Refine
Department, Institute
Document Type
- Conference Object (2)
- Article (1)
Keywords
- Advances in Design Science Research (1)
- Artificial Intelligence (1)
- Data Storytelling (1)
- Data-Storytelling-Prozess (1)
- Datenkompetenz (1)
- Datenwissenschaft (1)
- Folk theories (1)
- Mental models (1)
- Misconception (1)
- Perceived AI (1)
Data emerged as a central success factor for companies to benefit from digitization. However, the skills in successfully creating value from data – especially at the management level – are not always profound. To address this problem, several canvas models have already been designed. Canvas models are usually created to write down an idea in a structured way to promote transparency and traceability. However, some existing data science canvas models mainly address developers and are thus unsuitable for decision-makers and communication within interdisciplinary teams. Based on a literature review, we identified influencing factors that are essential for the success of data science projects. With the information gained, the Data Science Canvas was developed in an expert workshop and finally evaluated by practitioners to find out whether such an instrument could support data-driven value creation.
In 1991 the researchers at the center for the Learning Sciences of Carnegie Mellon University were confronted with the confusing question of “where is AI” from the users, who were interacting with AI but did not realize it. Three decades of research and we are still facing the same issue with the AItechnology users. In the lack of users’ awareness and mutual understanding of AI-enabled systems between designers and users, informal theories of the users about how a system works (“Folk theories”) become inevitable but can lead to misconceptions and ineffective interactions. To shape appropriate mental models of AI-based systems, explainable AI has been suggested by AI practitioners. However, a profound understanding of the current users’ perception of AI is still missing. In this study, we introduce the term “Perceived AI” as “AI defined from the perspective of its users”. We then present our preliminary results from deep-interviews with 50 AItechnology users, which provide a framework for our future research approach towards a better understanding of PAI and users’ folk theories.