Refine
Department, Institute
Document Type
- Conference Object (3)
- Article (1)
Keywords
- Focus plus context (1)
- IEEE 802.11 (1)
- MPLS (1)
- MR-WMN (1)
- QoS (1)
- Touchscreen interaction (1)
- augmented, and virtual realities (1)
- haptics (1)
- interaction techniques (1)
- link optimization (1)
Rural areas often lack affordable broadband Internet connectivity, mainly due to the CAPEX and especially the OPEX of traditional wireless carrier equipment, the vast and sparsely populated areas and, notably, the lack of trained personal. Addressing these issues we have developed a self-managed heterogeneous Wireless Back-Haul (WiBACK) architecture which may be deployed to complement or even replace traditional operator equipment. To optimally utilize fixed wireless point-to-point connectivity, its configuration is to be adjusted properly to the characteristics of the wireless channel. Due to lack of trained personal, time constraints during rapid temporary deployments or run-time network reconfigurations, this task must be automated. Some technologies already provide built-in ranging mechanisms, while others require external, often manual configuration. Such mechanisms should optimally exploit the individual PHY and MAC configuration options. The resulting link properties, such as capacity and latency, are utilized to optimally allocate resources for QoS-aware Pipes. Accordingly, in this paper, we present the AI Radio CalibrateLink primitive, discuss its crucial architectural role in separating spectrum from capacity management and present evaluation results of our resource model for IEEE 802.11a links.
This paper introduces a novel zooming interface deploying a pico projector that, instead of a second visual display, leverages audioscapes for contextual information. The technique enhances current flashlight metaphor approaches, supporting flexible usage within the domain of spatial augmented reality to focus on object or environment-related details. Within a user study we focused on quantifying the projection limitations related to depiction of details through the pico projector and validated the interaction approach. The quantified results of the study correlate pixel density, detail and proximity, which can greatly aid to design more effective, legible zooming interfaces for pico projectors - the study can form an example testbed that can be applied well for testing aberrations with other projectors. Furthermore, users rated the zooming technique using audioscapes well, showing the validity of the approach. The studies form the foundation for extending our work by detailing out the audio-visual approach and looking more closely in the role of real-world features on interpreting projected content.
In this paper, we report on novel zooming interface methods that deploy a small handheld projector. Using mobile projections to visualize object/environment related information on real objects introduces new aspects for zooming interfaces. Different approaches are investigated that focus on maintaining a level of context while exploring detail in information. Doing so, we propose methods that provide alternative contextual cues within a single projector, and deploy the potential of zoom lenses to support a multi-level zooming approach. Furthermore, we look into the correlation between pixel density, distance to target and projection size. Alongside these techniques, we report on multiple user studies in which we quantified the projection limitations and validated various interactive visualization approaches. Thereby, we focused on solving issues related to pixel density, brightness and contrast that affect the design of more effective, legible zooming interfaces for handheld projectors.
Enhancing touch screen interfaces through non-visual cues has been shown to improve performance. In this paper we report on a novel system that explores the usage of a forcesensitive motion-platform enhanced tablet interface to improve multi-modal interaction based on visuo-haptic instead of tactile feedback. Extending mobile touch screen with force-sensitive haptic feedback has potential to enhance performance interacting with GUIs and to improve perception of understanding relations. A user study was performed to determine the perceived recognition of different 3D shapes and the perception of different heights. Furthermore, two application scenarios are proposed to explore our proposed visuo-haptic system. The studies show the positive stance towards the feedback, as well as the found limitations related to perception of feedback.