Refine
Keywords
- Distributed Robot Systems (1)
- Middleware and Programming Environments (1)
- Networked Robots (1)
- Robot kinematics (1)
- Robot sensing systems (1)
- Semantics (1)
- Software (1)
- Three-dimensional displays (1)
- Transforms (1)
- Uncertainty (1)
This paper presents a distributed world model that is able to adapt to changes in the Quality of Service (QoS) of the communication layer by online reconfiguration of perception algorithms. The approach consists of (a) a mechanism for storage, exchange and processing of world model data and (b) a feedback loop that incorporates reasoning techniques to adapt to QoS changes immediately. The latter introduces a Level of Detail (LoD) metric based on a spatial resolution in order to infer an upper bound for the amount of data that can be transmitted without violating an application specific transmission delay.
This paper presents a field report and summarizes the problems of the appliance of rescue robots during the Collapse of the Historical Archive of the City of Cologne. Two robots where on the field, ready to be applied: A shoe-box size tracked mobile robot (VGTV Xtreme) and a caterpillar like system (Active Scope Camera). Due to the special type of collapse and design limitations of the robots, both robotic systems could not be applied. Either they could not reach/fit into voids or could not be controlled from a safe distance. The problems faced have been analyzed and are described in this paper.
This paper presents a novel approach for representing and maintaining a shared 3D world model for robotic applications. This approach is based on the scene graph concept which has been adapted to the requirements of the robotic domain. A key feature is the temporal and centralized sharing of all available 3D data in the leaves of the graph structure. The approach enables tracking of dynamic objects, incorporates uncertainty and allows for annotations by semantic tags. A demonstration is given for a perception application that exploits the temporal sharing of 3D data. A Region of Interest (ROI) is extracted from the stored scene data in order to accelerate processing cycle times.
Robots generate large amounts of data which need to be stored in a meaningful way such that they can be used and interpreted later. Such data can be written into log files, but these files lack the querying features and scaling capabilities of modern databases - especially when dealing with multi-robot systems, where the trade-off between availability and consistency has to be resolved. However, there is a plethora of existing databases, each with its own set of features, but none designed with robotic use cases in mind. This work presents three main contributions: (a) structures for benchmarking scenarios with a focus on networked multi-robot architectures, (b) an extensible workbench for benchmarking databases for different scenarios that makes use of Docker containers and (c) a comparison of existing databases given a set of multi-robot use cases to showcase the usage of the framework. The comparison gives indications for choosing an appropriate database.
In this work a graph-based, semantic mapping approach for indoor robotics applications is presented, which is extending OpenStreetMap (OSM) with robotic-specific, semantic, topological, and geometrical information. Models for common indoor structures (such as walls, doors, corridors, elevators, etc.) are introduced. The architectural principles support composition with additional domain and application specific knowledge. As an example, a model for an area is introduced and it is explained how this can be used in navigation. A key advantages of the proposed graph-based map representation is that it allows seamless transitions between maps, e.g., indoor and outdoor maps by exploiting the hierarchical structure of the graphs. Finally, the compatibility of the approach with existing, grid-based motion planning algorithms is shown.
Robots need a representation of their environment to reason about and to interact with it. Different 3D perception and modeling approaches exist to create such a representation, but they are not yet easily comparable. This work tries to identify best practice algorithms in the domain of 3D perception and modeling with a focus on environment reconstruction for robotic applications. The goal is to have a collection of refactored algorithms that are easily measurable and comparable. The realization follows a methodology consisting of five steps. After a survey of relevant algorithms and libraries, common representations for the core data-types Cartesian point, Cartesian point cloud and triangle mesh are identified for use in harmonized interfaces. Atomic algorithms are encapsulated into four software components: the Octree component, the Iterative Closest Point component, the k-Nearest Neighbors search component and the Delaunay triangulation component. A sample experiment demonstrates how the component structure can be used to deduce best practice.
This work discusses how to use OSM for robotic applications and aims at starting a discussion between the OSM and the robotics community. OSM contains much topological and semantic information that can be directly used in robotics and offers various advantages: 1) Standardized format with existing tooling. 2) The graph structure allows to compose the OSM models with domain-specific semantics by adding custom nodes, relations, and key-value pairs. 3) Information about many places is already available and can be used by robots since it is driven by a community effort.