Refine
Department, Institute
- Fachbereich Informatik (912) (remove)
Document Type
- Conference Object (511)
- Article (197)
- Report (70)
- Part of a Book (42)
- Book (28)
- Preprint (25)
- Conference Proceedings (15)
- Doctoral Thesis (9)
- Master's Thesis (6)
- Research Dataset (3)
Year of publication
Language
- English (766)
- German (141)
- Multiple languages (4)
- No linguistic content (1)
Keywords
- Virtual Reality (9)
- Robotics (7)
- Lehrbuch (6)
- Navigation (6)
- Robotik (6)
- Virtual reality (6)
- 3D user interface (5)
- computer vision (5)
- robotics (5)
- virtual reality (5)
Kompetenzen auf dem Gebiet der Datenbanken gehören zum Pflichtbereich der Informatik. Das Angebot an Lehrbüchern, Vorlesungsformaten und Tools lässt sich jedoch für Lehrende oft nur eingeschränkt in die eigene Lehre integrieren. In diesem Aufsatz schildern wir unsere Erfahrungen in der Nutzung (frei) verfügbarer und der Entwicklung eigener digitaler Inhalte für grundlegende Datenbankveranstaltungen. Die Präferenzen der Studierenden werden mittels Nutzungsanalysen und Befragungen ermittelt. Wir stellen die Anforderungen auf, wie die nicht selten aufwendig herzustellenden digitalen Materialien von Lehrenden in ihre Lehr- und Lernumgebungen integriert werden können. Als konstruktive Antwort auf diese Herausforderung wird das Konzept EILD zur Entwicklung von Inhalten für die Lehre im Fach Datenbanken vorgestellt. Die Inhalte sollen in vielfältigen Lernszenarien eingesetzt werden können und mit einer Creative Commons (CC) Lizenzierung als OER (open educational resources) frei zur Verfügung stehen.
Robot Action Diagnosis and Experience Correction by Falsifying Parameterised Execution Models
(2021)
When faced with an execution failure, an intelligent robot should be able to identify the likely reasons for the failure and adapt its execution policy accordingly. This paper addresses the question of how to utilise knowledge about the execution process, expressed in terms of learned constraints, in order to direct the diagnosis and experience acquisition process. In particular, we present two methods for creating a synergy between failure diagnosis and execution model learning. We first propose a method for diagnosing execution failures of parameterised action execution models, which searches for action parameters that violate a learned precondition model. We then develop a strategy that uses the results of the diagnosis process for generating synthetic data that are more likely to lead to successful execution, thereby increasing the set of available experiences to learn from. The diagnosis and experience correction methods are evaluated for the problem of handle grasping, such that we experimentally demonstrate the effectiveness of the diagnosis algorithm and show that corrected failed experiences can contribute towards improving the execution success of a robot.
Risk-based authentication (RBA) aims to strengthen password-based authentication rather than replacing it. RBA does this by monitoring and recording additional features during the login process. If feature values at login time differ significantly from those observed before, RBA requests an additional proof of identification. Although RBA is recommended in the NIST digital identity guidelines, it has so far been used almost exclusively by major online services. This is partly due to a lack of open knowledge and implementations that would allow any service provider to roll out RBA protection to its users.
To close this gap, we provide a first in-depth analysis of RBA characteristics in a practical deployment. We observed N=780 users with 247 unique features on a real-world online service for over 1.8 years. Based on our collected data set, we provide (i) a behavior analysis of two RBA implementations that were apparently used by major online services in the wild, (ii) a benchmark of the features to extract a subset that is most suitable for RBA use, (iii) a new feature that has not been used in RBA before, and (iv) factors which have a significant effect on RBA performance. Our results show that RBA needs to be carefully tailored to each online service, as even small configuration adjustments can greatly impact RBA's security and usability properties. We provide insights on the selection of features, their weightings, and the risk classification in order to benefit from RBA after a minimum number of login attempts.
With the digital transformation, software systems have become an integral part of our society and economy. In every part of our life, software systems are increasingly utilized to, e.g., simplify housework or to optimize business processes. All these applications are connected to the Internet, which already includes millions of software services consumed by billions of people. Applications which process such a magnitude of users and data traffic requires to be highly scalable and are therefore denoted as Ultra Large Scale (ULS) systems. Roy Fielding has defined one of the first approaches which allows designing modern ULS software systems. In his doctoral thesis, Fielding introduced the architectural style Representational State Transfer (REST) which builds the theoretical foundation of the web. At present, the web is considered as the world's largest ULS system. Due to a large number of users and the significance of software for society and the economy, the security of ULS systems is another crucial quality factor besides high scalability.
This book shows in a comprehensive presentation how Bond Graph methodology can support model-based control, model-based fault diagnosis, fault accommodation, and failure prognosis by reviewing the state-of-the-art, presenting a hybrid integrated approach to Bond Graph model-based fault diagnosis and failure prognosis, and by providing a review of software that can be used for these tasks.
Telepresence robots allow users to be spatially and socially present in remote environments. Yet, it can be challenging to remotely operate telepresence robots, especially in dense environments such as academic conferences or workplaces. In this paper, we primarily focus on the effect that a speed control method, which automatically slows the telepresence robot down when getting closer to obstacles, has on user behaviors. In our first user study, participants drove the robot through a static obstacle course with narrow sections. Results indicate that the automatic speed control method significantly decreases the number of collisions. For the second study we designed a more naturalistic, conference-like experimental environment with tasks that require social interaction, and collected subjective responses from the participants when they were asked to navigate through the environment. While about half of the participants preferred automatic speed control because it allowed for smoother and safer navigation, others did not want to be influenced by an automatic mechanism. Overall, the results suggest that automatic speed control simplifies the user interface for telepresence robots in static dense environments, but should be considered as optionally available, especially in situations involving social interactions.
The ability to finely segment different instances of various objects in an environment forms a critical tool in the perception tool-box of any autonomous agent. Traditionally instance segmentation is treated as a multi-label pixel-wise classification problem. This formulation has resulted in networks that are capable of producing high-quality instance masks but are extremely slow for real-world usage, especially on platforms with limited computational capabilities. This thesis investigates an alternate regression-based formulation of instance segmentation to achieve a good trade-off between mask precision and run-time. Particularly the instance masks are parameterized and a CNN is trained to regress to these parameters, analogous to bounding box regression performed by an object detection network.
In this investigation, the instance segmentation masks in the Cityscape dataset are approximated using irregular octagons and an existing object detector network (i.e., SqueezeDet) is modified to regresses to the parameters of these octagonal approximations. The resulting network is referred to as SqueezeDetOcta. At the image boundaries, object instances are only partially visible. Due to the convolutional nature of most object detection networks, special handling of the boundary adhering object instances is warranted. However, the current object detection techniques seem to be unaffected by this and handle all the object instances alike. To this end, this work proposes selectively learning only partial, untainted parameters of the bounding box approximation of the boundary adhering object instances. Anchor-based object detection networks like SqueezeDet and YOLOv2 have a discrepancy between the ground-truth encoding/decoding scheme and the coordinate space used for clustering, to generate the prior anchor shapes. To resolve this disagreement, this work proposes clustering in a space defined by two coordinate axes representing the natural log transformations of the width and height of the ground-truth bounding boxes.
When both SqueezeDet and SqueezeDetOcta were trained from scratch, SqueezeDetOcta lagged behind the SqueezeDet network by a massive ≈ 6.19 mAP. Further analysis revealed that the sparsity of the annotated data was the reason for this lackluster performance of the SqueezeDetOcta network. To mitigate this issue transfer-learning was used to fine-tune the SqueezeDetOcta network starting from the trained weights of the SqueezeDet network. When all the layers of the SqueezeDetOcta were fine-tuned, it outperformed the SqueezeDet network paired with logarithmically extracted anchors by ≈ 0.77 mAP. In addition to this, the forward pass latencies of both SqueezeDet and SqueezeDetOcta are close to ≈ 19ms. Boundary adhesion considerations, during training, resulted in an improvement of ≈ 2.62 mAP of the baseline SqueezeDet network. A SqueezeDet network paired with logarithmically extracted anchors improved the performance of the baseline SqueezeDet network by ≈ 1.85 mAP.
In summary, this work demonstrates that if given sufficient fine instance annotated data, an existing object detection network can be modified to predict much finer approximations (i.e., irregular octagons) of the instance annotations, whilst having the same forward pass latency as that of the bounding box predicting network. The results justify the merits of logarithmically extracted anchors to boost the performance of any anchor-based object detection network. The results also showed that the special handling of image boundary adhering object instances produces more performant object detectors.
The simultaneous operation of multiple different semiconducting metal oxide (MOX) gas sensors is demanding for the readout circuitry. The challenge results from the strongly varying signal intensities of the various sensor types to the target gas. While some sensors change their resistance only slightly, other types can react with a resistive change over a range of several decades. Therefore, a suitable readout circuit has to be able to capture all these resistive variations, requiring it to have a very large dynamic range. This work presents a compact embedded system that provides a full, high range input interface (readout and heater management) for MOX sensor operation. The system is modular and consists of a central mainboard that holds up to eight sensor-modules, each capable of supporting up to two MOX sensors, therefore supporting a total maximum of 16 different sensors. Its wide input range is archived using the resistance-to-time measurement method. The system is solely built with commercial off-the-shelf components and tested over a range spanning from 100Ω to 5 GΩ (9.7 decades) with an average measurement error of 0.27% and a maximum error of 2.11%. The heater management uses a well-tested power-circuit and supports multiple modes of operation, hence enabling the system to be used in highly automated measurement applications. The experimental part of this work presents the results of an exemplary screening of 16 sensors, which was performed to evaluate the system’s performance.
Object detectors have improved considerably in the last years by using advanced CNN architectures. However, many detector hyper-parameters are generally manually tuned, or they are used with values set by the detector authors. Automatic Hyper-parameter optimization has not been explored in improving CNN-based object detectors hyper-parameters. In this work, we propose the use of Black-box optimization methods to tune the prior/default box scales in Faster R-CNN and SSD, using Bayesian Optimization, SMAC, and CMA-ES. We show that by tuning the input image size and prior box anchor scale on Faster R-CNN mAP increases by 2% on PASCAL VOC 2007, and by 3% with SSD. On the COCO dataset with SSD there are mAP improvement in the medium and large objects, but mAP decreases by 1% in small objects. We also perform a regression analysis to find the significant hyper-parameters to tune.
In this paper we introduce the Perception for Autonomous Systems (PAZ) software library. PAZ is a hierarchical perception library that allow users to manipulate multiple levels of abstraction in accordance to their requirements or skill level. More specifically, PAZ is divided into three hierarchical levels which we refer to as pipelines, processors, and backends. These abstractions allows users to compose functions in a hierarchical modular scheme that can be applied for preprocessing, data-augmentation, prediction and postprocessing of inputs and outputs of machine learning (ML) models. PAZ uses these abstractions to build reusable training and prediction pipelines for multiple robot perception tasks such as: 2D keypoint estimation, 2D object detection, 3D keypoint discovery, 6D pose estimation, emotion classification, face recognition, instance segmentation, and attention mechanisms.
Reinforcement learning (RL) algorithms should learn as much as possible about the environment but not the properties of the physics engines that generate the environment. There are multiple algorithms that solve the task in a physics engine based environment but there is no work done so far to understand if the RL algorithms can generalize across physics engines. In this work, we compare the generalization performance of various deep reinforcement learning algorithms on a variety of control tasks. Our results show that MuJoCo is the best engine to transfer the learning to other engines. On the other hand, none of the algorithms generalize when trained on PyBullet. We also found out that various algorithms have a promising generalizability if the effect of random seeds can be minimized on their performance.
An internal model of self-motion provides a fundamental basis for action in our daily lives, yet little is known about its development. The ability to control self-motion develops in youth and often deteriorates with advanced age. Self-motion generates relative motion between the viewer and the environment. Thus, the smoothness of the visual motion created will vary as control improves. Here, we study the influence of the smoothness of visually simulated self-motion on an observer's ability to judge how far they have travelled over a wide range of ages. Previous studies were typically highly controlled and concentrated on university students. But are such populations representative of the general public? And are there developmental and sex effects? Here, estimates of distance travelled (visual odometry) during visually induced self-motion were obtained from 466 participants drawn from visitors to a public science museum. Participants were presented with visual motion that simulated forward linear self-motion through a field of lollipops using a head-mounted virtual reality display. They judged the distance of their simulated motion by indicating when they had reached the position of a previously presented target. The simulated visual motion was presented with or without horizontal or vertical sinusoidal jitter. Participants' responses indicated that they felt they travelled further in the presence of vertical jitter. The effectiveness of the display increased with age over all jitter conditions. The estimated time for participants to feel that they had started to move also increased slightly with age. There were no differences between the sexes. These results suggest that age should be taken into account when generating motion in a virtual reality environment. Citizen science studies like this can provide a unique and valuable insight into perceptual processes in a truly representative sample of people.
OSC data
(2020)
Optimization plays an essential role in industrial design, but is not limited to minimization of a simple function, such as cost or strength. These tools are also used in conceptual phases, to better understand what is possible. To support this exploration we focus on Quality Diversity (QD) algorithms, which produce sets of varied, high performing solutions. These techniques often require the evaluation of millions of solutions -- making them impractical in design cases. In this thesis we propose methods to radically improve the data-efficiency of QD with machine learning, enabling its application to design. In our first contribution, we develop a method of modeling the performance of evolved neural networks used for control and design. The structures of these networks grow and change, making them difficult to model -- but with a new method we are able to estimate their performance based on their heredity, improving data-efficiency by several times. In our second contribution we combine model-based optimization with MAP-Elites, a QD algorithm. A model of performance is created from known designs, and MAP-Elites creates a new set of designs using this approximation. A subset of these designs are the evaluated to improve the model, and the process repeats. We show that this approach improves the efficiency of MAP-Elites by orders of magnitude. Our third contribution integrates generative models into MAP-Elites to learn domain specific encodings. A variational autoencoder is trained on the solutions produced by MAP-Elites, capturing the common “recipe” for high performance. This learned encoding can then be reused by other algorithms for rapid optimization, including MAP-Elites. Throughout this thesis, though the focus of our vision is design, we examine applications in other fields, such as robotics. These advances are not exclusive to design, but serve as foundational work on the integration of QD and machine learning.