### Refine

#### Department, Institute

#### Keywords

The formulation of transport network problems is represented as a translation between two domain specific languages: from a network description language, used by network simulation community, to a problem description language, understood by generic non-linear solvers. A universal algorithm for this translation is developed, an estimation of its computational complexity given, and an efficient application of the algorithm demonstrated on a number of realistic examples. Typically, for a large gas transport network with about 10K elements the translation and solution of non-linear system together require less than 1 sec on the common hardware. The translation procedure incorporates several preprocessing filters, in particular, topological cleaning filters, which accelerate the solution procedure by factor 8.

The paper presents the topological reduction method applied to gas transport networks, using contraction of series, parallel and tree-like subgraphs. The contraction operations are implemented for pipe elements, described by quadratic friction law. This allows significant reduction of the graphs and acceleration of solution procedure for stationary network problems. The algorithm has been tested on several realistic network examples. The possible extensions of the method to different friction laws and other elements are discussed.