broad range of machine learning topics covered and discussions on limitations of recent methods. The latter ones might gain insights into the specifics of modern machine learning methods. We hope that this contribution fuels discussions on desiderata for machine learning systems and strategies on how to help to advance existing approaches accordingly.
This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence.
Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety?
This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above.
In the field of automatic music generation, one of the greatest challenges is the consistent generation of pieces continuously perceived positively by the majority of the audience since there is no objective method to determine the quality of a musical composition. However, composing principles, which have been refined for millennia, have shaped the core characteristics of today's music. A hybrid music generation system, mlmusic, that incorporates various static, music-theory-based methods, as well as data-driven, subsystems, is implemented to automatically generate pieces considered acceptable by the average listener. Initially, a MIDI dataset, consisting of over 100 hand-picked pieces of various styles and complexities, is analysed using basic music theory principles, and the abstracted information is fed into explicitly constrained LSTM networks. For chord progressions, each individual network is specifically trained on a given sequence length, while phrases are created by consecutively predicting the notes' offset, pitch and duration. Using these outputs as a composition's foundation, additional musical elements, along with constrained recurrent rhythmic and tonal patterns, are statically generated. Although no survey regarding the pieces' reception could be carried out, the successful generation of numerous compositions of varying complexities suggests that the integration of these fundamentally distinctive approaches might lead to success in other branches.
Vietnam requires a sustainable urbanization, for which city sensing is used in planning and de-cision-making. Large cities need portable, scalable, and inexpensive digital technology for this purpose. End-to-end air quality monitoring companies such as AirVisual and Plume Air have shown their reliability with portable devices outfitted with superior air sensors. They are pricey, yet homeowners use them to get local air data without evaluating the causal effect. Our air quality inspection system is scalable, reasonably priced, and flexible. Minicomputer of the sys-tem remotely monitors PMS7003 and BME280 sensor data through a microcontroller processor. The 5-megapixel camera module enables researchers to infer the causal relationship between traffic intensity and dust concentration. The design enables inexpensive, commercial-grade hardware, with Azure Blob storing air pollution data and surrounding-area imagery and pre-venting the system from physically expanding. In addition, by including an air channel that re-plenishes and distributes temperature, the design improves ventilation and safeguards electrical components. The gadget allows for the analysis of the correlation between traffic and air quali-ty data, which might aid in the establishment of sustainable urban development plans and poli-cies.
Focus on what matters: improved feature selection techniques for personal thermal comfort modelling
(2022)
Occupants' personal thermal comfort (PTC) is indispensable for their well-being, physical and mental health, and work efficiency. Predicting PTC preferences in a smart home can be a prerequisite to adjusting the indoor temperature for providing a comfortable environment. In this research, we focus on identifying relevant features for predicting PTC preferences. We propose a machine learning-based predictive framework by employing supervised feature selection techniques. We apply two feature selection techniques to select the optimal sets of features to improve the thermal preference prediction performance. The experimental results on a public PTC dataset demonstrated the efficiency of the feature selection techniques that we have applied. In turn, our PTC prediction framework with feature selection techniques achieved state-of-the-art performance in terms of accuracy, Cohen's kappa, and area under the curve (AUC), outperforming conventional methods.
Fatigue strength estimation is a costly manual material characterization process in which state-of-the-art approaches follow a standardized experiment and analysis procedure. In this paper, we examine a modular, Machine Learning-based approach for fatigue strength estimation that is likely to reduce the number of experiments and, thus, the overall experimental costs. Despite its high potential, deployment of a new approach in a real-life lab requires more than the theoretical definition and simulation. Therefore, we study the robustness of the approach against misspecification of the prior and discretization of the specified loads. We identify its applicability and its advantageous behavior over the state-of-the-art methods, potentially reducing the number of costly experiments.