Refine
Department, Institute
- Fachbereich Elektrotechnik, Maschinenbau, Technikjournalismus (402) (remove)
Document Type
- Conference Object (169)
- Article (133)
- Part of a Book (36)
- Book (22)
- Report (16)
- Preprint (14)
- Contribution to a Periodical (3)
- Doctoral Thesis (3)
- Lecture (2)
- Other (1)
Year of publication
Language
- English (254)
- German (145)
- Spanish (2)
- Multiple languages (1)
Keywords
- FPGA (10)
- ISM: molecules (6)
- Education (5)
- Lehrbuch (5)
- education (5)
- digital design (4)
- Force field (3)
- Method of lines (3)
- bolometers (3)
- e-learning (3)
Off-lattice Boltzmann methods increase the flexibility and applicability of lattice Boltzmann methods by decoupling the discretizations of time, space, and particle velocities. However, the velocity sets that are mostly used in off-lattice Boltzmann simulations were originally tailored to on-lattice Boltzmann methods. In this contribution, we show how the accuracy and efficiency of weakly and fully compressible semi-Lagrangian off-lattice Boltzmann simulations is increased by velocity sets derived from cubature rules, i.e. multivariate quadratures, which have not been produced by the Gauss-product rule. In particular, simulations of 2D shock-vortex interactions indicate that the cubature-derived degree-nine D2Q19 velocity set is capable to replace the Gauss-product rule-derived D2Q25. Likewise, the degree-five velocity sets D3Q13 and D3Q21, as well as a degree-seven D3V27 velocity set were successfully tested for 3D Taylor-Green vortex flows to challenge and surpass the quality of the customary D3Q27 velocity set. In compressible 3D Taylor-Green vortex flows with Mach numbers Ma={0.5;1.0;1.5;2.0} on-lattice simulations with velocity sets D3Q103 and D3V107 showed only limited stability, while the off-lattice degree-nine D3Q45 velocity set accurately reproduced the kinetic energy provided by literature.
Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) <0.1 and differing robustness towards load-shifting events, gradients, and noise. While the SARIMA algorithm and the linear regression model show extreme error outliers of nRMSE >1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector.
Turbulent compressible flows are traditionally simulated using explicit Eulerian time integration applied to the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which elegantly circumvents this restriction. Previous lattice Boltzmann methods for compressible flows were mostly restricted to two dimensions due to the enormous number of discrete velocities needed in three dimensions. In contrast, this Rapid Communication demonstrates how cubature rules enhance the SLLBM to yield a three-dimensional velocity set with only 45 discrete velocities. Based on simulations of a compressible Taylor-Green vortex we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques, even when the time step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers for the first time to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time step sizes is only dictated by physics, while being decoupled from the spatial discretization.
4GREAT is an extension of the German Receiver for Astronomy at Terahertz frequencies (GREAT) operated aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectrometer comprises four different detector bands and their associated subsystems for simultaneous and fully independent science operation. All detector beams are co-aligned on the sky. The frequency bands of 4GREAT cover 491-635, 890-1090, 1240-1525 and 2490-2590 GHz, respectively. This paper presents the design and characterization of the instrument, and its in-flight performance. 4GREAT saw first light in June 2018, and has been offered to the interested SOFIA communities starting with observing cycle 6.
Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn
(2020)
TiFe intermetallic compound has been extensively studied, owing to its low cost, good volumetric hydrogen density, and easy tailoring of hydrogenation thermodynamics by elemental substitution. All these positive aspects make this material promising for large-scale applications of solid-state hydrogen storage. On the other hand, activation and kinetic issues should be amended and the role of elemental substitution should be further understood. This work investigates the thermodynamic changes induced by the variation of Ti content along the homogeneity range of the TiFe phase (Ti:Fe ratio from 1:1 to 1:0.9) and of the substitution of Mn for Fe between 0 and 5 at.%. In all considered alloys, the major phase is TiFe-type together with minor amounts of TiFe2 or \b{eta}-Ti-type and Ti4Fe2O-type at the Ti-poor and rich side of the TiFe phase domain, respectively. Thermodynamic data agree with the available literature but offer here a comprehensive picture of hydrogenation properties over an extended Ti and Mn compositional range. Moreover, it is demonstrated that Ti-rich alloys display enhanced storage capacities, as long as a limited amount of \b{eta}-Ti is formed. Both Mn and Ti substitutions increase the cell parameter by possibly substituting Fe, lowering the plateau pressures and decreasing the hysteresis of the isotherms. A full picture of the dependence of hydrogen storage properties as a function of the composition will be discussed, together with some observed correlations.
Der Beitrag untersucht, wie ein Präsenzlabor durch ein Remote-Labor ergänzt undersetzt werden kann. Dazu wird das Laborpraktikum Digitaltechnik der Hochschule Bonn-Rhein-Sieg betrachtet, bei dem ein Remote-Labor Flexibilität bei der Versuchsdurchführung bietet und Versuche ermöglicht, die allein mit dem Präsenzlabor nicht möglich wären. Neben der Ergänzung der Präsenzversuche können Studie-rende das Praktikum auch komplett im Remote-Labor durchführen. Durch klare Anforderungen an die Erteilung eines Testats ist dies sowohl für sie als auch für Lehrende praktikabel zu handhaben. Rückmeldungen der Studierenden und Nutzungszahlen belegen die Akzeptanz des Remote-Labors. Dabei zeigt sich, dass die Studierenden sehr heterogen mit dem Remote-Labor umgehen: Einige von ihnen nutzen das Remote-Labor als zusätzliche Praktikumszeit für Versuche die auch im Präsenzlabor möglich wären; andere nutzen es als Erweiterung der Praktikumsmöglichkeit für Versuche, die nur im Remote-Labor möglich sind und wieder andere arbeiten intensiv im Remote-Labor und reichen auch das Praktikumsprotokoll elektronisch ein. Für Lehrende besteht über das Protokoll und die Auswertung der Nutzungsdaten ausreichende Sicherheit, um aktive Beteiligung am Praktikum zu testieren.
Medien spielen eine Schlüsselrolle für die öffentliche Meinung und Akzeptanz neuer Technologien. Mit einer qualitativen Inhaltsanalyse journalistischer Artikel zum Elektrofahrrad wurden Akteure und ihre Einstellungen und Handlungen in Bezug auf das Elektrofahrrad untersucht. In die Analyse flossen 444 Artikel ausgewählter deutscher Qualitätsmedien aus dem Jahr 2018 ein. Die Untersuchung zeigt den gesellschaftlich relevanten Diskurs über Elektrofahrräder auf und bietet Anknüpfungspunkte für die Förderung von Individualmobilität und der Entwicklung zukunftsfähiger Mobilitätskonzepte.
Bionik
(2020)
Wie machen die das… kann angesichts der erstaunlichen Fähigkeiten mancher Lebewesen gefragt werden. Die Bionik fragt noch weiter …und wie kann man das nachmachen? Hier liegt ein Schwerpunkt dieses Lehrbuches, das die Bionik nicht nur an zahlreichen Beispielen erklärt, sondern auch eine Vorgehensweise für die Identifizierung biologischer Lösungen und deren Übertragung auf technische Anwendungen vermittelt. Basisinformationen der Biologie und Grundlagen der Konstruktionstechnik gewährleisten einen leichten Zugang zum Stoff. Mit dem 3D-Druck als Schlüsseltechnologie und der Thematisierung der Nachhaltigkeit geht das Buch zudem auf aktuelle Entwicklungen ein. Dieser ganzheitliche Blick auf die Bionik soll den Leser zur Durchführung bionischer Projekte befähigen und motivieren. (Verlagsangaben)
This paper addresses long-term historical changes in solar irradiance in West Africa (3 to 20° N and 20° W to 16° E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature data from a reanalysis (ERA5) to derive photovoltaic yields. Based on 35 years of data (1983–2017), the temporal and regional variability as well as long-term trends in global and direct horizontal irradiance are analyzed. Furthermore, a detailed time series analysis is undertaken at four locations. According to the high spatial resolution SARAH-2.1 data record (0.05°×0.05°), solar irradiance is largest (up to a 300 W m−2 daily average) in the Sahara and the Sahel zone with a positive trend (up to 5 W m−2 per decade) and a lower temporal variability (<75 W m−2 between 1983 and 2017 for daily averages). In contrast, the solar irradiance is lower in southern West Africa (between 200 W m−2 and 250 W m−2) with a negative trend (up to −5 W m−2 per decade) and a higher temporal variability (up to 150 W m−2). The positive trend in the north is mostly connected to the dry season, whereas the negative trend in the south occurs during the wet season. Both trends show 95 % significance. Photovoltaic (PV) yields show a strong meridional gradient with the lowest values of around 4 kWh kWp−1 in southern West Africa and values of more than 5.5 kWh kWp−1 in the Sahara and Sahel zone.
The temperature of photovoltaic modules is modelled as a dynamic function of ambient temperature, shortwave and longwave irradiance and wind speed, in order to allow for a more accurate characterisation of their efficiency. A simple dynamic thermal model is developed by extending an existing parametric steady-state model using an exponential smoothing kernel to include the effect of the heat capacity of the system. The four parameters of the model are fitted to measured data from three photovoltaic systems in the Allgäu region in Germany using non-linear optimisation. The dynamic model reduces the root-mean-square error between measured and modelled module temperature to 1.58 K on average, compared to 3.03 K for the steady-state model, whereas the maximum instantaneous error is reduced from 20.02 to 6.58 K.
Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa
(2020)
West Africa is one of the least developed regions in the world regarding the energy availability and energy security. Located close to the equator West Africa receives high amounts of global horizontal irradiance (GHI). Thus, solar power and especially photovoltaic (PV) systems seem to be a promising solution to provide electricity with low environmental impact. To plan and to dimension a PV power system climatological data for global horizontal irradiance (GHI) and its variability need to be taken into account. However, ground based measurements of irradiances are not available continuously and cover only a few discrete locations.
Incoming solar radiation is an important driver of our climate and weather. Several studies (see for instance Frank et al. 2018) have revealed discrepancies between ground-based irradiance measurements and the predictions of regional weather models. In the realm of electricity generation, accurate forecasts of solar photovoltaic (PV)energy yield are becoming indispensable for cost-effective grid operation: in Germany there are 1.6 million PVsystems installed, with a nominal power of 46 GW (Bundesverband Solarwirtschaft 2019). The proliferation of PV systems provides a unique opportunity to characterise global irradiance with unprecedented spatiotemporalresolution, which in turn will allow for highly resolved PV power forecasts.
Renewable energies play an increasingly important role for energy production in Europe. Unlike coal or gas powerplants, solar energy production is highly variable in space and time. This is due to the strong variability of cloudsand their influence on the surface solar irradiance. Especially in regions with large contribution from photovoltaicpower production, the intermittent energy feed-in to the power grid can be a risk for grid stability. Therefore goodforecasts of temporal and spatial variability of surface irradiance are necessary to be able to properly regulate thepower supply.
Due to the policy goals for sustainable energy production, renewable energy plants such as photovoltaics are increasingly in use. The energy production from solar radiation depends strongly on atmospheric conditions. As the weather mostly changes, electrical power generation fluctuates, making technical planning and control of power grids to a complex problem.